1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 NXP Semiconductors
16 #include <dm/device-internal.h>
17 #include <linux/compat.h>
20 #define NVME_Q_DEPTH 2
21 #define NVME_AQ_DEPTH 2
22 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
23 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
24 #define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \
26 #define ADMIN_TIMEOUT 60
28 #define MAX_PRP_POOL 512
30 static int nvme_wait_csts(struct nvme_dev *dev, u32 mask, u32 val)
35 /* Timeout field in the CAP register is in 500 millisecond units */
36 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
39 while (get_timer(start) < timeout) {
40 if ((readl(&dev->bar->csts) & mask) == val)
47 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
48 int total_len, u64 dma_addr)
50 u32 page_size = dev->page_size;
51 int offset = dma_addr & (page_size - 1);
53 int length = total_len;
55 u32 prps_per_page = page_size >> 3;
58 length -= (page_size - offset);
66 dma_addr += (page_size - offset);
68 if (length <= page_size) {
73 nprps = DIV_ROUND_UP(length, page_size);
74 num_pages = DIV_ROUND_UP(nprps - 1, prps_per_page - 1);
76 if (nprps > dev->prp_entry_num) {
79 * Always increase in increments of pages. It doesn't waste
80 * much memory and reduces the number of allocations.
82 dev->prp_pool = memalign(page_size, num_pages * page_size);
84 printf("Error: malloc prp_pool fail\n");
87 dev->prp_entry_num = num_pages * (prps_per_page - 1) + 1;
90 prp_pool = dev->prp_pool;
93 if ((i == (prps_per_page - 1)) && nprps > 1) {
94 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
97 prp_pool += page_size;
99 *(prp_pool + i++) = cpu_to_le64(dma_addr);
100 dma_addr += page_size;
103 *prp2 = (ulong)dev->prp_pool;
105 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
106 num_pages * page_size);
111 static __le16 nvme_get_cmd_id(void)
113 static unsigned short cmdid;
115 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
118 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
121 * Single CQ entries are always smaller than a cache line, so we
122 * can't invalidate them individually. However CQ entries are
123 * read only by the CPU, so it's safe to always invalidate all of them,
124 * as the cache line should never become dirty.
126 ulong start = (ulong)&nvmeq->cqes[0];
127 ulong stop = start + NVME_CQ_ALLOCATION;
129 invalidate_dcache_range(start, stop);
131 return readw(&(nvmeq->cqes[index].status));
135 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
137 * @nvmeq: The queue to use
138 * @cmd: The command to send
140 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
142 struct nvme_ops *ops;
143 u16 tail = nvmeq->sq_tail;
145 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
146 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
147 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
149 ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
150 if (ops && ops->submit_cmd) {
151 ops->submit_cmd(nvmeq, cmd);
155 if (++tail == nvmeq->q_depth)
157 writel(tail, nvmeq->q_db);
158 nvmeq->sq_tail = tail;
161 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
162 struct nvme_command *cmd,
163 u32 *result, unsigned timeout)
165 struct nvme_ops *ops;
166 u16 head = nvmeq->cq_head;
167 u16 phase = nvmeq->cq_phase;
170 ulong timeout_us = timeout * 100000;
172 cmd->common.command_id = nvme_get_cmd_id();
173 nvme_submit_cmd(nvmeq, cmd);
175 start_time = timer_get_us();
178 status = nvme_read_completion_status(nvmeq, head);
179 if ((status & 0x01) == phase)
181 if (timeout_us > 0 && (timer_get_us() - start_time)
186 ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops;
187 if (ops && ops->complete_cmd)
188 ops->complete_cmd(nvmeq, cmd);
192 printf("ERROR: status = %x, phase = %d, head = %d\n",
193 status, phase, head);
195 if (++head == nvmeq->q_depth) {
199 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
200 nvmeq->cq_head = head;
201 nvmeq->cq_phase = phase;
207 *result = readl(&(nvmeq->cqes[head].result));
209 if (++head == nvmeq->q_depth) {
213 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
214 nvmeq->cq_head = head;
215 nvmeq->cq_phase = phase;
220 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
223 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
224 result, ADMIN_TIMEOUT);
227 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
230 struct nvme_ops *ops;
231 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
234 memset(nvmeq, 0, sizeof(*nvmeq));
236 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION);
239 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
241 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
244 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
250 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
251 nvmeq->q_depth = depth;
254 dev->queues[qid] = nvmeq;
256 ops = (struct nvme_ops *)dev->udev->driver->ops;
257 if (ops && ops->setup_queue)
258 ops->setup_queue(nvmeq);
263 free((void *)nvmeq->cqes);
270 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
272 struct nvme_command c;
274 memset(&c, 0, sizeof(c));
275 c.delete_queue.opcode = opcode;
276 c.delete_queue.qid = cpu_to_le16(id);
278 return nvme_submit_admin_cmd(dev, &c, NULL);
281 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
283 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
286 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
288 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
291 static int nvme_enable_ctrl(struct nvme_dev *dev)
293 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
294 dev->ctrl_config |= NVME_CC_ENABLE;
295 writel(dev->ctrl_config, &dev->bar->cc);
297 return nvme_wait_csts(dev, NVME_CSTS_RDY, NVME_CSTS_RDY);
300 static int nvme_disable_ctrl(struct nvme_dev *dev)
302 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
303 dev->ctrl_config &= ~NVME_CC_ENABLE;
304 writel(dev->ctrl_config, &dev->bar->cc);
306 return nvme_wait_csts(dev, NVME_CSTS_RDY, 0);
309 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
311 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
312 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
313 writel(dev->ctrl_config, &dev->bar->cc);
315 return nvme_wait_csts(dev, NVME_CSTS_SHST_MASK, NVME_CSTS_SHST_CMPLT);
318 static void nvme_free_queue(struct nvme_queue *nvmeq)
320 free((void *)nvmeq->cqes);
321 free(nvmeq->sq_cmds);
325 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
329 for (i = dev->queue_count - 1; i >= lowest; i--) {
330 struct nvme_queue *nvmeq = dev->queues[i];
332 dev->queues[i] = NULL;
333 nvme_free_queue(nvmeq);
337 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
339 struct nvme_dev *dev = nvmeq->dev;
344 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
345 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
346 flush_dcache_range((ulong)nvmeq->cqes,
347 (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION);
348 dev->online_queues++;
351 static int nvme_configure_admin_queue(struct nvme_dev *dev)
356 struct nvme_queue *nvmeq;
357 /* most architectures use 4KB as the page size */
358 unsigned page_shift = 12;
359 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
360 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
362 if (page_shift < dev_page_min) {
363 debug("Device minimum page size (%u) too large for host (%u)\n",
364 1 << dev_page_min, 1 << page_shift);
368 if (page_shift > dev_page_max) {
369 debug("Device maximum page size (%u) smaller than host (%u)\n",
370 1 << dev_page_max, 1 << page_shift);
371 page_shift = dev_page_max;
374 result = nvme_disable_ctrl(dev);
378 nvmeq = dev->queues[NVME_ADMIN_Q];
380 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
385 aqa = nvmeq->q_depth - 1;
388 dev->page_size = 1 << page_shift;
390 dev->ctrl_config = NVME_CC_CSS_NVM;
391 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
392 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
393 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
395 writel(aqa, &dev->bar->aqa);
396 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
397 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
399 result = nvme_enable_ctrl(dev);
403 nvmeq->cq_vector = 0;
405 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
410 nvme_free_queues(dev, 0);
415 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
416 struct nvme_queue *nvmeq)
418 struct nvme_command c;
419 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
421 memset(&c, 0, sizeof(c));
422 c.create_cq.opcode = nvme_admin_create_cq;
423 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
424 c.create_cq.cqid = cpu_to_le16(qid);
425 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
426 c.create_cq.cq_flags = cpu_to_le16(flags);
427 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
429 return nvme_submit_admin_cmd(dev, &c, NULL);
432 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
433 struct nvme_queue *nvmeq)
435 struct nvme_command c;
436 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
438 memset(&c, 0, sizeof(c));
439 c.create_sq.opcode = nvme_admin_create_sq;
440 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
441 c.create_sq.sqid = cpu_to_le16(qid);
442 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
443 c.create_sq.sq_flags = cpu_to_le16(flags);
444 c.create_sq.cqid = cpu_to_le16(qid);
446 return nvme_submit_admin_cmd(dev, &c, NULL);
449 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
450 unsigned cns, dma_addr_t dma_addr)
452 struct nvme_command c;
453 u32 page_size = dev->page_size;
454 int offset = dma_addr & (page_size - 1);
455 int length = sizeof(struct nvme_id_ctrl);
458 memset(&c, 0, sizeof(c));
459 c.identify.opcode = nvme_admin_identify;
460 c.identify.nsid = cpu_to_le32(nsid);
461 c.identify.prp1 = cpu_to_le64(dma_addr);
463 length -= (page_size - offset);
467 dma_addr += (page_size - offset);
468 c.identify.prp2 = cpu_to_le64(dma_addr);
471 c.identify.cns = cpu_to_le32(cns);
473 invalidate_dcache_range(dma_addr,
474 dma_addr + sizeof(struct nvme_id_ctrl));
476 ret = nvme_submit_admin_cmd(dev, &c, NULL);
478 invalidate_dcache_range(dma_addr,
479 dma_addr + sizeof(struct nvme_id_ctrl));
484 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
485 dma_addr_t dma_addr, u32 *result)
487 struct nvme_command c;
490 memset(&c, 0, sizeof(c));
491 c.features.opcode = nvme_admin_get_features;
492 c.features.nsid = cpu_to_le32(nsid);
493 c.features.prp1 = cpu_to_le64(dma_addr);
494 c.features.fid = cpu_to_le32(fid);
496 ret = nvme_submit_admin_cmd(dev, &c, result);
499 * TODO: Add some cache invalidation when a DMA buffer is involved
500 * in the request, here and before the command gets submitted. The
501 * buffer size varies by feature, also some features use a different
502 * field in the command packet to hold the buffer address.
503 * Section 5.21.1 (Set Features command) in the NVMe specification
504 * details the buffer requirements for each feature.
506 * At the moment there is no user of this function.
512 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
513 dma_addr_t dma_addr, u32 *result)
515 struct nvme_command c;
517 memset(&c, 0, sizeof(c));
518 c.features.opcode = nvme_admin_set_features;
519 c.features.prp1 = cpu_to_le64(dma_addr);
520 c.features.fid = cpu_to_le32(fid);
521 c.features.dword11 = cpu_to_le32(dword11);
524 * TODO: Add a cache clean (aka flush) operation when a DMA buffer is
525 * involved in the request. The buffer size varies by feature, also
526 * some features use a different field in the command packet to hold
527 * the buffer address. Section 5.21.1 (Set Features command) in the
528 * NVMe specification details the buffer requirements for each
530 * At the moment the only user of this function is not using
531 * any DMA buffer at all.
534 return nvme_submit_admin_cmd(dev, &c, result);
537 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
539 struct nvme_dev *dev = nvmeq->dev;
542 nvmeq->cq_vector = qid - 1;
543 result = nvme_alloc_cq(dev, qid, nvmeq);
547 result = nvme_alloc_sq(dev, qid, nvmeq);
551 nvme_init_queue(nvmeq, qid);
556 nvme_delete_sq(dev, qid);
558 nvme_delete_cq(dev, qid);
563 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
567 u32 q_count = (count - 1) | ((count - 1) << 16);
569 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
570 q_count, 0, &result);
577 return min(result & 0xffff, result >> 16) + 1;
580 static int nvme_create_io_queues(struct nvme_dev *dev)
585 for (i = dev->queue_count; i <= dev->max_qid; i++)
586 if (!nvme_alloc_queue(dev, i, dev->q_depth))
587 return log_msg_ret("all", -ENOMEM);
589 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
590 ret = nvme_create_queue(dev->queues[i], i);
592 return log_msg_ret("cre", ret);
598 static int nvme_setup_io_queues(struct nvme_dev *dev)
604 result = nvme_set_queue_count(dev, nr_io_queues);
606 log_debug("Cannot set queue count (err=%dE)\n", result);
610 dev->max_qid = nr_io_queues;
612 /* Free previously allocated queues */
613 nvme_free_queues(dev, nr_io_queues + 1);
614 result = nvme_create_io_queues(dev);
621 static int nvme_get_info_from_identify(struct nvme_dev *dev)
623 struct nvme_id_ctrl *ctrl;
625 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
627 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
631 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
637 dev->nn = le32_to_cpu(ctrl->nn);
638 dev->vwc = ctrl->vwc;
639 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
640 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
641 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
643 dev->max_transfer_shift = (ctrl->mdts + shift);
646 * Maximum Data Transfer Size (MDTS) field indicates the maximum
647 * data transfer size between the host and the controller. The
648 * host should not submit a command that exceeds this transfer
649 * size. The value is in units of the minimum memory page size
650 * and is reported as a power of two (2^n).
652 * The spec also says: a value of 0h indicates no restrictions
653 * on transfer size. But in nvme_blk_read/write() below we have
654 * the following algorithm for maximum number of logic blocks
657 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
659 * In order for lbas not to overflow, the maximum number is 15
660 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
661 * Let's use 20 which provides 1MB size.
663 dev->max_transfer_shift = 20;
670 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
672 struct nvme_ns *ns = dev_get_priv(udev);
677 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
682 int nvme_scan_namespace(void)
688 ret = uclass_get(UCLASS_NVME, &uc);
692 uclass_foreach_dev(dev, uc) {
693 ret = device_probe(dev);
695 log_err("Failed to probe '%s': err=%dE\n", dev->name,
697 /* Bail if we ran out of memory, else keep trying */
706 static int nvme_blk_probe(struct udevice *udev)
708 struct nvme_dev *ndev = dev_get_priv(udev->parent);
709 struct blk_desc *desc = dev_get_uclass_plat(udev);
710 struct nvme_ns *ns = dev_get_priv(udev);
712 struct nvme_id_ns *id;
714 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
719 /* extract the namespace id from the block device name */
720 ns->ns_id = trailing_strtol(udev->name);
721 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
726 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
727 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
729 ns->lba_shift = id->lbaf[flbas].ds;
730 list_add(&ns->list, &ndev->namespaces);
732 desc->lba = le64_to_cpu(id->nsze);
733 desc->log2blksz = ns->lba_shift;
734 desc->blksz = 1 << ns->lba_shift;
736 memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor));
737 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
738 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
744 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
745 lbaint_t blkcnt, void *buffer, bool read)
747 struct nvme_ns *ns = dev_get_priv(udev);
748 struct nvme_dev *dev = ns->dev;
749 struct nvme_command c;
750 struct blk_desc *desc = dev_get_uclass_plat(udev);
753 u64 total_len = blkcnt << desc->log2blksz;
754 u64 temp_len = total_len;
755 uintptr_t temp_buffer = (uintptr_t)buffer;
758 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
759 u64 total_lbas = blkcnt;
761 flush_dcache_range((unsigned long)buffer,
762 (unsigned long)buffer + total_len);
764 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
766 c.rw.nsid = cpu_to_le32(ns->ns_id);
775 if (total_lbas < lbas) {
776 lbas = (u16)total_lbas;
782 if (nvme_setup_prps(dev, &prp2,
783 lbas << ns->lba_shift, temp_buffer))
785 c.rw.slba = cpu_to_le64(slba);
787 c.rw.length = cpu_to_le16(lbas - 1);
788 c.rw.prp1 = cpu_to_le64(temp_buffer);
789 c.rw.prp2 = cpu_to_le64(prp2);
790 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
791 &c, NULL, IO_TIMEOUT);
794 temp_len -= (u32)lbas << ns->lba_shift;
795 temp_buffer += lbas << ns->lba_shift;
799 invalidate_dcache_range((unsigned long)buffer,
800 (unsigned long)buffer + total_len);
802 return (total_len - temp_len) >> desc->log2blksz;
805 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
806 lbaint_t blkcnt, void *buffer)
808 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
811 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
812 lbaint_t blkcnt, const void *buffer)
814 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
817 static const struct blk_ops nvme_blk_ops = {
818 .read = nvme_blk_read,
819 .write = nvme_blk_write,
822 U_BOOT_DRIVER(nvme_blk) = {
825 .probe = nvme_blk_probe,
826 .ops = &nvme_blk_ops,
827 .priv_auto = sizeof(struct nvme_ns),
830 int nvme_init(struct udevice *udev)
832 struct nvme_dev *ndev = dev_get_priv(udev);
833 struct nvme_id_ns *id;
837 INIT_LIST_HEAD(&ndev->namespaces);
838 if (readl(&ndev->bar->csts) == -1) {
840 printf("Error: %s: Controller not ready!\n", udev->name);
844 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
847 printf("Error: %s: Out of memory!\n", udev->name);
850 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
852 ndev->cap = nvme_readq(&ndev->bar->cap);
853 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
854 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
855 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
857 ret = nvme_configure_admin_queue(ndev);
859 log_debug("Unable to configure admin queue (err=%dE)\n", ret);
863 /* Allocate after the page size is known */
864 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
865 if (!ndev->prp_pool) {
867 printf("Error: %s: Out of memory!\n", udev->name);
870 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
872 ret = nvme_setup_io_queues(ndev);
874 log_debug("Unable to setup I/O queues(err=%dE)\n", ret);
878 nvme_get_info_from_identify(ndev);
880 /* Create a blk device for each namespace */
882 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
888 for (int i = 1; i <= ndev->nn; i++) {
889 struct udevice *ns_udev;
892 memset(id, 0, sizeof(*id));
893 if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) {
898 /* skip inactive namespace */
903 * Encode the namespace id to the device name so that
904 * we can extract it when doing the probe.
906 sprintf(name, "blk#%d", i);
908 /* The real blksz and size will be set by nvme_blk_probe() */
909 ret = blk_create_devicef(udev, "nvme-blk", name, UCLASS_NVME,
910 -1, DEFAULT_BLKSZ, 0, &ns_udev);
914 ret = bootdev_setup_for_sibling_blk(ns_udev, "nvme_bootdev");
916 return log_msg_ret("bootdev", ret);
918 ret = blk_probe_or_unbind(ns_udev);
929 free((void *)ndev->queues);
934 int nvme_shutdown(struct udevice *udev)
936 struct nvme_dev *ndev = dev_get_priv(udev);
939 ret = nvme_shutdown_ctrl(ndev);
941 printf("Error: %s: Shutdown timed out!\n", udev->name);
945 return nvme_disable_ctrl(ndev);