]> Git Repo - u-boot.git/blob - drivers/nvme/nvme.c
Merge branch 'master' of https://source.denx.de/u-boot/custodians/u-boot-sh
[u-boot.git] / drivers / nvme / nvme.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2017 NXP Semiconductors
4  * Copyright (C) 2017 Bin Meng <[email protected]>
5  */
6
7 #include <blk.h>
8 #include <bootdev.h>
9 #include <cpu_func.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <memalign.h>
15 #include <time.h>
16 #include <dm/device-internal.h>
17 #include <linux/compat.h>
18 #include "nvme.h"
19
20 #define NVME_Q_DEPTH            2
21 #define NVME_AQ_DEPTH           2
22 #define NVME_SQ_SIZE(depth)     (depth * sizeof(struct nvme_command))
23 #define NVME_CQ_SIZE(depth)     (depth * sizeof(struct nvme_completion))
24 #define NVME_CQ_ALLOCATION      ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
25                                       ARCH_DMA_MINALIGN)
26 #define ADMIN_TIMEOUT           60
27 #define IO_TIMEOUT              30
28 #define MAX_PRP_POOL            512
29
30 static int nvme_wait_csts(struct nvme_dev *dev, u32 mask, u32 val)
31 {
32         int timeout;
33         ulong start;
34
35         /* Timeout field in the CAP register is in 500 millisecond units */
36         timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
37
38         start = get_timer(0);
39         while (get_timer(start) < timeout) {
40                 if ((readl(&dev->bar->csts) & mask) == val)
41                         return 0;
42         }
43
44         return -ETIME;
45 }
46
47 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
48                            int total_len, u64 dma_addr)
49 {
50         u32 page_size = dev->page_size;
51         int offset = dma_addr & (page_size - 1);
52         u64 *prp_pool;
53         int length = total_len;
54         int i, nprps;
55         u32 prps_per_page = page_size >> 3;
56         u32 num_pages;
57
58         length -= (page_size - offset);
59
60         if (length <= 0) {
61                 *prp2 = 0;
62                 return 0;
63         }
64
65         if (length)
66                 dma_addr += (page_size - offset);
67
68         if (length <= page_size) {
69                 *prp2 = dma_addr;
70                 return 0;
71         }
72
73         nprps = DIV_ROUND_UP(length, page_size);
74         num_pages = DIV_ROUND_UP(nprps - 1, prps_per_page - 1);
75
76         if (nprps > dev->prp_entry_num) {
77                 free(dev->prp_pool);
78                 /*
79                  * Always increase in increments of pages.  It doesn't waste
80                  * much memory and reduces the number of allocations.
81                  */
82                 dev->prp_pool = memalign(page_size, num_pages * page_size);
83                 if (!dev->prp_pool) {
84                         printf("Error: malloc prp_pool fail\n");
85                         return -ENOMEM;
86                 }
87                 dev->prp_entry_num = num_pages * (prps_per_page - 1) + 1;
88         }
89
90         prp_pool = dev->prp_pool;
91         i = 0;
92         while (nprps) {
93                 if ((i == (prps_per_page - 1)) && nprps > 1) {
94                         *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
95                                         page_size);
96                         i = 0;
97                         prp_pool += page_size;
98                 }
99                 *(prp_pool + i++) = cpu_to_le64(dma_addr);
100                 dma_addr += page_size;
101                 nprps--;
102         }
103         *prp2 = (ulong)dev->prp_pool;
104
105         flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
106                            num_pages * page_size);
107
108         return 0;
109 }
110
111 static __le16 nvme_get_cmd_id(void)
112 {
113         static unsigned short cmdid;
114
115         return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
116 }
117
118 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
119 {
120         /*
121          * Single CQ entries are always smaller than a cache line, so we
122          * can't invalidate them individually. However CQ entries are
123          * read only by the CPU, so it's safe to always invalidate all of them,
124          * as the cache line should never become dirty.
125          */
126         ulong start = (ulong)&nvmeq->cqes[0];
127         ulong stop = start + NVME_CQ_ALLOCATION;
128
129         invalidate_dcache_range(start, stop);
130
131         return readw(&(nvmeq->cqes[index].status));
132 }
133
134 /**
135  * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
136  *
137  * @nvmeq:      The queue to use
138  * @cmd:        The command to send
139  */
140 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
141 {
142         struct nvme_ops *ops;
143         u16 tail = nvmeq->sq_tail;
144
145         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
146         flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
147                            (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
148
149         ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
150         if (ops && ops->submit_cmd) {
151                 ops->submit_cmd(nvmeq, cmd);
152                 return;
153         }
154
155         if (++tail == nvmeq->q_depth)
156                 tail = 0;
157         writel(tail, nvmeq->q_db);
158         nvmeq->sq_tail = tail;
159 }
160
161 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
162                                 struct nvme_command *cmd,
163                                 u32 *result, unsigned timeout)
164 {
165         struct nvme_ops *ops;
166         u16 head = nvmeq->cq_head;
167         u16 phase = nvmeq->cq_phase;
168         u16 status;
169         ulong start_time;
170         ulong timeout_us = timeout * 100000;
171
172         cmd->common.command_id = nvme_get_cmd_id();
173         nvme_submit_cmd(nvmeq, cmd);
174
175         start_time = timer_get_us();
176
177         for (;;) {
178                 status = nvme_read_completion_status(nvmeq, head);
179                 if ((status & 0x01) == phase)
180                         break;
181                 if (timeout_us > 0 && (timer_get_us() - start_time)
182                     >= timeout_us)
183                         return -ETIMEDOUT;
184         }
185
186         ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
187         if (ops && ops->complete_cmd)
188                 ops->complete_cmd(nvmeq, cmd);
189
190         status >>= 1;
191         if (status) {
192                 printf("ERROR: status = %x, phase = %d, head = %d\n",
193                        status, phase, head);
194                 status = 0;
195                 if (++head == nvmeq->q_depth) {
196                         head = 0;
197                         phase = !phase;
198                 }
199                 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
200                 nvmeq->cq_head = head;
201                 nvmeq->cq_phase = phase;
202
203                 return -EIO;
204         }
205
206         if (result)
207                 *result = readl(&(nvmeq->cqes[head].result));
208
209         if (++head == nvmeq->q_depth) {
210                 head = 0;
211                 phase = !phase;
212         }
213         writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
214         nvmeq->cq_head = head;
215         nvmeq->cq_phase = phase;
216
217         return status;
218 }
219
220 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
221                                  u32 *result)
222 {
223         return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
224                                     result, ADMIN_TIMEOUT);
225 }
226
227 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
228                                            int qid, int depth)
229 {
230         struct nvme_ops *ops;
231         struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
232         if (!nvmeq)
233                 return NULL;
234         memset(nvmeq, 0, sizeof(*nvmeq));
235
236         nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
237         if (!nvmeq->cqes)
238                 goto free_nvmeq;
239         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
240
241         nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
242         if (!nvmeq->sq_cmds)
243                 goto free_queue;
244         memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
245
246         nvmeq->dev = dev;
247
248         nvmeq->cq_head = 0;
249         nvmeq->cq_phase = 1;
250         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
251         nvmeq->q_depth = depth;
252         nvmeq->qid = qid;
253         dev->queue_count++;
254         dev->queues[qid] = nvmeq;
255
256         ops = (struct nvme_ops *)dev->udev->driver->ops;
257         if (ops && ops->setup_queue)
258                 ops->setup_queue(nvmeq);
259
260         return nvmeq;
261
262  free_queue:
263         free((void *)nvmeq->cqes);
264  free_nvmeq:
265         free(nvmeq);
266
267         return NULL;
268 }
269
270 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
271 {
272         struct nvme_command c;
273
274         memset(&c, 0, sizeof(c));
275         c.delete_queue.opcode = opcode;
276         c.delete_queue.qid = cpu_to_le16(id);
277
278         return nvme_submit_admin_cmd(dev, &c, NULL);
279 }
280
281 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
282 {
283         return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
284 }
285
286 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
287 {
288         return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
289 }
290
291 static int nvme_enable_ctrl(struct nvme_dev *dev)
292 {
293         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
294         dev->ctrl_config |= NVME_CC_ENABLE;
295         writel(dev->ctrl_config, &dev->bar->cc);
296
297         return nvme_wait_csts(dev, NVME_CSTS_RDY, NVME_CSTS_RDY);
298 }
299
300 static int nvme_disable_ctrl(struct nvme_dev *dev)
301 {
302         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303         dev->ctrl_config &= ~NVME_CC_ENABLE;
304         writel(dev->ctrl_config, &dev->bar->cc);
305
306         return nvme_wait_csts(dev, NVME_CSTS_RDY, 0);
307 }
308
309 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
310 {
311         dev->ctrl_config &= ~NVME_CC_SHN_MASK;
312         dev->ctrl_config |= NVME_CC_SHN_NORMAL;
313         writel(dev->ctrl_config, &dev->bar->cc);
314
315         return nvme_wait_csts(dev, NVME_CSTS_SHST_MASK, NVME_CSTS_SHST_CMPLT);
316 }
317
318 static void nvme_free_queue(struct nvme_queue *nvmeq)
319 {
320         free((void *)nvmeq->cqes);
321         free(nvmeq->sq_cmds);
322         free(nvmeq);
323 }
324
325 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
326 {
327         int i;
328
329         for (i = dev->queue_count - 1; i >= lowest; i--) {
330                 struct nvme_queue *nvmeq = dev->queues[i];
331                 dev->queue_count--;
332                 dev->queues[i] = NULL;
333                 nvme_free_queue(nvmeq);
334         }
335 }
336
337 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
338 {
339         struct nvme_dev *dev = nvmeq->dev;
340
341         nvmeq->sq_tail = 0;
342         nvmeq->cq_head = 0;
343         nvmeq->cq_phase = 1;
344         nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
345         memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
346         flush_dcache_range((ulong)nvmeq->cqes,
347                            (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
348         dev->online_queues++;
349 }
350
351 static int nvme_configure_admin_queue(struct nvme_dev *dev)
352 {
353         int result;
354         u32 aqa;
355         u64 cap = dev->cap;
356         struct nvme_queue *nvmeq;
357         /* most architectures use 4KB as the page size */
358         unsigned page_shift = 12;
359         unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
360         unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
361
362         if (page_shift < dev_page_min) {
363                 debug("Device minimum page size (%u) too large for host (%u)\n",
364                       1 << dev_page_min, 1 << page_shift);
365                 return -ENODEV;
366         }
367
368         if (page_shift > dev_page_max) {
369                 debug("Device maximum page size (%u) smaller than host (%u)\n",
370                       1 << dev_page_max, 1 << page_shift);
371                 page_shift = dev_page_max;
372         }
373
374         result = nvme_disable_ctrl(dev);
375         if (result < 0)
376                 return result;
377
378         nvmeq = dev->queues[NVME_ADMIN_Q];
379         if (!nvmeq) {
380                 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
381                 if (!nvmeq)
382                         return -ENOMEM;
383         }
384
385         aqa = nvmeq->q_depth - 1;
386         aqa |= aqa << 16;
387
388         dev->page_size = 1 << page_shift;
389
390         dev->ctrl_config = NVME_CC_CSS_NVM;
391         dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
392         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
393         dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
394
395         writel(aqa, &dev->bar->aqa);
396         nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
397         nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
398
399         result = nvme_enable_ctrl(dev);
400         if (result)
401                 goto free_nvmeq;
402
403         nvmeq->cq_vector = 0;
404
405         nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
406
407         return result;
408
409  free_nvmeq:
410         nvme_free_queues(dev, 0);
411
412         return result;
413 }
414
415 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
416                             struct nvme_queue *nvmeq)
417 {
418         struct nvme_command c;
419         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
420
421         memset(&c, 0, sizeof(c));
422         c.create_cq.opcode = nvme_admin_create_cq;
423         c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
424         c.create_cq.cqid = cpu_to_le16(qid);
425         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
426         c.create_cq.cq_flags = cpu_to_le16(flags);
427         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
428
429         return nvme_submit_admin_cmd(dev, &c, NULL);
430 }
431
432 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
433                             struct nvme_queue *nvmeq)
434 {
435         struct nvme_command c;
436         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
437
438         memset(&c, 0, sizeof(c));
439         c.create_sq.opcode = nvme_admin_create_sq;
440         c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
441         c.create_sq.sqid = cpu_to_le16(qid);
442         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
443         c.create_sq.sq_flags = cpu_to_le16(flags);
444         c.create_sq.cqid = cpu_to_le16(qid);
445
446         return nvme_submit_admin_cmd(dev, &c, NULL);
447 }
448
449 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
450                   unsigned cns, dma_addr_t dma_addr)
451 {
452         struct nvme_command c;
453         u32 page_size = dev->page_size;
454         int offset = dma_addr & (page_size - 1);
455         int length = sizeof(struct nvme_id_ctrl);
456         int ret;
457
458         memset(&c, 0, sizeof(c));
459         c.identify.opcode = nvme_admin_identify;
460         c.identify.nsid = cpu_to_le32(nsid);
461         c.identify.prp1 = cpu_to_le64(dma_addr);
462
463         length -= (page_size - offset);
464         if (length <= 0) {
465                 c.identify.prp2 = 0;
466         } else {
467                 dma_addr += (page_size - offset);
468                 c.identify.prp2 = cpu_to_le64(dma_addr);
469         }
470
471         c.identify.cns = cpu_to_le32(cns);
472
473         invalidate_dcache_range(dma_addr,
474                                 dma_addr + sizeof(struct nvme_id_ctrl));
475
476         ret = nvme_submit_admin_cmd(dev, &c, NULL);
477         if (!ret)
478                 invalidate_dcache_range(dma_addr,
479                                         dma_addr + sizeof(struct nvme_id_ctrl));
480
481         return ret;
482 }
483
484 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
485                       dma_addr_t dma_addr, u32 *result)
486 {
487         struct nvme_command c;
488         int ret;
489
490         memset(&c, 0, sizeof(c));
491         c.features.opcode = nvme_admin_get_features;
492         c.features.nsid = cpu_to_le32(nsid);
493         c.features.prp1 = cpu_to_le64(dma_addr);
494         c.features.fid = cpu_to_le32(fid);
495
496         ret = nvme_submit_admin_cmd(dev, &c, result);
497
498         /*
499          * TODO: Add some cache invalidation when a DMA buffer is involved
500          * in the request, here and before the command gets submitted. The
501          * buffer size varies by feature, also some features use a different
502          * field in the command packet to hold the buffer address.
503          * Section 5.21.1 (Set Features command) in the NVMe specification
504          * details the buffer requirements for each feature.
505          *
506          * At the moment there is no user of this function.
507          */
508
509         return ret;
510 }
511
512 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
513                       dma_addr_t dma_addr, u32 *result)
514 {
515         struct nvme_command c;
516
517         memset(&c, 0, sizeof(c));
518         c.features.opcode = nvme_admin_set_features;
519         c.features.prp1 = cpu_to_le64(dma_addr);
520         c.features.fid = cpu_to_le32(fid);
521         c.features.dword11 = cpu_to_le32(dword11);
522
523         /*
524          * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
525          * involved in the request. The buffer size varies by feature, also
526          * some features use a different field in the command packet to hold
527          * the buffer address. Section 5.21.1 (Set Features command) in the
528          * NVMe specification details the buffer requirements for each
529          * feature.
530          * At the moment the only user of this function is not using
531          * any DMA buffer at all.
532          */
533
534         return nvme_submit_admin_cmd(dev, &c, result);
535 }
536
537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
538 {
539         struct nvme_dev *dev = nvmeq->dev;
540         int result;
541
542         nvmeq->cq_vector = qid - 1;
543         result = nvme_alloc_cq(dev, qid, nvmeq);
544         if (result < 0)
545                 goto release_cq;
546
547         result = nvme_alloc_sq(dev, qid, nvmeq);
548         if (result < 0)
549                 goto release_sq;
550
551         nvme_init_queue(nvmeq, qid);
552
553         return result;
554
555  release_sq:
556         nvme_delete_sq(dev, qid);
557  release_cq:
558         nvme_delete_cq(dev, qid);
559
560         return result;
561 }
562
563 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
564 {
565         int status;
566         u32 result;
567         u32 q_count = (count - 1) | ((count - 1) << 16);
568
569         status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
570                         q_count, 0, &result);
571
572         if (status < 0)
573                 return status;
574         if (status > 1)
575                 return 0;
576
577         return min(result & 0xffff, result >> 16) + 1;
578 }
579
580 static int nvme_create_io_queues(struct nvme_dev *dev)
581 {
582         unsigned int i;
583         int ret;
584
585         for (i = dev->queue_count; i <= dev->max_qid; i++)
586                 if (!nvme_alloc_queue(dev, i, dev->q_depth))
587                         return log_msg_ret("all", -ENOMEM);
588
589         for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
590                 ret = nvme_create_queue(dev->queues[i], i);
591                 if (ret)
592                         return log_msg_ret("cre", ret);
593         }
594
595         return 0;
596 }
597
598 static int nvme_setup_io_queues(struct nvme_dev *dev)
599 {
600         int nr_io_queues;
601         int result;
602
603         nr_io_queues = 1;
604         result = nvme_set_queue_count(dev, nr_io_queues);
605         if (result <= 0) {
606                 log_debug("Cannot set queue count (err=%dE)\n", result);
607                 return result;
608         }
609
610         dev->max_qid = nr_io_queues;
611
612         /* Free previously allocated queues */
613         nvme_free_queues(dev, nr_io_queues + 1);
614         result = nvme_create_io_queues(dev);
615         if (result)
616                 return result;
617
618         return 0;
619 }
620
621 static int nvme_get_info_from_identify(struct nvme_dev *dev)
622 {
623         struct nvme_id_ctrl *ctrl;
624         int ret;
625         int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
626
627         ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
628         if (!ctrl)
629                 return -ENOMEM;
630
631         ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
632         if (ret) {
633                 free(ctrl);
634                 return -EIO;
635         }
636
637         dev->nn = le32_to_cpu(ctrl->nn);
638         dev->vwc = ctrl->vwc;
639         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
640         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
641         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
642         if (ctrl->mdts)
643                 dev->max_transfer_shift = (ctrl->mdts + shift);
644         else {
645                 /*
646                  * Maximum Data Transfer Size (MDTS) field indicates the maximum
647                  * data transfer size between the host and the controller. The
648                  * host should not submit a command that exceeds this transfer
649                  * size. The value is in units of the minimum memory page size
650                  * and is reported as a power of two (2^n).
651                  *
652                  * The spec also says: a value of 0h indicates no restrictions
653                  * on transfer size. But in nvme_blk_read/write() below we have
654                  * the following algorithm for maximum number of logic blocks
655                  * per transfer:
656                  *
657                  * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
658                  *
659                  * In order for lbas not to overflow, the maximum number is 15
660                  * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
661                  * Let's use 20 which provides 1MB size.
662                  */
663                 dev->max_transfer_shift = 20;
664         }
665
666         free(ctrl);
667         return 0;
668 }
669
670 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
671 {
672         struct nvme_ns *ns = dev_get_priv(udev);
673
674         if (ns_id)
675                 *ns_id = ns->ns_id;
676         if (eui64)
677                 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
678
679         return 0;
680 }
681
682 int nvme_scan_namespace(void)
683 {
684         struct uclass *uc;
685         struct udevice *dev;
686         int ret;
687
688         ret = uclass_get(UCLASS_NVME, &uc);
689         if (ret)
690                 return ret;
691
692         uclass_foreach_dev(dev, uc) {
693                 ret = device_probe(dev);
694                 if (ret) {
695                         log_err("Failed to probe '%s': err=%dE\n", dev->name,
696                                 ret);
697                         /* Bail if we ran out of memory, else keep trying */
698                         if (ret != -EBUSY)
699                                 return ret;
700                 }
701         }
702
703         return 0;
704 }
705
706 static int nvme_blk_probe(struct udevice *udev)
707 {
708         struct nvme_dev *ndev = dev_get_priv(udev->parent);
709         struct blk_desc *desc = dev_get_uclass_plat(udev);
710         struct nvme_ns *ns = dev_get_priv(udev);
711         u8 flbas;
712         struct nvme_id_ns *id;
713
714         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
715         if (!id)
716                 return -ENOMEM;
717
718         ns->dev = ndev;
719         /* extract the namespace id from the block device name */
720         ns->ns_id = trailing_strtol(udev->name);
721         if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
722                 free(id);
723                 return -EIO;
724         }
725
726         memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
727         flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
728         ns->flbas = flbas;
729         ns->lba_shift = id->lbaf[flbas].ds;
730         list_add(&ns->list, &ndev->namespaces);
731
732         desc->lba = le64_to_cpu(id->nsze);
733         desc->log2blksz = ns->lba_shift;
734         desc->blksz = 1 << ns->lba_shift;
735         desc->bdev = udev;
736         memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor));
737         memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
738         memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
739
740         free(id);
741         return 0;
742 }
743
744 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
745                          lbaint_t blkcnt, void *buffer, bool read)
746 {
747         struct nvme_ns *ns = dev_get_priv(udev);
748         struct nvme_dev *dev = ns->dev;
749         struct nvme_command c;
750         struct blk_desc *desc = dev_get_uclass_plat(udev);
751         int status;
752         u64 prp2;
753         u64 total_len = blkcnt << desc->log2blksz;
754         u64 temp_len = total_len;
755         uintptr_t temp_buffer = (uintptr_t)buffer;
756
757         u64 slba = blknr;
758         u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
759         u64 total_lbas = blkcnt;
760
761         flush_dcache_range((unsigned long)buffer,
762                            (unsigned long)buffer + total_len);
763
764         c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
765         c.rw.flags = 0;
766         c.rw.nsid = cpu_to_le32(ns->ns_id);
767         c.rw.control = 0;
768         c.rw.dsmgmt = 0;
769         c.rw.reftag = 0;
770         c.rw.apptag = 0;
771         c.rw.appmask = 0;
772         c.rw.metadata = 0;
773
774         while (total_lbas) {
775                 if (total_lbas < lbas) {
776                         lbas = (u16)total_lbas;
777                         total_lbas = 0;
778                 } else {
779                         total_lbas -= lbas;
780                 }
781
782                 if (nvme_setup_prps(dev, &prp2,
783                                     lbas << ns->lba_shift, temp_buffer))
784                         return -EIO;
785                 c.rw.slba = cpu_to_le64(slba);
786                 slba += lbas;
787                 c.rw.length = cpu_to_le16(lbas - 1);
788                 c.rw.prp1 = cpu_to_le64(temp_buffer);
789                 c.rw.prp2 = cpu_to_le64(prp2);
790                 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
791                                 &c, NULL, IO_TIMEOUT);
792                 if (status)
793                         break;
794                 temp_len -= (u32)lbas << ns->lba_shift;
795                 temp_buffer += lbas << ns->lba_shift;
796         }
797
798         if (read)
799                 invalidate_dcache_range((unsigned long)buffer,
800                                         (unsigned long)buffer + total_len);
801
802         return (total_len - temp_len) >> desc->log2blksz;
803 }
804
805 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
806                            lbaint_t blkcnt, void *buffer)
807 {
808         return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
809 }
810
811 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
812                             lbaint_t blkcnt, const void *buffer)
813 {
814         return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
815 }
816
817 static const struct blk_ops nvme_blk_ops = {
818         .read   = nvme_blk_read,
819         .write  = nvme_blk_write,
820 };
821
822 U_BOOT_DRIVER(nvme_blk) = {
823         .name   = "nvme-blk",
824         .id     = UCLASS_BLK,
825         .probe  = nvme_blk_probe,
826         .ops    = &nvme_blk_ops,
827         .priv_auto      = sizeof(struct nvme_ns),
828 };
829
830 int nvme_init(struct udevice *udev)
831 {
832         struct nvme_dev *ndev = dev_get_priv(udev);
833         struct nvme_id_ns *id;
834         int ret;
835
836         ndev->udev = udev;
837         INIT_LIST_HEAD(&ndev->namespaces);
838         if (readl(&ndev->bar->csts) == -1) {
839                 ret = -EBUSY;
840                 printf("Error: %s: Controller not ready!\n", udev->name);
841                 goto free_nvme;
842         }
843
844         ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
845         if (!ndev->queues) {
846                 ret = -ENOMEM;
847                 printf("Error: %s: Out of memory!\n", udev->name);
848                 goto free_nvme;
849         }
850         memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
851
852         ndev->cap = nvme_readq(&ndev->bar->cap);
853         ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
854         ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
855         ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
856
857         ret = nvme_configure_admin_queue(ndev);
858         if (ret) {
859                 log_debug("Unable to configure admin queue (err=%dE)\n", ret);
860                 goto free_queue;
861         }
862
863         /* Allocate after the page size is known */
864         ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
865         if (!ndev->prp_pool) {
866                 ret = -ENOMEM;
867                 printf("Error: %s: Out of memory!\n", udev->name);
868                 goto free_nvme;
869         }
870         ndev->prp_entry_num = MAX_PRP_POOL >> 3;
871
872         ret = nvme_setup_io_queues(ndev);
873         if (ret) {
874                 log_debug("Unable to setup I/O queues(err=%dE)\n", ret);
875                 goto free_queue;
876         }
877
878         nvme_get_info_from_identify(ndev);
879
880         /* Create a blk device for each namespace */
881
882         id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
883         if (!id) {
884                 ret = -ENOMEM;
885                 goto free_queue;
886         }
887
888         for (int i = 1; i <= ndev->nn; i++) {
889                 struct udevice *ns_udev;
890                 char name[20];
891
892                 memset(id, 0, sizeof(*id));
893                 if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
894                         ret = -EIO;
895                         goto free_id;
896                 }
897
898                 /* skip inactive namespace */
899                 if (!id->nsze)
900                         continue;
901
902                 /*
903                  * Encode the namespace id to the device name so that
904                  * we can extract it when doing the probe.
905                  */
906                 sprintf(name, "blk#%d", i);
907
908                 /* The real blksz and size will be set by nvme_blk_probe() */
909                 ret = blk_create_devicef(udev, "nvme-blk", name, UCLASS_NVME,
910                                          -1, DEFAULT_BLKSZ, 0, &ns_udev);
911                 if (ret)
912                         goto free_id;
913
914                 ret = bootdev_setup_for_sibling_blk(ns_udev, "nvme_bootdev");
915                 if (ret)
916                         return log_msg_ret("bootdev", ret);
917
918                 ret = blk_probe_or_unbind(ns_udev);
919                 if (ret)
920                         goto free_id;
921         }
922
923         free(id);
924         return 0;
925
926 free_id:
927         free(id);
928 free_queue:
929         free((void *)ndev->queues);
930 free_nvme:
931         return ret;
932 }
933
934 int nvme_shutdown(struct udevice *udev)
935 {
936         struct nvme_dev *ndev = dev_get_priv(udev);
937         int ret;
938
939         ret = nvme_shutdown_ctrl(ndev);
940         if (ret < 0) {
941                 printf("Error: %s: Shutdown timed out!\n", udev->name);
942                 return ret;
943         }
944
945         return nvme_disable_ctrl(ndev);
946 }
This page took 0.079216 seconds and 4 git commands to generate.