1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 NXP Semiconductors
17 #include <dm/device-internal.h>
18 #include <linux/compat.h>
21 #define NVME_Q_DEPTH 2
22 #define NVME_AQ_DEPTH 2
23 #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
24 #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
25 #define ADMIN_TIMEOUT 60
27 #define MAX_PRP_POOL 512
36 * An NVM Express queue. Each device has at least two (one for admin
37 * commands and one for I/O commands).
41 struct nvme_command *sq_cmds;
42 struct nvme_completion *cqes;
43 wait_queue_head_t sq_full;
53 unsigned long cmdid_data[];
56 static int nvme_wait_ready(struct nvme_dev *dev, bool enabled)
58 u32 bit = enabled ? NVME_CSTS_RDY : 0;
62 /* Timeout field in the CAP register is in 500 millisecond units */
63 timeout = NVME_CAP_TIMEOUT(dev->cap) * 500;
66 while (get_timer(start) < timeout) {
67 if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit)
74 static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2,
75 int total_len, u64 dma_addr)
77 u32 page_size = dev->page_size;
78 int offset = dma_addr & (page_size - 1);
80 int length = total_len;
82 u32 prps_per_page = (page_size >> 3) - 1;
85 length -= (page_size - offset);
93 dma_addr += (page_size - offset);
95 if (length <= page_size) {
100 nprps = DIV_ROUND_UP(length, page_size);
101 num_pages = DIV_ROUND_UP(nprps, prps_per_page);
103 if (nprps > dev->prp_entry_num) {
106 * Always increase in increments of pages. It doesn't waste
107 * much memory and reduces the number of allocations.
109 dev->prp_pool = memalign(page_size, num_pages * page_size);
110 if (!dev->prp_pool) {
111 printf("Error: malloc prp_pool fail\n");
114 dev->prp_entry_num = prps_per_page * num_pages;
117 prp_pool = dev->prp_pool;
120 if (i == ((page_size >> 3) - 1)) {
121 *(prp_pool + i) = cpu_to_le64((ulong)prp_pool +
124 prp_pool += page_size;
126 *(prp_pool + i++) = cpu_to_le64(dma_addr);
127 dma_addr += page_size;
130 *prp2 = (ulong)dev->prp_pool;
132 flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool +
133 dev->prp_entry_num * sizeof(u64));
138 static __le16 nvme_get_cmd_id(void)
140 static unsigned short cmdid;
142 return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0);
145 static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index)
147 u64 start = (ulong)&nvmeq->cqes[index];
148 u64 stop = start + sizeof(struct nvme_completion);
150 invalidate_dcache_range(start, stop);
152 return le16_to_cpu(readw(&(nvmeq->cqes[index].status)));
156 * nvme_submit_cmd() - copy a command into a queue and ring the doorbell
158 * @nvmeq: The queue to use
159 * @cmd: The command to send
161 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
163 u16 tail = nvmeq->sq_tail;
165 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
166 flush_dcache_range((ulong)&nvmeq->sq_cmds[tail],
167 (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd));
169 if (++tail == nvmeq->q_depth)
171 writel(tail, nvmeq->q_db);
172 nvmeq->sq_tail = tail;
175 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
176 struct nvme_command *cmd,
177 u32 *result, unsigned timeout)
179 u16 head = nvmeq->cq_head;
180 u16 phase = nvmeq->cq_phase;
183 ulong timeout_us = timeout * 100000;
185 cmd->common.command_id = nvme_get_cmd_id();
186 nvme_submit_cmd(nvmeq, cmd);
188 start_time = timer_get_us();
191 status = nvme_read_completion_status(nvmeq, head);
192 if ((status & 0x01) == phase)
194 if (timeout_us > 0 && (timer_get_us() - start_time)
201 printf("ERROR: status = %x, phase = %d, head = %d\n",
202 status, phase, head);
204 if (++head == nvmeq->q_depth) {
208 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
209 nvmeq->cq_head = head;
210 nvmeq->cq_phase = phase;
216 *result = le32_to_cpu(readl(&(nvmeq->cqes[head].result)));
218 if (++head == nvmeq->q_depth) {
222 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
223 nvmeq->cq_head = head;
224 nvmeq->cq_phase = phase;
229 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
232 return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd,
233 result, ADMIN_TIMEOUT);
236 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev,
239 struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq));
242 memset(nvmeq, 0, sizeof(*nvmeq));
244 nvmeq->cqes = (void *)memalign(4096, NVME_CQ_SIZE(depth));
247 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth));
249 nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth));
252 memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth));
258 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
259 nvmeq->q_depth = depth;
262 dev->queues[qid] = nvmeq;
267 free((void *)nvmeq->cqes);
274 static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
276 struct nvme_command c;
278 memset(&c, 0, sizeof(c));
279 c.delete_queue.opcode = opcode;
280 c.delete_queue.qid = cpu_to_le16(id);
282 return nvme_submit_admin_cmd(dev, &c, NULL);
285 static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid)
287 return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid);
290 static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid)
292 return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid);
295 static int nvme_enable_ctrl(struct nvme_dev *dev)
297 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
298 dev->ctrl_config |= NVME_CC_ENABLE;
299 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
301 return nvme_wait_ready(dev, true);
304 static int nvme_disable_ctrl(struct nvme_dev *dev)
306 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
307 dev->ctrl_config &= ~NVME_CC_ENABLE;
308 writel(cpu_to_le32(dev->ctrl_config), &dev->bar->cc);
310 return nvme_wait_ready(dev, false);
313 static void nvme_free_queue(struct nvme_queue *nvmeq)
315 free((void *)nvmeq->cqes);
316 free(nvmeq->sq_cmds);
320 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
324 for (i = dev->queue_count - 1; i >= lowest; i--) {
325 struct nvme_queue *nvmeq = dev->queues[i];
327 dev->queues[i] = NULL;
328 nvme_free_queue(nvmeq);
332 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
334 struct nvme_dev *dev = nvmeq->dev;
339 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
340 memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth));
341 flush_dcache_range((ulong)nvmeq->cqes,
342 (ulong)nvmeq->cqes + NVME_CQ_SIZE(nvmeq->q_depth));
343 dev->online_queues++;
346 static int nvme_configure_admin_queue(struct nvme_dev *dev)
351 struct nvme_queue *nvmeq;
352 /* most architectures use 4KB as the page size */
353 unsigned page_shift = 12;
354 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
355 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
357 if (page_shift < dev_page_min) {
358 debug("Device minimum page size (%u) too large for host (%u)\n",
359 1 << dev_page_min, 1 << page_shift);
363 if (page_shift > dev_page_max) {
364 debug("Device maximum page size (%u) smaller than host (%u)\n",
365 1 << dev_page_max, 1 << page_shift);
366 page_shift = dev_page_max;
369 result = nvme_disable_ctrl(dev);
373 nvmeq = dev->queues[NVME_ADMIN_Q];
375 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
380 aqa = nvmeq->q_depth - 1;
384 dev->page_size = 1 << page_shift;
386 dev->ctrl_config = NVME_CC_CSS_NVM;
387 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
388 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
389 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
391 writel(aqa, &dev->bar->aqa);
392 nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq);
393 nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq);
395 result = nvme_enable_ctrl(dev);
399 nvmeq->cq_vector = 0;
401 nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0);
406 nvme_free_queues(dev, 0);
411 static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid,
412 struct nvme_queue *nvmeq)
414 struct nvme_command c;
415 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
417 memset(&c, 0, sizeof(c));
418 c.create_cq.opcode = nvme_admin_create_cq;
419 c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes);
420 c.create_cq.cqid = cpu_to_le16(qid);
421 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
422 c.create_cq.cq_flags = cpu_to_le16(flags);
423 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
425 return nvme_submit_admin_cmd(dev, &c, NULL);
428 static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid,
429 struct nvme_queue *nvmeq)
431 struct nvme_command c;
432 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
434 memset(&c, 0, sizeof(c));
435 c.create_sq.opcode = nvme_admin_create_sq;
436 c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds);
437 c.create_sq.sqid = cpu_to_le16(qid);
438 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
439 c.create_sq.sq_flags = cpu_to_le16(flags);
440 c.create_sq.cqid = cpu_to_le16(qid);
442 return nvme_submit_admin_cmd(dev, &c, NULL);
445 int nvme_identify(struct nvme_dev *dev, unsigned nsid,
446 unsigned cns, dma_addr_t dma_addr)
448 struct nvme_command c;
449 u32 page_size = dev->page_size;
450 int offset = dma_addr & (page_size - 1);
451 int length = sizeof(struct nvme_id_ctrl);
454 memset(&c, 0, sizeof(c));
455 c.identify.opcode = nvme_admin_identify;
456 c.identify.nsid = cpu_to_le32(nsid);
457 c.identify.prp1 = cpu_to_le64(dma_addr);
459 length -= (page_size - offset);
463 dma_addr += (page_size - offset);
464 c.identify.prp2 = cpu_to_le64(dma_addr);
467 c.identify.cns = cpu_to_le32(cns);
469 invalidate_dcache_range(dma_addr,
470 dma_addr + sizeof(struct nvme_id_ctrl));
472 ret = nvme_submit_admin_cmd(dev, &c, NULL);
474 invalidate_dcache_range(dma_addr,
475 dma_addr + sizeof(struct nvme_id_ctrl));
480 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
481 dma_addr_t dma_addr, u32 *result)
483 struct nvme_command c;
485 memset(&c, 0, sizeof(c));
486 c.features.opcode = nvme_admin_get_features;
487 c.features.nsid = cpu_to_le32(nsid);
488 c.features.prp1 = cpu_to_le64(dma_addr);
489 c.features.fid = cpu_to_le32(fid);
492 * TODO: add cache invalidate operation when the size of
493 * the DMA buffer is known
496 return nvme_submit_admin_cmd(dev, &c, result);
499 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
500 dma_addr_t dma_addr, u32 *result)
502 struct nvme_command c;
504 memset(&c, 0, sizeof(c));
505 c.features.opcode = nvme_admin_set_features;
506 c.features.prp1 = cpu_to_le64(dma_addr);
507 c.features.fid = cpu_to_le32(fid);
508 c.features.dword11 = cpu_to_le32(dword11);
511 * TODO: add cache flush operation when the size of
512 * the DMA buffer is known
515 return nvme_submit_admin_cmd(dev, &c, result);
518 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
520 struct nvme_dev *dev = nvmeq->dev;
523 nvmeq->cq_vector = qid - 1;
524 result = nvme_alloc_cq(dev, qid, nvmeq);
528 result = nvme_alloc_sq(dev, qid, nvmeq);
532 nvme_init_queue(nvmeq, qid);
537 nvme_delete_sq(dev, qid);
539 nvme_delete_cq(dev, qid);
544 static int nvme_set_queue_count(struct nvme_dev *dev, int count)
548 u32 q_count = (count - 1) | ((count - 1) << 16);
550 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES,
551 q_count, 0, &result);
558 return min(result & 0xffff, result >> 16) + 1;
561 static void nvme_create_io_queues(struct nvme_dev *dev)
565 for (i = dev->queue_count; i <= dev->max_qid; i++)
566 if (!nvme_alloc_queue(dev, i, dev->q_depth))
569 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
570 if (nvme_create_queue(dev->queues[i], i))
574 static int nvme_setup_io_queues(struct nvme_dev *dev)
580 result = nvme_set_queue_count(dev, nr_io_queues);
584 dev->max_qid = nr_io_queues;
586 /* Free previously allocated queues */
587 nvme_free_queues(dev, nr_io_queues + 1);
588 nvme_create_io_queues(dev);
593 static int nvme_get_info_from_identify(struct nvme_dev *dev)
595 struct nvme_id_ctrl *ctrl;
597 int shift = NVME_CAP_MPSMIN(dev->cap) + 12;
599 ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl));
603 ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl);
609 dev->nn = le32_to_cpu(ctrl->nn);
610 dev->vwc = ctrl->vwc;
611 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
612 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
613 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
615 dev->max_transfer_shift = (ctrl->mdts + shift);
618 * Maximum Data Transfer Size (MDTS) field indicates the maximum
619 * data transfer size between the host and the controller. The
620 * host should not submit a command that exceeds this transfer
621 * size. The value is in units of the minimum memory page size
622 * and is reported as a power of two (2^n).
624 * The spec also says: a value of 0h indicates no restrictions
625 * on transfer size. But in nvme_blk_read/write() below we have
626 * the following algorithm for maximum number of logic blocks
629 * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
631 * In order for lbas not to overflow, the maximum number is 15
632 * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift).
633 * Let's use 20 which provides 1MB size.
635 dev->max_transfer_shift = 20;
642 int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64)
644 struct nvme_ns *ns = dev_get_priv(udev);
649 memcpy(eui64, ns->eui64, sizeof(ns->eui64));
654 int nvme_scan_namespace(void)
660 ret = uclass_get(UCLASS_NVME, &uc);
664 uclass_foreach_dev(dev, uc) {
665 ret = device_probe(dev);
673 static int nvme_blk_probe(struct udevice *udev)
675 struct nvme_dev *ndev = dev_get_priv(udev->parent);
676 struct blk_desc *desc = dev_get_uclass_platdata(udev);
677 struct nvme_ns *ns = dev_get_priv(udev);
679 struct pci_child_platdata *pplat;
680 struct nvme_id_ns *id;
682 id = memalign(ndev->page_size, sizeof(struct nvme_id_ns));
686 memset(ns, 0, sizeof(*ns));
688 /* extract the namespace id from the block device name */
689 ns->ns_id = trailing_strtol(udev->name) + 1;
690 if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) {
695 memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64));
696 flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK;
698 ns->lba_shift = id->lbaf[flbas].ds;
699 ns->mode_select_num_blocks = le64_to_cpu(id->nsze);
700 ns->mode_select_block_len = 1 << ns->lba_shift;
701 list_add(&ns->list, &ndev->namespaces);
703 desc->lba = ns->mode_select_num_blocks;
704 desc->log2blksz = ns->lba_shift;
705 desc->blksz = 1 << ns->lba_shift;
707 pplat = dev_get_parent_platdata(udev->parent);
708 sprintf(desc->vendor, "0x%.4x", pplat->vendor);
709 memcpy(desc->product, ndev->serial, sizeof(ndev->serial));
710 memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev));
716 static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr,
717 lbaint_t blkcnt, void *buffer, bool read)
719 struct nvme_ns *ns = dev_get_priv(udev);
720 struct nvme_dev *dev = ns->dev;
721 struct nvme_command c;
722 struct blk_desc *desc = dev_get_uclass_platdata(udev);
725 u64 total_len = blkcnt << desc->log2blksz;
726 u64 temp_len = total_len;
729 u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift);
730 u64 total_lbas = blkcnt;
732 flush_dcache_range((unsigned long)buffer,
733 (unsigned long)buffer + total_len);
735 c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write;
737 c.rw.nsid = cpu_to_le32(ns->ns_id);
746 if (total_lbas < lbas) {
747 lbas = (u16)total_lbas;
753 if (nvme_setup_prps(dev, &prp2,
754 lbas << ns->lba_shift, (ulong)buffer))
756 c.rw.slba = cpu_to_le64(slba);
758 c.rw.length = cpu_to_le16(lbas - 1);
759 c.rw.prp1 = cpu_to_le64((ulong)buffer);
760 c.rw.prp2 = cpu_to_le64(prp2);
761 status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q],
762 &c, NULL, IO_TIMEOUT);
765 temp_len -= (u32)lbas << ns->lba_shift;
766 buffer += lbas << ns->lba_shift;
770 invalidate_dcache_range((unsigned long)buffer,
771 (unsigned long)buffer + total_len);
773 return (total_len - temp_len) >> desc->log2blksz;
776 static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr,
777 lbaint_t blkcnt, void *buffer)
779 return nvme_blk_rw(udev, blknr, blkcnt, buffer, true);
782 static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr,
783 lbaint_t blkcnt, const void *buffer)
785 return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false);
788 static const struct blk_ops nvme_blk_ops = {
789 .read = nvme_blk_read,
790 .write = nvme_blk_write,
793 U_BOOT_DRIVER(nvme_blk) = {
796 .probe = nvme_blk_probe,
797 .ops = &nvme_blk_ops,
798 .priv_auto = sizeof(struct nvme_ns),
801 static int nvme_bind(struct udevice *udev)
806 sprintf(name, "nvme#%d", ndev_num++);
808 return device_set_name(udev, name);
811 static int nvme_probe(struct udevice *udev)
814 struct nvme_dev *ndev = dev_get_priv(udev);
816 ndev->instance = trailing_strtol(udev->name);
818 INIT_LIST_HEAD(&ndev->namespaces);
819 ndev->bar = dm_pci_map_bar(udev, PCI_BASE_ADDRESS_0,
821 if (readl(&ndev->bar->csts) == -1) {
823 printf("Error: %s: Out of memory!\n", udev->name);
827 ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *));
830 printf("Error: %s: Out of memory!\n", udev->name);
833 memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *));
835 ndev->cap = nvme_readq(&ndev->bar->cap);
836 ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH);
837 ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap);
838 ndev->dbs = ((void __iomem *)ndev->bar) + 4096;
840 ret = nvme_configure_admin_queue(ndev);
844 /* Allocate after the page size is known */
845 ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL);
846 if (!ndev->prp_pool) {
848 printf("Error: %s: Out of memory!\n", udev->name);
851 ndev->prp_entry_num = MAX_PRP_POOL >> 3;
853 ret = nvme_setup_io_queues(ndev);
857 nvme_get_info_from_identify(ndev);
862 free((void *)ndev->queues);
867 U_BOOT_DRIVER(nvme) = {
872 .priv_auto = sizeof(struct nvme_dev),
875 struct pci_device_id nvme_supported[] = {
876 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, ~0) },
880 U_BOOT_PCI_DEVICE(nvme, nvme_supported);