]>
Commit | Line | Data |
---|---|---|
0b23fb36 IY |
1 | /* |
2 | * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <[email protected]> | |
3 | * (C) Copyright 2008,2009 Eric Jarrige <[email protected]> | |
4 | * (C) Copyright 2008 Armadeus Systems nc | |
5 | * (C) Copyright 2007 Pengutronix, Sascha Hauer <[email protected]> | |
6 | * (C) Copyright 2007 Pengutronix, Juergen Beisert <[email protected]> | |
7 | * | |
1a459660 | 8 | * SPDX-License-Identifier: GPL-2.0+ |
0b23fb36 IY |
9 | */ |
10 | ||
11 | #include <common.h> | |
60752ca8 | 12 | #include <dm.h> |
9925f1db | 13 | #include <environment.h> |
0b23fb36 | 14 | #include <malloc.h> |
cf92e05c | 15 | #include <memalign.h> |
567173a6 | 16 | #include <miiphy.h> |
0b23fb36 | 17 | #include <net.h> |
84f64c8b | 18 | #include <netdev.h> |
0b23fb36 IY |
19 | #include "fec_mxc.h" |
20 | ||
0b23fb36 | 21 | #include <asm/io.h> |
1221ce45 | 22 | #include <linux/errno.h> |
e2a66e60 | 23 | #include <linux/compiler.h> |
0b23fb36 | 24 | |
567173a6 JT |
25 | #include <asm/arch/clock.h> |
26 | #include <asm/arch/imx-regs.h> | |
552a848e | 27 | #include <asm/mach-imx/sys_proto.h> |
567173a6 | 28 | |
0b23fb36 IY |
29 | DECLARE_GLOBAL_DATA_PTR; |
30 | ||
bc1ce150 MV |
31 | /* |
32 | * Timeout the transfer after 5 mS. This is usually a bit more, since | |
33 | * the code in the tightloops this timeout is used in adds some overhead. | |
34 | */ | |
35 | #define FEC_XFER_TIMEOUT 5000 | |
36 | ||
db5b7f56 FE |
37 | /* |
38 | * The standard 32-byte DMA alignment does not work on mx6solox, which requires | |
39 | * 64-byte alignment in the DMA RX FEC buffer. | |
40 | * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also | |
41 | * satisfies the alignment on other SoCs (32-bytes) | |
42 | */ | |
43 | #define FEC_DMA_RX_MINALIGN 64 | |
44 | ||
0b23fb36 IY |
45 | #ifndef CONFIG_MII |
46 | #error "CONFIG_MII has to be defined!" | |
47 | #endif | |
48 | ||
5c1ad3e6 EN |
49 | #ifndef CONFIG_FEC_XCV_TYPE |
50 | #define CONFIG_FEC_XCV_TYPE MII100 | |
392b8502 MV |
51 | #endif |
52 | ||
be7e87e2 MV |
53 | /* |
54 | * The i.MX28 operates with packets in big endian. We need to swap them before | |
55 | * sending and after receiving. | |
56 | */ | |
5c1ad3e6 EN |
57 | #ifdef CONFIG_MX28 |
58 | #define CONFIG_FEC_MXC_SWAP_PACKET | |
59 | #endif | |
60 | ||
61 | #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) | |
62 | ||
63 | /* Check various alignment issues at compile time */ | |
64 | #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) | |
65 | #error "ARCH_DMA_MINALIGN must be multiple of 16!" | |
66 | #endif | |
67 | ||
68 | #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ | |
69 | (PKTALIGN % ARCH_DMA_MINALIGN != 0)) | |
70 | #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" | |
be7e87e2 MV |
71 | #endif |
72 | ||
0b23fb36 IY |
73 | #undef DEBUG |
74 | ||
5c1ad3e6 | 75 | #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
be7e87e2 MV |
76 | static void swap_packet(uint32_t *packet, int length) |
77 | { | |
78 | int i; | |
79 | ||
80 | for (i = 0; i < DIV_ROUND_UP(length, 4); i++) | |
81 | packet[i] = __swab32(packet[i]); | |
82 | } | |
83 | #endif | |
84 | ||
567173a6 JT |
85 | /* MII-interface related functions */ |
86 | static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr, | |
87 | uint8_t regaddr) | |
0b23fb36 | 88 | { |
0b23fb36 IY |
89 | uint32_t reg; /* convenient holder for the PHY register */ |
90 | uint32_t phy; /* convenient holder for the PHY */ | |
91 | uint32_t start; | |
13947f43 | 92 | int val; |
0b23fb36 IY |
93 | |
94 | /* | |
95 | * reading from any PHY's register is done by properly | |
96 | * programming the FEC's MII data register. | |
97 | */ | |
d133b881 | 98 | writel(FEC_IEVENT_MII, ð->ievent); |
567173a6 JT |
99 | reg = regaddr << FEC_MII_DATA_RA_SHIFT; |
100 | phy = phyaddr << FEC_MII_DATA_PA_SHIFT; | |
0b23fb36 IY |
101 | |
102 | writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | | |
d133b881 | 103 | phy | reg, ð->mii_data); |
0b23fb36 | 104 | |
567173a6 | 105 | /* wait for the related interrupt */ |
a60d1e5b | 106 | start = get_timer(0); |
d133b881 | 107 | while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
0b23fb36 IY |
108 | if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
109 | printf("Read MDIO failed...\n"); | |
110 | return -1; | |
111 | } | |
112 | } | |
113 | ||
567173a6 | 114 | /* clear mii interrupt bit */ |
d133b881 | 115 | writel(FEC_IEVENT_MII, ð->ievent); |
0b23fb36 | 116 | |
567173a6 | 117 | /* it's now safe to read the PHY's register */ |
13947f43 | 118 | val = (unsigned short)readl(ð->mii_data); |
567173a6 JT |
119 | debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, |
120 | regaddr, val); | |
13947f43 | 121 | return val; |
0b23fb36 IY |
122 | } |
123 | ||
575c5cc0 | 124 | static void fec_mii_setspeed(struct ethernet_regs *eth) |
4294b248 SB |
125 | { |
126 | /* | |
127 | * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock | |
128 | * and do not drop the Preamble. | |
843a3e58 MR |
129 | * |
130 | * The i.MX28 and i.MX6 types have another field in the MSCR (aka | |
131 | * MII_SPEED) register that defines the MDIO output hold time. Earlier | |
132 | * versions are RAZ there, so just ignore the difference and write the | |
133 | * register always. | |
134 | * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. | |
135 | * HOLDTIME + 1 is the number of clk cycles the fec is holding the | |
136 | * output. | |
137 | * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). | |
138 | * Given that ceil(clkrate / 5000000) <= 64, the calculation for | |
139 | * holdtime cannot result in a value greater than 3. | |
4294b248 | 140 | */ |
843a3e58 MR |
141 | u32 pclk = imx_get_fecclk(); |
142 | u32 speed = DIV_ROUND_UP(pclk, 5000000); | |
143 | u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; | |
6ba45cc0 MN |
144 | #ifdef FEC_QUIRK_ENET_MAC |
145 | speed--; | |
146 | #endif | |
843a3e58 | 147 | writel(speed << 1 | hold << 8, ð->mii_speed); |
575c5cc0 | 148 | debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); |
4294b248 | 149 | } |
0b23fb36 | 150 | |
567173a6 JT |
151 | static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr, |
152 | uint8_t regaddr, uint16_t data) | |
13947f43 | 153 | { |
0b23fb36 IY |
154 | uint32_t reg; /* convenient holder for the PHY register */ |
155 | uint32_t phy; /* convenient holder for the PHY */ | |
156 | uint32_t start; | |
157 | ||
567173a6 JT |
158 | reg = regaddr << FEC_MII_DATA_RA_SHIFT; |
159 | phy = phyaddr << FEC_MII_DATA_PA_SHIFT; | |
0b23fb36 IY |
160 | |
161 | writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | | |
d133b881 | 162 | FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); |
0b23fb36 | 163 | |
567173a6 | 164 | /* wait for the MII interrupt */ |
a60d1e5b | 165 | start = get_timer(0); |
d133b881 | 166 | while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
0b23fb36 IY |
167 | if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
168 | printf("Write MDIO failed...\n"); | |
169 | return -1; | |
170 | } | |
171 | } | |
172 | ||
567173a6 | 173 | /* clear MII interrupt bit */ |
d133b881 | 174 | writel(FEC_IEVENT_MII, ð->ievent); |
567173a6 JT |
175 | debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, |
176 | regaddr, data); | |
0b23fb36 IY |
177 | |
178 | return 0; | |
179 | } | |
180 | ||
567173a6 JT |
181 | static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr, |
182 | int regaddr) | |
13947f43 | 183 | { |
567173a6 | 184 | return fec_mdio_read(bus->priv, phyaddr, regaddr); |
13947f43 TK |
185 | } |
186 | ||
567173a6 JT |
187 | static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr, |
188 | int regaddr, u16 data) | |
13947f43 | 189 | { |
567173a6 | 190 | return fec_mdio_write(bus->priv, phyaddr, regaddr, data); |
13947f43 TK |
191 | } |
192 | ||
193 | #ifndef CONFIG_PHYLIB | |
0b23fb36 IY |
194 | static int miiphy_restart_aneg(struct eth_device *dev) |
195 | { | |
b774fe9d SB |
196 | int ret = 0; |
197 | #if !defined(CONFIG_FEC_MXC_NO_ANEG) | |
9e27e9dc | 198 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
13947f43 | 199 | struct ethernet_regs *eth = fec->bus->priv; |
9e27e9dc | 200 | |
0b23fb36 IY |
201 | /* |
202 | * Wake up from sleep if necessary | |
203 | * Reset PHY, then delay 300ns | |
204 | */ | |
cb17b92d | 205 | #ifdef CONFIG_MX27 |
13947f43 | 206 | fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); |
cb17b92d | 207 | #endif |
13947f43 | 208 | fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); |
0b23fb36 IY |
209 | udelay(1000); |
210 | ||
567173a6 | 211 | /* Set the auto-negotiation advertisement register bits */ |
13947f43 | 212 | fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, |
567173a6 JT |
213 | LPA_100FULL | LPA_100HALF | LPA_10FULL | |
214 | LPA_10HALF | PHY_ANLPAR_PSB_802_3); | |
13947f43 | 215 | fec_mdio_write(eth, fec->phy_id, MII_BMCR, |
567173a6 | 216 | BMCR_ANENABLE | BMCR_ANRESTART); |
2e5f4421 MV |
217 | |
218 | if (fec->mii_postcall) | |
219 | ret = fec->mii_postcall(fec->phy_id); | |
220 | ||
b774fe9d | 221 | #endif |
2e5f4421 | 222 | return ret; |
0b23fb36 IY |
223 | } |
224 | ||
0750701a | 225 | #ifndef CONFIG_FEC_FIXED_SPEED |
0b23fb36 IY |
226 | static int miiphy_wait_aneg(struct eth_device *dev) |
227 | { | |
228 | uint32_t start; | |
13947f43 | 229 | int status; |
9e27e9dc | 230 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
13947f43 | 231 | struct ethernet_regs *eth = fec->bus->priv; |
0b23fb36 | 232 | |
567173a6 | 233 | /* Wait for AN completion */ |
a60d1e5b | 234 | start = get_timer(0); |
0b23fb36 IY |
235 | do { |
236 | if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { | |
237 | printf("%s: Autonegotiation timeout\n", dev->name); | |
238 | return -1; | |
239 | } | |
240 | ||
13947f43 TK |
241 | status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); |
242 | if (status < 0) { | |
243 | printf("%s: Autonegotiation failed. status: %d\n", | |
567173a6 | 244 | dev->name, status); |
0b23fb36 IY |
245 | return -1; |
246 | } | |
8ef583a0 | 247 | } while (!(status & BMSR_LSTATUS)); |
0b23fb36 IY |
248 | |
249 | return 0; | |
250 | } | |
0750701a | 251 | #endif /* CONFIG_FEC_FIXED_SPEED */ |
13947f43 TK |
252 | #endif |
253 | ||
0b23fb36 IY |
254 | static int fec_rx_task_enable(struct fec_priv *fec) |
255 | { | |
c0b5a3bb | 256 | writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); |
0b23fb36 IY |
257 | return 0; |
258 | } | |
259 | ||
260 | static int fec_rx_task_disable(struct fec_priv *fec) | |
261 | { | |
262 | return 0; | |
263 | } | |
264 | ||
265 | static int fec_tx_task_enable(struct fec_priv *fec) | |
266 | { | |
c0b5a3bb | 267 | writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); |
0b23fb36 IY |
268 | return 0; |
269 | } | |
270 | ||
271 | static int fec_tx_task_disable(struct fec_priv *fec) | |
272 | { | |
273 | return 0; | |
274 | } | |
275 | ||
276 | /** | |
277 | * Initialize receive task's buffer descriptors | |
278 | * @param[in] fec all we know about the device yet | |
279 | * @param[in] count receive buffer count to be allocated | |
5c1ad3e6 | 280 | * @param[in] dsize desired size of each receive buffer |
0b23fb36 IY |
281 | * @return 0 on success |
282 | * | |
79e5f27b | 283 | * Init all RX descriptors to default values. |
0b23fb36 | 284 | */ |
79e5f27b | 285 | static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) |
0b23fb36 | 286 | { |
5c1ad3e6 | 287 | uint32_t size; |
f24e482a | 288 | ulong data; |
5c1ad3e6 EN |
289 | int i; |
290 | ||
0b23fb36 | 291 | /* |
79e5f27b MV |
292 | * Reload the RX descriptors with default values and wipe |
293 | * the RX buffers. | |
0b23fb36 | 294 | */ |
5c1ad3e6 EN |
295 | size = roundup(dsize, ARCH_DMA_MINALIGN); |
296 | for (i = 0; i < count; i++) { | |
f24e482a YL |
297 | data = fec->rbd_base[i].data_pointer; |
298 | memset((void *)data, 0, dsize); | |
299 | flush_dcache_range(data, data + size); | |
79e5f27b MV |
300 | |
301 | fec->rbd_base[i].status = FEC_RBD_EMPTY; | |
302 | fec->rbd_base[i].data_length = 0; | |
5c1ad3e6 EN |
303 | } |
304 | ||
305 | /* Mark the last RBD to close the ring. */ | |
79e5f27b | 306 | fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; |
0b23fb36 IY |
307 | fec->rbd_index = 0; |
308 | ||
f24e482a YL |
309 | flush_dcache_range((ulong)fec->rbd_base, |
310 | (ulong)fec->rbd_base + size); | |
0b23fb36 IY |
311 | } |
312 | ||
313 | /** | |
314 | * Initialize transmit task's buffer descriptors | |
315 | * @param[in] fec all we know about the device yet | |
316 | * | |
317 | * Transmit buffers are created externally. We only have to init the BDs here.\n | |
318 | * Note: There is a race condition in the hardware. When only one BD is in | |
319 | * use it must be marked with the WRAP bit to use it for every transmitt. | |
320 | * This bit in combination with the READY bit results into double transmit | |
321 | * of each data buffer. It seems the state machine checks READY earlier then | |
322 | * resetting it after the first transfer. | |
323 | * Using two BDs solves this issue. | |
324 | */ | |
325 | static void fec_tbd_init(struct fec_priv *fec) | |
326 | { | |
f24e482a | 327 | ulong addr = (ulong)fec->tbd_base; |
5c1ad3e6 EN |
328 | unsigned size = roundup(2 * sizeof(struct fec_bd), |
329 | ARCH_DMA_MINALIGN); | |
79e5f27b MV |
330 | |
331 | memset(fec->tbd_base, 0, size); | |
332 | fec->tbd_base[0].status = 0; | |
333 | fec->tbd_base[1].status = FEC_TBD_WRAP; | |
0b23fb36 | 334 | fec->tbd_index = 0; |
79e5f27b | 335 | flush_dcache_range(addr, addr + size); |
0b23fb36 IY |
336 | } |
337 | ||
338 | /** | |
339 | * Mark the given read buffer descriptor as free | |
340 | * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 | |
567173a6 | 341 | * @param[in] prbd buffer descriptor to mark free again |
0b23fb36 | 342 | */ |
567173a6 | 343 | static void fec_rbd_clean(int last, struct fec_bd *prbd) |
0b23fb36 | 344 | { |
5c1ad3e6 | 345 | unsigned short flags = FEC_RBD_EMPTY; |
0b23fb36 | 346 | if (last) |
5c1ad3e6 | 347 | flags |= FEC_RBD_WRAP; |
567173a6 JT |
348 | writew(flags, &prbd->status); |
349 | writew(0, &prbd->data_length); | |
0b23fb36 IY |
350 | } |
351 | ||
f54183e6 | 352 | static int fec_get_hwaddr(int dev_id, unsigned char *mac) |
0b23fb36 | 353 | { |
be252b65 | 354 | imx_get_mac_from_fuse(dev_id, mac); |
0adb5b76 | 355 | return !is_valid_ethaddr(mac); |
0b23fb36 IY |
356 | } |
357 | ||
60752ca8 JT |
358 | #ifdef CONFIG_DM_ETH |
359 | static int fecmxc_set_hwaddr(struct udevice *dev) | |
360 | #else | |
4294b248 | 361 | static int fec_set_hwaddr(struct eth_device *dev) |
60752ca8 | 362 | #endif |
0b23fb36 | 363 | { |
60752ca8 JT |
364 | #ifdef CONFIG_DM_ETH |
365 | struct fec_priv *fec = dev_get_priv(dev); | |
366 | struct eth_pdata *pdata = dev_get_platdata(dev); | |
367 | uchar *mac = pdata->enetaddr; | |
368 | #else | |
4294b248 | 369 | uchar *mac = dev->enetaddr; |
0b23fb36 | 370 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
60752ca8 | 371 | #endif |
0b23fb36 IY |
372 | |
373 | writel(0, &fec->eth->iaddr1); | |
374 | writel(0, &fec->eth->iaddr2); | |
375 | writel(0, &fec->eth->gaddr1); | |
376 | writel(0, &fec->eth->gaddr2); | |
377 | ||
567173a6 | 378 | /* Set physical address */ |
0b23fb36 | 379 | writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], |
567173a6 | 380 | &fec->eth->paddr1); |
0b23fb36 IY |
381 | writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); |
382 | ||
383 | return 0; | |
384 | } | |
385 | ||
567173a6 | 386 | /* Do initial configuration of the FEC registers */ |
a5990b26 MV |
387 | static void fec_reg_setup(struct fec_priv *fec) |
388 | { | |
389 | uint32_t rcntrl; | |
390 | ||
567173a6 | 391 | /* Set interrupt mask register */ |
a5990b26 MV |
392 | writel(0x00000000, &fec->eth->imask); |
393 | ||
567173a6 | 394 | /* Clear FEC-Lite interrupt event register(IEVENT) */ |
a5990b26 MV |
395 | writel(0xffffffff, &fec->eth->ievent); |
396 | ||
567173a6 | 397 | /* Set FEC-Lite receive control register(R_CNTRL): */ |
a5990b26 MV |
398 | |
399 | /* Start with frame length = 1518, common for all modes. */ | |
400 | rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; | |
9d2d924a | 401 | if (fec->xcv_type != SEVENWIRE) /* xMII modes */ |
402 | rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; | |
403 | if (fec->xcv_type == RGMII) | |
a5990b26 MV |
404 | rcntrl |= FEC_RCNTRL_RGMII; |
405 | else if (fec->xcv_type == RMII) | |
406 | rcntrl |= FEC_RCNTRL_RMII; | |
a5990b26 MV |
407 | |
408 | writel(rcntrl, &fec->eth->r_cntrl); | |
409 | } | |
410 | ||
0b23fb36 IY |
411 | /** |
412 | * Start the FEC engine | |
413 | * @param[in] dev Our device to handle | |
414 | */ | |
60752ca8 JT |
415 | #ifdef CONFIG_DM_ETH |
416 | static int fec_open(struct udevice *dev) | |
417 | #else | |
0b23fb36 | 418 | static int fec_open(struct eth_device *edev) |
60752ca8 | 419 | #endif |
0b23fb36 | 420 | { |
60752ca8 JT |
421 | #ifdef CONFIG_DM_ETH |
422 | struct fec_priv *fec = dev_get_priv(dev); | |
423 | #else | |
0b23fb36 | 424 | struct fec_priv *fec = (struct fec_priv *)edev->priv; |
60752ca8 | 425 | #endif |
28774cba | 426 | int speed; |
f24e482a | 427 | ulong addr, size; |
5c1ad3e6 | 428 | int i; |
0b23fb36 IY |
429 | |
430 | debug("fec_open: fec_open(dev)\n"); | |
431 | /* full-duplex, heartbeat disabled */ | |
432 | writel(1 << 2, &fec->eth->x_cntrl); | |
433 | fec->rbd_index = 0; | |
434 | ||
5c1ad3e6 EN |
435 | /* Invalidate all descriptors */ |
436 | for (i = 0; i < FEC_RBD_NUM - 1; i++) | |
437 | fec_rbd_clean(0, &fec->rbd_base[i]); | |
438 | fec_rbd_clean(1, &fec->rbd_base[i]); | |
439 | ||
440 | /* Flush the descriptors into RAM */ | |
441 | size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), | |
442 | ARCH_DMA_MINALIGN); | |
f24e482a | 443 | addr = (ulong)fec->rbd_base; |
5c1ad3e6 EN |
444 | flush_dcache_range(addr, addr + size); |
445 | ||
28774cba | 446 | #ifdef FEC_QUIRK_ENET_MAC |
2ef2b950 JL |
447 | /* Enable ENET HW endian SWAP */ |
448 | writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, | |
567173a6 | 449 | &fec->eth->ecntrl); |
2ef2b950 JL |
450 | /* Enable ENET store and forward mode */ |
451 | writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, | |
567173a6 | 452 | &fec->eth->x_wmrk); |
2ef2b950 | 453 | #endif |
567173a6 | 454 | /* Enable FEC-Lite controller */ |
cb17b92d | 455 | writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, |
567173a6 JT |
456 | &fec->eth->ecntrl); |
457 | ||
7df51fd8 | 458 | #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) |
740d6ae5 | 459 | udelay(100); |
740d6ae5 | 460 | |
567173a6 | 461 | /* setup the MII gasket for RMII mode */ |
740d6ae5 JR |
462 | /* disable the gasket */ |
463 | writew(0, &fec->eth->miigsk_enr); | |
464 | ||
465 | /* wait for the gasket to be disabled */ | |
466 | while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) | |
467 | udelay(2); | |
468 | ||
469 | /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ | |
470 | writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); | |
471 | ||
472 | /* re-enable the gasket */ | |
473 | writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); | |
474 | ||
475 | /* wait until MII gasket is ready */ | |
476 | int max_loops = 10; | |
477 | while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { | |
478 | if (--max_loops <= 0) { | |
479 | printf("WAIT for MII Gasket ready timed out\n"); | |
480 | break; | |
481 | } | |
482 | } | |
483 | #endif | |
0b23fb36 | 484 | |
13947f43 | 485 | #ifdef CONFIG_PHYLIB |
4dc27eed | 486 | { |
13947f43 | 487 | /* Start up the PHY */ |
11af8d65 TT |
488 | int ret = phy_startup(fec->phydev); |
489 | ||
490 | if (ret) { | |
491 | printf("Could not initialize PHY %s\n", | |
492 | fec->phydev->dev->name); | |
493 | return ret; | |
494 | } | |
13947f43 | 495 | speed = fec->phydev->speed; |
13947f43 | 496 | } |
0750701a HS |
497 | #elif CONFIG_FEC_FIXED_SPEED |
498 | speed = CONFIG_FEC_FIXED_SPEED; | |
13947f43 | 499 | #else |
0b23fb36 | 500 | miiphy_wait_aneg(edev); |
28774cba | 501 | speed = miiphy_speed(edev->name, fec->phy_id); |
9e27e9dc | 502 | miiphy_duplex(edev->name, fec->phy_id); |
13947f43 | 503 | #endif |
0b23fb36 | 504 | |
28774cba TK |
505 | #ifdef FEC_QUIRK_ENET_MAC |
506 | { | |
507 | u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; | |
bcb6e902 | 508 | u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; |
28774cba TK |
509 | if (speed == _1000BASET) |
510 | ecr |= FEC_ECNTRL_SPEED; | |
511 | else if (speed != _100BASET) | |
512 | rcr |= FEC_RCNTRL_RMII_10T; | |
513 | writel(ecr, &fec->eth->ecntrl); | |
514 | writel(rcr, &fec->eth->r_cntrl); | |
515 | } | |
516 | #endif | |
517 | debug("%s:Speed=%i\n", __func__, speed); | |
518 | ||
567173a6 | 519 | /* Enable SmartDMA receive task */ |
0b23fb36 IY |
520 | fec_rx_task_enable(fec); |
521 | ||
522 | udelay(100000); | |
523 | return 0; | |
524 | } | |
525 | ||
60752ca8 JT |
526 | #ifdef CONFIG_DM_ETH |
527 | static int fecmxc_init(struct udevice *dev) | |
528 | #else | |
567173a6 | 529 | static int fec_init(struct eth_device *dev, bd_t *bd) |
60752ca8 | 530 | #endif |
0b23fb36 | 531 | { |
60752ca8 JT |
532 | #ifdef CONFIG_DM_ETH |
533 | struct fec_priv *fec = dev_get_priv(dev); | |
534 | #else | |
0b23fb36 | 535 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
60752ca8 | 536 | #endif |
f24e482a YL |
537 | u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop; |
538 | u8 *i; | |
539 | ulong addr; | |
0b23fb36 | 540 | |
e9319f11 | 541 | /* Initialize MAC address */ |
60752ca8 JT |
542 | #ifdef CONFIG_DM_ETH |
543 | fecmxc_set_hwaddr(dev); | |
544 | #else | |
e9319f11 | 545 | fec_set_hwaddr(dev); |
60752ca8 | 546 | #endif |
e9319f11 | 547 | |
567173a6 | 548 | /* Setup transmit descriptors, there are two in total. */ |
79e5f27b | 549 | fec_tbd_init(fec); |
0b23fb36 | 550 | |
79e5f27b MV |
551 | /* Setup receive descriptors. */ |
552 | fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); | |
0b23fb36 | 553 | |
a5990b26 | 554 | fec_reg_setup(fec); |
9eb3770b | 555 | |
f41471e6 | 556 | if (fec->xcv_type != SEVENWIRE) |
575c5cc0 | 557 | fec_mii_setspeed(fec->bus->priv); |
9eb3770b | 558 | |
567173a6 | 559 | /* Set Opcode/Pause Duration Register */ |
0b23fb36 IY |
560 | writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ |
561 | writel(0x2, &fec->eth->x_wmrk); | |
567173a6 JT |
562 | |
563 | /* Set multicast address filter */ | |
0b23fb36 IY |
564 | writel(0x00000000, &fec->eth->gaddr1); |
565 | writel(0x00000000, &fec->eth->gaddr2); | |
566 | ||
238a53c7 PF |
567 | /* Do not access reserved register */ |
568 | if (!is_mx6ul() && !is_mx6ull() && !is_mx8m()) { | |
fbecbaa1 PF |
569 | /* clear MIB RAM */ |
570 | for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) | |
571 | writel(0, i); | |
0b23fb36 | 572 | |
fbecbaa1 PF |
573 | /* FIFO receive start register */ |
574 | writel(0x520, &fec->eth->r_fstart); | |
575 | } | |
0b23fb36 IY |
576 | |
577 | /* size and address of each buffer */ | |
578 | writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); | |
f24e482a YL |
579 | |
580 | addr = (ulong)fec->tbd_base; | |
581 | writel((uint32_t)addr, &fec->eth->etdsr); | |
582 | ||
583 | addr = (ulong)fec->rbd_base; | |
584 | writel((uint32_t)addr, &fec->eth->erdsr); | |
0b23fb36 | 585 | |
13947f43 | 586 | #ifndef CONFIG_PHYLIB |
0b23fb36 IY |
587 | if (fec->xcv_type != SEVENWIRE) |
588 | miiphy_restart_aneg(dev); | |
13947f43 | 589 | #endif |
0b23fb36 IY |
590 | fec_open(dev); |
591 | return 0; | |
592 | } | |
593 | ||
594 | /** | |
595 | * Halt the FEC engine | |
596 | * @param[in] dev Our device to handle | |
597 | */ | |
60752ca8 JT |
598 | #ifdef CONFIG_DM_ETH |
599 | static void fecmxc_halt(struct udevice *dev) | |
600 | #else | |
0b23fb36 | 601 | static void fec_halt(struct eth_device *dev) |
60752ca8 | 602 | #endif |
0b23fb36 | 603 | { |
60752ca8 JT |
604 | #ifdef CONFIG_DM_ETH |
605 | struct fec_priv *fec = dev_get_priv(dev); | |
606 | #else | |
9e27e9dc | 607 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
60752ca8 | 608 | #endif |
0b23fb36 IY |
609 | int counter = 0xffff; |
610 | ||
567173a6 | 611 | /* issue graceful stop command to the FEC transmitter if necessary */ |
cb17b92d | 612 | writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), |
567173a6 | 613 | &fec->eth->x_cntrl); |
0b23fb36 IY |
614 | |
615 | debug("eth_halt: wait for stop regs\n"); | |
567173a6 | 616 | /* wait for graceful stop to register */ |
0b23fb36 | 617 | while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) |
cb17b92d | 618 | udelay(1); |
0b23fb36 | 619 | |
567173a6 | 620 | /* Disable SmartDMA tasks */ |
0b23fb36 IY |
621 | fec_tx_task_disable(fec); |
622 | fec_rx_task_disable(fec); | |
623 | ||
624 | /* | |
625 | * Disable the Ethernet Controller | |
626 | * Note: this will also reset the BD index counter! | |
627 | */ | |
740d6ae5 | 628 | writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, |
567173a6 | 629 | &fec->eth->ecntrl); |
0b23fb36 IY |
630 | fec->rbd_index = 0; |
631 | fec->tbd_index = 0; | |
0b23fb36 IY |
632 | debug("eth_halt: done\n"); |
633 | } | |
634 | ||
635 | /** | |
636 | * Transmit one frame | |
637 | * @param[in] dev Our ethernet device to handle | |
638 | * @param[in] packet Pointer to the data to be transmitted | |
639 | * @param[in] length Data count in bytes | |
640 | * @return 0 on success | |
641 | */ | |
60752ca8 JT |
642 | #ifdef CONFIG_DM_ETH |
643 | static int fecmxc_send(struct udevice *dev, void *packet, int length) | |
644 | #else | |
442dac4c | 645 | static int fec_send(struct eth_device *dev, void *packet, int length) |
60752ca8 | 646 | #endif |
0b23fb36 IY |
647 | { |
648 | unsigned int status; | |
f24e482a YL |
649 | u32 size; |
650 | ulong addr, end; | |
bc1ce150 MV |
651 | int timeout = FEC_XFER_TIMEOUT; |
652 | int ret = 0; | |
0b23fb36 IY |
653 | |
654 | /* | |
655 | * This routine transmits one frame. This routine only accepts | |
656 | * 6-byte Ethernet addresses. | |
657 | */ | |
60752ca8 JT |
658 | #ifdef CONFIG_DM_ETH |
659 | struct fec_priv *fec = dev_get_priv(dev); | |
660 | #else | |
0b23fb36 | 661 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
60752ca8 | 662 | #endif |
0b23fb36 IY |
663 | |
664 | /* | |
665 | * Check for valid length of data. | |
666 | */ | |
667 | if ((length > 1500) || (length <= 0)) { | |
4294b248 | 668 | printf("Payload (%d) too large\n", length); |
0b23fb36 IY |
669 | return -1; |
670 | } | |
671 | ||
672 | /* | |
5c1ad3e6 EN |
673 | * Setup the transmit buffer. We are always using the first buffer for |
674 | * transmission, the second will be empty and only used to stop the DMA | |
675 | * engine. We also flush the packet to RAM here to avoid cache trouble. | |
0b23fb36 | 676 | */ |
5c1ad3e6 | 677 | #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
be7e87e2 MV |
678 | swap_packet((uint32_t *)packet, length); |
679 | #endif | |
5c1ad3e6 | 680 | |
f24e482a | 681 | addr = (ulong)packet; |
efe24d2e MV |
682 | end = roundup(addr + length, ARCH_DMA_MINALIGN); |
683 | addr &= ~(ARCH_DMA_MINALIGN - 1); | |
684 | flush_dcache_range(addr, end); | |
5c1ad3e6 | 685 | |
0b23fb36 | 686 | writew(length, &fec->tbd_base[fec->tbd_index].data_length); |
f24e482a | 687 | writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer); |
5c1ad3e6 | 688 | |
0b23fb36 IY |
689 | /* |
690 | * update BD's status now | |
691 | * This block: | |
692 | * - is always the last in a chain (means no chain) | |
693 | * - should transmitt the CRC | |
694 | * - might be the last BD in the list, so the address counter should | |
695 | * wrap (-> keep the WRAP flag) | |
696 | */ | |
697 | status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; | |
698 | status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; | |
699 | writew(status, &fec->tbd_base[fec->tbd_index].status); | |
700 | ||
5c1ad3e6 EN |
701 | /* |
702 | * Flush data cache. This code flushes both TX descriptors to RAM. | |
703 | * After this code, the descriptors will be safely in RAM and we | |
704 | * can start DMA. | |
705 | */ | |
706 | size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
f24e482a | 707 | addr = (ulong)fec->tbd_base; |
5c1ad3e6 EN |
708 | flush_dcache_range(addr, addr + size); |
709 | ||
ab94cd49 MV |
710 | /* |
711 | * Below we read the DMA descriptor's last four bytes back from the | |
712 | * DRAM. This is important in order to make sure that all WRITE | |
713 | * operations on the bus that were triggered by previous cache FLUSH | |
714 | * have completed. | |
715 | * | |
716 | * Otherwise, on MX28, it is possible to observe a corruption of the | |
717 | * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM | |
718 | * for the bus structure of MX28. The scenario is as follows: | |
719 | * | |
720 | * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going | |
721 | * to DRAM due to flush_dcache_range() | |
722 | * 2) ARM core writes the FEC registers via AHB_ARB2 | |
723 | * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 | |
724 | * | |
725 | * Note that 2) does sometimes finish before 1) due to reordering of | |
726 | * WRITE accesses on the AHB bus, therefore triggering 3) before the | |
727 | * DMA descriptor is fully written into DRAM. This results in occasional | |
728 | * corruption of the DMA descriptor. | |
729 | */ | |
730 | readl(addr + size - 4); | |
731 | ||
567173a6 | 732 | /* Enable SmartDMA transmit task */ |
0b23fb36 IY |
733 | fec_tx_task_enable(fec); |
734 | ||
735 | /* | |
5c1ad3e6 EN |
736 | * Wait until frame is sent. On each turn of the wait cycle, we must |
737 | * invalidate data cache to see what's really in RAM. Also, we need | |
738 | * barrier here. | |
0b23fb36 | 739 | */ |
67449098 | 740 | while (--timeout) { |
c0b5a3bb | 741 | if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) |
bc1ce150 | 742 | break; |
0b23fb36 | 743 | } |
5c1ad3e6 | 744 | |
f599288d | 745 | if (!timeout) { |
67449098 | 746 | ret = -EINVAL; |
f599288d FE |
747 | goto out; |
748 | } | |
749 | ||
750 | /* | |
751 | * The TDAR bit is cleared when the descriptors are all out from TX | |
752 | * but on mx6solox we noticed that the READY bit is still not cleared | |
753 | * right after TDAR. | |
754 | * These are two distinct signals, and in IC simulation, we found that | |
755 | * TDAR always gets cleared prior than the READY bit of last BD becomes | |
756 | * cleared. | |
757 | * In mx6solox, we use a later version of FEC IP. It looks like that | |
758 | * this intrinsic behaviour of TDAR bit has changed in this newer FEC | |
759 | * version. | |
760 | * | |
761 | * Fix this by polling the READY bit of BD after the TDAR polling, | |
762 | * which covers the mx6solox case and does not harm the other SoCs. | |
763 | */ | |
764 | timeout = FEC_XFER_TIMEOUT; | |
765 | while (--timeout) { | |
766 | invalidate_dcache_range(addr, addr + size); | |
767 | if (!(readw(&fec->tbd_base[fec->tbd_index].status) & | |
768 | FEC_TBD_READY)) | |
769 | break; | |
770 | } | |
67449098 | 771 | |
f599288d | 772 | if (!timeout) |
67449098 MV |
773 | ret = -EINVAL; |
774 | ||
f599288d | 775 | out: |
67449098 | 776 | debug("fec_send: status 0x%x index %d ret %i\n", |
567173a6 JT |
777 | readw(&fec->tbd_base[fec->tbd_index].status), |
778 | fec->tbd_index, ret); | |
0b23fb36 IY |
779 | /* for next transmission use the other buffer */ |
780 | if (fec->tbd_index) | |
781 | fec->tbd_index = 0; | |
782 | else | |
783 | fec->tbd_index = 1; | |
784 | ||
bc1ce150 | 785 | return ret; |
0b23fb36 IY |
786 | } |
787 | ||
788 | /** | |
789 | * Pull one frame from the card | |
790 | * @param[in] dev Our ethernet device to handle | |
791 | * @return Length of packet read | |
792 | */ | |
60752ca8 JT |
793 | #ifdef CONFIG_DM_ETH |
794 | static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp) | |
795 | #else | |
0b23fb36 | 796 | static int fec_recv(struct eth_device *dev) |
60752ca8 | 797 | #endif |
0b23fb36 | 798 | { |
60752ca8 JT |
799 | #ifdef CONFIG_DM_ETH |
800 | struct fec_priv *fec = dev_get_priv(dev); | |
801 | #else | |
0b23fb36 | 802 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
60752ca8 | 803 | #endif |
0b23fb36 IY |
804 | struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; |
805 | unsigned long ievent; | |
806 | int frame_length, len = 0; | |
0b23fb36 | 807 | uint16_t bd_status; |
f24e482a | 808 | ulong addr, size, end; |
5c1ad3e6 | 809 | int i; |
07763ac9 YL |
810 | |
811 | #ifdef CONFIG_DM_ETH | |
812 | *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE); | |
813 | if (*packetp == 0) { | |
814 | printf("%s: error allocating packetp\n", __func__); | |
815 | return -ENOMEM; | |
816 | } | |
817 | #else | |
fd37f195 | 818 | ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); |
07763ac9 | 819 | #endif |
0b23fb36 | 820 | |
567173a6 | 821 | /* Check if any critical events have happened */ |
0b23fb36 IY |
822 | ievent = readl(&fec->eth->ievent); |
823 | writel(ievent, &fec->eth->ievent); | |
eda959f3 | 824 | debug("fec_recv: ievent 0x%lx\n", ievent); |
0b23fb36 | 825 | if (ievent & FEC_IEVENT_BABR) { |
60752ca8 JT |
826 | #ifdef CONFIG_DM_ETH |
827 | fecmxc_halt(dev); | |
828 | fecmxc_init(dev); | |
829 | #else | |
0b23fb36 IY |
830 | fec_halt(dev); |
831 | fec_init(dev, fec->bd); | |
60752ca8 | 832 | #endif |
0b23fb36 IY |
833 | printf("some error: 0x%08lx\n", ievent); |
834 | return 0; | |
835 | } | |
836 | if (ievent & FEC_IEVENT_HBERR) { | |
837 | /* Heartbeat error */ | |
838 | writel(0x00000001 | readl(&fec->eth->x_cntrl), | |
567173a6 | 839 | &fec->eth->x_cntrl); |
0b23fb36 IY |
840 | } |
841 | if (ievent & FEC_IEVENT_GRA) { | |
842 | /* Graceful stop complete */ | |
843 | if (readl(&fec->eth->x_cntrl) & 0x00000001) { | |
60752ca8 JT |
844 | #ifdef CONFIG_DM_ETH |
845 | fecmxc_halt(dev); | |
846 | #else | |
0b23fb36 | 847 | fec_halt(dev); |
60752ca8 | 848 | #endif |
0b23fb36 | 849 | writel(~0x00000001 & readl(&fec->eth->x_cntrl), |
567173a6 | 850 | &fec->eth->x_cntrl); |
60752ca8 JT |
851 | #ifdef CONFIG_DM_ETH |
852 | fecmxc_init(dev); | |
853 | #else | |
0b23fb36 | 854 | fec_init(dev, fec->bd); |
60752ca8 | 855 | #endif |
0b23fb36 IY |
856 | } |
857 | } | |
858 | ||
859 | /* | |
5c1ad3e6 EN |
860 | * Read the buffer status. Before the status can be read, the data cache |
861 | * must be invalidated, because the data in RAM might have been changed | |
862 | * by DMA. The descriptors are properly aligned to cachelines so there's | |
863 | * no need to worry they'd overlap. | |
864 | * | |
865 | * WARNING: By invalidating the descriptor here, we also invalidate | |
866 | * the descriptors surrounding this one. Therefore we can NOT change the | |
867 | * contents of this descriptor nor the surrounding ones. The problem is | |
868 | * that in order to mark the descriptor as processed, we need to change | |
869 | * the descriptor. The solution is to mark the whole cache line when all | |
870 | * descriptors in the cache line are processed. | |
0b23fb36 | 871 | */ |
f24e482a | 872 | addr = (ulong)rbd; |
5c1ad3e6 EN |
873 | addr &= ~(ARCH_DMA_MINALIGN - 1); |
874 | size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
875 | invalidate_dcache_range(addr, addr + size); | |
876 | ||
0b23fb36 IY |
877 | bd_status = readw(&rbd->status); |
878 | debug("fec_recv: status 0x%x\n", bd_status); | |
879 | ||
880 | if (!(bd_status & FEC_RBD_EMPTY)) { | |
881 | if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && | |
567173a6 JT |
882 | ((readw(&rbd->data_length) - 4) > 14)) { |
883 | /* Get buffer address and size */ | |
b189584b | 884 | addr = readl(&rbd->data_pointer); |
0b23fb36 | 885 | frame_length = readw(&rbd->data_length) - 4; |
567173a6 | 886 | /* Invalidate data cache over the buffer */ |
efe24d2e MV |
887 | end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); |
888 | addr &= ~(ARCH_DMA_MINALIGN - 1); | |
889 | invalidate_dcache_range(addr, end); | |
5c1ad3e6 | 890 | |
567173a6 | 891 | /* Fill the buffer and pass it to upper layers */ |
5c1ad3e6 | 892 | #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
b189584b | 893 | swap_packet((uint32_t *)addr, frame_length); |
be7e87e2 | 894 | #endif |
07763ac9 YL |
895 | |
896 | #ifdef CONFIG_DM_ETH | |
897 | memcpy(*packetp, (char *)addr, frame_length); | |
898 | #else | |
b189584b | 899 | memcpy(buff, (char *)addr, frame_length); |
1fd92db8 | 900 | net_process_received_packet(buff, frame_length); |
07763ac9 | 901 | #endif |
0b23fb36 IY |
902 | len = frame_length; |
903 | } else { | |
904 | if (bd_status & FEC_RBD_ERR) | |
f24e482a YL |
905 | debug("error frame: 0x%08lx 0x%08x\n", |
906 | addr, bd_status); | |
0b23fb36 | 907 | } |
5c1ad3e6 | 908 | |
0b23fb36 | 909 | /* |
5c1ad3e6 EN |
910 | * Free the current buffer, restart the engine and move forward |
911 | * to the next buffer. Here we check if the whole cacheline of | |
912 | * descriptors was already processed and if so, we mark it free | |
913 | * as whole. | |
0b23fb36 | 914 | */ |
5c1ad3e6 EN |
915 | size = RXDESC_PER_CACHELINE - 1; |
916 | if ((fec->rbd_index & size) == size) { | |
917 | i = fec->rbd_index - size; | |
f24e482a | 918 | addr = (ulong)&fec->rbd_base[i]; |
5c1ad3e6 EN |
919 | for (; i <= fec->rbd_index ; i++) { |
920 | fec_rbd_clean(i == (FEC_RBD_NUM - 1), | |
921 | &fec->rbd_base[i]); | |
922 | } | |
923 | flush_dcache_range(addr, | |
567173a6 | 924 | addr + ARCH_DMA_MINALIGN); |
5c1ad3e6 EN |
925 | } |
926 | ||
0b23fb36 IY |
927 | fec_rx_task_enable(fec); |
928 | fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; | |
929 | } | |
930 | debug("fec_recv: stop\n"); | |
931 | ||
932 | return len; | |
933 | } | |
934 | ||
ef8e3a3b TK |
935 | static void fec_set_dev_name(char *dest, int dev_id) |
936 | { | |
937 | sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); | |
938 | } | |
939 | ||
79e5f27b MV |
940 | static int fec_alloc_descs(struct fec_priv *fec) |
941 | { | |
942 | unsigned int size; | |
943 | int i; | |
944 | uint8_t *data; | |
f24e482a | 945 | ulong addr; |
79e5f27b MV |
946 | |
947 | /* Allocate TX descriptors. */ | |
948 | size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
949 | fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); | |
950 | if (!fec->tbd_base) | |
951 | goto err_tx; | |
952 | ||
953 | /* Allocate RX descriptors. */ | |
954 | size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
955 | fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); | |
956 | if (!fec->rbd_base) | |
957 | goto err_rx; | |
958 | ||
959 | memset(fec->rbd_base, 0, size); | |
960 | ||
961 | /* Allocate RX buffers. */ | |
962 | ||
963 | /* Maximum RX buffer size. */ | |
db5b7f56 | 964 | size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); |
79e5f27b | 965 | for (i = 0; i < FEC_RBD_NUM; i++) { |
db5b7f56 | 966 | data = memalign(FEC_DMA_RX_MINALIGN, size); |
79e5f27b MV |
967 | if (!data) { |
968 | printf("%s: error allocating rxbuf %d\n", __func__, i); | |
969 | goto err_ring; | |
970 | } | |
971 | ||
972 | memset(data, 0, size); | |
973 | ||
f24e482a YL |
974 | addr = (ulong)data; |
975 | fec->rbd_base[i].data_pointer = (uint32_t)addr; | |
79e5f27b MV |
976 | fec->rbd_base[i].status = FEC_RBD_EMPTY; |
977 | fec->rbd_base[i].data_length = 0; | |
978 | /* Flush the buffer to memory. */ | |
f24e482a | 979 | flush_dcache_range(addr, addr + size); |
79e5f27b MV |
980 | } |
981 | ||
982 | /* Mark the last RBD to close the ring. */ | |
983 | fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; | |
984 | ||
985 | fec->rbd_index = 0; | |
986 | fec->tbd_index = 0; | |
987 | ||
988 | return 0; | |
989 | ||
990 | err_ring: | |
f24e482a YL |
991 | for (; i >= 0; i--) { |
992 | addr = fec->rbd_base[i].data_pointer; | |
993 | free((void *)addr); | |
994 | } | |
79e5f27b MV |
995 | free(fec->rbd_base); |
996 | err_rx: | |
997 | free(fec->tbd_base); | |
998 | err_tx: | |
999 | return -ENOMEM; | |
1000 | } | |
1001 | ||
1002 | static void fec_free_descs(struct fec_priv *fec) | |
1003 | { | |
1004 | int i; | |
f24e482a | 1005 | ulong addr; |
79e5f27b | 1006 | |
f24e482a YL |
1007 | for (i = 0; i < FEC_RBD_NUM; i++) { |
1008 | addr = fec->rbd_base[i].data_pointer; | |
1009 | free((void *)addr); | |
1010 | } | |
79e5f27b MV |
1011 | free(fec->rbd_base); |
1012 | free(fec->tbd_base); | |
1013 | } | |
1014 | ||
1bcabd79 | 1015 | struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id) |
60752ca8 | 1016 | { |
1bcabd79 | 1017 | struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; |
60752ca8 JT |
1018 | struct mii_dev *bus; |
1019 | int ret; | |
1020 | ||
1021 | bus = mdio_alloc(); | |
1022 | if (!bus) { | |
1023 | printf("mdio_alloc failed\n"); | |
1024 | return NULL; | |
1025 | } | |
1026 | bus->read = fec_phy_read; | |
1027 | bus->write = fec_phy_write; | |
1028 | bus->priv = eth; | |
1029 | fec_set_dev_name(bus->name, dev_id); | |
1030 | ||
1031 | ret = mdio_register(bus); | |
1032 | if (ret) { | |
1033 | printf("mdio_register failed\n"); | |
1034 | free(bus); | |
1035 | return NULL; | |
1036 | } | |
1037 | fec_mii_setspeed(eth); | |
1038 | return bus; | |
1039 | } | |
1040 | ||
1041 | #ifndef CONFIG_DM_ETH | |
fe428b90 TK |
1042 | #ifdef CONFIG_PHYLIB |
1043 | int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, | |
1044 | struct mii_dev *bus, struct phy_device *phydev) | |
1045 | #else | |
1046 | static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, | |
1047 | struct mii_dev *bus, int phy_id) | |
1048 | #endif | |
0b23fb36 | 1049 | { |
0b23fb36 | 1050 | struct eth_device *edev; |
9e27e9dc | 1051 | struct fec_priv *fec; |
0b23fb36 | 1052 | unsigned char ethaddr[6]; |
979a5893 | 1053 | char mac[16]; |
e382fb48 MV |
1054 | uint32_t start; |
1055 | int ret = 0; | |
0b23fb36 IY |
1056 | |
1057 | /* create and fill edev struct */ | |
1058 | edev = (struct eth_device *)malloc(sizeof(struct eth_device)); | |
1059 | if (!edev) { | |
9e27e9dc | 1060 | puts("fec_mxc: not enough malloc memory for eth_device\n"); |
e382fb48 MV |
1061 | ret = -ENOMEM; |
1062 | goto err1; | |
9e27e9dc MV |
1063 | } |
1064 | ||
1065 | fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); | |
1066 | if (!fec) { | |
1067 | puts("fec_mxc: not enough malloc memory for fec_priv\n"); | |
e382fb48 MV |
1068 | ret = -ENOMEM; |
1069 | goto err2; | |
0b23fb36 | 1070 | } |
9e27e9dc | 1071 | |
de0b9576 | 1072 | memset(edev, 0, sizeof(*edev)); |
9e27e9dc MV |
1073 | memset(fec, 0, sizeof(*fec)); |
1074 | ||
79e5f27b MV |
1075 | ret = fec_alloc_descs(fec); |
1076 | if (ret) | |
1077 | goto err3; | |
1078 | ||
0b23fb36 IY |
1079 | edev->priv = fec; |
1080 | edev->init = fec_init; | |
1081 | edev->send = fec_send; | |
1082 | edev->recv = fec_recv; | |
1083 | edev->halt = fec_halt; | |
fb57ec97 | 1084 | edev->write_hwaddr = fec_set_hwaddr; |
0b23fb36 | 1085 | |
f24e482a | 1086 | fec->eth = (struct ethernet_regs *)(ulong)base_addr; |
0b23fb36 IY |
1087 | fec->bd = bd; |
1088 | ||
392b8502 | 1089 | fec->xcv_type = CONFIG_FEC_XCV_TYPE; |
0b23fb36 IY |
1090 | |
1091 | /* Reset chip. */ | |
cb17b92d | 1092 | writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); |
e382fb48 MV |
1093 | start = get_timer(0); |
1094 | while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { | |
1095 | if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { | |
3450a859 | 1096 | printf("FEC MXC: Timeout resetting chip\n"); |
79e5f27b | 1097 | goto err4; |
e382fb48 | 1098 | } |
0b23fb36 | 1099 | udelay(10); |
e382fb48 | 1100 | } |
0b23fb36 | 1101 | |
a5990b26 | 1102 | fec_reg_setup(fec); |
ef8e3a3b TK |
1103 | fec_set_dev_name(edev->name, dev_id); |
1104 | fec->dev_id = (dev_id == -1) ? 0 : dev_id; | |
fe428b90 TK |
1105 | fec->bus = bus; |
1106 | fec_mii_setspeed(bus->priv); | |
1107 | #ifdef CONFIG_PHYLIB | |
1108 | fec->phydev = phydev; | |
1109 | phy_connect_dev(phydev, edev); | |
1110 | /* Configure phy */ | |
1111 | phy_config(phydev); | |
1112 | #else | |
9e27e9dc | 1113 | fec->phy_id = phy_id; |
fe428b90 TK |
1114 | #endif |
1115 | eth_register(edev); | |
979a5893 AD |
1116 | /* only support one eth device, the index number pointed by dev_id */ |
1117 | edev->index = fec->dev_id; | |
fe428b90 | 1118 | |
f01e4e1e AD |
1119 | if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) { |
1120 | debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr); | |
fe428b90 | 1121 | memcpy(edev->enetaddr, ethaddr, 6); |
979a5893 AD |
1122 | if (fec->dev_id) |
1123 | sprintf(mac, "eth%daddr", fec->dev_id); | |
1124 | else | |
1125 | strcpy(mac, "ethaddr"); | |
00caae6d | 1126 | if (!env_get(mac)) |
fd1e959e | 1127 | eth_env_set_enetaddr(mac, ethaddr); |
fe428b90 TK |
1128 | } |
1129 | return ret; | |
79e5f27b MV |
1130 | err4: |
1131 | fec_free_descs(fec); | |
fe428b90 TK |
1132 | err3: |
1133 | free(fec); | |
1134 | err2: | |
1135 | free(edev); | |
1136 | err1: | |
1137 | return ret; | |
1138 | } | |
1139 | ||
fe428b90 TK |
1140 | int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) |
1141 | { | |
1142 | uint32_t base_mii; | |
1143 | struct mii_dev *bus = NULL; | |
1144 | #ifdef CONFIG_PHYLIB | |
1145 | struct phy_device *phydev = NULL; | |
1146 | #endif | |
1147 | int ret; | |
1148 | ||
5c1ad3e6 | 1149 | #ifdef CONFIG_MX28 |
13947f43 TK |
1150 | /* |
1151 | * The i.MX28 has two ethernet interfaces, but they are not equal. | |
1152 | * Only the first one can access the MDIO bus. | |
1153 | */ | |
fe428b90 | 1154 | base_mii = MXS_ENET0_BASE; |
13947f43 | 1155 | #else |
fe428b90 | 1156 | base_mii = addr; |
13947f43 | 1157 | #endif |
fe428b90 TK |
1158 | debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); |
1159 | bus = fec_get_miibus(base_mii, dev_id); | |
1160 | if (!bus) | |
1161 | return -ENOMEM; | |
4dc27eed | 1162 | #ifdef CONFIG_PHYLIB |
fe428b90 | 1163 | phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); |
4dc27eed | 1164 | if (!phydev) { |
845a57b4 | 1165 | mdio_unregister(bus); |
4dc27eed | 1166 | free(bus); |
fe428b90 | 1167 | return -ENOMEM; |
4dc27eed | 1168 | } |
fe428b90 TK |
1169 | ret = fec_probe(bd, dev_id, addr, bus, phydev); |
1170 | #else | |
1171 | ret = fec_probe(bd, dev_id, addr, bus, phy_id); | |
4dc27eed | 1172 | #endif |
fe428b90 TK |
1173 | if (ret) { |
1174 | #ifdef CONFIG_PHYLIB | |
1175 | free(phydev); | |
1176 | #endif | |
845a57b4 | 1177 | mdio_unregister(bus); |
fe428b90 TK |
1178 | free(bus); |
1179 | } | |
e382fb48 | 1180 | return ret; |
eef24480 | 1181 | } |
0b23fb36 | 1182 | |
eef24480 TK |
1183 | #ifdef CONFIG_FEC_MXC_PHYADDR |
1184 | int fecmxc_initialize(bd_t *bd) | |
1185 | { | |
1186 | return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, | |
1187 | IMX_FEC_BASE); | |
0b23fb36 | 1188 | } |
eef24480 | 1189 | #endif |
2e5f4421 | 1190 | |
13947f43 | 1191 | #ifndef CONFIG_PHYLIB |
2e5f4421 MV |
1192 | int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) |
1193 | { | |
1194 | struct fec_priv *fec = (struct fec_priv *)dev->priv; | |
1195 | fec->mii_postcall = cb; | |
1196 | return 0; | |
1197 | } | |
13947f43 | 1198 | #endif |
60752ca8 JT |
1199 | |
1200 | #else | |
1201 | ||
1ed2570f JT |
1202 | static int fecmxc_read_rom_hwaddr(struct udevice *dev) |
1203 | { | |
1204 | struct fec_priv *priv = dev_get_priv(dev); | |
1205 | struct eth_pdata *pdata = dev_get_platdata(dev); | |
1206 | ||
1207 | return fec_get_hwaddr(priv->dev_id, pdata->enetaddr); | |
1208 | } | |
1209 | ||
07763ac9 YL |
1210 | static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length) |
1211 | { | |
1212 | if (packet) | |
1213 | free(packet); | |
1214 | ||
1215 | return 0; | |
1216 | } | |
1217 | ||
60752ca8 JT |
1218 | static const struct eth_ops fecmxc_ops = { |
1219 | .start = fecmxc_init, | |
1220 | .send = fecmxc_send, | |
1221 | .recv = fecmxc_recv, | |
07763ac9 | 1222 | .free_pkt = fecmxc_free_pkt, |
60752ca8 JT |
1223 | .stop = fecmxc_halt, |
1224 | .write_hwaddr = fecmxc_set_hwaddr, | |
1ed2570f | 1225 | .read_rom_hwaddr = fecmxc_read_rom_hwaddr, |
60752ca8 JT |
1226 | }; |
1227 | ||
1228 | static int fec_phy_init(struct fec_priv *priv, struct udevice *dev) | |
1229 | { | |
1230 | struct phy_device *phydev; | |
1231 | int mask = 0xffffffff; | |
1232 | ||
1233 | #ifdef CONFIG_PHYLIB | |
1234 | mask = 1 << CONFIG_FEC_MXC_PHYADDR; | |
1235 | #endif | |
1236 | ||
1237 | phydev = phy_find_by_mask(priv->bus, mask, priv->interface); | |
1238 | if (!phydev) | |
1239 | return -ENODEV; | |
1240 | ||
1241 | phy_connect_dev(phydev, dev); | |
1242 | ||
1243 | priv->phydev = phydev; | |
1244 | phy_config(phydev); | |
1245 | ||
1246 | return 0; | |
1247 | } | |
1248 | ||
1249 | static int fecmxc_probe(struct udevice *dev) | |
1250 | { | |
1251 | struct eth_pdata *pdata = dev_get_platdata(dev); | |
1252 | struct fec_priv *priv = dev_get_priv(dev); | |
1253 | struct mii_dev *bus = NULL; | |
1254 | int dev_id = -1; | |
60752ca8 JT |
1255 | uint32_t start; |
1256 | int ret; | |
1257 | ||
1258 | ret = fec_alloc_descs(priv); | |
1259 | if (ret) | |
1260 | return ret; | |
1261 | ||
60752ca8 | 1262 | /* Reset chip. */ |
567173a6 JT |
1263 | writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET, |
1264 | &priv->eth->ecntrl); | |
60752ca8 JT |
1265 | start = get_timer(0); |
1266 | while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) { | |
1267 | if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { | |
1268 | printf("FEC MXC: Timeout reseting chip\n"); | |
1269 | goto err_timeout; | |
1270 | } | |
1271 | udelay(10); | |
1272 | } | |
1273 | ||
1274 | fec_reg_setup(priv); | |
60752ca8 JT |
1275 | priv->dev_id = (dev_id == -1) ? 0 : dev_id; |
1276 | ||
1bcabd79 | 1277 | bus = fec_get_miibus((ulong)priv->eth, dev_id); |
306dd7da LW |
1278 | if (!bus) { |
1279 | ret = -ENOMEM; | |
1280 | goto err_mii; | |
1281 | } | |
1282 | ||
1283 | priv->bus = bus; | |
1284 | priv->xcv_type = CONFIG_FEC_XCV_TYPE; | |
1285 | priv->interface = pdata->phy_interface; | |
1286 | ret = fec_phy_init(priv, dev); | |
1287 | if (ret) | |
1288 | goto err_phy; | |
1289 | ||
60752ca8 JT |
1290 | return 0; |
1291 | ||
1292 | err_timeout: | |
1293 | free(priv->phydev); | |
1294 | err_phy: | |
1295 | mdio_unregister(bus); | |
1296 | free(bus); | |
1297 | err_mii: | |
1298 | fec_free_descs(priv); | |
1299 | return ret; | |
1300 | } | |
1301 | ||
1302 | static int fecmxc_remove(struct udevice *dev) | |
1303 | { | |
1304 | struct fec_priv *priv = dev_get_priv(dev); | |
1305 | ||
1306 | free(priv->phydev); | |
1307 | fec_free_descs(priv); | |
1308 | mdio_unregister(priv->bus); | |
1309 | mdio_free(priv->bus); | |
1310 | ||
1311 | return 0; | |
1312 | } | |
1313 | ||
1314 | static int fecmxc_ofdata_to_platdata(struct udevice *dev) | |
1315 | { | |
1316 | struct eth_pdata *pdata = dev_get_platdata(dev); | |
1317 | struct fec_priv *priv = dev_get_priv(dev); | |
1318 | const char *phy_mode; | |
1319 | ||
a821c4af | 1320 | pdata->iobase = (phys_addr_t)devfdt_get_addr(dev); |
60752ca8 JT |
1321 | priv->eth = (struct ethernet_regs *)pdata->iobase; |
1322 | ||
1323 | pdata->phy_interface = -1; | |
e160f7d4 SG |
1324 | phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", |
1325 | NULL); | |
60752ca8 JT |
1326 | if (phy_mode) |
1327 | pdata->phy_interface = phy_get_interface_by_name(phy_mode); | |
1328 | if (pdata->phy_interface == -1) { | |
1329 | debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); | |
1330 | return -EINVAL; | |
1331 | } | |
1332 | ||
1333 | /* TODO | |
1334 | * Need to get the reset-gpio and related properties from DT | |
1335 | * and implemet the enet reset code on .probe call | |
1336 | */ | |
1337 | ||
1338 | return 0; | |
1339 | } | |
1340 | ||
1341 | static const struct udevice_id fecmxc_ids[] = { | |
1342 | { .compatible = "fsl,imx6q-fec" }, | |
1343 | { } | |
1344 | }; | |
1345 | ||
1346 | U_BOOT_DRIVER(fecmxc_gem) = { | |
1347 | .name = "fecmxc", | |
1348 | .id = UCLASS_ETH, | |
1349 | .of_match = fecmxc_ids, | |
1350 | .ofdata_to_platdata = fecmxc_ofdata_to_platdata, | |
1351 | .probe = fecmxc_probe, | |
1352 | .remove = fecmxc_remove, | |
1353 | .ops = &fecmxc_ops, | |
1354 | .priv_auto_alloc_size = sizeof(struct fec_priv), | |
1355 | .platdata_auto_alloc_size = sizeof(struct eth_pdata), | |
1356 | }; | |
1357 | #endif |