]> Git Repo - u-boot.git/blame - drivers/net/fec_mxc.c
board: apalis_imx6: Add KSZ9131 phy skew settings
[u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
2/*
3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <[email protected]>
4 * (C) Copyright 2008,2009 Eric Jarrige <[email protected]>
5 * (C) Copyright 2008 Armadeus Systems nc
6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <[email protected]>
7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <[email protected]>
0b23fb36
IY
8 */
9
10#include <common.h>
1eb69ae4 11#include <cpu_func.h>
60752ca8 12#include <dm.h>
9fb625ce 13#include <env.h>
0b23fb36 14#include <malloc.h>
cf92e05c 15#include <memalign.h>
567173a6 16#include <miiphy.h>
0b23fb36 17#include <net.h>
84f64c8b 18#include <netdev.h>
ad8c43cb 19#include <power/regulator.h>
0b23fb36 20
0b23fb36 21#include <asm/io.h>
1221ce45 22#include <linux/errno.h>
e2a66e60 23#include <linux/compiler.h>
0b23fb36 24
567173a6
JT
25#include <asm/arch/clock.h>
26#include <asm/arch/imx-regs.h>
552a848e 27#include <asm/mach-imx/sys_proto.h>
efd0b791
MT
28#include <asm-generic/gpio.h>
29
30#include "fec_mxc.h"
567173a6 31
0b23fb36
IY
32DECLARE_GLOBAL_DATA_PTR;
33
bc1ce150
MV
34/*
35 * Timeout the transfer after 5 mS. This is usually a bit more, since
36 * the code in the tightloops this timeout is used in adds some overhead.
37 */
38#define FEC_XFER_TIMEOUT 5000
39
db5b7f56
FE
40/*
41 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
42 * 64-byte alignment in the DMA RX FEC buffer.
43 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
44 * satisfies the alignment on other SoCs (32-bytes)
45 */
46#define FEC_DMA_RX_MINALIGN 64
47
0b23fb36
IY
48#ifndef CONFIG_MII
49#error "CONFIG_MII has to be defined!"
50#endif
51
5c1ad3e6
EN
52#ifndef CONFIG_FEC_XCV_TYPE
53#define CONFIG_FEC_XCV_TYPE MII100
392b8502
MV
54#endif
55
be7e87e2
MV
56/*
57 * The i.MX28 operates with packets in big endian. We need to swap them before
58 * sending and after receiving.
59 */
5c1ad3e6
EN
60#ifdef CONFIG_MX28
61#define CONFIG_FEC_MXC_SWAP_PACKET
62#endif
63
64#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
65
66/* Check various alignment issues at compile time */
67#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
68#error "ARCH_DMA_MINALIGN must be multiple of 16!"
69#endif
70
71#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
72 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
73#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
74#endif
75
0b23fb36
IY
76#undef DEBUG
77
5c1ad3e6 78#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
79static void swap_packet(uint32_t *packet, int length)
80{
81 int i;
82
83 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
84 packet[i] = __swab32(packet[i]);
85}
86#endif
87
567173a6
JT
88/* MII-interface related functions */
89static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
90 uint8_t regaddr)
0b23fb36 91{
0b23fb36
IY
92 uint32_t reg; /* convenient holder for the PHY register */
93 uint32_t phy; /* convenient holder for the PHY */
94 uint32_t start;
13947f43 95 int val;
0b23fb36
IY
96
97 /*
98 * reading from any PHY's register is done by properly
99 * programming the FEC's MII data register.
100 */
d133b881 101 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
102 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
103 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
104
105 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 106 phy | reg, &eth->mii_data);
0b23fb36 107
567173a6 108 /* wait for the related interrupt */
a60d1e5b 109 start = get_timer(0);
d133b881 110 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
111 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 printf("Read MDIO failed...\n");
113 return -1;
114 }
115 }
116
567173a6 117 /* clear mii interrupt bit */
d133b881 118 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36 119
567173a6 120 /* it's now safe to read the PHY's register */
13947f43 121 val = (unsigned short)readl(&eth->mii_data);
567173a6
JT
122 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
123 regaddr, val);
13947f43 124 return val;
0b23fb36
IY
125}
126
673f6597
PF
127#ifndef imx_get_fecclk
128u32 __weak imx_get_fecclk(void)
129{
130 return 0;
131}
132#endif
133
58ec4d33
AG
134static int fec_get_clk_rate(void *udev, int idx)
135{
58ec4d33
AG
136 struct fec_priv *fec;
137 struct udevice *dev;
138 int ret;
139
673f6597
PF
140 if (IS_ENABLED(CONFIG_IMX8) ||
141 CONFIG_IS_ENABLED(CLK_CCF)) {
142 dev = udev;
143 if (!dev) {
144 ret = uclass_get_device(UCLASS_ETH, idx, &dev);
145 if (ret < 0) {
146 debug("Can't get FEC udev: %d\n", ret);
147 return ret;
148 }
58ec4d33 149 }
58ec4d33 150
673f6597
PF
151 fec = dev_get_priv(dev);
152 if (fec)
153 return fec->clk_rate;
58ec4d33 154
673f6597
PF
155 return -EINVAL;
156 } else {
157 return imx_get_fecclk();
158 }
58ec4d33
AG
159}
160
575c5cc0 161static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
162{
163 /*
164 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
165 * and do not drop the Preamble.
843a3e58
MR
166 *
167 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
168 * MII_SPEED) register that defines the MDIO output hold time. Earlier
169 * versions are RAZ there, so just ignore the difference and write the
170 * register always.
171 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
172 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
173 * output.
174 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
175 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
176 * holdtime cannot result in a value greater than 3.
4294b248 177 */
58ec4d33
AG
178 u32 pclk;
179 u32 speed;
180 u32 hold;
181 int ret;
182
183 ret = fec_get_clk_rate(NULL, 0);
184 if (ret < 0) {
185 printf("Can't find FEC0 clk rate: %d\n", ret);
186 return;
187 }
188 pclk = ret;
189 speed = DIV_ROUND_UP(pclk, 5000000);
190 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
191
6ba45cc0
MN
192#ifdef FEC_QUIRK_ENET_MAC
193 speed--;
194#endif
843a3e58 195 writel(speed << 1 | hold << 8, &eth->mii_speed);
575c5cc0 196 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 197}
0b23fb36 198
567173a6
JT
199static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
200 uint8_t regaddr, uint16_t data)
13947f43 201{
0b23fb36
IY
202 uint32_t reg; /* convenient holder for the PHY register */
203 uint32_t phy; /* convenient holder for the PHY */
204 uint32_t start;
205
567173a6
JT
206 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
207 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
208
209 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 210 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36 211
567173a6 212 /* wait for the MII interrupt */
a60d1e5b 213 start = get_timer(0);
d133b881 214 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
215 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
216 printf("Write MDIO failed...\n");
217 return -1;
218 }
219 }
220
567173a6 221 /* clear MII interrupt bit */
d133b881 222 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
223 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
224 regaddr, data);
0b23fb36
IY
225
226 return 0;
227}
228
567173a6
JT
229static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
230 int regaddr)
13947f43 231{
567173a6 232 return fec_mdio_read(bus->priv, phyaddr, regaddr);
13947f43
TK
233}
234
567173a6
JT
235static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
236 int regaddr, u16 data)
13947f43 237{
567173a6 238 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
13947f43
TK
239}
240
241#ifndef CONFIG_PHYLIB
0b23fb36
IY
242static int miiphy_restart_aneg(struct eth_device *dev)
243{
b774fe9d
SB
244 int ret = 0;
245#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 246 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 247 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 248
0b23fb36
IY
249 /*
250 * Wake up from sleep if necessary
251 * Reset PHY, then delay 300ns
252 */
cb17b92d 253#ifdef CONFIG_MX27
13947f43 254 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
cb17b92d 255#endif
13947f43 256 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
257 udelay(1000);
258
567173a6 259 /* Set the auto-negotiation advertisement register bits */
13947f43 260 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
567173a6
JT
261 LPA_100FULL | LPA_100HALF | LPA_10FULL |
262 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 263 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
567173a6 264 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
265
266 if (fec->mii_postcall)
267 ret = fec->mii_postcall(fec->phy_id);
268
b774fe9d 269#endif
2e5f4421 270 return ret;
0b23fb36
IY
271}
272
0750701a 273#ifndef CONFIG_FEC_FIXED_SPEED
0b23fb36
IY
274static int miiphy_wait_aneg(struct eth_device *dev)
275{
276 uint32_t start;
13947f43 277 int status;
9e27e9dc 278 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 279 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36 280
567173a6 281 /* Wait for AN completion */
a60d1e5b 282 start = get_timer(0);
0b23fb36
IY
283 do {
284 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
285 printf("%s: Autonegotiation timeout\n", dev->name);
286 return -1;
287 }
288
13947f43
TK
289 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
290 if (status < 0) {
291 printf("%s: Autonegotiation failed. status: %d\n",
567173a6 292 dev->name, status);
0b23fb36
IY
293 return -1;
294 }
8ef583a0 295 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
296
297 return 0;
298}
0750701a 299#endif /* CONFIG_FEC_FIXED_SPEED */
13947f43
TK
300#endif
301
0b23fb36
IY
302static int fec_rx_task_enable(struct fec_priv *fec)
303{
c0b5a3bb 304 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
305 return 0;
306}
307
308static int fec_rx_task_disable(struct fec_priv *fec)
309{
310 return 0;
311}
312
313static int fec_tx_task_enable(struct fec_priv *fec)
314{
c0b5a3bb 315 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
316 return 0;
317}
318
319static int fec_tx_task_disable(struct fec_priv *fec)
320{
321 return 0;
322}
323
324/**
325 * Initialize receive task's buffer descriptors
326 * @param[in] fec all we know about the device yet
327 * @param[in] count receive buffer count to be allocated
5c1ad3e6 328 * @param[in] dsize desired size of each receive buffer
0b23fb36
IY
329 * @return 0 on success
330 *
79e5f27b 331 * Init all RX descriptors to default values.
0b23fb36 332 */
79e5f27b 333static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 334{
5c1ad3e6 335 uint32_t size;
f24e482a 336 ulong data;
5c1ad3e6
EN
337 int i;
338
0b23fb36 339 /*
79e5f27b
MV
340 * Reload the RX descriptors with default values and wipe
341 * the RX buffers.
0b23fb36 342 */
5c1ad3e6
EN
343 size = roundup(dsize, ARCH_DMA_MINALIGN);
344 for (i = 0; i < count; i++) {
f24e482a
YL
345 data = fec->rbd_base[i].data_pointer;
346 memset((void *)data, 0, dsize);
347 flush_dcache_range(data, data + size);
79e5f27b
MV
348
349 fec->rbd_base[i].status = FEC_RBD_EMPTY;
350 fec->rbd_base[i].data_length = 0;
5c1ad3e6
EN
351 }
352
353 /* Mark the last RBD to close the ring. */
79e5f27b 354 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
0b23fb36
IY
355 fec->rbd_index = 0;
356
f24e482a
YL
357 flush_dcache_range((ulong)fec->rbd_base,
358 (ulong)fec->rbd_base + size);
0b23fb36
IY
359}
360
361/**
362 * Initialize transmit task's buffer descriptors
363 * @param[in] fec all we know about the device yet
364 *
365 * Transmit buffers are created externally. We only have to init the BDs here.\n
366 * Note: There is a race condition in the hardware. When only one BD is in
367 * use it must be marked with the WRAP bit to use it for every transmitt.
368 * This bit in combination with the READY bit results into double transmit
369 * of each data buffer. It seems the state machine checks READY earlier then
370 * resetting it after the first transfer.
371 * Using two BDs solves this issue.
372 */
373static void fec_tbd_init(struct fec_priv *fec)
374{
f24e482a 375 ulong addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
376 unsigned size = roundup(2 * sizeof(struct fec_bd),
377 ARCH_DMA_MINALIGN);
79e5f27b
MV
378
379 memset(fec->tbd_base, 0, size);
380 fec->tbd_base[0].status = 0;
381 fec->tbd_base[1].status = FEC_TBD_WRAP;
0b23fb36 382 fec->tbd_index = 0;
79e5f27b 383 flush_dcache_range(addr, addr + size);
0b23fb36
IY
384}
385
386/**
387 * Mark the given read buffer descriptor as free
388 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
567173a6 389 * @param[in] prbd buffer descriptor to mark free again
0b23fb36 390 */
567173a6 391static void fec_rbd_clean(int last, struct fec_bd *prbd)
0b23fb36 392{
5c1ad3e6 393 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 394 if (last)
5c1ad3e6 395 flags |= FEC_RBD_WRAP;
567173a6
JT
396 writew(flags, &prbd->status);
397 writew(0, &prbd->data_length);
0b23fb36
IY
398}
399
f54183e6 400static int fec_get_hwaddr(int dev_id, unsigned char *mac)
0b23fb36 401{
be252b65 402 imx_get_mac_from_fuse(dev_id, mac);
0adb5b76 403 return !is_valid_ethaddr(mac);
0b23fb36
IY
404}
405
60752ca8
JT
406#ifdef CONFIG_DM_ETH
407static int fecmxc_set_hwaddr(struct udevice *dev)
408#else
4294b248 409static int fec_set_hwaddr(struct eth_device *dev)
60752ca8 410#endif
0b23fb36 411{
60752ca8
JT
412#ifdef CONFIG_DM_ETH
413 struct fec_priv *fec = dev_get_priv(dev);
414 struct eth_pdata *pdata = dev_get_platdata(dev);
415 uchar *mac = pdata->enetaddr;
416#else
4294b248 417 uchar *mac = dev->enetaddr;
0b23fb36 418 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 419#endif
0b23fb36
IY
420
421 writel(0, &fec->eth->iaddr1);
422 writel(0, &fec->eth->iaddr2);
423 writel(0, &fec->eth->gaddr1);
424 writel(0, &fec->eth->gaddr2);
425
567173a6 426 /* Set physical address */
0b23fb36 427 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
567173a6 428 &fec->eth->paddr1);
0b23fb36
IY
429 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
430
431 return 0;
432}
433
567173a6 434/* Do initial configuration of the FEC registers */
a5990b26
MV
435static void fec_reg_setup(struct fec_priv *fec)
436{
437 uint32_t rcntrl;
438
567173a6 439 /* Set interrupt mask register */
a5990b26
MV
440 writel(0x00000000, &fec->eth->imask);
441
567173a6 442 /* Clear FEC-Lite interrupt event register(IEVENT) */
a5990b26
MV
443 writel(0xffffffff, &fec->eth->ievent);
444
567173a6 445 /* Set FEC-Lite receive control register(R_CNTRL): */
a5990b26
MV
446
447 /* Start with frame length = 1518, common for all modes. */
448 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 449 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
450 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
451 if (fec->xcv_type == RGMII)
a5990b26
MV
452 rcntrl |= FEC_RCNTRL_RGMII;
453 else if (fec->xcv_type == RMII)
454 rcntrl |= FEC_RCNTRL_RMII;
a5990b26
MV
455
456 writel(rcntrl, &fec->eth->r_cntrl);
457}
458
0b23fb36
IY
459/**
460 * Start the FEC engine
461 * @param[in] dev Our device to handle
462 */
60752ca8
JT
463#ifdef CONFIG_DM_ETH
464static int fec_open(struct udevice *dev)
465#else
0b23fb36 466static int fec_open(struct eth_device *edev)
60752ca8 467#endif
0b23fb36 468{
60752ca8
JT
469#ifdef CONFIG_DM_ETH
470 struct fec_priv *fec = dev_get_priv(dev);
471#else
0b23fb36 472 struct fec_priv *fec = (struct fec_priv *)edev->priv;
60752ca8 473#endif
28774cba 474 int speed;
f24e482a 475 ulong addr, size;
5c1ad3e6 476 int i;
0b23fb36
IY
477
478 debug("fec_open: fec_open(dev)\n");
479 /* full-duplex, heartbeat disabled */
480 writel(1 << 2, &fec->eth->x_cntrl);
481 fec->rbd_index = 0;
482
5c1ad3e6
EN
483 /* Invalidate all descriptors */
484 for (i = 0; i < FEC_RBD_NUM - 1; i++)
485 fec_rbd_clean(0, &fec->rbd_base[i]);
486 fec_rbd_clean(1, &fec->rbd_base[i]);
487
488 /* Flush the descriptors into RAM */
489 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
490 ARCH_DMA_MINALIGN);
f24e482a 491 addr = (ulong)fec->rbd_base;
5c1ad3e6
EN
492 flush_dcache_range(addr, addr + size);
493
28774cba 494#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
495 /* Enable ENET HW endian SWAP */
496 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
567173a6 497 &fec->eth->ecntrl);
2ef2b950
JL
498 /* Enable ENET store and forward mode */
499 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
567173a6 500 &fec->eth->x_wmrk);
2ef2b950 501#endif
567173a6 502 /* Enable FEC-Lite controller */
cb17b92d 503 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
567173a6
JT
504 &fec->eth->ecntrl);
505
7df51fd8 506#if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
740d6ae5 507 udelay(100);
740d6ae5 508
567173a6 509 /* setup the MII gasket for RMII mode */
740d6ae5
JR
510 /* disable the gasket */
511 writew(0, &fec->eth->miigsk_enr);
512
513 /* wait for the gasket to be disabled */
514 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
515 udelay(2);
516
517 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
518 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
519
520 /* re-enable the gasket */
521 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
522
523 /* wait until MII gasket is ready */
524 int max_loops = 10;
525 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
526 if (--max_loops <= 0) {
527 printf("WAIT for MII Gasket ready timed out\n");
528 break;
529 }
530 }
531#endif
0b23fb36 532
13947f43 533#ifdef CONFIG_PHYLIB
4dc27eed 534 {
13947f43 535 /* Start up the PHY */
11af8d65
TT
536 int ret = phy_startup(fec->phydev);
537
538 if (ret) {
539 printf("Could not initialize PHY %s\n",
540 fec->phydev->dev->name);
541 return ret;
542 }
13947f43 543 speed = fec->phydev->speed;
13947f43 544 }
0750701a
HS
545#elif CONFIG_FEC_FIXED_SPEED
546 speed = CONFIG_FEC_FIXED_SPEED;
13947f43 547#else
0b23fb36 548 miiphy_wait_aneg(edev);
28774cba 549 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 550 miiphy_duplex(edev->name, fec->phy_id);
13947f43 551#endif
0b23fb36 552
28774cba
TK
553#ifdef FEC_QUIRK_ENET_MAC
554 {
555 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 556 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
557 if (speed == _1000BASET)
558 ecr |= FEC_ECNTRL_SPEED;
559 else if (speed != _100BASET)
560 rcr |= FEC_RCNTRL_RMII_10T;
561 writel(ecr, &fec->eth->ecntrl);
562 writel(rcr, &fec->eth->r_cntrl);
563 }
564#endif
565 debug("%s:Speed=%i\n", __func__, speed);
566
567173a6 567 /* Enable SmartDMA receive task */
0b23fb36
IY
568 fec_rx_task_enable(fec);
569
570 udelay(100000);
571 return 0;
572}
573
60752ca8
JT
574#ifdef CONFIG_DM_ETH
575static int fecmxc_init(struct udevice *dev)
576#else
567173a6 577static int fec_init(struct eth_device *dev, bd_t *bd)
60752ca8 578#endif
0b23fb36 579{
60752ca8
JT
580#ifdef CONFIG_DM_ETH
581 struct fec_priv *fec = dev_get_priv(dev);
582#else
0b23fb36 583 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 584#endif
f24e482a
YL
585 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
586 u8 *i;
587 ulong addr;
0b23fb36 588
e9319f11 589 /* Initialize MAC address */
60752ca8
JT
590#ifdef CONFIG_DM_ETH
591 fecmxc_set_hwaddr(dev);
592#else
e9319f11 593 fec_set_hwaddr(dev);
60752ca8 594#endif
e9319f11 595
567173a6 596 /* Setup transmit descriptors, there are two in total. */
79e5f27b 597 fec_tbd_init(fec);
0b23fb36 598
79e5f27b
MV
599 /* Setup receive descriptors. */
600 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
0b23fb36 601
a5990b26 602 fec_reg_setup(fec);
9eb3770b 603
f41471e6 604 if (fec->xcv_type != SEVENWIRE)
575c5cc0 605 fec_mii_setspeed(fec->bus->priv);
9eb3770b 606
567173a6 607 /* Set Opcode/Pause Duration Register */
0b23fb36
IY
608 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
609 writel(0x2, &fec->eth->x_wmrk);
567173a6
JT
610
611 /* Set multicast address filter */
0b23fb36
IY
612 writel(0x00000000, &fec->eth->gaddr1);
613 writel(0x00000000, &fec->eth->gaddr2);
614
238a53c7 615 /* Do not access reserved register */
b5d97e10 616 if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m()) {
fbecbaa1
PF
617 /* clear MIB RAM */
618 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
619 writel(0, i);
0b23fb36 620
fbecbaa1
PF
621 /* FIFO receive start register */
622 writel(0x520, &fec->eth->r_fstart);
623 }
0b23fb36
IY
624
625 /* size and address of each buffer */
626 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
f24e482a
YL
627
628 addr = (ulong)fec->tbd_base;
629 writel((uint32_t)addr, &fec->eth->etdsr);
630
631 addr = (ulong)fec->rbd_base;
632 writel((uint32_t)addr, &fec->eth->erdsr);
0b23fb36 633
13947f43 634#ifndef CONFIG_PHYLIB
0b23fb36
IY
635 if (fec->xcv_type != SEVENWIRE)
636 miiphy_restart_aneg(dev);
13947f43 637#endif
0b23fb36
IY
638 fec_open(dev);
639 return 0;
640}
641
642/**
643 * Halt the FEC engine
644 * @param[in] dev Our device to handle
645 */
60752ca8
JT
646#ifdef CONFIG_DM_ETH
647static void fecmxc_halt(struct udevice *dev)
648#else
0b23fb36 649static void fec_halt(struct eth_device *dev)
60752ca8 650#endif
0b23fb36 651{
60752ca8
JT
652#ifdef CONFIG_DM_ETH
653 struct fec_priv *fec = dev_get_priv(dev);
654#else
9e27e9dc 655 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 656#endif
0b23fb36
IY
657 int counter = 0xffff;
658
567173a6 659 /* issue graceful stop command to the FEC transmitter if necessary */
cb17b92d 660 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
567173a6 661 &fec->eth->x_cntrl);
0b23fb36
IY
662
663 debug("eth_halt: wait for stop regs\n");
567173a6 664 /* wait for graceful stop to register */
0b23fb36 665 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 666 udelay(1);
0b23fb36 667
567173a6 668 /* Disable SmartDMA tasks */
0b23fb36
IY
669 fec_tx_task_disable(fec);
670 fec_rx_task_disable(fec);
671
672 /*
673 * Disable the Ethernet Controller
674 * Note: this will also reset the BD index counter!
675 */
740d6ae5 676 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
567173a6 677 &fec->eth->ecntrl);
0b23fb36
IY
678 fec->rbd_index = 0;
679 fec->tbd_index = 0;
0b23fb36
IY
680 debug("eth_halt: done\n");
681}
682
683/**
684 * Transmit one frame
685 * @param[in] dev Our ethernet device to handle
686 * @param[in] packet Pointer to the data to be transmitted
687 * @param[in] length Data count in bytes
688 * @return 0 on success
689 */
60752ca8
JT
690#ifdef CONFIG_DM_ETH
691static int fecmxc_send(struct udevice *dev, void *packet, int length)
692#else
442dac4c 693static int fec_send(struct eth_device *dev, void *packet, int length)
60752ca8 694#endif
0b23fb36
IY
695{
696 unsigned int status;
f24e482a
YL
697 u32 size;
698 ulong addr, end;
bc1ce150
MV
699 int timeout = FEC_XFER_TIMEOUT;
700 int ret = 0;
0b23fb36
IY
701
702 /*
703 * This routine transmits one frame. This routine only accepts
704 * 6-byte Ethernet addresses.
705 */
60752ca8
JT
706#ifdef CONFIG_DM_ETH
707 struct fec_priv *fec = dev_get_priv(dev);
708#else
0b23fb36 709 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 710#endif
0b23fb36
IY
711
712 /*
713 * Check for valid length of data.
714 */
715 if ((length > 1500) || (length <= 0)) {
4294b248 716 printf("Payload (%d) too large\n", length);
0b23fb36
IY
717 return -1;
718 }
719
720 /*
5c1ad3e6
EN
721 * Setup the transmit buffer. We are always using the first buffer for
722 * transmission, the second will be empty and only used to stop the DMA
723 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 724 */
5c1ad3e6 725#ifdef CONFIG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
726 swap_packet((uint32_t *)packet, length);
727#endif
5c1ad3e6 728
f24e482a 729 addr = (ulong)packet;
efe24d2e
MV
730 end = roundup(addr + length, ARCH_DMA_MINALIGN);
731 addr &= ~(ARCH_DMA_MINALIGN - 1);
732 flush_dcache_range(addr, end);
5c1ad3e6 733
0b23fb36 734 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
f24e482a 735 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
5c1ad3e6 736
0b23fb36
IY
737 /*
738 * update BD's status now
739 * This block:
740 * - is always the last in a chain (means no chain)
741 * - should transmitt the CRC
742 * - might be the last BD in the list, so the address counter should
743 * wrap (-> keep the WRAP flag)
744 */
745 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
746 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
747 writew(status, &fec->tbd_base[fec->tbd_index].status);
748
5c1ad3e6
EN
749 /*
750 * Flush data cache. This code flushes both TX descriptors to RAM.
751 * After this code, the descriptors will be safely in RAM and we
752 * can start DMA.
753 */
754 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
f24e482a 755 addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
756 flush_dcache_range(addr, addr + size);
757
ab94cd49
MV
758 /*
759 * Below we read the DMA descriptor's last four bytes back from the
760 * DRAM. This is important in order to make sure that all WRITE
761 * operations on the bus that were triggered by previous cache FLUSH
762 * have completed.
763 *
764 * Otherwise, on MX28, it is possible to observe a corruption of the
765 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
766 * for the bus structure of MX28. The scenario is as follows:
767 *
768 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
769 * to DRAM due to flush_dcache_range()
770 * 2) ARM core writes the FEC registers via AHB_ARB2
771 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
772 *
773 * Note that 2) does sometimes finish before 1) due to reordering of
774 * WRITE accesses on the AHB bus, therefore triggering 3) before the
775 * DMA descriptor is fully written into DRAM. This results in occasional
776 * corruption of the DMA descriptor.
777 */
778 readl(addr + size - 4);
779
567173a6 780 /* Enable SmartDMA transmit task */
0b23fb36
IY
781 fec_tx_task_enable(fec);
782
783 /*
5c1ad3e6
EN
784 * Wait until frame is sent. On each turn of the wait cycle, we must
785 * invalidate data cache to see what's really in RAM. Also, we need
786 * barrier here.
0b23fb36 787 */
67449098 788 while (--timeout) {
c0b5a3bb 789 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 790 break;
0b23fb36 791 }
5c1ad3e6 792
f599288d 793 if (!timeout) {
67449098 794 ret = -EINVAL;
f599288d
FE
795 goto out;
796 }
797
798 /*
799 * The TDAR bit is cleared when the descriptors are all out from TX
800 * but on mx6solox we noticed that the READY bit is still not cleared
801 * right after TDAR.
802 * These are two distinct signals, and in IC simulation, we found that
803 * TDAR always gets cleared prior than the READY bit of last BD becomes
804 * cleared.
805 * In mx6solox, we use a later version of FEC IP. It looks like that
806 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
807 * version.
808 *
809 * Fix this by polling the READY bit of BD after the TDAR polling,
810 * which covers the mx6solox case and does not harm the other SoCs.
811 */
812 timeout = FEC_XFER_TIMEOUT;
813 while (--timeout) {
814 invalidate_dcache_range(addr, addr + size);
815 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
816 FEC_TBD_READY))
817 break;
818 }
67449098 819
f599288d 820 if (!timeout)
67449098
MV
821 ret = -EINVAL;
822
f599288d 823out:
67449098 824 debug("fec_send: status 0x%x index %d ret %i\n",
567173a6
JT
825 readw(&fec->tbd_base[fec->tbd_index].status),
826 fec->tbd_index, ret);
0b23fb36
IY
827 /* for next transmission use the other buffer */
828 if (fec->tbd_index)
829 fec->tbd_index = 0;
830 else
831 fec->tbd_index = 1;
832
bc1ce150 833 return ret;
0b23fb36
IY
834}
835
836/**
837 * Pull one frame from the card
838 * @param[in] dev Our ethernet device to handle
839 * @return Length of packet read
840 */
60752ca8
JT
841#ifdef CONFIG_DM_ETH
842static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
843#else
0b23fb36 844static int fec_recv(struct eth_device *dev)
60752ca8 845#endif
0b23fb36 846{
60752ca8
JT
847#ifdef CONFIG_DM_ETH
848 struct fec_priv *fec = dev_get_priv(dev);
849#else
0b23fb36 850 struct fec_priv *fec = (struct fec_priv *)dev->priv;
60752ca8 851#endif
0b23fb36
IY
852 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
853 unsigned long ievent;
854 int frame_length, len = 0;
0b23fb36 855 uint16_t bd_status;
f24e482a 856 ulong addr, size, end;
5c1ad3e6 857 int i;
07763ac9
YL
858
859#ifdef CONFIG_DM_ETH
860 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
861 if (*packetp == 0) {
862 printf("%s: error allocating packetp\n", __func__);
863 return -ENOMEM;
864 }
865#else
fd37f195 866 ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
07763ac9 867#endif
0b23fb36 868
567173a6 869 /* Check if any critical events have happened */
0b23fb36
IY
870 ievent = readl(&fec->eth->ievent);
871 writel(ievent, &fec->eth->ievent);
eda959f3 872 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36 873 if (ievent & FEC_IEVENT_BABR) {
60752ca8
JT
874#ifdef CONFIG_DM_ETH
875 fecmxc_halt(dev);
876 fecmxc_init(dev);
877#else
0b23fb36
IY
878 fec_halt(dev);
879 fec_init(dev, fec->bd);
60752ca8 880#endif
0b23fb36
IY
881 printf("some error: 0x%08lx\n", ievent);
882 return 0;
883 }
884 if (ievent & FEC_IEVENT_HBERR) {
885 /* Heartbeat error */
886 writel(0x00000001 | readl(&fec->eth->x_cntrl),
567173a6 887 &fec->eth->x_cntrl);
0b23fb36
IY
888 }
889 if (ievent & FEC_IEVENT_GRA) {
890 /* Graceful stop complete */
891 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
60752ca8
JT
892#ifdef CONFIG_DM_ETH
893 fecmxc_halt(dev);
894#else
0b23fb36 895 fec_halt(dev);
60752ca8 896#endif
0b23fb36 897 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
567173a6 898 &fec->eth->x_cntrl);
60752ca8
JT
899#ifdef CONFIG_DM_ETH
900 fecmxc_init(dev);
901#else
0b23fb36 902 fec_init(dev, fec->bd);
60752ca8 903#endif
0b23fb36
IY
904 }
905 }
906
907 /*
5c1ad3e6
EN
908 * Read the buffer status. Before the status can be read, the data cache
909 * must be invalidated, because the data in RAM might have been changed
910 * by DMA. The descriptors are properly aligned to cachelines so there's
911 * no need to worry they'd overlap.
912 *
913 * WARNING: By invalidating the descriptor here, we also invalidate
914 * the descriptors surrounding this one. Therefore we can NOT change the
915 * contents of this descriptor nor the surrounding ones. The problem is
916 * that in order to mark the descriptor as processed, we need to change
917 * the descriptor. The solution is to mark the whole cache line when all
918 * descriptors in the cache line are processed.
0b23fb36 919 */
f24e482a 920 addr = (ulong)rbd;
5c1ad3e6
EN
921 addr &= ~(ARCH_DMA_MINALIGN - 1);
922 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
923 invalidate_dcache_range(addr, addr + size);
924
0b23fb36
IY
925 bd_status = readw(&rbd->status);
926 debug("fec_recv: status 0x%x\n", bd_status);
927
928 if (!(bd_status & FEC_RBD_EMPTY)) {
929 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
567173a6
JT
930 ((readw(&rbd->data_length) - 4) > 14)) {
931 /* Get buffer address and size */
b189584b 932 addr = readl(&rbd->data_pointer);
0b23fb36 933 frame_length = readw(&rbd->data_length) - 4;
567173a6 934 /* Invalidate data cache over the buffer */
efe24d2e
MV
935 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
936 addr &= ~(ARCH_DMA_MINALIGN - 1);
937 invalidate_dcache_range(addr, end);
5c1ad3e6 938
567173a6 939 /* Fill the buffer and pass it to upper layers */
5c1ad3e6 940#ifdef CONFIG_FEC_MXC_SWAP_PACKET
b189584b 941 swap_packet((uint32_t *)addr, frame_length);
be7e87e2 942#endif
07763ac9
YL
943
944#ifdef CONFIG_DM_ETH
945 memcpy(*packetp, (char *)addr, frame_length);
946#else
b189584b 947 memcpy(buff, (char *)addr, frame_length);
1fd92db8 948 net_process_received_packet(buff, frame_length);
07763ac9 949#endif
0b23fb36
IY
950 len = frame_length;
951 } else {
952 if (bd_status & FEC_RBD_ERR)
f24e482a
YL
953 debug("error frame: 0x%08lx 0x%08x\n",
954 addr, bd_status);
0b23fb36 955 }
5c1ad3e6 956
0b23fb36 957 /*
5c1ad3e6
EN
958 * Free the current buffer, restart the engine and move forward
959 * to the next buffer. Here we check if the whole cacheline of
960 * descriptors was already processed and if so, we mark it free
961 * as whole.
0b23fb36 962 */
5c1ad3e6
EN
963 size = RXDESC_PER_CACHELINE - 1;
964 if ((fec->rbd_index & size) == size) {
965 i = fec->rbd_index - size;
f24e482a 966 addr = (ulong)&fec->rbd_base[i];
5c1ad3e6
EN
967 for (; i <= fec->rbd_index ; i++) {
968 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
969 &fec->rbd_base[i]);
970 }
971 flush_dcache_range(addr,
567173a6 972 addr + ARCH_DMA_MINALIGN);
5c1ad3e6
EN
973 }
974
0b23fb36
IY
975 fec_rx_task_enable(fec);
976 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
977 }
978 debug("fec_recv: stop\n");
979
980 return len;
981}
982
ef8e3a3b
TK
983static void fec_set_dev_name(char *dest, int dev_id)
984{
985 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
986}
987
79e5f27b
MV
988static int fec_alloc_descs(struct fec_priv *fec)
989{
990 unsigned int size;
991 int i;
992 uint8_t *data;
f24e482a 993 ulong addr;
79e5f27b
MV
994
995 /* Allocate TX descriptors. */
996 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
997 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
998 if (!fec->tbd_base)
999 goto err_tx;
1000
1001 /* Allocate RX descriptors. */
1002 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1003 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
1004 if (!fec->rbd_base)
1005 goto err_rx;
1006
1007 memset(fec->rbd_base, 0, size);
1008
1009 /* Allocate RX buffers. */
1010
1011 /* Maximum RX buffer size. */
db5b7f56 1012 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
79e5f27b 1013 for (i = 0; i < FEC_RBD_NUM; i++) {
db5b7f56 1014 data = memalign(FEC_DMA_RX_MINALIGN, size);
79e5f27b
MV
1015 if (!data) {
1016 printf("%s: error allocating rxbuf %d\n", __func__, i);
1017 goto err_ring;
1018 }
1019
1020 memset(data, 0, size);
1021
f24e482a
YL
1022 addr = (ulong)data;
1023 fec->rbd_base[i].data_pointer = (uint32_t)addr;
79e5f27b
MV
1024 fec->rbd_base[i].status = FEC_RBD_EMPTY;
1025 fec->rbd_base[i].data_length = 0;
1026 /* Flush the buffer to memory. */
f24e482a 1027 flush_dcache_range(addr, addr + size);
79e5f27b
MV
1028 }
1029
1030 /* Mark the last RBD to close the ring. */
1031 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1032
1033 fec->rbd_index = 0;
1034 fec->tbd_index = 0;
1035
1036 return 0;
1037
1038err_ring:
f24e482a
YL
1039 for (; i >= 0; i--) {
1040 addr = fec->rbd_base[i].data_pointer;
1041 free((void *)addr);
1042 }
79e5f27b
MV
1043 free(fec->rbd_base);
1044err_rx:
1045 free(fec->tbd_base);
1046err_tx:
1047 return -ENOMEM;
1048}
1049
1050static void fec_free_descs(struct fec_priv *fec)
1051{
1052 int i;
f24e482a 1053 ulong addr;
79e5f27b 1054
f24e482a
YL
1055 for (i = 0; i < FEC_RBD_NUM; i++) {
1056 addr = fec->rbd_base[i].data_pointer;
1057 free((void *)addr);
1058 }
79e5f27b
MV
1059 free(fec->rbd_base);
1060 free(fec->tbd_base);
1061}
1062
1bcabd79 1063struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
60752ca8 1064{
1bcabd79 1065 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
60752ca8
JT
1066 struct mii_dev *bus;
1067 int ret;
1068
1069 bus = mdio_alloc();
1070 if (!bus) {
1071 printf("mdio_alloc failed\n");
1072 return NULL;
1073 }
1074 bus->read = fec_phy_read;
1075 bus->write = fec_phy_write;
1076 bus->priv = eth;
1077 fec_set_dev_name(bus->name, dev_id);
1078
1079 ret = mdio_register(bus);
1080 if (ret) {
1081 printf("mdio_register failed\n");
1082 free(bus);
1083 return NULL;
1084 }
1085 fec_mii_setspeed(eth);
1086 return bus;
1087}
1088
1089#ifndef CONFIG_DM_ETH
fe428b90
TK
1090#ifdef CONFIG_PHYLIB
1091int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1092 struct mii_dev *bus, struct phy_device *phydev)
1093#else
1094static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1095 struct mii_dev *bus, int phy_id)
1096#endif
0b23fb36 1097{
0b23fb36 1098 struct eth_device *edev;
9e27e9dc 1099 struct fec_priv *fec;
0b23fb36 1100 unsigned char ethaddr[6];
979a5893 1101 char mac[16];
e382fb48
MV
1102 uint32_t start;
1103 int ret = 0;
0b23fb36
IY
1104
1105 /* create and fill edev struct */
1106 edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1107 if (!edev) {
9e27e9dc 1108 puts("fec_mxc: not enough malloc memory for eth_device\n");
e382fb48
MV
1109 ret = -ENOMEM;
1110 goto err1;
9e27e9dc
MV
1111 }
1112
1113 fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1114 if (!fec) {
1115 puts("fec_mxc: not enough malloc memory for fec_priv\n");
e382fb48
MV
1116 ret = -ENOMEM;
1117 goto err2;
0b23fb36 1118 }
9e27e9dc 1119
de0b9576 1120 memset(edev, 0, sizeof(*edev));
9e27e9dc
MV
1121 memset(fec, 0, sizeof(*fec));
1122
79e5f27b
MV
1123 ret = fec_alloc_descs(fec);
1124 if (ret)
1125 goto err3;
1126
0b23fb36
IY
1127 edev->priv = fec;
1128 edev->init = fec_init;
1129 edev->send = fec_send;
1130 edev->recv = fec_recv;
1131 edev->halt = fec_halt;
fb57ec97 1132 edev->write_hwaddr = fec_set_hwaddr;
0b23fb36 1133
f24e482a 1134 fec->eth = (struct ethernet_regs *)(ulong)base_addr;
0b23fb36
IY
1135 fec->bd = bd;
1136
392b8502 1137 fec->xcv_type = CONFIG_FEC_XCV_TYPE;
0b23fb36
IY
1138
1139 /* Reset chip. */
cb17b92d 1140 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
e382fb48
MV
1141 start = get_timer(0);
1142 while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1143 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
3450a859 1144 printf("FEC MXC: Timeout resetting chip\n");
79e5f27b 1145 goto err4;
e382fb48 1146 }
0b23fb36 1147 udelay(10);
e382fb48 1148 }
0b23fb36 1149
a5990b26 1150 fec_reg_setup(fec);
ef8e3a3b
TK
1151 fec_set_dev_name(edev->name, dev_id);
1152 fec->dev_id = (dev_id == -1) ? 0 : dev_id;
fe428b90
TK
1153 fec->bus = bus;
1154 fec_mii_setspeed(bus->priv);
1155#ifdef CONFIG_PHYLIB
1156 fec->phydev = phydev;
1157 phy_connect_dev(phydev, edev);
1158 /* Configure phy */
1159 phy_config(phydev);
1160#else
9e27e9dc 1161 fec->phy_id = phy_id;
fe428b90
TK
1162#endif
1163 eth_register(edev);
979a5893
AD
1164 /* only support one eth device, the index number pointed by dev_id */
1165 edev->index = fec->dev_id;
fe428b90 1166
f01e4e1e
AD
1167 if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1168 debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
fe428b90 1169 memcpy(edev->enetaddr, ethaddr, 6);
979a5893
AD
1170 if (fec->dev_id)
1171 sprintf(mac, "eth%daddr", fec->dev_id);
1172 else
1173 strcpy(mac, "ethaddr");
00caae6d 1174 if (!env_get(mac))
fd1e959e 1175 eth_env_set_enetaddr(mac, ethaddr);
fe428b90
TK
1176 }
1177 return ret;
79e5f27b
MV
1178err4:
1179 fec_free_descs(fec);
fe428b90
TK
1180err3:
1181 free(fec);
1182err2:
1183 free(edev);
1184err1:
1185 return ret;
1186}
1187
fe428b90
TK
1188int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1189{
1190 uint32_t base_mii;
1191 struct mii_dev *bus = NULL;
1192#ifdef CONFIG_PHYLIB
1193 struct phy_device *phydev = NULL;
1194#endif
1195 int ret;
1196
fbada485 1197#ifdef CONFIG_FEC_MXC_MDIO_BASE
13947f43
TK
1198 /*
1199 * The i.MX28 has two ethernet interfaces, but they are not equal.
1200 * Only the first one can access the MDIO bus.
1201 */
fbada485 1202 base_mii = CONFIG_FEC_MXC_MDIO_BASE;
13947f43 1203#else
fe428b90 1204 base_mii = addr;
13947f43 1205#endif
fe428b90
TK
1206 debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1207 bus = fec_get_miibus(base_mii, dev_id);
1208 if (!bus)
1209 return -ENOMEM;
4dc27eed 1210#ifdef CONFIG_PHYLIB
fe428b90 1211 phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
4dc27eed 1212 if (!phydev) {
845a57b4 1213 mdio_unregister(bus);
4dc27eed 1214 free(bus);
fe428b90 1215 return -ENOMEM;
4dc27eed 1216 }
fe428b90
TK
1217 ret = fec_probe(bd, dev_id, addr, bus, phydev);
1218#else
1219 ret = fec_probe(bd, dev_id, addr, bus, phy_id);
4dc27eed 1220#endif
fe428b90
TK
1221 if (ret) {
1222#ifdef CONFIG_PHYLIB
1223 free(phydev);
1224#endif
845a57b4 1225 mdio_unregister(bus);
fe428b90
TK
1226 free(bus);
1227 }
e382fb48 1228 return ret;
eef24480 1229}
0b23fb36 1230
eef24480
TK
1231#ifdef CONFIG_FEC_MXC_PHYADDR
1232int fecmxc_initialize(bd_t *bd)
1233{
1234 return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1235 IMX_FEC_BASE);
0b23fb36 1236}
eef24480 1237#endif
2e5f4421 1238
13947f43 1239#ifndef CONFIG_PHYLIB
2e5f4421
MV
1240int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1241{
1242 struct fec_priv *fec = (struct fec_priv *)dev->priv;
1243 fec->mii_postcall = cb;
1244 return 0;
1245}
13947f43 1246#endif
60752ca8
JT
1247
1248#else
1249
1ed2570f
JT
1250static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1251{
1252 struct fec_priv *priv = dev_get_priv(dev);
1253 struct eth_pdata *pdata = dev_get_platdata(dev);
1254
1255 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1256}
1257
07763ac9
YL
1258static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1259{
1260 if (packet)
1261 free(packet);
1262
1263 return 0;
1264}
1265
60752ca8
JT
1266static const struct eth_ops fecmxc_ops = {
1267 .start = fecmxc_init,
1268 .send = fecmxc_send,
1269 .recv = fecmxc_recv,
07763ac9 1270 .free_pkt = fecmxc_free_pkt,
60752ca8
JT
1271 .stop = fecmxc_halt,
1272 .write_hwaddr = fecmxc_set_hwaddr,
1ed2570f 1273 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
60752ca8
JT
1274};
1275
774ec60b
MW
1276static int device_get_phy_addr(struct udevice *dev)
1277{
1278 struct ofnode_phandle_args phandle_args;
1279 int reg;
1280
1281 if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1282 &phandle_args)) {
1283 debug("Failed to find phy-handle");
1284 return -ENODEV;
1285 }
1286
1287 reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1288
1289 return reg;
1290}
1291
60752ca8
JT
1292static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1293{
1294 struct phy_device *phydev;
774ec60b 1295 int addr;
60752ca8 1296
774ec60b 1297 addr = device_get_phy_addr(dev);
178d4f00 1298#ifdef CONFIG_FEC_MXC_PHYADDR
b882005a 1299 addr = CONFIG_FEC_MXC_PHYADDR;
60752ca8
JT
1300#endif
1301
b882005a 1302 phydev = phy_connect(priv->bus, addr, dev, priv->interface);
60752ca8
JT
1303 if (!phydev)
1304 return -ENODEV;
1305
60752ca8
JT
1306 priv->phydev = phydev;
1307 phy_config(phydev);
1308
1309 return 0;
1310}
1311
bcee8d67 1312#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1313/* FEC GPIO reset */
1314static void fec_gpio_reset(struct fec_priv *priv)
1315{
1316 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1317 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1318 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
9b8b9188 1319 mdelay(priv->reset_delay);
efd0b791 1320 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
31d4045d
AC
1321 if (priv->reset_post_delay)
1322 mdelay(priv->reset_post_delay);
efd0b791
MT
1323 }
1324}
1325#endif
1326
60752ca8
JT
1327static int fecmxc_probe(struct udevice *dev)
1328{
1329 struct eth_pdata *pdata = dev_get_platdata(dev);
1330 struct fec_priv *priv = dev_get_priv(dev);
1331 struct mii_dev *bus = NULL;
60752ca8
JT
1332 uint32_t start;
1333 int ret;
1334
58ec4d33
AG
1335 if (IS_ENABLED(CONFIG_IMX8)) {
1336 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1337 if (ret < 0) {
1338 debug("Can't get FEC ipg clk: %d\n", ret);
1339 return ret;
1340 }
1341 ret = clk_enable(&priv->ipg_clk);
1342 if (ret < 0) {
1343 debug("Can't enable FEC ipg clk: %d\n", ret);
1344 return ret;
1345 }
1346
673f6597
PF
1347 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1348 } else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1349 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1350 if (ret < 0) {
1351 debug("Can't get FEC ipg clk: %d\n", ret);
1352 return ret;
1353 }
1354 ret = clk_enable(&priv->ipg_clk);
1355 if(ret)
1356 return ret;
1357
1358 ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1359 if (ret < 0) {
1360 debug("Can't get FEC ahb clk: %d\n", ret);
1361 return ret;
1362 }
1363 ret = clk_enable(&priv->ahb_clk);
1364 if (ret)
1365 return ret;
1366
1367 ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1368 if (!ret) {
1369 ret = clk_enable(&priv->clk_enet_out);
1370 if (ret)
1371 return ret;
1372 }
1373
1374 ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1375 if (!ret) {
1376 ret = clk_enable(&priv->clk_ref);
1377 if (ret)
1378 return ret;
1379 }
1380
1381 ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1382 if (!ret) {
1383 ret = clk_enable(&priv->clk_ptp);
1384 if (ret)
1385 return ret;
1386 }
1387
58ec4d33
AG
1388 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1389 }
1390
60752ca8
JT
1391 ret = fec_alloc_descs(priv);
1392 if (ret)
1393 return ret;
1394
ad8c43cb
MF
1395#ifdef CONFIG_DM_REGULATOR
1396 if (priv->phy_supply) {
8f1a5ac7 1397 ret = regulator_set_enable(priv->phy_supply, true);
ad8c43cb
MF
1398 if (ret) {
1399 printf("%s: Error enabling phy supply\n", dev->name);
1400 return ret;
1401 }
1402 }
1403#endif
1404
bcee8d67 1405#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1406 fec_gpio_reset(priv);
1407#endif
60752ca8 1408 /* Reset chip. */
567173a6
JT
1409 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1410 &priv->eth->ecntrl);
60752ca8
JT
1411 start = get_timer(0);
1412 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1413 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1414 printf("FEC MXC: Timeout reseting chip\n");
1415 goto err_timeout;
1416 }
1417 udelay(10);
1418 }
1419
1420 fec_reg_setup(priv);
60752ca8 1421
8b203863 1422 priv->dev_id = dev->seq;
fbada485
PF
1423#ifdef CONFIG_FEC_MXC_MDIO_BASE
1424 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1425#else
8b203863 1426 bus = fec_get_miibus((ulong)priv->eth, dev->seq);
fbada485 1427#endif
306dd7da
LW
1428 if (!bus) {
1429 ret = -ENOMEM;
1430 goto err_mii;
1431 }
1432
1433 priv->bus = bus;
306dd7da 1434 priv->interface = pdata->phy_interface;
0126c641
MF
1435 switch (priv->interface) {
1436 case PHY_INTERFACE_MODE_MII:
1437 priv->xcv_type = MII100;
1438 break;
1439 case PHY_INTERFACE_MODE_RMII:
1440 priv->xcv_type = RMII;
1441 break;
1442 case PHY_INTERFACE_MODE_RGMII:
1443 case PHY_INTERFACE_MODE_RGMII_ID:
1444 case PHY_INTERFACE_MODE_RGMII_RXID:
1445 case PHY_INTERFACE_MODE_RGMII_TXID:
1446 priv->xcv_type = RGMII;
1447 break;
1448 default:
1449 priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1450 printf("Unsupported interface type %d defaulting to %d\n",
1451 priv->interface, priv->xcv_type);
1452 break;
1453 }
1454
306dd7da
LW
1455 ret = fec_phy_init(priv, dev);
1456 if (ret)
1457 goto err_phy;
1458
60752ca8
JT
1459 return 0;
1460
60752ca8
JT
1461err_phy:
1462 mdio_unregister(bus);
1463 free(bus);
1464err_mii:
2087eac2 1465err_timeout:
60752ca8
JT
1466 fec_free_descs(priv);
1467 return ret;
1468}
1469
1470static int fecmxc_remove(struct udevice *dev)
1471{
1472 struct fec_priv *priv = dev_get_priv(dev);
1473
1474 free(priv->phydev);
1475 fec_free_descs(priv);
1476 mdio_unregister(priv->bus);
1477 mdio_free(priv->bus);
1478
ad8c43cb
MF
1479#ifdef CONFIG_DM_REGULATOR
1480 if (priv->phy_supply)
1481 regulator_set_enable(priv->phy_supply, false);
1482#endif
1483
60752ca8
JT
1484 return 0;
1485}
1486
1487static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1488{
efd0b791 1489 int ret = 0;
60752ca8
JT
1490 struct eth_pdata *pdata = dev_get_platdata(dev);
1491 struct fec_priv *priv = dev_get_priv(dev);
1492 const char *phy_mode;
1493
a821c4af 1494 pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
60752ca8
JT
1495 priv->eth = (struct ethernet_regs *)pdata->iobase;
1496
1497 pdata->phy_interface = -1;
e160f7d4
SG
1498 phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1499 NULL);
60752ca8
JT
1500 if (phy_mode)
1501 pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1502 if (pdata->phy_interface == -1) {
1503 debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1504 return -EINVAL;
1505 }
1506
ad8c43cb
MF
1507#ifdef CONFIG_DM_REGULATOR
1508 device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1509#endif
1510
bcee8d67 1511#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791 1512 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
331fcabe
MF
1513 &priv->phy_reset_gpio, GPIOD_IS_OUT);
1514 if (ret < 0)
1515 return 0; /* property is optional, don't return error! */
60752ca8 1516
331fcabe 1517 priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
efd0b791 1518 if (priv->reset_delay > 1000) {
331fcabe
MF
1519 printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1520 /* property value wrong, use default value */
1521 priv->reset_delay = 1;
efd0b791 1522 }
31d4045d
AC
1523
1524 priv->reset_post_delay = dev_read_u32_default(dev,
1525 "phy-reset-post-delay",
1526 0);
1527 if (priv->reset_post_delay > 1000) {
1528 printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1529 /* property value wrong, use default value */
1530 priv->reset_post_delay = 0;
1531 }
efd0b791
MT
1532#endif
1533
331fcabe 1534 return 0;
60752ca8
JT
1535}
1536
1537static const struct udevice_id fecmxc_ids[] = {
7782f4e4 1538 { .compatible = "fsl,imx28-fec" },
60752ca8 1539 { .compatible = "fsl,imx6q-fec" },
979e0fc8
PF
1540 { .compatible = "fsl,imx6sl-fec" },
1541 { .compatible = "fsl,imx6sx-fec" },
1542 { .compatible = "fsl,imx6ul-fec" },
948239ea 1543 { .compatible = "fsl,imx53-fec" },
58ec4d33 1544 { .compatible = "fsl,imx7d-fec" },
27589e7d 1545 { .compatible = "fsl,mvf600-fec" },
60752ca8
JT
1546 { }
1547};
1548
1549U_BOOT_DRIVER(fecmxc_gem) = {
1550 .name = "fecmxc",
1551 .id = UCLASS_ETH,
1552 .of_match = fecmxc_ids,
1553 .ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1554 .probe = fecmxc_probe,
1555 .remove = fecmxc_remove,
1556 .ops = &fecmxc_ops,
1557 .priv_auto_alloc_size = sizeof(struct fec_priv),
1558 .platdata_auto_alloc_size = sizeof(struct eth_pdata),
1559};
1560#endif
This page took 0.532946 seconds and 4 git commands to generate.