1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 NXP Semiconductors
17 #include <dm/device-internal.h>
18 #include <linux/compat.h>
21 #define NVME_Q_DEPTH 2
22 #define NVME_AQ_DEPTH 2
23 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
24 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
25 #define ADMIN_TIMEOUT 60
27 #define MAX_PRP_POOL 512
36 * An NVM Express queue. Each device has at least two (one for admin
37 * commands and one for I/O commands).
41 struct nvme_command *sq_cmds;
42 struct nvme_completion *cqes;
43 wait_queue_head_t sq_full;
53 unsigned long cmdid_data[];
56 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
58 u32 bit = enabled ? NVME_CSTS_RDY : 0;
62 /* Timeout field in the CAP register is in 500 millisecond units */
63 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
66 while (get_timer(start) < timeout) {
67 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
74 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
75 int total_len, u64 dma_addr)
77 u32 page_size = dev->page_size;
78 int offset = dma_addr & (page_size - 1);
80 int length = total_len;
82 u32 prps_per_page = (page_size >> 3) - 1;
85 length -= (page_size - offset);
93 dma_addr += (page_size - offset);
95 if (length <= page_size) {
100 nprps = DIV_ROUND_UP(length, page_size);
101 num_pages = DIV_ROUND_UP(nprps, prps_per_page);
103 if (nprps > dev->prp_entry_num) {
106 * Always increase in increments of pages. It doesn't waste
107 * much memory and reduces the number of allocations.
109 dev->prp_pool = memalign(page_size, num_pages * page_size);
110 if (!dev->prp_pool) {
111 printf("Error: malloc prp_pool fail\n");
114 dev->prp_entry_num = prps_per_page * num_pages;
117 prp_pool = dev->prp_pool;
120 if (i == ((page_size >> 3) - 1)) {
121 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
124 prp_pool += page_size;
126 *(prp_pool + i++) = cpu_to_le64(dma_addr);
127 dma_addr += page_size;
130 *prp2 = (ulong)dev->prp_pool;
132 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
133 dev->prp_entry_num * sizeof(u64));
138 static __le16 nvme_get_cmd_id(void)
140 static unsigned short cmdid;
142 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
145 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
147 u64 start = (ulong)&nvmeq->cqes[index];
148 u64 stop = start + sizeof(struct nvme_completion);
150 invalidate_dcache_range(start, stop);
152 return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
156 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
158 * @nvmeq: The queue to use
159 * @cmd: The command to send
161 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
163 u16 tail = nvmeq->sq_tail;
165 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
166 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
167 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
169 if (++tail == nvmeq->q_depth)
171 writel(tail, nvmeq->q_db);
172 nvmeq->sq_tail = tail;
175 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
176 struct nvme_command *cmd,
177 u32 *result, unsigned timeout)
179 u16 head = nvmeq->cq_head;
180 u16 phase = nvmeq->cq_phase;
183 ulong timeout_us = timeout * 100000;
185 cmd->common.command_id = nvme_get_cmd_id();
186 nvme_submit_cmd(nvmeq, cmd);
188 start_time = timer_get_us();
191 status = nvme_read_completion_status(nvmeq, head);
192 if ((status & 0x01) == phase)
194 if (timeout_us > 0 && (timer_get_us() - start_time)
201 printf("ERROR: status = %x, phase = %d, head = %d\n",
202 status, phase, head);
204 if (++head == nvmeq->q_depth) {
208 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
209 nvmeq->cq_head = head;
210 nvmeq->cq_phase = phase;
216 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
218 if (++head == nvmeq->q_depth) {
222 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
223 nvmeq->cq_head = head;
224 nvmeq->cq_phase = phase;
229 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
232 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
233 result, ADMIN_TIMEOUT);
236 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
239 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
242 memset(nvmeq, 0, sizeof(*nvmeq));
244 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
247 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
249 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
252 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
258 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
259 nvmeq->q_depth = depth;
262 dev->queues[qid] = nvmeq;
267 free((void *)nvmeq->cqes);
274 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
276 struct nvme_command c;
278 memset(&c, 0, sizeof(c));
279 c.delete_queue.opcode = opcode;
280 c.delete_queue.qid = cpu_to_le16(id);
282 return nvme_submit_admin_cmd(dev, &c, NULL);
285 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
287 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
290 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
292 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
295 static int nvme_enable_ctrl(struct nvme_dev *dev)
297 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
298 dev->ctrl_config |= NVME_CC_ENABLE;
299 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
301 return nvme_wait_ready(dev, true);
304 static int nvme_disable_ctrl(struct nvme_dev *dev)
306 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
307 dev->ctrl_config &= ~NVME_CC_ENABLE;
308 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
310 return nvme_wait_ready(dev, false);
313 static void nvme_free_queue(struct nvme_queue *nvmeq)
315 free((void *)nvmeq->cqes);
316 free(nvmeq->sq_cmds);
320 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
324 for (i = dev->queue_count - 1; i >= lowest; i--) {
325 struct nvme_queue *nvmeq = dev->queues[i];
327 dev->queues[i] = NULL;
328 nvme_free_queue(nvmeq);
332 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
334 struct nvme_dev *dev = nvmeq->dev;
339 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
340 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
341 flush_dcache_range((ulong)nvmeq->cqes,
342 (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
343 dev->online_queues++;
346 static int nvme_configure_admin_queue(struct nvme_dev *dev)
351 struct nvme_queue *nvmeq;
352 /* most architectures use 4KB as the page size */
353 unsigned page_shift = 12;
354 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
355 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
357 if (page_shift < dev_page_min) {
358 debug("Device minimum page size (%u) too large for host (%u)\n",
359 1 << dev_page_min, 1 << page_shift);
363 if (page_shift > dev_page_max) {
364 debug("Device maximum page size (%u) smaller than host (%u)\n",
365 1 << dev_page_max, 1 << page_shift);
366 page_shift = dev_page_max;
369 result = nvme_disable_ctrl(dev);
373 nvmeq = dev->queues[NVME_ADMIN_Q];
375 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
380 aqa = nvmeq->q_depth - 1;
384 dev->page_size = 1 << page_shift;
386 dev->ctrl_config = NVME_CC_CSS_NVM;
387 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
388 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
389 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
391 writel(aqa, &dev->bar->aqa);
392 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
393 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
395 result = nvme_enable_ctrl(dev);
399 nvmeq->cq_vector = 0;
401 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
406 nvme_free_queues(dev, 0);
411 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
412 struct nvme_queue *nvmeq)
414 struct nvme_command c;
415 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
417 memset(&c, 0, sizeof(c));
418 c.create_cq.opcode = nvme_admin_create_cq;
419 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
420 c.create_cq.cqid = cpu_to_le16(qid);
421 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
422 c.create_cq.cq_flags = cpu_to_le16(flags);
423 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
425 return nvme_submit_admin_cmd(dev, &c, NULL);
428 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
429 struct nvme_queue *nvmeq)
431 struct nvme_command c;
432 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
434 memset(&c, 0, sizeof(c));
435 c.create_sq.opcode = nvme_admin_create_sq;
436 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
437 c.create_sq.sqid = cpu_to_le16(qid);
438 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
439 c.create_sq.sq_flags = cpu_to_le16(flags);
440 c.create_sq.cqid = cpu_to_le16(qid);
442 return nvme_submit_admin_cmd(dev, &c, NULL);
445 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
446 unsigned cns, dma_addr_t dma_addr)
448 struct nvme_command c;
449 u32 page_size = dev->page_size;
450 int offset = dma_addr & (page_size - 1);
451 int length = sizeof(struct nvme_id_ctrl);
454 memset(&c, 0, sizeof(c));
455 c.identify.opcode = nvme_admin_identify;
456 c.identify.nsid = cpu_to_le32(nsid);
457 c.identify.prp1 = cpu_to_le64(dma_addr);
459 length -= (page_size - offset);
463 dma_addr += (page_size - offset);
464 c.identify.prp2 = cpu_to_le64(dma_addr);
467 c.identify.cns = cpu_to_le32(cns);
469 ret = nvme_submit_admin_cmd(dev, &c, NULL);
471 invalidate_dcache_range(dma_addr,
472 dma_addr + sizeof(struct nvme_id_ctrl));
477 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
478 dma_addr_t dma_addr, u32 *result)
480 struct nvme_command c;
482 memset(&c, 0, sizeof(c));
483 c.features.opcode = nvme_admin_get_features;
484 c.features.nsid = cpu_to_le32(nsid);
485 c.features.prp1 = cpu_to_le64(dma_addr);
486 c.features.fid = cpu_to_le32(fid);
489 * TODO: add cache invalidate operation when the size of
490 * the DMA buffer is known
493 return nvme_submit_admin_cmd(dev, &c, result);
496 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
497 dma_addr_t dma_addr, u32 *result)
499 struct nvme_command c;
501 memset(&c, 0, sizeof(c));
502 c.features.opcode = nvme_admin_set_features;
503 c.features.prp1 = cpu_to_le64(dma_addr);
504 c.features.fid = cpu_to_le32(fid);
505 c.features.dword11 = cpu_to_le32(dword11);
508 * TODO: add cache flush operation when the size of
509 * the DMA buffer is known
512 return nvme_submit_admin_cmd(dev, &c, result);
515 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
517 struct nvme_dev *dev = nvmeq->dev;
520 nvmeq->cq_vector = qid - 1;
521 result = nvme_alloc_cq(dev, qid, nvmeq);
525 result = nvme_alloc_sq(dev, qid, nvmeq);
529 nvme_init_queue(nvmeq, qid);
534 nvme_delete_sq(dev, qid);
536 nvme_delete_cq(dev, qid);
541 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
545 u32 q_count = (count - 1) | ((count - 1) << 16);
547 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
548 q_count, 0, &result);
555 return min(result & 0xffff, result >> 16) + 1;
558 static void nvme_create_io_queues(struct nvme_dev *dev)
562 for (i = dev->queue_count; i <= dev->max_qid; i++)
563 if (!nvme_alloc_queue(dev, i, dev->q_depth))
566 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
567 if (nvme_create_queue(dev->queues[i], i))
571 static int nvme_setup_io_queues(struct nvme_dev *dev)
577 result = nvme_set_queue_count(dev, nr_io_queues);
581 dev->max_qid = nr_io_queues;
583 /* Free previously allocated queues */
584 nvme_free_queues(dev, nr_io_queues + 1);
585 nvme_create_io_queues(dev);
590 static int nvme_get_info_from_identify(struct nvme_dev *dev)
592 struct nvme_id_ctrl *ctrl;
594 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
596 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
600 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
606 dev->nn = le32_to_cpu(ctrl->nn);
607 dev->vwc = ctrl->vwc;
608 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
609 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
610 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
612 dev->max_transfer_shift = (ctrl->mdts + shift);
615 * Maximum Data Transfer Size (MDTS) field indicates the maximum
616 * data transfer size between the host and the controller. The
617 * host should not submit a command that exceeds this transfer
618 * size. The value is in units of the minimum memory page size
619 * and is reported as a power of two (2^n).
621 * The spec also says: a value of 0h indicates no restrictions
622 * on transfer size. But in nvme_blk_read/write() below we have
623 * the following algorithm for maximum number of logic blocks
626 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
628 * In order for lbas not to overflow, the maximum number is 15
629 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
630 * Let's use 20 which provides 1MB size.
632 dev->max_transfer_shift = 20;
639 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
641 struct nvme_ns *ns = dev_get_priv(udev);
646 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
651 int nvme_scan_namespace(void)
657 ret = uclass_get(UCLASS_NVME, &uc);
661 uclass_foreach_dev(dev, uc) {
662 ret = device_probe(dev);
670 static int nvme_blk_probe(struct udevice *udev)
672 struct nvme_dev *ndev = dev_get_priv(udev->parent);
673 struct blk_desc *desc = dev_get_uclass_platdata(udev);
674 struct nvme_ns *ns = dev_get_priv(udev);
676 struct pci_child_platdata *pplat;
677 struct nvme_id_ns *id;
679 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
683 memset(ns, 0, sizeof(*ns));
685 /* extract the namespace id from the block device name */
686 ns->ns_id = trailing_strtol(udev->name) + 1;
687 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
692 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
693 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
695 ns->lba_shift = id->lbaf[flbas].ds;
696 ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
697 ns->mode_select_block_len = 1 << ns->lba_shift;
698 list_add(&ns->list, &ndev->namespaces);
700 desc->lba = ns->mode_select_num_blocks;
701 desc->log2blksz = ns->lba_shift;
702 desc->blksz = 1 << ns->lba_shift;
704 pplat = dev_get_parent_platdata(udev->parent);
705 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
706 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
707 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
713 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
714 lbaint_t blkcnt, void *buffer, bool read)
716 struct nvme_ns *ns = dev_get_priv(udev);
717 struct nvme_dev *dev = ns->dev;
718 struct nvme_command c;
719 struct blk_desc *desc = dev_get_uclass_platdata(udev);
722 u64 total_len = blkcnt << desc->log2blksz;
723 u64 temp_len = total_len;
726 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
727 u64 total_lbas = blkcnt;
729 flush_dcache_range((unsigned long)buffer,
730 (unsigned long)buffer + total_len);
732 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
734 c.rw.nsid = cpu_to_le32(ns->ns_id);
743 if (total_lbas < lbas) {
744 lbas = (u16)total_lbas;
750 if (nvme_setup_prps(dev, &prp2,
751 lbas << ns->lba_shift, (ulong)buffer))
753 c.rw.slba = cpu_to_le64(slba);
755 c.rw.length = cpu_to_le16(lbas - 1);
756 c.rw.prp1 = cpu_to_le64((ulong)buffer);
757 c.rw.prp2 = cpu_to_le64(prp2);
758 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
759 &c, NULL, IO_TIMEOUT);
762 temp_len -= (u32)lbas << ns->lba_shift;
763 buffer += lbas << ns->lba_shift;
767 invalidate_dcache_range((unsigned long)buffer,
768 (unsigned long)buffer + total_len);
770 return (total_len - temp_len) >> desc->log2blksz;
773 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
774 lbaint_t blkcnt, void *buffer)
776 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
779 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
780 lbaint_t blkcnt, const void *buffer)
782 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
785 static const struct blk_ops nvme_blk_ops = {
786 .read = nvme_blk_read,
787 .write = nvme_blk_write,
790 U_BOOT_DRIVER(nvme_blk) = {
793 .probe = nvme_blk_probe,
794 .ops = &nvme_blk_ops,
795 .priv_auto_alloc_size = sizeof(struct nvme_ns),
798 static int nvme_bind(struct udevice *udev)
803 sprintf(name, "nvme#%d", ndev_num++);
805 return device_set_name(udev, name);
808 static int nvme_probe(struct udevice *udev)
811 struct nvme_dev *ndev = dev_get_priv(udev);
813 ndev->instance = trailing_strtol(udev->name);
815 INIT_LIST_HEAD(&ndev->namespaces);
816 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
818 if (readl(&ndev->bar->csts) == -1) {
820 printf("Error: %s: Out of memory!\n", udev->name);
824 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
827 printf("Error: %s: Out of memory!\n", udev->name);
830 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
832 ndev->cap = nvme_readq(&ndev->bar->cap);
833 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
834 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
835 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
837 ret = nvme_configure_admin_queue(ndev);
841 /* Allocate after the page size is known */
842 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
843 if (!ndev->prp_pool) {
845 printf("Error: %s: Out of memory!\n", udev->name);
848 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
850 ret = nvme_setup_io_queues(ndev);
854 nvme_get_info_from_identify(ndev);
859 free((void *)ndev->queues);
864 U_BOOT_DRIVER(nvme) = {
869 .priv_auto_alloc_size = sizeof(struct nvme_dev),
872 struct pci_device_id nvme_supported[] = {
873 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
877 U_BOOT_PCI_DEVICE(nvme, nvme_supported);