]>
Commit | Line | Data |
---|---|---|
0b23fb36 IY |
1 | /* |
2 | * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <[email protected]> | |
3 | * (C) Copyright 2008,2009 Eric Jarrige <[email protected]> | |
4 | * (C) Copyright 2008 Armadeus Systems nc | |
5 | * (C) Copyright 2007 Pengutronix, Sascha Hauer <[email protected]> | |
6 | * (C) Copyright 2007 Pengutronix, Juergen Beisert <[email protected]> | |
7 | * | |
1a459660 | 8 | * SPDX-License-Identifier: GPL-2.0+ |
0b23fb36 IY |
9 | */ |
10 | ||
11 | #include <common.h> | |
12 | #include <malloc.h> | |
13 | #include <net.h> | |
84f64c8b | 14 | #include <netdev.h> |
0b23fb36 IY |
15 | #include <miiphy.h> |
16 | #include "fec_mxc.h" | |
17 | ||
18 | #include <asm/arch/clock.h> | |
19 | #include <asm/arch/imx-regs.h> | |
20 | #include <asm/io.h> | |
21 | #include <asm/errno.h> | |
e2a66e60 | 22 | #include <linux/compiler.h> |
0b23fb36 IY |
23 | |
24 | DECLARE_GLOBAL_DATA_PTR; | |
25 | ||
bc1ce150 MV |
26 | /* |
27 | * Timeout the transfer after 5 mS. This is usually a bit more, since | |
28 | * the code in the tightloops this timeout is used in adds some overhead. | |
29 | */ | |
30 | #define FEC_XFER_TIMEOUT 5000 | |
31 | ||
db5b7f56 FE |
32 | /* |
33 | * The standard 32-byte DMA alignment does not work on mx6solox, which requires | |
34 | * 64-byte alignment in the DMA RX FEC buffer. | |
35 | * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also | |
36 | * satisfies the alignment on other SoCs (32-bytes) | |
37 | */ | |
38 | #define FEC_DMA_RX_MINALIGN 64 | |
39 | ||
0b23fb36 IY |
40 | #ifndef CONFIG_MII |
41 | #error "CONFIG_MII has to be defined!" | |
42 | #endif | |
43 | ||
5c1ad3e6 EN |
44 | #ifndef CONFIG_FEC_XCV_TYPE |
45 | #define CONFIG_FEC_XCV_TYPE MII100 | |
392b8502 MV |
46 | #endif |
47 | ||
be7e87e2 MV |
48 | /* |
49 | * The i.MX28 operates with packets in big endian. We need to swap them before | |
50 | * sending and after receiving. | |
51 | */ | |
5c1ad3e6 EN |
52 | #ifdef CONFIG_MX28 |
53 | #define CONFIG_FEC_MXC_SWAP_PACKET | |
54 | #endif | |
55 | ||
56 | #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) | |
57 | ||
58 | /* Check various alignment issues at compile time */ | |
59 | #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) | |
60 | #error "ARCH_DMA_MINALIGN must be multiple of 16!" | |
61 | #endif | |
62 | ||
63 | #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ | |
64 | (PKTALIGN % ARCH_DMA_MINALIGN != 0)) | |
65 | #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" | |
be7e87e2 MV |
66 | #endif |
67 | ||
0b23fb36 IY |
68 | #undef DEBUG |
69 | ||
70 | struct nbuf { | |
71 | uint8_t data[1500]; /**< actual data */ | |
72 | int length; /**< actual length */ | |
73 | int used; /**< buffer in use or not */ | |
74 | uint8_t head[16]; /**< MAC header(6 + 6 + 2) + 2(aligned) */ | |
75 | }; | |
76 | ||
5c1ad3e6 | 77 | #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
be7e87e2 MV |
78 | static void swap_packet(uint32_t *packet, int length) |
79 | { | |
80 | int i; | |
81 | ||
82 | for (i = 0; i < DIV_ROUND_UP(length, 4); i++) | |
83 | packet[i] = __swab32(packet[i]); | |
84 | } | |
85 | #endif | |
86 | ||
0b23fb36 IY |
87 | /* |
88 | * MII-interface related functions | |
89 | */ | |
13947f43 TK |
90 | static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyAddr, |
91 | uint8_t regAddr) | |
0b23fb36 | 92 | { |
0b23fb36 IY |
93 | uint32_t reg; /* convenient holder for the PHY register */ |
94 | uint32_t phy; /* convenient holder for the PHY */ | |
95 | uint32_t start; | |
13947f43 | 96 | int val; |
0b23fb36 IY |
97 | |
98 | /* | |
99 | * reading from any PHY's register is done by properly | |
100 | * programming the FEC's MII data register. | |
101 | */ | |
d133b881 | 102 | writel(FEC_IEVENT_MII, ð->ievent); |
0b23fb36 IY |
103 | reg = regAddr << FEC_MII_DATA_RA_SHIFT; |
104 | phy = phyAddr << FEC_MII_DATA_PA_SHIFT; | |
105 | ||
106 | writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | | |
d133b881 | 107 | phy | reg, ð->mii_data); |
0b23fb36 IY |
108 | |
109 | /* | |
110 | * wait for the related interrupt | |
111 | */ | |
a60d1e5b | 112 | start = get_timer(0); |
d133b881 | 113 | while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
0b23fb36 IY |
114 | if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
115 | printf("Read MDIO failed...\n"); | |
116 | return -1; | |
117 | } | |
118 | } | |
119 | ||
120 | /* | |
121 | * clear mii interrupt bit | |
122 | */ | |
d133b881 | 123 | writel(FEC_IEVENT_MII, ð->ievent); |
0b23fb36 IY |
124 | |
125 | /* | |
126 | * it's now safe to read the PHY's register | |
127 | */ | |
13947f43 TK |
128 | val = (unsigned short)readl(ð->mii_data); |
129 | debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, | |
130 | regAddr, val); | |
131 | return val; | |
0b23fb36 IY |
132 | } |
133 | ||
575c5cc0 | 134 | static void fec_mii_setspeed(struct ethernet_regs *eth) |
4294b248 SB |
135 | { |
136 | /* | |
137 | * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock | |
138 | * and do not drop the Preamble. | |
139 | */ | |
6ba45cc0 MN |
140 | register u32 speed = DIV_ROUND_UP(imx_get_fecclk(), 5000000); |
141 | #ifdef FEC_QUIRK_ENET_MAC | |
142 | speed--; | |
143 | #endif | |
144 | speed <<= 1; | |
145 | writel(speed, ð->mii_speed); | |
575c5cc0 | 146 | debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); |
4294b248 | 147 | } |
0b23fb36 | 148 | |
13947f43 TK |
149 | static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyAddr, |
150 | uint8_t regAddr, uint16_t data) | |
151 | { | |
0b23fb36 IY |
152 | uint32_t reg; /* convenient holder for the PHY register */ |
153 | uint32_t phy; /* convenient holder for the PHY */ | |
154 | uint32_t start; | |
155 | ||
156 | reg = regAddr << FEC_MII_DATA_RA_SHIFT; | |
157 | phy = phyAddr << FEC_MII_DATA_PA_SHIFT; | |
158 | ||
159 | writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | | |
d133b881 | 160 | FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); |
0b23fb36 IY |
161 | |
162 | /* | |
163 | * wait for the MII interrupt | |
164 | */ | |
a60d1e5b | 165 | start = get_timer(0); |
d133b881 | 166 | while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { |
0b23fb36 IY |
167 | if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { |
168 | printf("Write MDIO failed...\n"); | |
169 | return -1; | |
170 | } | |
171 | } | |
172 | ||
173 | /* | |
174 | * clear MII interrupt bit | |
175 | */ | |
d133b881 | 176 | writel(FEC_IEVENT_MII, ð->ievent); |
13947f43 | 177 | debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyAddr, |
0b23fb36 IY |
178 | regAddr, data); |
179 | ||
180 | return 0; | |
181 | } | |
182 | ||
84f64c8b JH |
183 | static int fec_phy_read(struct mii_dev *bus, int phyAddr, int dev_addr, |
184 | int regAddr) | |
13947f43 TK |
185 | { |
186 | return fec_mdio_read(bus->priv, phyAddr, regAddr); | |
187 | } | |
188 | ||
84f64c8b JH |
189 | static int fec_phy_write(struct mii_dev *bus, int phyAddr, int dev_addr, |
190 | int regAddr, u16 data) | |
13947f43 TK |
191 | { |
192 | return fec_mdio_write(bus->priv, phyAddr, regAddr, data); | |
193 | } | |
194 | ||
195 | #ifndef CONFIG_PHYLIB | |
0b23fb36 IY |
196 | static int miiphy_restart_aneg(struct eth_device *dev) |
197 | { | |
b774fe9d SB |
198 | int ret = 0; |
199 | #if !defined(CONFIG_FEC_MXC_NO_ANEG) | |
9e27e9dc | 200 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
13947f43 | 201 | struct ethernet_regs *eth = fec->bus->priv; |
9e27e9dc | 202 | |
0b23fb36 IY |
203 | /* |
204 | * Wake up from sleep if necessary | |
205 | * Reset PHY, then delay 300ns | |
206 | */ | |
cb17b92d | 207 | #ifdef CONFIG_MX27 |
13947f43 | 208 | fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); |
cb17b92d | 209 | #endif |
13947f43 | 210 | fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); |
0b23fb36 IY |
211 | udelay(1000); |
212 | ||
213 | /* | |
214 | * Set the auto-negotiation advertisement register bits | |
215 | */ | |
13947f43 | 216 | fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, |
8ef583a0 MF |
217 | LPA_100FULL | LPA_100HALF | LPA_10FULL | |
218 | LPA_10HALF | PHY_ANLPAR_PSB_802_3); | |
13947f43 | 219 | fec_mdio_write(eth, fec->phy_id, MII_BMCR, |
8ef583a0 | 220 | BMCR_ANENABLE | BMCR_ANRESTART); |
2e5f4421 MV |
221 | |
222 | if (fec->mii_postcall) | |
223 | ret = fec->mii_postcall(fec->phy_id); | |
224 | ||
b774fe9d | 225 | #endif |
2e5f4421 | 226 | return ret; |
0b23fb36 IY |
227 | } |
228 | ||
229 | static int miiphy_wait_aneg(struct eth_device *dev) | |
230 | { | |
231 | uint32_t start; | |
13947f43 | 232 | int status; |
9e27e9dc | 233 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
13947f43 | 234 | struct ethernet_regs *eth = fec->bus->priv; |
0b23fb36 IY |
235 | |
236 | /* | |
237 | * Wait for AN completion | |
238 | */ | |
a60d1e5b | 239 | start = get_timer(0); |
0b23fb36 IY |
240 | do { |
241 | if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { | |
242 | printf("%s: Autonegotiation timeout\n", dev->name); | |
243 | return -1; | |
244 | } | |
245 | ||
13947f43 TK |
246 | status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); |
247 | if (status < 0) { | |
248 | printf("%s: Autonegotiation failed. status: %d\n", | |
0b23fb36 IY |
249 | dev->name, status); |
250 | return -1; | |
251 | } | |
8ef583a0 | 252 | } while (!(status & BMSR_LSTATUS)); |
0b23fb36 IY |
253 | |
254 | return 0; | |
255 | } | |
13947f43 TK |
256 | #endif |
257 | ||
0b23fb36 IY |
258 | static int fec_rx_task_enable(struct fec_priv *fec) |
259 | { | |
c0b5a3bb | 260 | writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); |
0b23fb36 IY |
261 | return 0; |
262 | } | |
263 | ||
264 | static int fec_rx_task_disable(struct fec_priv *fec) | |
265 | { | |
266 | return 0; | |
267 | } | |
268 | ||
269 | static int fec_tx_task_enable(struct fec_priv *fec) | |
270 | { | |
c0b5a3bb | 271 | writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); |
0b23fb36 IY |
272 | return 0; |
273 | } | |
274 | ||
275 | static int fec_tx_task_disable(struct fec_priv *fec) | |
276 | { | |
277 | return 0; | |
278 | } | |
279 | ||
280 | /** | |
281 | * Initialize receive task's buffer descriptors | |
282 | * @param[in] fec all we know about the device yet | |
283 | * @param[in] count receive buffer count to be allocated | |
5c1ad3e6 | 284 | * @param[in] dsize desired size of each receive buffer |
0b23fb36 IY |
285 | * @return 0 on success |
286 | * | |
79e5f27b | 287 | * Init all RX descriptors to default values. |
0b23fb36 | 288 | */ |
79e5f27b | 289 | static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) |
0b23fb36 | 290 | { |
5c1ad3e6 | 291 | uint32_t size; |
79e5f27b | 292 | uint8_t *data; |
5c1ad3e6 EN |
293 | int i; |
294 | ||
0b23fb36 | 295 | /* |
79e5f27b MV |
296 | * Reload the RX descriptors with default values and wipe |
297 | * the RX buffers. | |
0b23fb36 | 298 | */ |
5c1ad3e6 EN |
299 | size = roundup(dsize, ARCH_DMA_MINALIGN); |
300 | for (i = 0; i < count; i++) { | |
79e5f27b MV |
301 | data = (uint8_t *)fec->rbd_base[i].data_pointer; |
302 | memset(data, 0, dsize); | |
303 | flush_dcache_range((uint32_t)data, (uint32_t)data + size); | |
304 | ||
305 | fec->rbd_base[i].status = FEC_RBD_EMPTY; | |
306 | fec->rbd_base[i].data_length = 0; | |
5c1ad3e6 EN |
307 | } |
308 | ||
309 | /* Mark the last RBD to close the ring. */ | |
79e5f27b | 310 | fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; |
0b23fb36 IY |
311 | fec->rbd_index = 0; |
312 | ||
79e5f27b MV |
313 | flush_dcache_range((unsigned)fec->rbd_base, |
314 | (unsigned)fec->rbd_base + size); | |
0b23fb36 IY |
315 | } |
316 | ||
317 | /** | |
318 | * Initialize transmit task's buffer descriptors | |
319 | * @param[in] fec all we know about the device yet | |
320 | * | |
321 | * Transmit buffers are created externally. We only have to init the BDs here.\n | |
322 | * Note: There is a race condition in the hardware. When only one BD is in | |
323 | * use it must be marked with the WRAP bit to use it for every transmitt. | |
324 | * This bit in combination with the READY bit results into double transmit | |
325 | * of each data buffer. It seems the state machine checks READY earlier then | |
326 | * resetting it after the first transfer. | |
327 | * Using two BDs solves this issue. | |
328 | */ | |
329 | static void fec_tbd_init(struct fec_priv *fec) | |
330 | { | |
5c1ad3e6 EN |
331 | unsigned addr = (unsigned)fec->tbd_base; |
332 | unsigned size = roundup(2 * sizeof(struct fec_bd), | |
333 | ARCH_DMA_MINALIGN); | |
79e5f27b MV |
334 | |
335 | memset(fec->tbd_base, 0, size); | |
336 | fec->tbd_base[0].status = 0; | |
337 | fec->tbd_base[1].status = FEC_TBD_WRAP; | |
0b23fb36 | 338 | fec->tbd_index = 0; |
79e5f27b | 339 | flush_dcache_range(addr, addr + size); |
0b23fb36 IY |
340 | } |
341 | ||
342 | /** | |
343 | * Mark the given read buffer descriptor as free | |
344 | * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 | |
345 | * @param[in] pRbd buffer descriptor to mark free again | |
346 | */ | |
347 | static void fec_rbd_clean(int last, struct fec_bd *pRbd) | |
348 | { | |
5c1ad3e6 | 349 | unsigned short flags = FEC_RBD_EMPTY; |
0b23fb36 | 350 | if (last) |
5c1ad3e6 EN |
351 | flags |= FEC_RBD_WRAP; |
352 | writew(flags, &pRbd->status); | |
0b23fb36 IY |
353 | writew(0, &pRbd->data_length); |
354 | } | |
355 | ||
be252b65 FE |
356 | static int fec_get_hwaddr(struct eth_device *dev, int dev_id, |
357 | unsigned char *mac) | |
0b23fb36 | 358 | { |
be252b65 | 359 | imx_get_mac_from_fuse(dev_id, mac); |
2e236bf2 | 360 | return !is_valid_ether_addr(mac); |
0b23fb36 IY |
361 | } |
362 | ||
4294b248 | 363 | static int fec_set_hwaddr(struct eth_device *dev) |
0b23fb36 | 364 | { |
4294b248 | 365 | uchar *mac = dev->enetaddr; |
0b23fb36 IY |
366 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
367 | ||
368 | writel(0, &fec->eth->iaddr1); | |
369 | writel(0, &fec->eth->iaddr2); | |
370 | writel(0, &fec->eth->gaddr1); | |
371 | writel(0, &fec->eth->gaddr2); | |
372 | ||
373 | /* | |
374 | * Set physical address | |
375 | */ | |
376 | writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], | |
377 | &fec->eth->paddr1); | |
378 | writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); | |
379 | ||
380 | return 0; | |
381 | } | |
382 | ||
a5990b26 MV |
383 | /* |
384 | * Do initial configuration of the FEC registers | |
385 | */ | |
386 | static void fec_reg_setup(struct fec_priv *fec) | |
387 | { | |
388 | uint32_t rcntrl; | |
389 | ||
390 | /* | |
391 | * Set interrupt mask register | |
392 | */ | |
393 | writel(0x00000000, &fec->eth->imask); | |
394 | ||
395 | /* | |
396 | * Clear FEC-Lite interrupt event register(IEVENT) | |
397 | */ | |
398 | writel(0xffffffff, &fec->eth->ievent); | |
399 | ||
400 | ||
401 | /* | |
402 | * Set FEC-Lite receive control register(R_CNTRL): | |
403 | */ | |
404 | ||
405 | /* Start with frame length = 1518, common for all modes. */ | |
406 | rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; | |
9d2d924a | 407 | if (fec->xcv_type != SEVENWIRE) /* xMII modes */ |
408 | rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; | |
409 | if (fec->xcv_type == RGMII) | |
a5990b26 MV |
410 | rcntrl |= FEC_RCNTRL_RGMII; |
411 | else if (fec->xcv_type == RMII) | |
412 | rcntrl |= FEC_RCNTRL_RMII; | |
a5990b26 MV |
413 | |
414 | writel(rcntrl, &fec->eth->r_cntrl); | |
415 | } | |
416 | ||
0b23fb36 IY |
417 | /** |
418 | * Start the FEC engine | |
419 | * @param[in] dev Our device to handle | |
420 | */ | |
421 | static int fec_open(struct eth_device *edev) | |
422 | { | |
423 | struct fec_priv *fec = (struct fec_priv *)edev->priv; | |
28774cba | 424 | int speed; |
5c1ad3e6 EN |
425 | uint32_t addr, size; |
426 | int i; | |
0b23fb36 IY |
427 | |
428 | debug("fec_open: fec_open(dev)\n"); | |
429 | /* full-duplex, heartbeat disabled */ | |
430 | writel(1 << 2, &fec->eth->x_cntrl); | |
431 | fec->rbd_index = 0; | |
432 | ||
5c1ad3e6 EN |
433 | /* Invalidate all descriptors */ |
434 | for (i = 0; i < FEC_RBD_NUM - 1; i++) | |
435 | fec_rbd_clean(0, &fec->rbd_base[i]); | |
436 | fec_rbd_clean(1, &fec->rbd_base[i]); | |
437 | ||
438 | /* Flush the descriptors into RAM */ | |
439 | size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), | |
440 | ARCH_DMA_MINALIGN); | |
441 | addr = (uint32_t)fec->rbd_base; | |
442 | flush_dcache_range(addr, addr + size); | |
443 | ||
28774cba | 444 | #ifdef FEC_QUIRK_ENET_MAC |
2ef2b950 JL |
445 | /* Enable ENET HW endian SWAP */ |
446 | writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, | |
447 | &fec->eth->ecntrl); | |
448 | /* Enable ENET store and forward mode */ | |
449 | writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, | |
450 | &fec->eth->x_wmrk); | |
451 | #endif | |
0b23fb36 IY |
452 | /* |
453 | * Enable FEC-Lite controller | |
454 | */ | |
cb17b92d JR |
455 | writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, |
456 | &fec->eth->ecntrl); | |
7df51fd8 | 457 | #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) |
740d6ae5 JR |
458 | udelay(100); |
459 | /* | |
460 | * setup the MII gasket for RMII mode | |
461 | */ | |
462 | ||
463 | /* disable the gasket */ | |
464 | writew(0, &fec->eth->miigsk_enr); | |
465 | ||
466 | /* wait for the gasket to be disabled */ | |
467 | while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) | |
468 | udelay(2); | |
469 | ||
470 | /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ | |
471 | writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); | |
472 | ||
473 | /* re-enable the gasket */ | |
474 | writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); | |
475 | ||
476 | /* wait until MII gasket is ready */ | |
477 | int max_loops = 10; | |
478 | while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { | |
479 | if (--max_loops <= 0) { | |
480 | printf("WAIT for MII Gasket ready timed out\n"); | |
481 | break; | |
482 | } | |
483 | } | |
484 | #endif | |
0b23fb36 | 485 | |
13947f43 | 486 | #ifdef CONFIG_PHYLIB |
4dc27eed | 487 | { |
13947f43 | 488 | /* Start up the PHY */ |
11af8d65 TT |
489 | int ret = phy_startup(fec->phydev); |
490 | ||
491 | if (ret) { | |
492 | printf("Could not initialize PHY %s\n", | |
493 | fec->phydev->dev->name); | |
494 | return ret; | |
495 | } | |
13947f43 | 496 | speed = fec->phydev->speed; |
13947f43 TK |
497 | } |
498 | #else | |
0b23fb36 | 499 | miiphy_wait_aneg(edev); |
28774cba | 500 | speed = miiphy_speed(edev->name, fec->phy_id); |
9e27e9dc | 501 | miiphy_duplex(edev->name, fec->phy_id); |
13947f43 | 502 | #endif |
0b23fb36 | 503 | |
28774cba TK |
504 | #ifdef FEC_QUIRK_ENET_MAC |
505 | { | |
506 | u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; | |
bcb6e902 | 507 | u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; |
28774cba TK |
508 | if (speed == _1000BASET) |
509 | ecr |= FEC_ECNTRL_SPEED; | |
510 | else if (speed != _100BASET) | |
511 | rcr |= FEC_RCNTRL_RMII_10T; | |
512 | writel(ecr, &fec->eth->ecntrl); | |
513 | writel(rcr, &fec->eth->r_cntrl); | |
514 | } | |
515 | #endif | |
516 | debug("%s:Speed=%i\n", __func__, speed); | |
517 | ||
0b23fb36 IY |
518 | /* |
519 | * Enable SmartDMA receive task | |
520 | */ | |
521 | fec_rx_task_enable(fec); | |
522 | ||
523 | udelay(100000); | |
524 | return 0; | |
525 | } | |
526 | ||
527 | static int fec_init(struct eth_device *dev, bd_t* bd) | |
528 | { | |
0b23fb36 | 529 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
9e27e9dc | 530 | uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; |
79e5f27b | 531 | int i; |
0b23fb36 | 532 | |
e9319f11 JR |
533 | /* Initialize MAC address */ |
534 | fec_set_hwaddr(dev); | |
535 | ||
0b23fb36 | 536 | /* |
79e5f27b | 537 | * Setup transmit descriptors, there are two in total. |
0b23fb36 | 538 | */ |
79e5f27b | 539 | fec_tbd_init(fec); |
0b23fb36 | 540 | |
79e5f27b MV |
541 | /* Setup receive descriptors. */ |
542 | fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); | |
0b23fb36 | 543 | |
a5990b26 | 544 | fec_reg_setup(fec); |
9eb3770b | 545 | |
f41471e6 | 546 | if (fec->xcv_type != SEVENWIRE) |
575c5cc0 | 547 | fec_mii_setspeed(fec->bus->priv); |
9eb3770b | 548 | |
0b23fb36 IY |
549 | /* |
550 | * Set Opcode/Pause Duration Register | |
551 | */ | |
552 | writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ | |
553 | writel(0x2, &fec->eth->x_wmrk); | |
554 | /* | |
555 | * Set multicast address filter | |
556 | */ | |
557 | writel(0x00000000, &fec->eth->gaddr1); | |
558 | writel(0x00000000, &fec->eth->gaddr2); | |
559 | ||
560 | ||
561 | /* clear MIB RAM */ | |
9e27e9dc MV |
562 | for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) |
563 | writel(0, i); | |
0b23fb36 IY |
564 | |
565 | /* FIFO receive start register */ | |
566 | writel(0x520, &fec->eth->r_fstart); | |
567 | ||
568 | /* size and address of each buffer */ | |
569 | writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); | |
570 | writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); | |
571 | writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); | |
572 | ||
13947f43 | 573 | #ifndef CONFIG_PHYLIB |
0b23fb36 IY |
574 | if (fec->xcv_type != SEVENWIRE) |
575 | miiphy_restart_aneg(dev); | |
13947f43 | 576 | #endif |
0b23fb36 IY |
577 | fec_open(dev); |
578 | return 0; | |
579 | } | |
580 | ||
581 | /** | |
582 | * Halt the FEC engine | |
583 | * @param[in] dev Our device to handle | |
584 | */ | |
585 | static void fec_halt(struct eth_device *dev) | |
586 | { | |
9e27e9dc | 587 | struct fec_priv *fec = (struct fec_priv *)dev->priv; |
0b23fb36 IY |
588 | int counter = 0xffff; |
589 | ||
590 | /* | |
591 | * issue graceful stop command to the FEC transmitter if necessary | |
592 | */ | |
cb17b92d | 593 | writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), |
0b23fb36 IY |
594 | &fec->eth->x_cntrl); |
595 | ||
596 | debug("eth_halt: wait for stop regs\n"); | |
597 | /* | |
598 | * wait for graceful stop to register | |
599 | */ | |
600 | while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) | |
cb17b92d | 601 | udelay(1); |
0b23fb36 IY |
602 | |
603 | /* | |
604 | * Disable SmartDMA tasks | |
605 | */ | |
606 | fec_tx_task_disable(fec); | |
607 | fec_rx_task_disable(fec); | |
608 | ||
609 | /* | |
610 | * Disable the Ethernet Controller | |
611 | * Note: this will also reset the BD index counter! | |
612 | */ | |
740d6ae5 JR |
613 | writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, |
614 | &fec->eth->ecntrl); | |
0b23fb36 IY |
615 | fec->rbd_index = 0; |
616 | fec->tbd_index = 0; | |
0b23fb36 IY |
617 | debug("eth_halt: done\n"); |
618 | } | |
619 | ||
620 | /** | |
621 | * Transmit one frame | |
622 | * @param[in] dev Our ethernet device to handle | |
623 | * @param[in] packet Pointer to the data to be transmitted | |
624 | * @param[in] length Data count in bytes | |
625 | * @return 0 on success | |
626 | */ | |
442dac4c | 627 | static int fec_send(struct eth_device *dev, void *packet, int length) |
0b23fb36 IY |
628 | { |
629 | unsigned int status; | |
efe24d2e | 630 | uint32_t size, end; |
5c1ad3e6 | 631 | uint32_t addr; |
bc1ce150 MV |
632 | int timeout = FEC_XFER_TIMEOUT; |
633 | int ret = 0; | |
0b23fb36 IY |
634 | |
635 | /* | |
636 | * This routine transmits one frame. This routine only accepts | |
637 | * 6-byte Ethernet addresses. | |
638 | */ | |
639 | struct fec_priv *fec = (struct fec_priv *)dev->priv; | |
640 | ||
641 | /* | |
642 | * Check for valid length of data. | |
643 | */ | |
644 | if ((length > 1500) || (length <= 0)) { | |
4294b248 | 645 | printf("Payload (%d) too large\n", length); |
0b23fb36 IY |
646 | return -1; |
647 | } | |
648 | ||
649 | /* | |
5c1ad3e6 EN |
650 | * Setup the transmit buffer. We are always using the first buffer for |
651 | * transmission, the second will be empty and only used to stop the DMA | |
652 | * engine. We also flush the packet to RAM here to avoid cache trouble. | |
0b23fb36 | 653 | */ |
5c1ad3e6 | 654 | #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
be7e87e2 MV |
655 | swap_packet((uint32_t *)packet, length); |
656 | #endif | |
5c1ad3e6 EN |
657 | |
658 | addr = (uint32_t)packet; | |
efe24d2e MV |
659 | end = roundup(addr + length, ARCH_DMA_MINALIGN); |
660 | addr &= ~(ARCH_DMA_MINALIGN - 1); | |
661 | flush_dcache_range(addr, end); | |
5c1ad3e6 | 662 | |
0b23fb36 | 663 | writew(length, &fec->tbd_base[fec->tbd_index].data_length); |
5c1ad3e6 EN |
664 | writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); |
665 | ||
0b23fb36 IY |
666 | /* |
667 | * update BD's status now | |
668 | * This block: | |
669 | * - is always the last in a chain (means no chain) | |
670 | * - should transmitt the CRC | |
671 | * - might be the last BD in the list, so the address counter should | |
672 | * wrap (-> keep the WRAP flag) | |
673 | */ | |
674 | status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; | |
675 | status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; | |
676 | writew(status, &fec->tbd_base[fec->tbd_index].status); | |
677 | ||
5c1ad3e6 EN |
678 | /* |
679 | * Flush data cache. This code flushes both TX descriptors to RAM. | |
680 | * After this code, the descriptors will be safely in RAM and we | |
681 | * can start DMA. | |
682 | */ | |
683 | size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
684 | addr = (uint32_t)fec->tbd_base; | |
685 | flush_dcache_range(addr, addr + size); | |
686 | ||
ab94cd49 MV |
687 | /* |
688 | * Below we read the DMA descriptor's last four bytes back from the | |
689 | * DRAM. This is important in order to make sure that all WRITE | |
690 | * operations on the bus that were triggered by previous cache FLUSH | |
691 | * have completed. | |
692 | * | |
693 | * Otherwise, on MX28, it is possible to observe a corruption of the | |
694 | * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM | |
695 | * for the bus structure of MX28. The scenario is as follows: | |
696 | * | |
697 | * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going | |
698 | * to DRAM due to flush_dcache_range() | |
699 | * 2) ARM core writes the FEC registers via AHB_ARB2 | |
700 | * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 | |
701 | * | |
702 | * Note that 2) does sometimes finish before 1) due to reordering of | |
703 | * WRITE accesses on the AHB bus, therefore triggering 3) before the | |
704 | * DMA descriptor is fully written into DRAM. This results in occasional | |
705 | * corruption of the DMA descriptor. | |
706 | */ | |
707 | readl(addr + size - 4); | |
708 | ||
0b23fb36 IY |
709 | /* |
710 | * Enable SmartDMA transmit task | |
711 | */ | |
712 | fec_tx_task_enable(fec); | |
713 | ||
714 | /* | |
5c1ad3e6 EN |
715 | * Wait until frame is sent. On each turn of the wait cycle, we must |
716 | * invalidate data cache to see what's really in RAM. Also, we need | |
717 | * barrier here. | |
0b23fb36 | 718 | */ |
67449098 | 719 | while (--timeout) { |
c0b5a3bb | 720 | if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) |
bc1ce150 | 721 | break; |
0b23fb36 | 722 | } |
5c1ad3e6 | 723 | |
f599288d | 724 | if (!timeout) { |
67449098 | 725 | ret = -EINVAL; |
f599288d FE |
726 | goto out; |
727 | } | |
728 | ||
729 | /* | |
730 | * The TDAR bit is cleared when the descriptors are all out from TX | |
731 | * but on mx6solox we noticed that the READY bit is still not cleared | |
732 | * right after TDAR. | |
733 | * These are two distinct signals, and in IC simulation, we found that | |
734 | * TDAR always gets cleared prior than the READY bit of last BD becomes | |
735 | * cleared. | |
736 | * In mx6solox, we use a later version of FEC IP. It looks like that | |
737 | * this intrinsic behaviour of TDAR bit has changed in this newer FEC | |
738 | * version. | |
739 | * | |
740 | * Fix this by polling the READY bit of BD after the TDAR polling, | |
741 | * which covers the mx6solox case and does not harm the other SoCs. | |
742 | */ | |
743 | timeout = FEC_XFER_TIMEOUT; | |
744 | while (--timeout) { | |
745 | invalidate_dcache_range(addr, addr + size); | |
746 | if (!(readw(&fec->tbd_base[fec->tbd_index].status) & | |
747 | FEC_TBD_READY)) | |
748 | break; | |
749 | } | |
67449098 | 750 | |
f599288d | 751 | if (!timeout) |
67449098 MV |
752 | ret = -EINVAL; |
753 | ||
f599288d | 754 | out: |
67449098 | 755 | debug("fec_send: status 0x%x index %d ret %i\n", |
0b23fb36 | 756 | readw(&fec->tbd_base[fec->tbd_index].status), |
67449098 | 757 | fec->tbd_index, ret); |
0b23fb36 IY |
758 | /* for next transmission use the other buffer */ |
759 | if (fec->tbd_index) | |
760 | fec->tbd_index = 0; | |
761 | else | |
762 | fec->tbd_index = 1; | |
763 | ||
bc1ce150 | 764 | return ret; |
0b23fb36 IY |
765 | } |
766 | ||
767 | /** | |
768 | * Pull one frame from the card | |
769 | * @param[in] dev Our ethernet device to handle | |
770 | * @return Length of packet read | |
771 | */ | |
772 | static int fec_recv(struct eth_device *dev) | |
773 | { | |
774 | struct fec_priv *fec = (struct fec_priv *)dev->priv; | |
775 | struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; | |
776 | unsigned long ievent; | |
777 | int frame_length, len = 0; | |
778 | struct nbuf *frame; | |
779 | uint16_t bd_status; | |
efe24d2e | 780 | uint32_t addr, size, end; |
5c1ad3e6 | 781 | int i; |
fd37f195 | 782 | ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); |
0b23fb36 IY |
783 | |
784 | /* | |
785 | * Check if any critical events have happened | |
786 | */ | |
787 | ievent = readl(&fec->eth->ievent); | |
788 | writel(ievent, &fec->eth->ievent); | |
eda959f3 | 789 | debug("fec_recv: ievent 0x%lx\n", ievent); |
0b23fb36 IY |
790 | if (ievent & FEC_IEVENT_BABR) { |
791 | fec_halt(dev); | |
792 | fec_init(dev, fec->bd); | |
793 | printf("some error: 0x%08lx\n", ievent); | |
794 | return 0; | |
795 | } | |
796 | if (ievent & FEC_IEVENT_HBERR) { | |
797 | /* Heartbeat error */ | |
798 | writel(0x00000001 | readl(&fec->eth->x_cntrl), | |
799 | &fec->eth->x_cntrl); | |
800 | } | |
801 | if (ievent & FEC_IEVENT_GRA) { | |
802 | /* Graceful stop complete */ | |
803 | if (readl(&fec->eth->x_cntrl) & 0x00000001) { | |
804 | fec_halt(dev); | |
805 | writel(~0x00000001 & readl(&fec->eth->x_cntrl), | |
806 | &fec->eth->x_cntrl); | |
807 | fec_init(dev, fec->bd); | |
808 | } | |
809 | } | |
810 | ||
811 | /* | |
5c1ad3e6 EN |
812 | * Read the buffer status. Before the status can be read, the data cache |
813 | * must be invalidated, because the data in RAM might have been changed | |
814 | * by DMA. The descriptors are properly aligned to cachelines so there's | |
815 | * no need to worry they'd overlap. | |
816 | * | |
817 | * WARNING: By invalidating the descriptor here, we also invalidate | |
818 | * the descriptors surrounding this one. Therefore we can NOT change the | |
819 | * contents of this descriptor nor the surrounding ones. The problem is | |
820 | * that in order to mark the descriptor as processed, we need to change | |
821 | * the descriptor. The solution is to mark the whole cache line when all | |
822 | * descriptors in the cache line are processed. | |
0b23fb36 | 823 | */ |
5c1ad3e6 EN |
824 | addr = (uint32_t)rbd; |
825 | addr &= ~(ARCH_DMA_MINALIGN - 1); | |
826 | size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
827 | invalidate_dcache_range(addr, addr + size); | |
828 | ||
0b23fb36 IY |
829 | bd_status = readw(&rbd->status); |
830 | debug("fec_recv: status 0x%x\n", bd_status); | |
831 | ||
832 | if (!(bd_status & FEC_RBD_EMPTY)) { | |
833 | if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && | |
834 | ((readw(&rbd->data_length) - 4) > 14)) { | |
835 | /* | |
836 | * Get buffer address and size | |
837 | */ | |
838 | frame = (struct nbuf *)readl(&rbd->data_pointer); | |
839 | frame_length = readw(&rbd->data_length) - 4; | |
5c1ad3e6 EN |
840 | /* |
841 | * Invalidate data cache over the buffer | |
842 | */ | |
843 | addr = (uint32_t)frame; | |
efe24d2e MV |
844 | end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); |
845 | addr &= ~(ARCH_DMA_MINALIGN - 1); | |
846 | invalidate_dcache_range(addr, end); | |
5c1ad3e6 | 847 | |
0b23fb36 IY |
848 | /* |
849 | * Fill the buffer and pass it to upper layers | |
850 | */ | |
5c1ad3e6 | 851 | #ifdef CONFIG_FEC_MXC_SWAP_PACKET |
be7e87e2 MV |
852 | swap_packet((uint32_t *)frame->data, frame_length); |
853 | #endif | |
0b23fb36 IY |
854 | memcpy(buff, frame->data, frame_length); |
855 | NetReceive(buff, frame_length); | |
856 | len = frame_length; | |
857 | } else { | |
858 | if (bd_status & FEC_RBD_ERR) | |
859 | printf("error frame: 0x%08lx 0x%08x\n", | |
860 | (ulong)rbd->data_pointer, | |
861 | bd_status); | |
862 | } | |
5c1ad3e6 | 863 | |
0b23fb36 | 864 | /* |
5c1ad3e6 EN |
865 | * Free the current buffer, restart the engine and move forward |
866 | * to the next buffer. Here we check if the whole cacheline of | |
867 | * descriptors was already processed and if so, we mark it free | |
868 | * as whole. | |
0b23fb36 | 869 | */ |
5c1ad3e6 EN |
870 | size = RXDESC_PER_CACHELINE - 1; |
871 | if ((fec->rbd_index & size) == size) { | |
872 | i = fec->rbd_index - size; | |
873 | addr = (uint32_t)&fec->rbd_base[i]; | |
874 | for (; i <= fec->rbd_index ; i++) { | |
875 | fec_rbd_clean(i == (FEC_RBD_NUM - 1), | |
876 | &fec->rbd_base[i]); | |
877 | } | |
878 | flush_dcache_range(addr, | |
879 | addr + ARCH_DMA_MINALIGN); | |
880 | } | |
881 | ||
0b23fb36 IY |
882 | fec_rx_task_enable(fec); |
883 | fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; | |
884 | } | |
885 | debug("fec_recv: stop\n"); | |
886 | ||
887 | return len; | |
888 | } | |
889 | ||
ef8e3a3b TK |
890 | static void fec_set_dev_name(char *dest, int dev_id) |
891 | { | |
892 | sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); | |
893 | } | |
894 | ||
79e5f27b MV |
895 | static int fec_alloc_descs(struct fec_priv *fec) |
896 | { | |
897 | unsigned int size; | |
898 | int i; | |
899 | uint8_t *data; | |
900 | ||
901 | /* Allocate TX descriptors. */ | |
902 | size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
903 | fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); | |
904 | if (!fec->tbd_base) | |
905 | goto err_tx; | |
906 | ||
907 | /* Allocate RX descriptors. */ | |
908 | size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); | |
909 | fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); | |
910 | if (!fec->rbd_base) | |
911 | goto err_rx; | |
912 | ||
913 | memset(fec->rbd_base, 0, size); | |
914 | ||
915 | /* Allocate RX buffers. */ | |
916 | ||
917 | /* Maximum RX buffer size. */ | |
db5b7f56 | 918 | size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); |
79e5f27b | 919 | for (i = 0; i < FEC_RBD_NUM; i++) { |
db5b7f56 | 920 | data = memalign(FEC_DMA_RX_MINALIGN, size); |
79e5f27b MV |
921 | if (!data) { |
922 | printf("%s: error allocating rxbuf %d\n", __func__, i); | |
923 | goto err_ring; | |
924 | } | |
925 | ||
926 | memset(data, 0, size); | |
927 | ||
928 | fec->rbd_base[i].data_pointer = (uint32_t)data; | |
929 | fec->rbd_base[i].status = FEC_RBD_EMPTY; | |
930 | fec->rbd_base[i].data_length = 0; | |
931 | /* Flush the buffer to memory. */ | |
932 | flush_dcache_range((uint32_t)data, (uint32_t)data + size); | |
933 | } | |
934 | ||
935 | /* Mark the last RBD to close the ring. */ | |
936 | fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; | |
937 | ||
938 | fec->rbd_index = 0; | |
939 | fec->tbd_index = 0; | |
940 | ||
941 | return 0; | |
942 | ||
943 | err_ring: | |
944 | for (; i >= 0; i--) | |
945 | free((void *)fec->rbd_base[i].data_pointer); | |
946 | free(fec->rbd_base); | |
947 | err_rx: | |
948 | free(fec->tbd_base); | |
949 | err_tx: | |
950 | return -ENOMEM; | |
951 | } | |
952 | ||
953 | static void fec_free_descs(struct fec_priv *fec) | |
954 | { | |
955 | int i; | |
956 | ||
957 | for (i = 0; i < FEC_RBD_NUM; i++) | |
958 | free((void *)fec->rbd_base[i].data_pointer); | |
959 | free(fec->rbd_base); | |
960 | free(fec->tbd_base); | |
961 | } | |
962 | ||
fe428b90 TK |
963 | #ifdef CONFIG_PHYLIB |
964 | int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, | |
965 | struct mii_dev *bus, struct phy_device *phydev) | |
966 | #else | |
967 | static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, | |
968 | struct mii_dev *bus, int phy_id) | |
969 | #endif | |
0b23fb36 | 970 | { |
0b23fb36 | 971 | struct eth_device *edev; |
9e27e9dc | 972 | struct fec_priv *fec; |
0b23fb36 | 973 | unsigned char ethaddr[6]; |
e382fb48 MV |
974 | uint32_t start; |
975 | int ret = 0; | |
0b23fb36 IY |
976 | |
977 | /* create and fill edev struct */ | |
978 | edev = (struct eth_device *)malloc(sizeof(struct eth_device)); | |
979 | if (!edev) { | |
9e27e9dc | 980 | puts("fec_mxc: not enough malloc memory for eth_device\n"); |
e382fb48 MV |
981 | ret = -ENOMEM; |
982 | goto err1; | |
9e27e9dc MV |
983 | } |
984 | ||
985 | fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); | |
986 | if (!fec) { | |
987 | puts("fec_mxc: not enough malloc memory for fec_priv\n"); | |
e382fb48 MV |
988 | ret = -ENOMEM; |
989 | goto err2; | |
0b23fb36 | 990 | } |
9e27e9dc | 991 | |
de0b9576 | 992 | memset(edev, 0, sizeof(*edev)); |
9e27e9dc MV |
993 | memset(fec, 0, sizeof(*fec)); |
994 | ||
79e5f27b MV |
995 | ret = fec_alloc_descs(fec); |
996 | if (ret) | |
997 | goto err3; | |
998 | ||
0b23fb36 IY |
999 | edev->priv = fec; |
1000 | edev->init = fec_init; | |
1001 | edev->send = fec_send; | |
1002 | edev->recv = fec_recv; | |
1003 | edev->halt = fec_halt; | |
fb57ec97 | 1004 | edev->write_hwaddr = fec_set_hwaddr; |
0b23fb36 | 1005 | |
9e27e9dc | 1006 | fec->eth = (struct ethernet_regs *)base_addr; |
0b23fb36 IY |
1007 | fec->bd = bd; |
1008 | ||
392b8502 | 1009 | fec->xcv_type = CONFIG_FEC_XCV_TYPE; |
0b23fb36 IY |
1010 | |
1011 | /* Reset chip. */ | |
cb17b92d | 1012 | writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); |
e382fb48 MV |
1013 | start = get_timer(0); |
1014 | while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { | |
1015 | if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { | |
1016 | printf("FEC MXC: Timeout reseting chip\n"); | |
79e5f27b | 1017 | goto err4; |
e382fb48 | 1018 | } |
0b23fb36 | 1019 | udelay(10); |
e382fb48 | 1020 | } |
0b23fb36 | 1021 | |
a5990b26 | 1022 | fec_reg_setup(fec); |
ef8e3a3b TK |
1023 | fec_set_dev_name(edev->name, dev_id); |
1024 | fec->dev_id = (dev_id == -1) ? 0 : dev_id; | |
fe428b90 TK |
1025 | fec->bus = bus; |
1026 | fec_mii_setspeed(bus->priv); | |
1027 | #ifdef CONFIG_PHYLIB | |
1028 | fec->phydev = phydev; | |
1029 | phy_connect_dev(phydev, edev); | |
1030 | /* Configure phy */ | |
1031 | phy_config(phydev); | |
1032 | #else | |
9e27e9dc | 1033 | fec->phy_id = phy_id; |
fe428b90 TK |
1034 | #endif |
1035 | eth_register(edev); | |
1036 | ||
1037 | if (fec_get_hwaddr(edev, dev_id, ethaddr) == 0) { | |
1038 | debug("got MAC%d address from fuse: %pM\n", dev_id, ethaddr); | |
1039 | memcpy(edev->enetaddr, ethaddr, 6); | |
ddb636bd EN |
1040 | if (!getenv("ethaddr")) |
1041 | eth_setenv_enetaddr("ethaddr", ethaddr); | |
fe428b90 TK |
1042 | } |
1043 | return ret; | |
79e5f27b MV |
1044 | err4: |
1045 | fec_free_descs(fec); | |
fe428b90 TK |
1046 | err3: |
1047 | free(fec); | |
1048 | err2: | |
1049 | free(edev); | |
1050 | err1: | |
1051 | return ret; | |
1052 | } | |
1053 | ||
1054 | struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) | |
1055 | { | |
1056 | struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; | |
1057 | struct mii_dev *bus; | |
1058 | int ret; | |
0b23fb36 | 1059 | |
13947f43 TK |
1060 | bus = mdio_alloc(); |
1061 | if (!bus) { | |
1062 | printf("mdio_alloc failed\n"); | |
fe428b90 | 1063 | return NULL; |
13947f43 TK |
1064 | } |
1065 | bus->read = fec_phy_read; | |
1066 | bus->write = fec_phy_write; | |
fe428b90 | 1067 | bus->priv = eth; |
ef8e3a3b | 1068 | fec_set_dev_name(bus->name, dev_id); |
fe428b90 TK |
1069 | |
1070 | ret = mdio_register(bus); | |
1071 | if (ret) { | |
1072 | printf("mdio_register failed\n"); | |
1073 | free(bus); | |
1074 | return NULL; | |
1075 | } | |
1076 | fec_mii_setspeed(eth); | |
1077 | return bus; | |
1078 | } | |
1079 | ||
1080 | int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) | |
1081 | { | |
1082 | uint32_t base_mii; | |
1083 | struct mii_dev *bus = NULL; | |
1084 | #ifdef CONFIG_PHYLIB | |
1085 | struct phy_device *phydev = NULL; | |
1086 | #endif | |
1087 | int ret; | |
1088 | ||
5c1ad3e6 | 1089 | #ifdef CONFIG_MX28 |
13947f43 TK |
1090 | /* |
1091 | * The i.MX28 has two ethernet interfaces, but they are not equal. | |
1092 | * Only the first one can access the MDIO bus. | |
1093 | */ | |
fe428b90 | 1094 | base_mii = MXS_ENET0_BASE; |
13947f43 | 1095 | #else |
fe428b90 | 1096 | base_mii = addr; |
13947f43 | 1097 | #endif |
fe428b90 TK |
1098 | debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); |
1099 | bus = fec_get_miibus(base_mii, dev_id); | |
1100 | if (!bus) | |
1101 | return -ENOMEM; | |
4dc27eed | 1102 | #ifdef CONFIG_PHYLIB |
fe428b90 | 1103 | phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); |
4dc27eed TK |
1104 | if (!phydev) { |
1105 | free(bus); | |
fe428b90 | 1106 | return -ENOMEM; |
4dc27eed | 1107 | } |
fe428b90 TK |
1108 | ret = fec_probe(bd, dev_id, addr, bus, phydev); |
1109 | #else | |
1110 | ret = fec_probe(bd, dev_id, addr, bus, phy_id); | |
4dc27eed | 1111 | #endif |
fe428b90 TK |
1112 | if (ret) { |
1113 | #ifdef CONFIG_PHYLIB | |
1114 | free(phydev); | |
1115 | #endif | |
1116 | free(bus); | |
1117 | } | |
e382fb48 | 1118 | return ret; |
eef24480 | 1119 | } |
0b23fb36 | 1120 | |
eef24480 TK |
1121 | #ifdef CONFIG_FEC_MXC_PHYADDR |
1122 | int fecmxc_initialize(bd_t *bd) | |
1123 | { | |
1124 | return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, | |
1125 | IMX_FEC_BASE); | |
0b23fb36 | 1126 | } |
eef24480 | 1127 | #endif |
2e5f4421 | 1128 | |
13947f43 | 1129 | #ifndef CONFIG_PHYLIB |
2e5f4421 MV |
1130 | int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) |
1131 | { | |
1132 | struct fec_priv *fec = (struct fec_priv *)dev->priv; | |
1133 | fec->mii_postcall = cb; | |
1134 | return 0; | |
1135 | } | |
13947f43 | 1136 | #endif |