]> Git Repo - u-boot.git/blame - drivers/net/fec_mxc.c
Restore patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet"
[u-boot.git] / drivers / net / fec_mxc.c
CommitLineData
83d290c5 1// SPDX-License-Identifier: GPL-2.0+
0b23fb36
IY
2/*
3 * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <[email protected]>
4 * (C) Copyright 2008,2009 Eric Jarrige <[email protected]>
5 * (C) Copyright 2008 Armadeus Systems nc
6 * (C) Copyright 2007 Pengutronix, Sascha Hauer <[email protected]>
7 * (C) Copyright 2007 Pengutronix, Juergen Beisert <[email protected]>
0b23fb36
IY
8 */
9
1eb69ae4 10#include <cpu_func.h>
60752ca8 11#include <dm.h>
9fb625ce 12#include <env.h>
f7ae49fc 13#include <log.h>
0b23fb36 14#include <malloc.h>
cf92e05c 15#include <memalign.h>
567173a6 16#include <miiphy.h>
0b23fb36 17#include <net.h>
84f64c8b 18#include <netdev.h>
90526e9f 19#include <asm/cache.h>
401d1c4f 20#include <asm/global_data.h>
c05ed00a 21#include <linux/delay.h>
ad8c43cb 22#include <power/regulator.h>
0b23fb36 23
0b23fb36 24#include <asm/io.h>
1221ce45 25#include <linux/errno.h>
e2a66e60 26#include <linux/compiler.h>
0b23fb36 27
567173a6
JT
28#include <asm/arch/clock.h>
29#include <asm/arch/imx-regs.h>
552a848e 30#include <asm/mach-imx/sys_proto.h>
efd0b791 31#include <asm-generic/gpio.h>
3b8f99a3
TH
32#include <dm/device_compat.h>
33#include <dm/lists.h>
efd0b791
MT
34
35#include "fec_mxc.h"
6a895d03 36#include <eth_phy.h>
567173a6 37
0b23fb36
IY
38DECLARE_GLOBAL_DATA_PTR;
39
bc1ce150
MV
40/*
41 * Timeout the transfer after 5 mS. This is usually a bit more, since
42 * the code in the tightloops this timeout is used in adds some overhead.
43 */
44#define FEC_XFER_TIMEOUT 5000
45
db5b7f56
FE
46/*
47 * The standard 32-byte DMA alignment does not work on mx6solox, which requires
48 * 64-byte alignment in the DMA RX FEC buffer.
49 * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
50 * satisfies the alignment on other SoCs (32-bytes)
51 */
52#define FEC_DMA_RX_MINALIGN 64
53
0b23fb36
IY
54#ifndef CONFIG_MII
55#error "CONFIG_MII has to be defined!"
56#endif
57
be7e87e2
MV
58/*
59 * The i.MX28 operates with packets in big endian. We need to swap them before
60 * sending and after receiving.
61 */
5c1ad3e6 62#ifdef CONFIG_MX28
6e7df1d1 63#define CFG_FEC_MXC_SWAP_PACKET
5c1ad3e6
EN
64#endif
65
66#define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
67
68/* Check various alignment issues at compile time */
69#if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
70#error "ARCH_DMA_MINALIGN must be multiple of 16!"
71#endif
72
73#if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
74 (PKTALIGN % ARCH_DMA_MINALIGN != 0))
75#error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
be7e87e2
MV
76#endif
77
0b23fb36
IY
78#undef DEBUG
79
6e7df1d1 80#ifdef CFG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
81static void swap_packet(uint32_t *packet, int length)
82{
83 int i;
84
85 for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
86 packet[i] = __swab32(packet[i]);
87}
88#endif
89
567173a6
JT
90/* MII-interface related functions */
91static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
92 uint8_t regaddr)
0b23fb36 93{
0b23fb36
IY
94 uint32_t reg; /* convenient holder for the PHY register */
95 uint32_t phy; /* convenient holder for the PHY */
96 uint32_t start;
13947f43 97 int val;
0b23fb36
IY
98
99 /*
100 * reading from any PHY's register is done by properly
101 * programming the FEC's MII data register.
102 */
d133b881 103 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
104 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
105 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
106
107 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
d133b881 108 phy | reg, &eth->mii_data);
0b23fb36 109
567173a6 110 /* wait for the related interrupt */
a60d1e5b 111 start = get_timer(0);
d133b881 112 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
113 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
114 printf("Read MDIO failed...\n");
115 return -1;
116 }
117 }
118
567173a6 119 /* clear mii interrupt bit */
d133b881 120 writel(FEC_IEVENT_MII, &eth->ievent);
0b23fb36 121
567173a6 122 /* it's now safe to read the PHY's register */
13947f43 123 val = (unsigned short)readl(&eth->mii_data);
567173a6
JT
124 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
125 regaddr, val);
13947f43 126 return val;
0b23fb36
IY
127}
128
673f6597
PF
129#ifndef imx_get_fecclk
130u32 __weak imx_get_fecclk(void)
131{
132 return 0;
133}
134#endif
135
58ec4d33
AG
136static int fec_get_clk_rate(void *udev, int idx)
137{
58ec4d33
AG
138 struct fec_priv *fec;
139 struct udevice *dev;
140 int ret;
141
673f6597
PF
142 if (IS_ENABLED(CONFIG_IMX8) ||
143 CONFIG_IS_ENABLED(CLK_CCF)) {
144 dev = udev;
145 if (!dev) {
b247fa7b 146 ret = uclass_get_device_by_seq(UCLASS_ETH, idx, &dev);
673f6597
PF
147 if (ret < 0) {
148 debug("Can't get FEC udev: %d\n", ret);
149 return ret;
150 }
58ec4d33 151 }
58ec4d33 152
673f6597
PF
153 fec = dev_get_priv(dev);
154 if (fec)
155 return fec->clk_rate;
58ec4d33 156
673f6597
PF
157 return -EINVAL;
158 } else {
159 return imx_get_fecclk();
160 }
58ec4d33
AG
161}
162
575c5cc0 163static void fec_mii_setspeed(struct ethernet_regs *eth)
4294b248
SB
164{
165 /*
166 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
167 * and do not drop the Preamble.
843a3e58
MR
168 *
169 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
170 * MII_SPEED) register that defines the MDIO output hold time. Earlier
171 * versions are RAZ there, so just ignore the difference and write the
172 * register always.
173 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
174 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
175 * output.
176 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
177 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
178 * holdtime cannot result in a value greater than 3.
4294b248 179 */
58ec4d33
AG
180 u32 pclk;
181 u32 speed;
182 u32 hold;
183 int ret;
184
185 ret = fec_get_clk_rate(NULL, 0);
186 if (ret < 0) {
187 printf("Can't find FEC0 clk rate: %d\n", ret);
188 return;
189 }
190 pclk = ret;
191 speed = DIV_ROUND_UP(pclk, 5000000);
192 hold = DIV_ROUND_UP(pclk, 100000000) - 1;
193
6ba45cc0
MN
194#ifdef FEC_QUIRK_ENET_MAC
195 speed--;
196#endif
843a3e58 197 writel(speed << 1 | hold << 8, &eth->mii_speed);
575c5cc0 198 debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
4294b248 199}
0b23fb36 200
567173a6
JT
201static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
202 uint8_t regaddr, uint16_t data)
13947f43 203{
0b23fb36
IY
204 uint32_t reg; /* convenient holder for the PHY register */
205 uint32_t phy; /* convenient holder for the PHY */
206 uint32_t start;
207
567173a6
JT
208 reg = regaddr << FEC_MII_DATA_RA_SHIFT;
209 phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
0b23fb36
IY
210
211 writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
d133b881 212 FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
0b23fb36 213
567173a6 214 /* wait for the MII interrupt */
a60d1e5b 215 start = get_timer(0);
d133b881 216 while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
0b23fb36
IY
217 if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
218 printf("Write MDIO failed...\n");
219 return -1;
220 }
221 }
222
567173a6 223 /* clear MII interrupt bit */
d133b881 224 writel(FEC_IEVENT_MII, &eth->ievent);
567173a6
JT
225 debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
226 regaddr, data);
0b23fb36
IY
227
228 return 0;
229}
230
567173a6
JT
231static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
232 int regaddr)
13947f43 233{
567173a6 234 return fec_mdio_read(bus->priv, phyaddr, regaddr);
13947f43
TK
235}
236
567173a6
JT
237static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
238 int regaddr, u16 data)
13947f43 239{
567173a6 240 return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
13947f43
TK
241}
242
243#ifndef CONFIG_PHYLIB
0b23fb36
IY
244static int miiphy_restart_aneg(struct eth_device *dev)
245{
b774fe9d
SB
246 int ret = 0;
247#if !defined(CONFIG_FEC_MXC_NO_ANEG)
9e27e9dc 248 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 249 struct ethernet_regs *eth = fec->bus->priv;
9e27e9dc 250
0b23fb36
IY
251 /*
252 * Wake up from sleep if necessary
253 * Reset PHY, then delay 300ns
254 */
13947f43 255 fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
0b23fb36
IY
256 udelay(1000);
257
567173a6 258 /* Set the auto-negotiation advertisement register bits */
13947f43 259 fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
567173a6
JT
260 LPA_100FULL | LPA_100HALF | LPA_10FULL |
261 LPA_10HALF | PHY_ANLPAR_PSB_802_3);
13947f43 262 fec_mdio_write(eth, fec->phy_id, MII_BMCR,
567173a6 263 BMCR_ANENABLE | BMCR_ANRESTART);
2e5f4421
MV
264
265 if (fec->mii_postcall)
266 ret = fec->mii_postcall(fec->phy_id);
267
b774fe9d 268#endif
2e5f4421 269 return ret;
0b23fb36
IY
270}
271
272static int miiphy_wait_aneg(struct eth_device *dev)
273{
274 uint32_t start;
13947f43 275 int status;
9e27e9dc 276 struct fec_priv *fec = (struct fec_priv *)dev->priv;
13947f43 277 struct ethernet_regs *eth = fec->bus->priv;
0b23fb36 278
567173a6 279 /* Wait for AN completion */
a60d1e5b 280 start = get_timer(0);
0b23fb36
IY
281 do {
282 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
283 printf("%s: Autonegotiation timeout\n", dev->name);
284 return -1;
285 }
286
13947f43
TK
287 status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
288 if (status < 0) {
289 printf("%s: Autonegotiation failed. status: %d\n",
567173a6 290 dev->name, status);
0b23fb36
IY
291 return -1;
292 }
8ef583a0 293 } while (!(status & BMSR_LSTATUS));
0b23fb36
IY
294
295 return 0;
296}
13947f43
TK
297#endif
298
0b23fb36
IY
299static int fec_rx_task_enable(struct fec_priv *fec)
300{
c0b5a3bb 301 writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
0b23fb36
IY
302 return 0;
303}
304
305static int fec_rx_task_disable(struct fec_priv *fec)
306{
307 return 0;
308}
309
310static int fec_tx_task_enable(struct fec_priv *fec)
311{
c0b5a3bb 312 writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
0b23fb36
IY
313 return 0;
314}
315
316static int fec_tx_task_disable(struct fec_priv *fec)
317{
318 return 0;
319}
320
321/**
322 * Initialize receive task's buffer descriptors
323 * @param[in] fec all we know about the device yet
324 * @param[in] count receive buffer count to be allocated
5c1ad3e6 325 * @param[in] dsize desired size of each receive buffer
185f812c 326 * Return: 0 on success
0b23fb36 327 *
79e5f27b 328 * Init all RX descriptors to default values.
0b23fb36 329 */
79e5f27b 330static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
0b23fb36 331{
5c1ad3e6 332 uint32_t size;
f24e482a 333 ulong data;
5c1ad3e6
EN
334 int i;
335
0b23fb36 336 /*
79e5f27b
MV
337 * Reload the RX descriptors with default values and wipe
338 * the RX buffers.
0b23fb36 339 */
5c1ad3e6
EN
340 size = roundup(dsize, ARCH_DMA_MINALIGN);
341 for (i = 0; i < count; i++) {
f24e482a
YL
342 data = fec->rbd_base[i].data_pointer;
343 memset((void *)data, 0, dsize);
344 flush_dcache_range(data, data + size);
79e5f27b
MV
345
346 fec->rbd_base[i].status = FEC_RBD_EMPTY;
347 fec->rbd_base[i].data_length = 0;
5c1ad3e6
EN
348 }
349
350 /* Mark the last RBD to close the ring. */
79e5f27b 351 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
0b23fb36
IY
352 fec->rbd_index = 0;
353
f24e482a
YL
354 flush_dcache_range((ulong)fec->rbd_base,
355 (ulong)fec->rbd_base + size);
0b23fb36
IY
356}
357
358/**
359 * Initialize transmit task's buffer descriptors
360 * @param[in] fec all we know about the device yet
361 *
362 * Transmit buffers are created externally. We only have to init the BDs here.\n
363 * Note: There is a race condition in the hardware. When only one BD is in
364 * use it must be marked with the WRAP bit to use it for every transmitt.
365 * This bit in combination with the READY bit results into double transmit
366 * of each data buffer. It seems the state machine checks READY earlier then
367 * resetting it after the first transfer.
368 * Using two BDs solves this issue.
369 */
370static void fec_tbd_init(struct fec_priv *fec)
371{
f24e482a 372 ulong addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
373 unsigned size = roundup(2 * sizeof(struct fec_bd),
374 ARCH_DMA_MINALIGN);
79e5f27b
MV
375
376 memset(fec->tbd_base, 0, size);
377 fec->tbd_base[0].status = 0;
378 fec->tbd_base[1].status = FEC_TBD_WRAP;
0b23fb36 379 fec->tbd_index = 0;
79e5f27b 380 flush_dcache_range(addr, addr + size);
0b23fb36
IY
381}
382
383/**
384 * Mark the given read buffer descriptor as free
385 * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
567173a6 386 * @param[in] prbd buffer descriptor to mark free again
0b23fb36 387 */
567173a6 388static void fec_rbd_clean(int last, struct fec_bd *prbd)
0b23fb36 389{
5c1ad3e6 390 unsigned short flags = FEC_RBD_EMPTY;
0b23fb36 391 if (last)
5c1ad3e6 392 flags |= FEC_RBD_WRAP;
567173a6
JT
393 writew(flags, &prbd->status);
394 writew(0, &prbd->data_length);
0b23fb36
IY
395}
396
f54183e6 397static int fec_get_hwaddr(int dev_id, unsigned char *mac)
0b23fb36 398{
be252b65 399 imx_get_mac_from_fuse(dev_id, mac);
0adb5b76 400 return !is_valid_ethaddr(mac);
0b23fb36
IY
401}
402
60752ca8 403static int fecmxc_set_hwaddr(struct udevice *dev)
0b23fb36 404{
60752ca8 405 struct fec_priv *fec = dev_get_priv(dev);
c69cda25 406 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8 407 uchar *mac = pdata->enetaddr;
0b23fb36
IY
408
409 writel(0, &fec->eth->iaddr1);
410 writel(0, &fec->eth->iaddr2);
411 writel(0, &fec->eth->gaddr1);
412 writel(0, &fec->eth->gaddr2);
413
567173a6 414 /* Set physical address */
0b23fb36 415 writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
567173a6 416 &fec->eth->paddr1);
0b23fb36
IY
417 writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
418
419 return 0;
420}
421
567173a6 422/* Do initial configuration of the FEC registers */
a5990b26
MV
423static void fec_reg_setup(struct fec_priv *fec)
424{
425 uint32_t rcntrl;
426
567173a6 427 /* Set interrupt mask register */
a5990b26
MV
428 writel(0x00000000, &fec->eth->imask);
429
567173a6 430 /* Clear FEC-Lite interrupt event register(IEVENT) */
a5990b26
MV
431 writel(0xffffffff, &fec->eth->ievent);
432
567173a6 433 /* Set FEC-Lite receive control register(R_CNTRL): */
a5990b26
MV
434
435 /* Start with frame length = 1518, common for all modes. */
436 rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
9d2d924a 437 if (fec->xcv_type != SEVENWIRE) /* xMII modes */
438 rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
439 if (fec->xcv_type == RGMII)
a5990b26
MV
440 rcntrl |= FEC_RCNTRL_RGMII;
441 else if (fec->xcv_type == RMII)
442 rcntrl |= FEC_RCNTRL_RMII;
a5990b26 443
87550a81
TH
444 if (fec->promisc)
445 rcntrl |= 0x8;
446
a5990b26
MV
447 writel(rcntrl, &fec->eth->r_cntrl);
448}
449
0b23fb36
IY
450/**
451 * Start the FEC engine
452 * @param[in] dev Our device to handle
453 */
60752ca8 454static int fec_open(struct udevice *dev)
0b23fb36 455{
60752ca8 456 struct fec_priv *fec = dev_get_priv(dev);
28774cba 457 int speed;
f24e482a 458 ulong addr, size;
5c1ad3e6 459 int i;
0b23fb36
IY
460
461 debug("fec_open: fec_open(dev)\n");
462 /* full-duplex, heartbeat disabled */
463 writel(1 << 2, &fec->eth->x_cntrl);
464 fec->rbd_index = 0;
465
5c1ad3e6
EN
466 /* Invalidate all descriptors */
467 for (i = 0; i < FEC_RBD_NUM - 1; i++)
468 fec_rbd_clean(0, &fec->rbd_base[i]);
469 fec_rbd_clean(1, &fec->rbd_base[i]);
470
471 /* Flush the descriptors into RAM */
472 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
473 ARCH_DMA_MINALIGN);
f24e482a 474 addr = (ulong)fec->rbd_base;
5c1ad3e6
EN
475 flush_dcache_range(addr, addr + size);
476
28774cba 477#ifdef FEC_QUIRK_ENET_MAC
2ef2b950
JL
478 /* Enable ENET HW endian SWAP */
479 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
567173a6 480 &fec->eth->ecntrl);
2ef2b950
JL
481 /* Enable ENET store and forward mode */
482 writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
567173a6 483 &fec->eth->x_wmrk);
2ef2b950 484#endif
567173a6 485 /* Enable FEC-Lite controller */
cb17b92d 486 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
567173a6
JT
487 &fec->eth->ecntrl);
488
a1a34fae
PS
489#ifdef FEC_ENET_ENABLE_TXC_DELAY
490 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_TXC_DLY,
491 &fec->eth->ecntrl);
492#endif
493
494#ifdef FEC_ENET_ENABLE_RXC_DELAY
495 writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RXC_DLY,
496 &fec->eth->ecntrl);
497#endif
498
8ba59608 499#if defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
740d6ae5 500 udelay(100);
740d6ae5 501
567173a6 502 /* setup the MII gasket for RMII mode */
740d6ae5
JR
503 /* disable the gasket */
504 writew(0, &fec->eth->miigsk_enr);
505
506 /* wait for the gasket to be disabled */
507 while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
508 udelay(2);
509
510 /* configure gasket for RMII, 50 MHz, no loopback, and no echo */
511 writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
512
513 /* re-enable the gasket */
514 writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
515
516 /* wait until MII gasket is ready */
517 int max_loops = 10;
518 while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
519 if (--max_loops <= 0) {
520 printf("WAIT for MII Gasket ready timed out\n");
521 break;
522 }
523 }
524#endif
0b23fb36 525
13947f43 526#ifdef CONFIG_PHYLIB
4dc27eed 527 {
13947f43 528 /* Start up the PHY */
11af8d65
TT
529 int ret = phy_startup(fec->phydev);
530
531 if (ret) {
532 printf("Could not initialize PHY %s\n",
533 fec->phydev->dev->name);
534 return ret;
535 }
13947f43 536 speed = fec->phydev->speed;
13947f43
TK
537 }
538#else
0b23fb36 539 miiphy_wait_aneg(edev);
28774cba 540 speed = miiphy_speed(edev->name, fec->phy_id);
9e27e9dc 541 miiphy_duplex(edev->name, fec->phy_id);
13947f43 542#endif
0b23fb36 543
28774cba
TK
544#ifdef FEC_QUIRK_ENET_MAC
545 {
546 u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
bcb6e902 547 u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
28774cba
TK
548 if (speed == _1000BASET)
549 ecr |= FEC_ECNTRL_SPEED;
550 else if (speed != _100BASET)
551 rcr |= FEC_RCNTRL_RMII_10T;
552 writel(ecr, &fec->eth->ecntrl);
553 writel(rcr, &fec->eth->r_cntrl);
554 }
555#endif
556 debug("%s:Speed=%i\n", __func__, speed);
557
567173a6 558 /* Enable SmartDMA receive task */
0b23fb36
IY
559 fec_rx_task_enable(fec);
560
561 udelay(100000);
562 return 0;
563}
564
60752ca8 565static int fecmxc_init(struct udevice *dev)
0b23fb36 566{
60752ca8 567 struct fec_priv *fec = dev_get_priv(dev);
f24e482a
YL
568 u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
569 u8 *i;
570 ulong addr;
0b23fb36 571
e9319f11 572 /* Initialize MAC address */
60752ca8 573 fecmxc_set_hwaddr(dev);
e9319f11 574
567173a6 575 /* Setup transmit descriptors, there are two in total. */
79e5f27b 576 fec_tbd_init(fec);
0b23fb36 577
79e5f27b
MV
578 /* Setup receive descriptors. */
579 fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
0b23fb36 580
a5990b26 581 fec_reg_setup(fec);
9eb3770b 582
f41471e6 583 if (fec->xcv_type != SEVENWIRE)
575c5cc0 584 fec_mii_setspeed(fec->bus->priv);
9eb3770b 585
567173a6 586 /* Set Opcode/Pause Duration Register */
0b23fb36
IY
587 writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */
588 writel(0x2, &fec->eth->x_wmrk);
567173a6
JT
589
590 /* Set multicast address filter */
0b23fb36
IY
591 writel(0x00000000, &fec->eth->gaddr1);
592 writel(0x00000000, &fec->eth->gaddr2);
593
238a53c7 594 /* Do not access reserved register */
09de565f
PF
595 if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m() && !is_imx8ulp() &&
596 !is_imx93()) {
fbecbaa1
PF
597 /* clear MIB RAM */
598 for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
599 writel(0, i);
0b23fb36 600
fbecbaa1
PF
601 /* FIFO receive start register */
602 writel(0x520, &fec->eth->r_fstart);
603 }
0b23fb36
IY
604
605 /* size and address of each buffer */
606 writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
f24e482a
YL
607
608 addr = (ulong)fec->tbd_base;
609 writel((uint32_t)addr, &fec->eth->etdsr);
610
611 addr = (ulong)fec->rbd_base;
612 writel((uint32_t)addr, &fec->eth->erdsr);
0b23fb36 613
13947f43 614#ifndef CONFIG_PHYLIB
0b23fb36
IY
615 if (fec->xcv_type != SEVENWIRE)
616 miiphy_restart_aneg(dev);
13947f43 617#endif
0b23fb36
IY
618 fec_open(dev);
619 return 0;
620}
621
622/**
623 * Halt the FEC engine
624 * @param[in] dev Our device to handle
625 */
60752ca8 626static void fecmxc_halt(struct udevice *dev)
0b23fb36 627{
60752ca8 628 struct fec_priv *fec = dev_get_priv(dev);
0b23fb36
IY
629 int counter = 0xffff;
630
567173a6 631 /* issue graceful stop command to the FEC transmitter if necessary */
cb17b92d 632 writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
567173a6 633 &fec->eth->x_cntrl);
0b23fb36
IY
634
635 debug("eth_halt: wait for stop regs\n");
567173a6 636 /* wait for graceful stop to register */
0b23fb36 637 while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
cb17b92d 638 udelay(1);
0b23fb36 639
567173a6 640 /* Disable SmartDMA tasks */
0b23fb36
IY
641 fec_tx_task_disable(fec);
642 fec_rx_task_disable(fec);
643
644 /*
645 * Disable the Ethernet Controller
646 * Note: this will also reset the BD index counter!
647 */
740d6ae5 648 writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
567173a6 649 &fec->eth->ecntrl);
0b23fb36
IY
650 fec->rbd_index = 0;
651 fec->tbd_index = 0;
0b23fb36
IY
652 debug("eth_halt: done\n");
653}
654
655/**
656 * Transmit one frame
657 * @param[in] dev Our ethernet device to handle
658 * @param[in] packet Pointer to the data to be transmitted
659 * @param[in] length Data count in bytes
185f812c 660 * Return: 0 on success
0b23fb36 661 */
60752ca8 662static int fecmxc_send(struct udevice *dev, void *packet, int length)
0b23fb36
IY
663{
664 unsigned int status;
f24e482a
YL
665 u32 size;
666 ulong addr, end;
bc1ce150
MV
667 int timeout = FEC_XFER_TIMEOUT;
668 int ret = 0;
0b23fb36
IY
669
670 /*
671 * This routine transmits one frame. This routine only accepts
672 * 6-byte Ethernet addresses.
673 */
60752ca8 674 struct fec_priv *fec = dev_get_priv(dev);
0b23fb36
IY
675
676 /*
677 * Check for valid length of data.
678 */
679 if ((length > 1500) || (length <= 0)) {
4294b248 680 printf("Payload (%d) too large\n", length);
0b23fb36
IY
681 return -1;
682 }
683
684 /*
5c1ad3e6
EN
685 * Setup the transmit buffer. We are always using the first buffer for
686 * transmission, the second will be empty and only used to stop the DMA
687 * engine. We also flush the packet to RAM here to avoid cache trouble.
0b23fb36 688 */
6e7df1d1 689#ifdef CFG_FEC_MXC_SWAP_PACKET
be7e87e2
MV
690 swap_packet((uint32_t *)packet, length);
691#endif
5c1ad3e6 692
f24e482a 693 addr = (ulong)packet;
efe24d2e
MV
694 end = roundup(addr + length, ARCH_DMA_MINALIGN);
695 addr &= ~(ARCH_DMA_MINALIGN - 1);
696 flush_dcache_range(addr, end);
5c1ad3e6 697
0b23fb36 698 writew(length, &fec->tbd_base[fec->tbd_index].data_length);
f24e482a 699 writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
5c1ad3e6 700
0b23fb36
IY
701 /*
702 * update BD's status now
703 * This block:
704 * - is always the last in a chain (means no chain)
705 * - should transmitt the CRC
706 * - might be the last BD in the list, so the address counter should
707 * wrap (-> keep the WRAP flag)
708 */
709 status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
710 status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
711 writew(status, &fec->tbd_base[fec->tbd_index].status);
712
5c1ad3e6
EN
713 /*
714 * Flush data cache. This code flushes both TX descriptors to RAM.
715 * After this code, the descriptors will be safely in RAM and we
716 * can start DMA.
717 */
718 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
f24e482a 719 addr = (ulong)fec->tbd_base;
5c1ad3e6
EN
720 flush_dcache_range(addr, addr + size);
721
ab94cd49
MV
722 /*
723 * Below we read the DMA descriptor's last four bytes back from the
724 * DRAM. This is important in order to make sure that all WRITE
725 * operations on the bus that were triggered by previous cache FLUSH
726 * have completed.
727 *
728 * Otherwise, on MX28, it is possible to observe a corruption of the
729 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
730 * for the bus structure of MX28. The scenario is as follows:
731 *
732 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
733 * to DRAM due to flush_dcache_range()
734 * 2) ARM core writes the FEC registers via AHB_ARB2
735 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
736 *
737 * Note that 2) does sometimes finish before 1) due to reordering of
738 * WRITE accesses on the AHB bus, therefore triggering 3) before the
739 * DMA descriptor is fully written into DRAM. This results in occasional
740 * corruption of the DMA descriptor.
741 */
742 readl(addr + size - 4);
743
567173a6 744 /* Enable SmartDMA transmit task */
0b23fb36
IY
745 fec_tx_task_enable(fec);
746
747 /*
5c1ad3e6
EN
748 * Wait until frame is sent. On each turn of the wait cycle, we must
749 * invalidate data cache to see what's really in RAM. Also, we need
750 * barrier here.
0b23fb36 751 */
67449098 752 while (--timeout) {
c0b5a3bb 753 if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
bc1ce150 754 break;
0b23fb36 755 }
5c1ad3e6 756
f599288d 757 if (!timeout) {
67449098 758 ret = -EINVAL;
f599288d
FE
759 goto out;
760 }
761
762 /*
763 * The TDAR bit is cleared when the descriptors are all out from TX
764 * but on mx6solox we noticed that the READY bit is still not cleared
765 * right after TDAR.
766 * These are two distinct signals, and in IC simulation, we found that
767 * TDAR always gets cleared prior than the READY bit of last BD becomes
768 * cleared.
769 * In mx6solox, we use a later version of FEC IP. It looks like that
770 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
771 * version.
772 *
773 * Fix this by polling the READY bit of BD after the TDAR polling,
774 * which covers the mx6solox case and does not harm the other SoCs.
775 */
776 timeout = FEC_XFER_TIMEOUT;
777 while (--timeout) {
778 invalidate_dcache_range(addr, addr + size);
779 if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
780 FEC_TBD_READY))
781 break;
782 }
67449098 783
f599288d 784 if (!timeout)
67449098
MV
785 ret = -EINVAL;
786
f599288d 787out:
67449098 788 debug("fec_send: status 0x%x index %d ret %i\n",
567173a6
JT
789 readw(&fec->tbd_base[fec->tbd_index].status),
790 fec->tbd_index, ret);
0b23fb36
IY
791 /* for next transmission use the other buffer */
792 if (fec->tbd_index)
793 fec->tbd_index = 0;
794 else
795 fec->tbd_index = 1;
796
bc1ce150 797 return ret;
0b23fb36
IY
798}
799
800/**
801 * Pull one frame from the card
802 * @param[in] dev Our ethernet device to handle
185f812c 803 * Return: Length of packet read
0b23fb36 804 */
60752ca8 805static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
0b23fb36 806{
60752ca8 807 struct fec_priv *fec = dev_get_priv(dev);
0b23fb36
IY
808 struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
809 unsigned long ievent;
810 int frame_length, len = 0;
0b23fb36 811 uint16_t bd_status;
f24e482a 812 ulong addr, size, end;
5c1ad3e6 813 int i;
07763ac9 814
07763ac9
YL
815 *packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
816 if (*packetp == 0) {
817 printf("%s: error allocating packetp\n", __func__);
818 return -ENOMEM;
819 }
0b23fb36 820
567173a6 821 /* Check if any critical events have happened */
0b23fb36
IY
822 ievent = readl(&fec->eth->ievent);
823 writel(ievent, &fec->eth->ievent);
eda959f3 824 debug("fec_recv: ievent 0x%lx\n", ievent);
0b23fb36 825 if (ievent & FEC_IEVENT_BABR) {
60752ca8
JT
826 fecmxc_halt(dev);
827 fecmxc_init(dev);
0b23fb36
IY
828 printf("some error: 0x%08lx\n", ievent);
829 return 0;
830 }
831 if (ievent & FEC_IEVENT_HBERR) {
832 /* Heartbeat error */
833 writel(0x00000001 | readl(&fec->eth->x_cntrl),
567173a6 834 &fec->eth->x_cntrl);
0b23fb36
IY
835 }
836 if (ievent & FEC_IEVENT_GRA) {
837 /* Graceful stop complete */
838 if (readl(&fec->eth->x_cntrl) & 0x00000001) {
60752ca8 839 fecmxc_halt(dev);
0b23fb36 840 writel(~0x00000001 & readl(&fec->eth->x_cntrl),
567173a6 841 &fec->eth->x_cntrl);
60752ca8 842 fecmxc_init(dev);
0b23fb36
IY
843 }
844 }
845
846 /*
5c1ad3e6
EN
847 * Read the buffer status. Before the status can be read, the data cache
848 * must be invalidated, because the data in RAM might have been changed
849 * by DMA. The descriptors are properly aligned to cachelines so there's
850 * no need to worry they'd overlap.
851 *
852 * WARNING: By invalidating the descriptor here, we also invalidate
853 * the descriptors surrounding this one. Therefore we can NOT change the
854 * contents of this descriptor nor the surrounding ones. The problem is
855 * that in order to mark the descriptor as processed, we need to change
856 * the descriptor. The solution is to mark the whole cache line when all
857 * descriptors in the cache line are processed.
0b23fb36 858 */
f24e482a 859 addr = (ulong)rbd;
5c1ad3e6
EN
860 addr &= ~(ARCH_DMA_MINALIGN - 1);
861 size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
862 invalidate_dcache_range(addr, addr + size);
863
0b23fb36
IY
864 bd_status = readw(&rbd->status);
865 debug("fec_recv: status 0x%x\n", bd_status);
866
867 if (!(bd_status & FEC_RBD_EMPTY)) {
868 if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
567173a6
JT
869 ((readw(&rbd->data_length) - 4) > 14)) {
870 /* Get buffer address and size */
b189584b 871 addr = readl(&rbd->data_pointer);
0b23fb36 872 frame_length = readw(&rbd->data_length) - 4;
567173a6 873 /* Invalidate data cache over the buffer */
efe24d2e
MV
874 end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
875 addr &= ~(ARCH_DMA_MINALIGN - 1);
876 invalidate_dcache_range(addr, end);
5c1ad3e6 877
567173a6 878 /* Fill the buffer and pass it to upper layers */
6e7df1d1 879#ifdef CFG_FEC_MXC_SWAP_PACKET
b189584b 880 swap_packet((uint32_t *)addr, frame_length);
be7e87e2 881#endif
07763ac9 882
07763ac9 883 memcpy(*packetp, (char *)addr, frame_length);
0b23fb36
IY
884 len = frame_length;
885 } else {
886 if (bd_status & FEC_RBD_ERR)
f24e482a
YL
887 debug("error frame: 0x%08lx 0x%08x\n",
888 addr, bd_status);
0b23fb36 889 }
5c1ad3e6 890
0b23fb36 891 /*
5c1ad3e6
EN
892 * Free the current buffer, restart the engine and move forward
893 * to the next buffer. Here we check if the whole cacheline of
894 * descriptors was already processed and if so, we mark it free
895 * as whole.
0b23fb36 896 */
5c1ad3e6
EN
897 size = RXDESC_PER_CACHELINE - 1;
898 if ((fec->rbd_index & size) == size) {
899 i = fec->rbd_index - size;
f24e482a 900 addr = (ulong)&fec->rbd_base[i];
5c1ad3e6
EN
901 for (; i <= fec->rbd_index ; i++) {
902 fec_rbd_clean(i == (FEC_RBD_NUM - 1),
903 &fec->rbd_base[i]);
904 }
905 flush_dcache_range(addr,
567173a6 906 addr + ARCH_DMA_MINALIGN);
5c1ad3e6
EN
907 }
908
0b23fb36
IY
909 fec_rx_task_enable(fec);
910 fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
911 }
912 debug("fec_recv: stop\n");
913
914 return len;
915}
916
ef8e3a3b
TK
917static void fec_set_dev_name(char *dest, int dev_id)
918{
919 sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
920}
921
79e5f27b
MV
922static int fec_alloc_descs(struct fec_priv *fec)
923{
924 unsigned int size;
925 int i;
926 uint8_t *data;
f24e482a 927 ulong addr;
79e5f27b
MV
928
929 /* Allocate TX descriptors. */
930 size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
931 fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
932 if (!fec->tbd_base)
933 goto err_tx;
934
935 /* Allocate RX descriptors. */
936 size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
937 fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
938 if (!fec->rbd_base)
939 goto err_rx;
940
941 memset(fec->rbd_base, 0, size);
942
943 /* Allocate RX buffers. */
944
945 /* Maximum RX buffer size. */
db5b7f56 946 size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
79e5f27b 947 for (i = 0; i < FEC_RBD_NUM; i++) {
db5b7f56 948 data = memalign(FEC_DMA_RX_MINALIGN, size);
79e5f27b
MV
949 if (!data) {
950 printf("%s: error allocating rxbuf %d\n", __func__, i);
951 goto err_ring;
952 }
953
954 memset(data, 0, size);
955
f24e482a
YL
956 addr = (ulong)data;
957 fec->rbd_base[i].data_pointer = (uint32_t)addr;
79e5f27b
MV
958 fec->rbd_base[i].status = FEC_RBD_EMPTY;
959 fec->rbd_base[i].data_length = 0;
960 /* Flush the buffer to memory. */
f24e482a 961 flush_dcache_range(addr, addr + size);
79e5f27b
MV
962 }
963
964 /* Mark the last RBD to close the ring. */
965 fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
966
967 fec->rbd_index = 0;
968 fec->tbd_index = 0;
969
970 return 0;
971
972err_ring:
f24e482a
YL
973 for (; i >= 0; i--) {
974 addr = fec->rbd_base[i].data_pointer;
975 free((void *)addr);
976 }
79e5f27b
MV
977 free(fec->rbd_base);
978err_rx:
979 free(fec->tbd_base);
980err_tx:
981 return -ENOMEM;
982}
983
984static void fec_free_descs(struct fec_priv *fec)
985{
986 int i;
f24e482a 987 ulong addr;
79e5f27b 988
f24e482a
YL
989 for (i = 0; i < FEC_RBD_NUM; i++) {
990 addr = fec->rbd_base[i].data_pointer;
991 free((void *)addr);
992 }
79e5f27b
MV
993 free(fec->rbd_base);
994 free(fec->tbd_base);
995}
996
1bcabd79 997struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
60752ca8 998{
1bcabd79 999 struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
60752ca8
JT
1000 struct mii_dev *bus;
1001 int ret;
1002
1003 bus = mdio_alloc();
1004 if (!bus) {
1005 printf("mdio_alloc failed\n");
1006 return NULL;
1007 }
1008 bus->read = fec_phy_read;
1009 bus->write = fec_phy_write;
1010 bus->priv = eth;
1011 fec_set_dev_name(bus->name, dev_id);
1012
1013 ret = mdio_register(bus);
1014 if (ret) {
1015 printf("mdio_register failed\n");
1016 free(bus);
1017 return NULL;
1018 }
1019 fec_mii_setspeed(eth);
1020 return bus;
1021}
1022
3b8f99a3
TH
1023#ifdef CONFIG_DM_MDIO
1024struct dm_fec_mdio_priv {
1025 struct ethernet_regs *regs;
1026};
1027
1028static int dm_fec_mdio_read(struct udevice *dev, int addr, int devad, int reg)
1029{
1030 struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1031
1032 return fec_mdio_read(priv->regs, addr, reg);
1033}
1034
1035static int dm_fec_mdio_write(struct udevice *dev, int addr, int devad, int reg, u16 data)
1036{
1037 struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1038
1039 return fec_mdio_write(priv->regs, addr, reg, data);
1040}
1041
1042static const struct mdio_ops dm_fec_mdio_ops = {
1043 .read = dm_fec_mdio_read,
1044 .write = dm_fec_mdio_write,
1045};
1046
1047static int dm_fec_mdio_probe(struct udevice *dev)
1048{
1049 struct dm_fec_mdio_priv *priv = dev_get_priv(dev);
1050
1051 priv->regs = (struct ethernet_regs *)ofnode_get_addr(dev_ofnode(dev->parent));
1052
1053 return 0;
1054}
1055
1056U_BOOT_DRIVER(fec_mdio) = {
1057 .name = "fec_mdio",
1058 .id = UCLASS_MDIO,
1059 .probe = dm_fec_mdio_probe,
1060 .ops = &dm_fec_mdio_ops,
1061 .priv_auto = sizeof(struct dm_fec_mdio_priv),
1062};
1063
1064static int dm_fec_bind_mdio(struct udevice *dev)
1065{
1066 struct udevice *mdiodev;
1067 const char *name;
1068 ofnode mdio;
1069 int ret = -ENODEV;
1070
1071 /* for a UCLASS_MDIO driver we need to bind and probe manually
1072 * for an internal MDIO bus that has no dt compatible of its own
1073 */
1074 ofnode_for_each_subnode(mdio, dev_ofnode(dev)) {
1075 name = ofnode_get_name(mdio);
1076
1077 if (strcmp(name, "mdio"))
1078 continue;
1079
1080 ret = device_bind_driver_to_node(dev, "fec_mdio",
1081 name, mdio, &mdiodev);
1082 if (ret) {
1083 printf("%s bind %s failed: %d\n", __func__, name, ret);
1084 break;
1085 }
1086
1087 /* need to probe it as there is no compatible to do so */
1088 ret = uclass_get_device_by_ofnode(UCLASS_MDIO, mdio, &mdiodev);
1089 if (!ret)
1090 return 0;
1091 printf("%s probe %s failed: %d\n", __func__, name, ret);
1092 }
1093
1094 return ret;
1095}
1096#endif
1097
1ed2570f
JT
1098static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1099{
1100 struct fec_priv *priv = dev_get_priv(dev);
c69cda25 1101 struct eth_pdata *pdata = dev_get_plat(dev);
1ed2570f
JT
1102
1103 return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1104}
1105
87550a81
TH
1106static int fecmxc_set_promisc(struct udevice *dev, bool enable)
1107{
1108 struct fec_priv *priv = dev_get_priv(dev);
1109
1110 priv->promisc = enable;
1111
1112 return 0;
1113}
1114
07763ac9
YL
1115static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1116{
1117 if (packet)
1118 free(packet);
1119
1120 return 0;
1121}
1122
60752ca8
JT
1123static const struct eth_ops fecmxc_ops = {
1124 .start = fecmxc_init,
1125 .send = fecmxc_send,
1126 .recv = fecmxc_recv,
07763ac9 1127 .free_pkt = fecmxc_free_pkt,
60752ca8
JT
1128 .stop = fecmxc_halt,
1129 .write_hwaddr = fecmxc_set_hwaddr,
1ed2570f 1130 .read_rom_hwaddr = fecmxc_read_rom_hwaddr,
87550a81 1131 .set_promisc = fecmxc_set_promisc,
60752ca8
JT
1132};
1133
89b5bd54 1134static int device_get_phy_addr(struct fec_priv *priv, struct udevice *dev)
774ec60b
MW
1135{
1136 struct ofnode_phandle_args phandle_args;
eccd1329 1137 int reg, ret;
774ec60b 1138
eccd1329
SA
1139 ret = dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1140 &phandle_args);
1141 if (ret) {
69c81d65
TH
1142 priv->phy_of_node = ofnode_find_subnode(dev_ofnode(dev),
1143 "fixed-link");
1144 if (ofnode_valid(priv->phy_of_node))
1145 return 0;
1146 debug("Failed to find phy-handle (err = %d)\n", ret);
eccd1329 1147 return ret;
774ec60b
MW
1148 }
1149
89090661 1150 if (!ofnode_is_enabled(phandle_args.node))
eccd1329 1151 return -ENOENT;
89b5bd54 1152
eccd1329 1153 priv->phy_of_node = phandle_args.node;
774ec60b
MW
1154 reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1155
1156 return reg;
1157}
1158
60752ca8
JT
1159static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1160{
3b8f99a3 1161 struct phy_device *phydev = NULL;
774ec60b 1162 int addr;
60752ca8 1163
89b5bd54 1164 addr = device_get_phy_addr(priv, dev);
fa760c32
TR
1165#ifdef CFG_FEC_MXC_PHYADDR
1166 addr = CFG_FEC_MXC_PHYADDR;
60752ca8
JT
1167#endif
1168
3b8f99a3
TH
1169 if (IS_ENABLED(CONFIG_DM_MDIO))
1170 phydev = dm_eth_phy_connect(dev);
1171 if (!phydev)
1172 phydev = phy_connect(priv->bus, addr, dev, priv->interface);
60752ca8
JT
1173 if (!phydev)
1174 return -ENODEV;
1175
60752ca8 1176 priv->phydev = phydev;
89b5bd54 1177 priv->phydev->node = priv->phy_of_node;
60752ca8
JT
1178 phy_config(phydev);
1179
1180 return 0;
1181}
1182
bcee8d67 1183#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1184/* FEC GPIO reset */
1185static void fec_gpio_reset(struct fec_priv *priv)
1186{
1187 debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1188 if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1189 dm_gpio_set_value(&priv->phy_reset_gpio, 1);
9b8b9188 1190 mdelay(priv->reset_delay);
efd0b791 1191 dm_gpio_set_value(&priv->phy_reset_gpio, 0);
31d4045d
AC
1192 if (priv->reset_post_delay)
1193 mdelay(priv->reset_post_delay);
efd0b791
MT
1194 }
1195}
1196#endif
1197
80a34e40
MV
1198static int fecmxc_set_ref_clk(struct clk *clk_ref, phy_interface_t interface)
1199{
1200 unsigned int freq;
1201 int ret;
1202
1203 if (!CONFIG_IS_ENABLED(CLK_CCF))
1204 return 0;
1205
1206 if (interface == PHY_INTERFACE_MODE_MII)
1207 freq = 25000000;
1208 else if (interface == PHY_INTERFACE_MODE_RMII)
1209 freq = 50000000;
1210 else if (interface == PHY_INTERFACE_MODE_RGMII ||
1211 interface == PHY_INTERFACE_MODE_RGMII_ID ||
1212 interface == PHY_INTERFACE_MODE_RGMII_RXID ||
1213 interface == PHY_INTERFACE_MODE_RGMII_TXID)
1214 freq = 125000000;
1215 else
1216 return -EINVAL;
1217
1218 ret = clk_set_rate(clk_ref, freq);
1219 if (ret < 0)
1220 return ret;
1221
1222 return 0;
1223}
1224
60752ca8
JT
1225static int fecmxc_probe(struct udevice *dev)
1226{
cd435919 1227 bool dm_mii_bus = true;
c69cda25 1228 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8
JT
1229 struct fec_priv *priv = dev_get_priv(dev);
1230 struct mii_dev *bus = NULL;
60752ca8
JT
1231 uint32_t start;
1232 int ret;
1233
4bdc3524
MV
1234 ret = board_interface_eth_init(dev, pdata->phy_interface);
1235 if (ret)
1236 return ret;
1237
24f95e14 1238 if (IS_ENABLED(CONFIG_IMX_MODULE_FUSE)) {
3b26d527
PF
1239 if (enet_fused((ulong)priv->eth)) {
1240 printf("SoC fuse indicates Ethernet@0x%lx is unavailable.\n", (ulong)priv->eth);
1241 return -ENODEV;
1242 }
1243 }
1244
58ec4d33
AG
1245 if (IS_ENABLED(CONFIG_IMX8)) {
1246 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1247 if (ret < 0) {
1248 debug("Can't get FEC ipg clk: %d\n", ret);
1249 return ret;
1250 }
1251 ret = clk_enable(&priv->ipg_clk);
1252 if (ret < 0) {
1253 debug("Can't enable FEC ipg clk: %d\n", ret);
1254 return ret;
1255 }
1256
673f6597
PF
1257 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1258 } else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1259 ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1260 if (ret < 0) {
1261 debug("Can't get FEC ipg clk: %d\n", ret);
1262 return ret;
1263 }
1264 ret = clk_enable(&priv->ipg_clk);
1265 if(ret)
1266 return ret;
1267
1268 ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1269 if (ret < 0) {
1270 debug("Can't get FEC ahb clk: %d\n", ret);
1271 return ret;
1272 }
1273 ret = clk_enable(&priv->ahb_clk);
1274 if (ret)
1275 return ret;
1276
1277 ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1278 if (!ret) {
1279 ret = clk_enable(&priv->clk_enet_out);
1280 if (ret)
1281 return ret;
1282 }
1283
1284 ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1285 if (!ret) {
80a34e40
MV
1286 ret = fecmxc_set_ref_clk(&priv->clk_ref,
1287 pdata->phy_interface);
1288 if (ret)
1289 return ret;
1290
673f6597
PF
1291 ret = clk_enable(&priv->clk_ref);
1292 if (ret)
1293 return ret;
1294 }
1295
1296 ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1297 if (!ret) {
1298 ret = clk_enable(&priv->clk_ptp);
1299 if (ret)
1300 return ret;
1301 }
1302
58ec4d33
AG
1303 priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1304 }
1305
60752ca8
JT
1306 ret = fec_alloc_descs(priv);
1307 if (ret)
1308 return ret;
1309
ad8c43cb
MF
1310#ifdef CONFIG_DM_REGULATOR
1311 if (priv->phy_supply) {
9dc7d527 1312 ret = regulator_set_enable_if_allowed(priv->phy_supply, true);
ad8c43cb
MF
1313 if (ret) {
1314 printf("%s: Error enabling phy supply\n", dev->name);
1315 return ret;
1316 }
1317 }
1318#endif
1319
bcee8d67 1320#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791
MT
1321 fec_gpio_reset(priv);
1322#endif
60752ca8 1323 /* Reset chip. */
567173a6
JT
1324 writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1325 &priv->eth->ecntrl);
60752ca8
JT
1326 start = get_timer(0);
1327 while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1328 if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
f697addf 1329 printf("FEC MXC: Timeout resetting chip\n");
60752ca8
JT
1330 goto err_timeout;
1331 }
1332 udelay(10);
1333 }
1334
1335 fec_reg_setup(priv);
60752ca8 1336
8b85dfc6 1337 priv->dev_id = dev_seq(dev);
6a895d03 1338
3b8f99a3
TH
1339#ifdef CONFIG_DM_MDIO
1340 ret = dm_fec_bind_mdio(dev);
1341 if (ret && ret != -ENODEV)
1342 return ret;
1343#endif
1344
6a895d03
YL
1345#ifdef CONFIG_DM_ETH_PHY
1346 bus = eth_phy_get_mdio_bus(dev);
1347#endif
1348
1349 if (!bus) {
cd435919 1350 dm_mii_bus = false;
fbada485 1351#ifdef CONFIG_FEC_MXC_MDIO_BASE
8b85dfc6
SG
1352 bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE,
1353 dev_seq(dev));
fbada485 1354#else
8b85dfc6 1355 bus = fec_get_miibus((ulong)priv->eth, dev_seq(dev));
fbada485 1356#endif
6a895d03 1357 }
306dd7da
LW
1358 if (!bus) {
1359 ret = -ENOMEM;
1360 goto err_mii;
1361 }
1362
6a895d03
YL
1363#ifdef CONFIG_DM_ETH_PHY
1364 eth_phy_set_mdio_bus(dev, bus);
1365#endif
1366
306dd7da 1367 priv->bus = bus;
306dd7da 1368 priv->interface = pdata->phy_interface;
0126c641
MF
1369 switch (priv->interface) {
1370 case PHY_INTERFACE_MODE_MII:
1371 priv->xcv_type = MII100;
1372 break;
1373 case PHY_INTERFACE_MODE_RMII:
1374 priv->xcv_type = RMII;
1375 break;
1376 case PHY_INTERFACE_MODE_RGMII:
1377 case PHY_INTERFACE_MODE_RGMII_ID:
1378 case PHY_INTERFACE_MODE_RGMII_RXID:
1379 case PHY_INTERFACE_MODE_RGMII_TXID:
1380 priv->xcv_type = RGMII;
1381 break;
1382 default:
08f1d58a
TR
1383 priv->xcv_type = MII100;
1384 printf("Unsupported interface type %d defaulting to MII100\n",
1385 priv->interface);
0126c641
MF
1386 break;
1387 }
1388
306dd7da
LW
1389 ret = fec_phy_init(priv, dev);
1390 if (ret)
1391 goto err_phy;
1392
60752ca8
JT
1393 return 0;
1394
60752ca8 1395err_phy:
cd435919
SA
1396 if (!dm_mii_bus) {
1397 mdio_unregister(bus);
1398 free(bus);
1399 }
60752ca8 1400err_mii:
2087eac2 1401err_timeout:
60752ca8
JT
1402 fec_free_descs(priv);
1403 return ret;
1404}
1405
1406static int fecmxc_remove(struct udevice *dev)
1407{
1408 struct fec_priv *priv = dev_get_priv(dev);
1409
1410 free(priv->phydev);
1411 fec_free_descs(priv);
1412 mdio_unregister(priv->bus);
1413 mdio_free(priv->bus);
1414
ad8c43cb
MF
1415#ifdef CONFIG_DM_REGULATOR
1416 if (priv->phy_supply)
1417 regulator_set_enable(priv->phy_supply, false);
1418#endif
1419
60752ca8
JT
1420 return 0;
1421}
1422
d1998a9f 1423static int fecmxc_of_to_plat(struct udevice *dev)
60752ca8 1424{
efd0b791 1425 int ret = 0;
c69cda25 1426 struct eth_pdata *pdata = dev_get_plat(dev);
60752ca8 1427 struct fec_priv *priv = dev_get_priv(dev);
60752ca8 1428
2548493a 1429 pdata->iobase = dev_read_addr(dev);
60752ca8
JT
1430 priv->eth = (struct ethernet_regs *)pdata->iobase;
1431
123ca114 1432 pdata->phy_interface = dev_read_phy_mode(dev);
ffb0f6f4 1433 if (pdata->phy_interface == PHY_INTERFACE_MODE_NA)
60752ca8 1434 return -EINVAL;
60752ca8 1435
ad8c43cb
MF
1436#ifdef CONFIG_DM_REGULATOR
1437 device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1438#endif
1439
bcee8d67 1440#if CONFIG_IS_ENABLED(DM_GPIO)
efd0b791 1441 ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
4223fb0e 1442 &priv->phy_reset_gpio, GPIOD_IS_OUT | GPIOD_IS_OUT_ACTIVE);
331fcabe
MF
1443 if (ret < 0)
1444 return 0; /* property is optional, don't return error! */
60752ca8 1445
331fcabe 1446 priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
efd0b791 1447 if (priv->reset_delay > 1000) {
331fcabe
MF
1448 printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1449 /* property value wrong, use default value */
1450 priv->reset_delay = 1;
efd0b791 1451 }
31d4045d
AC
1452
1453 priv->reset_post_delay = dev_read_u32_default(dev,
1454 "phy-reset-post-delay",
1455 0);
1456 if (priv->reset_post_delay > 1000) {
1457 printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1458 /* property value wrong, use default value */
1459 priv->reset_post_delay = 0;
1460 }
efd0b791
MT
1461#endif
1462
331fcabe 1463 return 0;
60752ca8
JT
1464}
1465
1466static const struct udevice_id fecmxc_ids[] = {
7782f4e4 1467 { .compatible = "fsl,imx28-fec" },
60752ca8 1468 { .compatible = "fsl,imx6q-fec" },
979e0fc8
PF
1469 { .compatible = "fsl,imx6sl-fec" },
1470 { .compatible = "fsl,imx6sx-fec" },
1471 { .compatible = "fsl,imx6ul-fec" },
948239ea 1472 { .compatible = "fsl,imx53-fec" },
58ec4d33 1473 { .compatible = "fsl,imx7d-fec" },
27589e7d 1474 { .compatible = "fsl,mvf600-fec" },
09de565f 1475 { .compatible = "fsl,imx93-fec" },
60752ca8
JT
1476 { }
1477};
1478
1479U_BOOT_DRIVER(fecmxc_gem) = {
1480 .name = "fecmxc",
1481 .id = UCLASS_ETH,
1482 .of_match = fecmxc_ids,
d1998a9f 1483 .of_to_plat = fecmxc_of_to_plat,
60752ca8
JT
1484 .probe = fecmxc_probe,
1485 .remove = fecmxc_remove,
1486 .ops = &fecmxc_ops,
41575d8e 1487 .priv_auto = sizeof(struct fec_priv),
caa4daa2 1488 .plat_auto = sizeof(struct eth_pdata),
60752ca8 1489};
This page took 0.595661 seconds and 4 git commands to generate.