]> Git Repo - u-boot.git/blame - common/dlmalloc.c
Restore patch series "arm: dts: am62-beagleplay: Fix Beagleplay Ethernet"
[u-boot.git] / common / dlmalloc.c
CommitLineData
5ad9220b
HS
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This code is based on a version (aka dlmalloc) of malloc/free/realloc written
4 * by Doug Lea and released to the public domain, as explained at
5 * http://creativecommons.org/publicdomain/zero/1.0/-
6 *
7 * The original code is available at http://gee.cs.oswego.edu/pub/misc/
8 * as file malloc-2.6.6.c.
9 */
10
be621c11 11#if CONFIG_IS_ENABLED(UNIT_TEST)
6d7601e7
SG
12#define DEBUG
13#endif
14
17868614
SA
15#include <log.h>
16#include <asm/global_data.h>
17
217c9dad 18#include <malloc.h>
d59476b6 19#include <asm/io.h>
bdaeea1b 20#include <valgrind/memcheck.h>
d59476b6 21
ea882baf 22#ifdef DEBUG
217c9dad
WD
23#if __STD_C
24static void malloc_update_mallinfo (void);
25void malloc_stats (void);
26#else
27static void malloc_update_mallinfo ();
28void malloc_stats();
29#endif
ea882baf 30#endif /* DEBUG */
217c9dad 31
d87080b7
WD
32DECLARE_GLOBAL_DATA_PTR;
33
c82ff481
EU
34#ifdef MCHECK_HEAP_PROTECTION
35 #define STATIC_IF_MCHECK static
dfba071d
EU
36 #undef MALLOC_COPY
37 #undef MALLOC_ZERO
38static inline void MALLOC_ZERO(void *p, size_t sz) { memset(p, 0, sz); }
39static inline void MALLOC_COPY(void *dest, const void *src, size_t sz) { memcpy(dest, src, sz); }
c82ff481
EU
40#else
41 #define STATIC_IF_MCHECK
42 #define mALLOc_impl mALLOc
43 #define fREe_impl fREe
44 #define rEALLOc_impl rEALLOc
45 #define mEMALIGn_impl mEMALIGn
46 #define cALLOc_impl cALLOc
47#endif
48
217c9dad
WD
49/*
50 Emulation of sbrk for WIN32
51 All code within the ifdef WIN32 is untested by me.
52
53 Thanks to Martin Fong and others for supplying this.
54*/
55
56
57#ifdef WIN32
58
59#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
60~(malloc_getpagesize-1))
61#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))
62
63/* resrve 64MB to insure large contiguous space */
64#define RESERVED_SIZE (1024*1024*64)
65#define NEXT_SIZE (2048*1024)
66#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)
67
68struct GmListElement;
69typedef struct GmListElement GmListElement;
70
71struct GmListElement
72{
73 GmListElement* next;
74 void* base;
75};
76
77static GmListElement* head = 0;
78static unsigned int gNextAddress = 0;
79static unsigned int gAddressBase = 0;
80static unsigned int gAllocatedSize = 0;
81
82static
83GmListElement* makeGmListElement (void* bas)
84{
85 GmListElement* this;
86 this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
87 assert (this);
88 if (this)
89 {
90 this->base = bas;
91 this->next = head;
92 head = this;
93 }
94 return this;
95}
96
f88d48cc 97void gcleanup (void)
217c9dad
WD
98{
99 BOOL rval;
100 assert ( (head == NULL) || (head->base == (void*)gAddressBase));
101 if (gAddressBase && (gNextAddress - gAddressBase))
102 {
103 rval = VirtualFree ((void*)gAddressBase,
104 gNextAddress - gAddressBase,
105 MEM_DECOMMIT);
8bde7f77 106 assert (rval);
217c9dad
WD
107 }
108 while (head)
109 {
110 GmListElement* next = head->next;
111 rval = VirtualFree (head->base, 0, MEM_RELEASE);
112 assert (rval);
113 LocalFree (head);
114 head = next;
115 }
116}
117
118static
119void* findRegion (void* start_address, unsigned long size)
120{
121 MEMORY_BASIC_INFORMATION info;
122 if (size >= TOP_MEMORY) return NULL;
123
124 while ((unsigned long)start_address + size < TOP_MEMORY)
125 {
126 VirtualQuery (start_address, &info, sizeof (info));
127 if ((info.State == MEM_FREE) && (info.RegionSize >= size))
128 return start_address;
129 else
130 {
8bde7f77
WD
131 /* Requested region is not available so see if the */
132 /* next region is available. Set 'start_address' */
133 /* to the next region and call 'VirtualQuery()' */
134 /* again. */
217c9dad
WD
135
136 start_address = (char*)info.BaseAddress + info.RegionSize;
137
8bde7f77
WD
138 /* Make sure we start looking for the next region */
139 /* on the *next* 64K boundary. Otherwise, even if */
140 /* the new region is free according to */
141 /* 'VirtualQuery()', the subsequent call to */
142 /* 'VirtualAlloc()' (which follows the call to */
143 /* this routine in 'wsbrk()') will round *down* */
144 /* the requested address to a 64K boundary which */
145 /* we already know is an address in the */
146 /* unavailable region. Thus, the subsequent call */
147 /* to 'VirtualAlloc()' will fail and bring us back */
148 /* here, causing us to go into an infinite loop. */
217c9dad
WD
149
150 start_address =
151 (void *) AlignPage64K((unsigned long) start_address);
152 }
153 }
154 return NULL;
155
156}
157
158
159void* wsbrk (long size)
160{
161 void* tmp;
162 if (size > 0)
163 {
164 if (gAddressBase == 0)
165 {
166 gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
167 gNextAddress = gAddressBase =
168 (unsigned int)VirtualAlloc (NULL, gAllocatedSize,
169 MEM_RESERVE, PAGE_NOACCESS);
170 } else if (AlignPage (gNextAddress + size) > (gAddressBase +
171gAllocatedSize))
172 {
173 long new_size = max (NEXT_SIZE, AlignPage (size));
174 void* new_address = (void*)(gAddressBase+gAllocatedSize);
175 do
176 {
177 new_address = findRegion (new_address, new_size);
178
a874cac3 179 if (!new_address)
217c9dad
WD
180 return (void*)-1;
181
182 gAddressBase = gNextAddress =
183 (unsigned int)VirtualAlloc (new_address, new_size,
184 MEM_RESERVE, PAGE_NOACCESS);
8bde7f77
WD
185 /* repeat in case of race condition */
186 /* The region that we found has been snagged */
187 /* by another thread */
217c9dad
WD
188 }
189 while (gAddressBase == 0);
190
191 assert (new_address == (void*)gAddressBase);
192
193 gAllocatedSize = new_size;
194
195 if (!makeGmListElement ((void*)gAddressBase))
196 return (void*)-1;
197 }
198 if ((size + gNextAddress) > AlignPage (gNextAddress))
199 {
200 void* res;
201 res = VirtualAlloc ((void*)AlignPage (gNextAddress),
202 (size + gNextAddress -
203 AlignPage (gNextAddress)),
204 MEM_COMMIT, PAGE_READWRITE);
a874cac3 205 if (!res)
217c9dad
WD
206 return (void*)-1;
207 }
208 tmp = (void*)gNextAddress;
209 gNextAddress = (unsigned int)tmp + size;
210 return tmp;
211 }
212 else if (size < 0)
213 {
214 unsigned int alignedGoal = AlignPage (gNextAddress + size);
215 /* Trim by releasing the virtual memory */
216 if (alignedGoal >= gAddressBase)
217 {
218 VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
219 MEM_DECOMMIT);
220 gNextAddress = gNextAddress + size;
221 return (void*)gNextAddress;
222 }
223 else
224 {
225 VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
226 MEM_DECOMMIT);
227 gNextAddress = gAddressBase;
228 return (void*)-1;
229 }
230 }
231 else
232 {
233 return (void*)gNextAddress;
234 }
235}
236
237#endif
238
d93041a4 239
217c9dad
WD
240
241/*
242 Type declarations
243*/
244
245
246struct malloc_chunk
247{
248 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
249 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
250 struct malloc_chunk* fd; /* double links -- used only if free. */
251 struct malloc_chunk* bk;
1ba91ba2 252} __attribute__((__may_alias__)) ;
217c9dad
WD
253
254typedef struct malloc_chunk* mchunkptr;
255
256/*
257
258 malloc_chunk details:
259
260 (The following includes lightly edited explanations by Colin Plumb.)
261
262 Chunks of memory are maintained using a `boundary tag' method as
263 described in e.g., Knuth or Standish. (See the paper by Paul
264 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
265 survey of such techniques.) Sizes of free chunks are stored both
266 in the front of each chunk and at the end. This makes
267 consolidating fragmented chunks into bigger chunks very fast. The
268 size fields also hold bits representing whether chunks are free or
269 in use.
270
271 An allocated chunk looks like this:
272
273
274 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
275 | Size of previous chunk, if allocated | |
276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
277 | Size of chunk, in bytes |P|
217c9dad 278 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
279 | User data starts here... .
280 . .
281 . (malloc_usable_space() bytes) .
282 . |
217c9dad 283nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
284 | Size of chunk |
285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
286
287
288 Where "chunk" is the front of the chunk for the purpose of most of
289 the malloc code, but "mem" is the pointer that is returned to the
290 user. "Nextchunk" is the beginning of the next contiguous chunk.
291
292 Chunks always begin on even word boundries, so the mem portion
293 (which is returned to the user) is also on an even word boundary, and
294 thus double-word aligned.
295
296 Free chunks are stored in circular doubly-linked lists, and look like this:
297
298 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
299 | Size of previous chunk |
300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
301 `head:' | Size of chunk, in bytes |P|
302 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
8bde7f77
WD
303 | Forward pointer to next chunk in list |
304 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
305 | Back pointer to previous chunk in list |
306 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
307 | Unused space (may be 0 bytes long) .
308 . .
309 . |
9297e366 310
217c9dad
WD
311nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
312 `foot:' | Size of chunk, in bytes |
8bde7f77 313 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
217c9dad
WD
314
315 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
316 chunk size (which is always a multiple of two words), is an in-use
317 bit for the *previous* chunk. If that bit is *clear*, then the
318 word before the current chunk size contains the previous chunk
319 size, and can be used to find the front of the previous chunk.
320 (The very first chunk allocated always has this bit set,
321 preventing access to non-existent (or non-owned) memory.)
322
323 Note that the `foot' of the current chunk is actually represented
324 as the prev_size of the NEXT chunk. (This makes it easier to
325 deal with alignments etc).
326
327 The two exceptions to all this are
328
329 1. The special chunk `top', which doesn't bother using the
8bde7f77
WD
330 trailing size field since there is no
331 next contiguous chunk that would have to index off it. (After
332 initialization, `top' is forced to always exist. If it would
333 become less than MINSIZE bytes long, it is replenished via
334 malloc_extend_top.)
217c9dad
WD
335
336 2. Chunks allocated via mmap, which have the second-lowest-order
8bde7f77
WD
337 bit (IS_MMAPPED) set in their size fields. Because they are
338 never merged or traversed from any other chunk, they have no
339 foot size or inuse information.
217c9dad
WD
340
341 Available chunks are kept in any of several places (all declared below):
342
343 * `av': An array of chunks serving as bin headers for consolidated
344 chunks. Each bin is doubly linked. The bins are approximately
345 proportionally (log) spaced. There are a lot of these bins
346 (128). This may look excessive, but works very well in
347 practice. All procedures maintain the invariant that no
348 consolidated chunk physically borders another one. Chunks in
349 bins are kept in size order, with ties going to the
350 approximately least recently used chunk.
351
352 The chunks in each bin are maintained in decreasing sorted order by
353 size. This is irrelevant for the small bins, which all contain
354 the same-sized chunks, but facilitates best-fit allocation for
355 larger chunks. (These lists are just sequential. Keeping them in
356 order almost never requires enough traversal to warrant using
357 fancier ordered data structures.) Chunks of the same size are
358 linked with the most recently freed at the front, and allocations
359 are taken from the back. This results in LRU or FIFO allocation
360 order, which tends to give each chunk an equal opportunity to be
361 consolidated with adjacent freed chunks, resulting in larger free
362 chunks and less fragmentation.
363
364 * `top': The top-most available chunk (i.e., the one bordering the
365 end of available memory) is treated specially. It is never
366 included in any bin, is used only if no other chunk is
367 available, and is released back to the system if it is very
368 large (see M_TRIM_THRESHOLD).
369
370 * `last_remainder': A bin holding only the remainder of the
371 most recently split (non-top) chunk. This bin is checked
372 before other non-fitting chunks, so as to provide better
373 locality for runs of sequentially allocated chunks.
374
375 * Implicitly, through the host system's memory mapping tables.
376 If supported, requests greater than a threshold are usually
377 serviced via calls to mmap, and then later released via munmap.
378
379*/
d93041a4 380
217c9dad
WD
381/* sizes, alignments */
382
383#define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
384#define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ)
385#define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
386#define MINSIZE (sizeof(struct malloc_chunk))
387
388/* conversion from malloc headers to user pointers, and back */
389
390#define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
391#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
392
393/* pad request bytes into a usable size */
394
395#define request2size(req) \
396 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
397 (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
398 (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))
399
400/* Check if m has acceptable alignment */
401
402#define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)
403
404
d93041a4 405
217c9dad
WD
406
407/*
408 Physical chunk operations
409*/
410
411
412/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
413
414#define PREV_INUSE 0x1
415
416/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
417
418#define IS_MMAPPED 0x2
419
420/* Bits to mask off when extracting size */
421
422#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
423
424
425/* Ptr to next physical malloc_chunk. */
426
427#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
428
429/* Ptr to previous physical malloc_chunk */
430
431#define prev_chunk(p)\
432 ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
433
434
435/* Treat space at ptr + offset as a chunk */
436
437#define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
438
439
d93041a4 440
217c9dad
WD
441
442/*
443 Dealing with use bits
444*/
445
446/* extract p's inuse bit */
447
448#define inuse(p)\
449((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
450
451/* extract inuse bit of previous chunk */
452
453#define prev_inuse(p) ((p)->size & PREV_INUSE)
454
455/* check for mmap()'ed chunk */
456
457#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
458
459/* set/clear chunk as in use without otherwise disturbing */
460
461#define set_inuse(p)\
462((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
463
464#define clear_inuse(p)\
465((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
466
467/* check/set/clear inuse bits in known places */
468
469#define inuse_bit_at_offset(p, s)\
470 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
471
472#define set_inuse_bit_at_offset(p, s)\
473 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
474
475#define clear_inuse_bit_at_offset(p, s)\
476 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
477
478
d93041a4 479
217c9dad
WD
480
481/*
482 Dealing with size fields
483*/
484
485/* Get size, ignoring use bits */
486
487#define chunksize(p) ((p)->size & ~(SIZE_BITS))
488
489/* Set size at head, without disturbing its use bit */
490
491#define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s)))
492
493/* Set size/use ignoring previous bits in header */
494
495#define set_head(p, s) ((p)->size = (s))
496
497/* Set size at footer (only when chunk is not in use) */
498
499#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
500
501
d93041a4 502
217c9dad
WD
503
504
505/*
506 Bins
507
508 The bins, `av_' are an array of pairs of pointers serving as the
509 heads of (initially empty) doubly-linked lists of chunks, laid out
510 in a way so that each pair can be treated as if it were in a
511 malloc_chunk. (This way, the fd/bk offsets for linking bin heads
512 and chunks are the same).
513
514 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
515 8 bytes apart. Larger bins are approximately logarithmically
516 spaced. (See the table below.) The `av_' array is never mentioned
517 directly in the code, but instead via bin access macros.
518
519 Bin layout:
520
521 64 bins of size 8
522 32 bins of size 64
523 16 bins of size 512
524 8 bins of size 4096
525 4 bins of size 32768
526 2 bins of size 262144
527 1 bin of size what's left
528
529 There is actually a little bit of slop in the numbers in bin_index
530 for the sake of speed. This makes no difference elsewhere.
531
532 The special chunks `top' and `last_remainder' get their own bins,
533 (this is implemented via yet more trickery with the av_ array),
534 although `top' is never properly linked to its bin since it is
535 always handled specially.
536
537*/
538
539#define NAV 128 /* number of bins */
540
541typedef struct malloc_chunk* mbinptr;
542
543/* access macros */
544
545#define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
546#define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
547#define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))
548
549/*
550 The first 2 bins are never indexed. The corresponding av_ cells are instead
551 used for bookkeeping. This is not to save space, but to simplify
552 indexing, maintain locality, and avoid some initialization tests.
553*/
554
f2302d44 555#define top (av_[2]) /* The topmost chunk */
217c9dad
WD
556#define last_remainder (bin_at(1)) /* remainder from last split */
557
558
559/*
560 Because top initially points to its own bin with initial
561 zero size, thus forcing extension on the first malloc request,
562 we avoid having any special code in malloc to check whether
563 it even exists yet. But we still need to in malloc_extend_top.
564*/
565
566#define initial_top ((mchunkptr)(bin_at(0)))
567
568/* Helper macro to initialize bins */
569
570#define IAV(i) bin_at(i), bin_at(i)
571
572static mbinptr av_[NAV * 2 + 2] = {
199adb60 573 NULL, NULL,
217c9dad
WD
574 IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7),
575 IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15),
576 IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23),
577 IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31),
578 IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39),
579 IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47),
580 IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55),
581 IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63),
582 IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71),
583 IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79),
584 IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87),
585 IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95),
586 IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103),
587 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
588 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
589 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
590};
591
9297e366
MB
592#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
593static void malloc_init(void);
594#endif
595
5e93bd1c
PT
596ulong mem_malloc_start = 0;
597ulong mem_malloc_end = 0;
598ulong mem_malloc_brk = 0;
599
62d63838
SG
600static bool malloc_testing; /* enable test mode */
601static int malloc_max_allocs; /* return NULL after this many calls to malloc() */
602
5e93bd1c
PT
603void *sbrk(ptrdiff_t increment)
604{
605 ulong old = mem_malloc_brk;
606 ulong new = old + increment;
607
6163f5b4
KG
608 /*
609 * if we are giving memory back make sure we clear it out since
610 * we set MORECORE_CLEARS to 1
611 */
612 if (increment < 0)
613 memset((void *)new, 0, -increment);
614
5e93bd1c 615 if ((new < mem_malloc_start) || (new > mem_malloc_end))
ae30b8c2 616 return (void *)MORECORE_FAILURE;
5e93bd1c
PT
617
618 mem_malloc_brk = new;
619
620 return (void *)old;
621}
217c9dad 622
d4e8ada0
PT
623void mem_malloc_init(ulong start, ulong size)
624{
625 mem_malloc_start = start;
626 mem_malloc_end = start + size;
627 mem_malloc_brk = start;
628
9297e366
MB
629#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
630 malloc_init();
631#endif
632
868de51d
TR
633 debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
634 mem_malloc_end);
c9db9a2e 635#if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
0aa8a4ad
PM
636 memset((void *)mem_malloc_start, 0x0, size);
637#endif
d4e8ada0 638}
d4e8ada0 639
217c9dad
WD
640/* field-extraction macros */
641
642#define first(b) ((b)->fd)
643#define last(b) ((b)->bk)
644
645/*
646 Indexing into bins
647*/
648
649#define bin_index(sz) \
650(((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \
651 ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \
652 ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \
653 ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \
654 ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \
655 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
8bde7f77 656 126)
217c9dad
WD
657/*
658 bins for chunks < 512 are all spaced 8 bytes apart, and hold
659 identically sized chunks. This is exploited in malloc.
660*/
661
662#define MAX_SMALLBIN 63
663#define MAX_SMALLBIN_SIZE 512
664#define SMALLBIN_WIDTH 8
665
666#define smallbin_index(sz) (((unsigned long)(sz)) >> 3)
667
668/*
669 Requests are `small' if both the corresponding and the next bin are small
670*/
671
672#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)
673
d93041a4 674
217c9dad
WD
675
676/*
677 To help compensate for the large number of bins, a one-level index
678 structure is used for bin-by-bin searching. `binblocks' is a
679 one-word bitvector recording whether groups of BINBLOCKWIDTH bins
680 have any (possibly) non-empty bins, so they can be skipped over
681 all at once during during traversals. The bits are NOT always
682 cleared as soon as all bins in a block are empty, but instead only
683 when all are noticed to be empty during traversal in malloc.
684*/
685
686#define BINBLOCKWIDTH 4 /* bins per block */
687
f2302d44
SR
688#define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
689#define binblocks_w (av_[1])
217c9dad
WD
690
691/* bin<->block macros */
692
693#define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH))
f2302d44
SR
694#define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
695#define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))
217c9dad
WD
696
697
d93041a4 698
217c9dad
WD
699
700
701/* Other static bookkeeping data */
702
703/* variables holding tunable values */
704
705static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD;
706static unsigned long top_pad = DEFAULT_TOP_PAD;
707static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX;
708static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD;
709
710/* The first value returned from sbrk */
711static char* sbrk_base = (char*)(-1);
712
713/* The maximum memory obtained from system via sbrk */
714static unsigned long max_sbrked_mem = 0;
715
716/* The maximum via either sbrk or mmap */
717static unsigned long max_total_mem = 0;
718
719/* internal working copy of mallinfo */
720static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
721
722/* The total memory obtained from system via sbrk */
723#define sbrked_mem (current_mallinfo.arena)
724
725/* Tracking mmaps */
726
ea882baf 727#ifdef DEBUG
217c9dad 728static unsigned int n_mmaps = 0;
ea882baf 729#endif /* DEBUG */
217c9dad
WD
730static unsigned long mmapped_mem = 0;
731#if HAVE_MMAP
732static unsigned int max_n_mmaps = 0;
733static unsigned long max_mmapped_mem = 0;
734#endif
735
9297e366
MB
736#ifdef CONFIG_SYS_MALLOC_DEFAULT_TO_INIT
737static void malloc_init(void)
738{
739 int i, j;
740
741 debug("bins (av_ array) are at %p\n", (void *)av_);
742
743 av_[0] = NULL; av_[1] = NULL;
744 for (i = 2, j = 2; i < NAV * 2 + 2; i += 2, j++) {
745 av_[i] = bin_at(j - 2);
746 av_[i + 1] = bin_at(j - 2);
747
748 /* Just print the first few bins so that
749 * we can see there are alright.
750 */
751 if (i < 10)
752 debug("av_[%d]=%lx av_[%d]=%lx\n",
753 i, (ulong)av_[i],
754 i + 1, (ulong)av_[i + 1]);
755 }
d93041a4 756
9297e366
MB
757 /* Init the static bookkeeping as well */
758 sbrk_base = (char *)(-1);
759 max_sbrked_mem = 0;
760 max_total_mem = 0;
761#ifdef DEBUG
762 memset((void *)&current_mallinfo, 0, sizeof(struct mallinfo));
763#endif
764}
765#endif
217c9dad
WD
766
767/*
768 Debugging support
769*/
770
771#ifdef DEBUG
772
773
774/*
775 These routines make a number of assertions about the states
776 of data structures that should be true at all times. If any
777 are not true, it's very likely that a user program has somehow
778 trashed memory. (It's also possible that there is a coding error
779 in malloc. In which case, please report it!)
780*/
781
782#if __STD_C
783static void do_check_chunk(mchunkptr p)
784#else
785static void do_check_chunk(p) mchunkptr p;
786#endif
787{
217c9dad 788 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
217c9dad
WD
789
790 /* No checkable chunk is mmapped */
791 assert(!chunk_is_mmapped(p));
792
793 /* Check for legal address ... */
794 assert((char*)p >= sbrk_base);
795 if (p != top)
796 assert((char*)p + sz <= (char*)top);
797 else
798 assert((char*)p + sz <= sbrk_base + sbrked_mem);
799
800}
801
802
803#if __STD_C
804static void do_check_free_chunk(mchunkptr p)
805#else
806static void do_check_free_chunk(p) mchunkptr p;
807#endif
808{
809 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
217c9dad 810 mchunkptr next = chunk_at_offset(p, sz);
217c9dad
WD
811
812 do_check_chunk(p);
813
814 /* Check whether it claims to be free ... */
815 assert(!inuse(p));
816
817 /* Unless a special marker, must have OK fields */
818 if ((long)sz >= (long)MINSIZE)
819 {
820 assert((sz & MALLOC_ALIGN_MASK) == 0);
821 assert(aligned_OK(chunk2mem(p)));
822 /* ... matching footer field */
823 assert(next->prev_size == sz);
824 /* ... and is fully consolidated */
825 assert(prev_inuse(p));
826 assert (next == top || inuse(next));
827
828 /* ... and has minimally sane links */
829 assert(p->fd->bk == p);
830 assert(p->bk->fd == p);
831 }
832 else /* markers are always of size SIZE_SZ */
833 assert(sz == SIZE_SZ);
834}
835
836#if __STD_C
837static void do_check_inuse_chunk(mchunkptr p)
838#else
839static void do_check_inuse_chunk(p) mchunkptr p;
840#endif
841{
842 mchunkptr next = next_chunk(p);
843 do_check_chunk(p);
844
845 /* Check whether it claims to be in use ... */
846 assert(inuse(p));
847
848 /* ... and is surrounded by OK chunks.
849 Since more things can be checked with free chunks than inuse ones,
850 if an inuse chunk borders them and debug is on, it's worth doing them.
851 */
852 if (!prev_inuse(p))
853 {
854 mchunkptr prv = prev_chunk(p);
855 assert(next_chunk(prv) == p);
856 do_check_free_chunk(prv);
857 }
858 if (next == top)
859 {
860 assert(prev_inuse(next));
861 assert(chunksize(next) >= MINSIZE);
862 }
863 else if (!inuse(next))
864 do_check_free_chunk(next);
865
866}
867
868#if __STD_C
869static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
870#else
871static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
872#endif
873{
217c9dad
WD
874 INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
875 long room = sz - s;
217c9dad
WD
876
877 do_check_inuse_chunk(p);
878
879 /* Legal size ... */
880 assert((long)sz >= (long)MINSIZE);
881 assert((sz & MALLOC_ALIGN_MASK) == 0);
882 assert(room >= 0);
883 assert(room < (long)MINSIZE);
884
885 /* ... and alignment */
886 assert(aligned_OK(chunk2mem(p)));
887
888
889 /* ... and was allocated at front of an available chunk */
890 assert(prev_inuse(p));
891
892}
893
894
895#define check_free_chunk(P) do_check_free_chunk(P)
896#define check_inuse_chunk(P) do_check_inuse_chunk(P)
897#define check_chunk(P) do_check_chunk(P)
898#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
899#else
900#define check_free_chunk(P)
901#define check_inuse_chunk(P)
902#define check_chunk(P)
903#define check_malloced_chunk(P,N)
904#endif
905
d93041a4 906
217c9dad
WD
907
908/*
909 Macro-based internal utilities
910*/
911
912
913/*
914 Linking chunks in bin lists.
915 Call these only with variables, not arbitrary expressions, as arguments.
916*/
917
918/*
919 Place chunk p of size s in its bin, in size order,
920 putting it ahead of others of same size.
921*/
922
923
924#define frontlink(P, S, IDX, BK, FD) \
925{ \
926 if (S < MAX_SMALLBIN_SIZE) \
927 { \
928 IDX = smallbin_index(S); \
929 mark_binblock(IDX); \
930 BK = bin_at(IDX); \
931 FD = BK->fd; \
932 P->bk = BK; \
933 P->fd = FD; \
934 FD->bk = BK->fd = P; \
935 } \
936 else \
937 { \
938 IDX = bin_index(S); \
939 BK = bin_at(IDX); \
940 FD = BK->fd; \
941 if (FD == BK) mark_binblock(IDX); \
942 else \
943 { \
944 while (FD != BK && S < chunksize(FD)) FD = FD->fd; \
945 BK = FD->bk; \
946 } \
947 P->bk = BK; \
948 P->fd = FD; \
949 FD->bk = BK->fd = P; \
950 } \
951}
952
953
954/* take a chunk off a list */
955
956#define unlink(P, BK, FD) \
957{ \
958 BK = P->bk; \
959 FD = P->fd; \
960 FD->bk = BK; \
961 BK->fd = FD; \
962} \
963
964/* Place p as the last remainder */
965
966#define link_last_remainder(P) \
967{ \
968 last_remainder->fd = last_remainder->bk = P; \
969 P->fd = P->bk = last_remainder; \
970}
971
972/* Clear the last_remainder bin */
973
974#define clear_last_remainder \
975 (last_remainder->fd = last_remainder->bk = last_remainder)
976
977
d93041a4 978
217c9dad
WD
979
980
981/* Routines dealing with mmap(). */
982
983#if HAVE_MMAP
984
985#if __STD_C
986static mchunkptr mmap_chunk(size_t size)
987#else
988static mchunkptr mmap_chunk(size) size_t size;
989#endif
990{
991 size_t page_mask = malloc_getpagesize - 1;
992 mchunkptr p;
993
994#ifndef MAP_ANONYMOUS
995 static int fd = -1;
996#endif
997
998 if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */
999
1000 /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
1001 * there is no following chunk whose prev_size field could be used.
1002 */
1003 size = (size + SIZE_SZ + page_mask) & ~page_mask;
1004
1005#ifdef MAP_ANONYMOUS
1006 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
1007 MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
1008#else /* !MAP_ANONYMOUS */
1009 if (fd < 0)
1010 {
1011 fd = open("/dev/zero", O_RDWR);
1012 if(fd < 0) return 0;
1013 }
1014 p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
1015#endif
1016
1017 if(p == (mchunkptr)-1) return 0;
1018
1019 n_mmaps++;
1020 if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;
1021
1022 /* We demand that eight bytes into a page must be 8-byte aligned. */
1023 assert(aligned_OK(chunk2mem(p)));
1024
1025 /* The offset to the start of the mmapped region is stored
1026 * in the prev_size field of the chunk; normally it is zero,
1027 * but that can be changed in memalign().
1028 */
1029 p->prev_size = 0;
1030 set_head(p, size|IS_MMAPPED);
1031
1032 mmapped_mem += size;
1033 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1034 max_mmapped_mem = mmapped_mem;
1035 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1036 max_total_mem = mmapped_mem + sbrked_mem;
1037 return p;
1038}
1039
1040#if __STD_C
1041static void munmap_chunk(mchunkptr p)
1042#else
1043static void munmap_chunk(p) mchunkptr p;
1044#endif
1045{
1046 INTERNAL_SIZE_T size = chunksize(p);
1047 int ret;
1048
1049 assert (chunk_is_mmapped(p));
1050 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1051 assert((n_mmaps > 0));
1052 assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);
1053
1054 n_mmaps--;
1055 mmapped_mem -= (size + p->prev_size);
1056
1057 ret = munmap((char *)p - p->prev_size, size + p->prev_size);
1058
1059 /* munmap returns non-zero on failure */
1060 assert(ret == 0);
1061}
1062
1063#if HAVE_MREMAP
1064
1065#if __STD_C
1066static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
1067#else
1068static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
1069#endif
1070{
1071 size_t page_mask = malloc_getpagesize - 1;
1072 INTERNAL_SIZE_T offset = p->prev_size;
1073 INTERNAL_SIZE_T size = chunksize(p);
1074 char *cp;
1075
1076 assert (chunk_is_mmapped(p));
1077 assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
1078 assert((n_mmaps > 0));
1079 assert(((size + offset) & (malloc_getpagesize-1)) == 0);
1080
1081 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
1082 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
1083
1084 cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);
1085
1086 if (cp == (char *)-1) return 0;
1087
1088 p = (mchunkptr)(cp + offset);
1089
1090 assert(aligned_OK(chunk2mem(p)));
1091
1092 assert((p->prev_size == offset));
1093 set_head(p, (new_size - offset)|IS_MMAPPED);
1094
1095 mmapped_mem -= size + offset;
1096 mmapped_mem += new_size;
1097 if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
1098 max_mmapped_mem = mmapped_mem;
1099 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1100 max_total_mem = mmapped_mem + sbrked_mem;
1101 return p;
1102}
1103
1104#endif /* HAVE_MREMAP */
1105
1106#endif /* HAVE_MMAP */
1107
217c9dad
WD
1108/*
1109 Extend the top-most chunk by obtaining memory from system.
1110 Main interface to sbrk (but see also malloc_trim).
1111*/
1112
1113#if __STD_C
1114static void malloc_extend_top(INTERNAL_SIZE_T nb)
1115#else
1116static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
1117#endif
1118{
1119 char* brk; /* return value from sbrk */
1120 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
1121 INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */
1122 char* new_brk; /* return of 2nd sbrk call */
1123 INTERNAL_SIZE_T top_size; /* new size of top chunk */
1124
1125 mchunkptr old_top = top; /* Record state of old top */
1126 INTERNAL_SIZE_T old_top_size = chunksize(old_top);
1127 char* old_end = (char*)(chunk_at_offset(old_top, old_top_size));
1128
1129 /* Pad request with top_pad plus minimal overhead */
1130
1131 INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE;
1132 unsigned long pagesz = malloc_getpagesize;
1133
1134 /* If not the first time through, round to preserve page boundary */
1135 /* Otherwise, we need to correct to a page size below anyway. */
1136 /* (We also correct below if an intervening foreign sbrk call.) */
1137
1138 if (sbrk_base != (char*)(-1))
1139 sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);
1140
1141 brk = (char*)(MORECORE (sbrk_size));
1142
1143 /* Fail if sbrk failed or if a foreign sbrk call killed our space */
1144 if (brk == (char*)(MORECORE_FAILURE) ||
1145 (brk < old_end && old_top != initial_top))
1146 return;
1147
1148 sbrked_mem += sbrk_size;
1149
1150 if (brk == old_end) /* can just add bytes to current top */
1151 {
1152 top_size = sbrk_size + old_top_size;
1153 set_head(top, top_size | PREV_INUSE);
1154 }
1155 else
1156 {
1157 if (sbrk_base == (char*)(-1)) /* First time through. Record base */
1158 sbrk_base = brk;
1159 else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */
1160 sbrked_mem += brk - (char*)old_end;
1161
1162 /* Guarantee alignment of first new chunk made from this space */
1163 front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
1164 if (front_misalign > 0)
1165 {
1166 correction = (MALLOC_ALIGNMENT) - front_misalign;
1167 brk += correction;
1168 }
1169 else
1170 correction = 0;
1171
1172 /* Guarantee the next brk will be at a page boundary */
1173
1174 correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
8bde7f77 1175 ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));
217c9dad
WD
1176
1177 /* Allocate correction */
1178 new_brk = (char*)(MORECORE (correction));
1179 if (new_brk == (char*)(MORECORE_FAILURE)) return;
1180
1181 sbrked_mem += correction;
1182
1183 top = (mchunkptr)brk;
1184 top_size = new_brk - brk + correction;
1185 set_head(top, top_size | PREV_INUSE);
1186
1187 if (old_top != initial_top)
1188 {
1189
1190 /* There must have been an intervening foreign sbrk call. */
1191 /* A double fencepost is necessary to prevent consolidation */
1192
1193 /* If not enough space to do this, then user did something very wrong */
1194 if (old_top_size < MINSIZE)
1195 {
8bde7f77
WD
1196 set_head(top, PREV_INUSE); /* will force null return from malloc */
1197 return;
217c9dad
WD
1198 }
1199
1200 /* Also keep size a multiple of MALLOC_ALIGNMENT */
1201 old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
1202 set_head_size(old_top, old_top_size);
1203 chunk_at_offset(old_top, old_top_size )->size =
8bde7f77 1204 SIZE_SZ|PREV_INUSE;
217c9dad 1205 chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
8bde7f77 1206 SIZE_SZ|PREV_INUSE;
217c9dad
WD
1207 /* If possible, release the rest. */
1208 if (old_top_size >= MINSIZE)
8bde7f77 1209 fREe(chunk2mem(old_top));
217c9dad
WD
1210 }
1211 }
1212
1213 if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
1214 max_sbrked_mem = sbrked_mem;
1215 if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
1216 max_total_mem = mmapped_mem + sbrked_mem;
1217
1218 /* We always land on a page boundary */
1219 assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
1220}
1221
1222
d93041a4 1223
217c9dad
WD
1224
1225/* Main public routines */
1226
1227
1228/*
1229 Malloc Algorthim:
1230
1231 The requested size is first converted into a usable form, `nb'.
1232 This currently means to add 4 bytes overhead plus possibly more to
1233 obtain 8-byte alignment and/or to obtain a size of at least
1234 MINSIZE (currently 16 bytes), the smallest allocatable size.
1235 (All fits are considered `exact' if they are within MINSIZE bytes.)
1236
1237 From there, the first successful of the following steps is taken:
1238
1239 1. The bin corresponding to the request size is scanned, and if
8bde7f77 1240 a chunk of exactly the right size is found, it is taken.
217c9dad
WD
1241
1242 2. The most recently remaindered chunk is used if it is big
8bde7f77
WD
1243 enough. This is a form of (roving) first fit, used only in
1244 the absence of exact fits. Runs of consecutive requests use
1245 the remainder of the chunk used for the previous such request
1246 whenever possible. This limited use of a first-fit style
1247 allocation strategy tends to give contiguous chunks
1248 coextensive lifetimes, which improves locality and can reduce
1249 fragmentation in the long run.
217c9dad
WD
1250
1251 3. Other bins are scanned in increasing size order, using a
8bde7f77
WD
1252 chunk big enough to fulfill the request, and splitting off
1253 any remainder. This search is strictly by best-fit; i.e.,
1254 the smallest (with ties going to approximately the least
1255 recently used) chunk that fits is selected.
217c9dad
WD
1256
1257 4. If large enough, the chunk bordering the end of memory
8bde7f77
WD
1258 (`top') is split off. (This use of `top' is in accord with
1259 the best-fit search rule. In effect, `top' is treated as
1260 larger (and thus less well fitting) than any other available
1261 chunk since it can be extended to be as large as necessary
1262 (up to system limitations).
217c9dad
WD
1263
1264 5. If the request size meets the mmap threshold and the
8bde7f77
WD
1265 system supports mmap, and there are few enough currently
1266 allocated mmapped regions, and a call to mmap succeeds,
1267 the request is allocated via direct memory mapping.
217c9dad
WD
1268
1269 6. Otherwise, the top of memory is extended by
8bde7f77
WD
1270 obtaining more space from the system (normally using sbrk,
1271 but definable to anything else via the MORECORE macro).
1272 Memory is gathered from the system (in system page-sized
1273 units) in a way that allows chunks obtained across different
1274 sbrk calls to be consolidated, but does not require
1275 contiguous memory. Thus, it should be safe to intersperse
1276 mallocs with other sbrk calls.
217c9dad
WD
1277
1278
1279 All allocations are made from the the `lowest' part of any found
1280 chunk. (The implementation invariant is that prev_inuse is
1281 always true of any allocated chunk; i.e., that each allocated
1282 chunk borders either a previously allocated and still in-use chunk,
1283 or the base of its memory arena.)
1284
1285*/
1286
c82ff481 1287STATIC_IF_MCHECK
217c9dad 1288#if __STD_C
c82ff481 1289Void_t* mALLOc_impl(size_t bytes)
217c9dad 1290#else
c82ff481 1291Void_t* mALLOc_impl(bytes) size_t bytes;
217c9dad
WD
1292#endif
1293{
1294 mchunkptr victim; /* inspected/selected chunk */
1295 INTERNAL_SIZE_T victim_size; /* its size */
1296 int idx; /* index for bin traversal */
1297 mbinptr bin; /* associated bin */
1298 mchunkptr remainder; /* remainder from a split */
1299 long remainder_size; /* its size */
1300 int remainder_index; /* its bin index */
1301 unsigned long block; /* block traverser bit */
1302 int startidx; /* first bin of a traversed block */
1303 mchunkptr fwd; /* misc temp for linking */
1304 mchunkptr bck; /* misc temp for linking */
1305 mbinptr q; /* misc temp */
1306
1307 INTERNAL_SIZE_T nb;
1308
3d6d5075 1309#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
deff6fb3 1310 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
c9356be3 1311 return malloc_simple(bytes);
d59476b6
SG
1312#endif
1313
62d63838
SG
1314 if (CONFIG_IS_ENABLED(UNIT_TEST) && malloc_testing) {
1315 if (--malloc_max_allocs < 0)
1316 return NULL;
1317 }
1318
27405448
WD
1319 /* check if mem_malloc_init() was run */
1320 if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
1321 /* not initialized yet */
199adb60 1322 return NULL;
27405448
WD
1323 }
1324
199adb60 1325 if ((long)bytes < 0) return NULL;
217c9dad
WD
1326
1327 nb = request2size(bytes); /* padded request size; */
1328
1329 /* Check for exact match in a bin */
1330
1331 if (is_small_request(nb)) /* Faster version for small requests */
1332 {
1333 idx = smallbin_index(nb);
1334
1335 /* No traversal or size check necessary for small bins. */
1336
1337 q = bin_at(idx);
1338 victim = last(q);
1339
1340 /* Also scan the next one, since it would have a remainder < MINSIZE */
1341 if (victim == q)
1342 {
1343 q = next_bin(q);
1344 victim = last(q);
1345 }
1346 if (victim != q)
1347 {
1348 victim_size = chunksize(victim);
1349 unlink(victim, bck, fwd);
1350 set_inuse_bit_at_offset(victim, victim_size);
1351 check_malloced_chunk(victim, nb);
bdaeea1b 1352 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
217c9dad
WD
1353 return chunk2mem(victim);
1354 }
1355
1356 idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */
1357
1358 }
1359 else
1360 {
1361 idx = bin_index(nb);
1362 bin = bin_at(idx);
1363
1364 for (victim = last(bin); victim != bin; victim = victim->bk)
1365 {
1366 victim_size = chunksize(victim);
1367 remainder_size = victim_size - nb;
1368
1369 if (remainder_size >= (long)MINSIZE) /* too big */
1370 {
8bde7f77
WD
1371 --idx; /* adjust to rescan below after checking last remainder */
1372 break;
217c9dad
WD
1373 }
1374
1375 else if (remainder_size >= 0) /* exact fit */
1376 {
8bde7f77
WD
1377 unlink(victim, bck, fwd);
1378 set_inuse_bit_at_offset(victim, victim_size);
1379 check_malloced_chunk(victim, nb);
bdaeea1b 1380 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
8bde7f77 1381 return chunk2mem(victim);
217c9dad
WD
1382 }
1383 }
1384
1385 ++idx;
1386
1387 }
1388
1389 /* Try to use the last split-off remainder */
1390
1391 if ( (victim = last_remainder->fd) != last_remainder)
1392 {
1393 victim_size = chunksize(victim);
1394 remainder_size = victim_size - nb;
1395
1396 if (remainder_size >= (long)MINSIZE) /* re-split */
1397 {
1398 remainder = chunk_at_offset(victim, nb);
1399 set_head(victim, nb | PREV_INUSE);
1400 link_last_remainder(remainder);
1401 set_head(remainder, remainder_size | PREV_INUSE);
1402 set_foot(remainder, remainder_size);
1403 check_malloced_chunk(victim, nb);
bdaeea1b 1404 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
217c9dad
WD
1405 return chunk2mem(victim);
1406 }
1407
1408 clear_last_remainder;
1409
1410 if (remainder_size >= 0) /* exhaust */
1411 {
1412 set_inuse_bit_at_offset(victim, victim_size);
1413 check_malloced_chunk(victim, nb);
bdaeea1b 1414 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
217c9dad
WD
1415 return chunk2mem(victim);
1416 }
1417
1418 /* Else place in bin */
1419
1420 frontlink(victim, victim_size, remainder_index, bck, fwd);
1421 }
1422
1423 /*
1424 If there are any possibly nonempty big-enough blocks,
1425 search for best fitting chunk by scanning bins in blockwidth units.
1426 */
1427
f2302d44 1428 if ( (block = idx2binblock(idx)) <= binblocks_r)
217c9dad
WD
1429 {
1430
1431 /* Get to the first marked block */
1432
f2302d44 1433 if ( (block & binblocks_r) == 0)
217c9dad
WD
1434 {
1435 /* force to an even block boundary */
1436 idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
1437 block <<= 1;
f2302d44 1438 while ((block & binblocks_r) == 0)
217c9dad 1439 {
8bde7f77
WD
1440 idx += BINBLOCKWIDTH;
1441 block <<= 1;
217c9dad
WD
1442 }
1443 }
1444
1445 /* For each possibly nonempty block ... */
1446 for (;;)
1447 {
1448 startidx = idx; /* (track incomplete blocks) */
1449 q = bin = bin_at(idx);
1450
1451 /* For each bin in this block ... */
1452 do
1453 {
8bde7f77
WD
1454 /* Find and use first big enough chunk ... */
1455
1456 for (victim = last(bin); victim != bin; victim = victim->bk)
1457 {
1458 victim_size = chunksize(victim);
1459 remainder_size = victim_size - nb;
1460
1461 if (remainder_size >= (long)MINSIZE) /* split */
1462 {
1463 remainder = chunk_at_offset(victim, nb);
1464 set_head(victim, nb | PREV_INUSE);
1465 unlink(victim, bck, fwd);
1466 link_last_remainder(remainder);
1467 set_head(remainder, remainder_size | PREV_INUSE);
1468 set_foot(remainder, remainder_size);
1469 check_malloced_chunk(victim, nb);
bdaeea1b 1470 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
8bde7f77
WD
1471 return chunk2mem(victim);
1472 }
1473
1474 else if (remainder_size >= 0) /* take */
1475 {
1476 set_inuse_bit_at_offset(victim, victim_size);
1477 unlink(victim, bck, fwd);
1478 check_malloced_chunk(victim, nb);
bdaeea1b 1479 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
8bde7f77
WD
1480 return chunk2mem(victim);
1481 }
1482
1483 }
217c9dad
WD
1484
1485 bin = next_bin(bin);
1486
1487 } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);
1488
1489 /* Clear out the block bit. */
1490
1491 do /* Possibly backtrack to try to clear a partial block */
1492 {
8bde7f77
WD
1493 if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
1494 {
f2302d44 1495 av_[1] = (mbinptr)(binblocks_r & ~block);
8bde7f77
WD
1496 break;
1497 }
1498 --startidx;
217c9dad
WD
1499 q = prev_bin(q);
1500 } while (first(q) == q);
1501
1502 /* Get to the next possibly nonempty block */
1503
f2302d44 1504 if ( (block <<= 1) <= binblocks_r && (block != 0) )
217c9dad 1505 {
f2302d44 1506 while ((block & binblocks_r) == 0)
8bde7f77
WD
1507 {
1508 idx += BINBLOCKWIDTH;
1509 block <<= 1;
1510 }
217c9dad
WD
1511 }
1512 else
8bde7f77 1513 break;
217c9dad
WD
1514 }
1515 }
1516
1517
1518 /* Try to use top chunk */
1519
1520 /* Require that there be a remainder, ensuring top always exists */
1521 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
1522 {
1523
1524#if HAVE_MMAP
1525 /* If big and would otherwise need to extend, try to use mmap instead */
1526 if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
a874cac3 1527 (victim = mmap_chunk(nb)))
bdaeea1b 1528 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
217c9dad
WD
1529 return chunk2mem(victim);
1530#endif
1531
1532 /* Try to extend */
1533 malloc_extend_top(nb);
1534 if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
199adb60 1535 return NULL; /* propagate failure */
217c9dad
WD
1536 }
1537
1538 victim = top;
1539 set_head(victim, nb | PREV_INUSE);
1540 top = chunk_at_offset(victim, nb);
1541 set_head(top, remainder_size | PREV_INUSE);
1542 check_malloced_chunk(victim, nb);
bdaeea1b 1543 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(victim), bytes, SIZE_SZ, false);
217c9dad
WD
1544 return chunk2mem(victim);
1545
1546}
1547
1548
d93041a4 1549
217c9dad
WD
1550
1551/*
1552
1553 free() algorithm :
1554
1555 cases:
1556
1557 1. free(0) has no effect.
1558
1559 2. If the chunk was allocated via mmap, it is release via munmap().
1560
1561 3. If a returned chunk borders the current high end of memory,
8bde7f77
WD
1562 it is consolidated into the top, and if the total unused
1563 topmost memory exceeds the trim threshold, malloc_trim is
1564 called.
217c9dad
WD
1565
1566 4. Other chunks are consolidated as they arrive, and
8bde7f77
WD
1567 placed in corresponding bins. (This includes the case of
1568 consolidating with the current `last_remainder').
217c9dad
WD
1569
1570*/
1571
1572
c82ff481 1573STATIC_IF_MCHECK
217c9dad 1574#if __STD_C
c82ff481 1575void fREe_impl(Void_t* mem)
217c9dad 1576#else
c82ff481 1577void fREe_impl(mem) Void_t* mem;
217c9dad
WD
1578#endif
1579{
1580 mchunkptr p; /* chunk corresponding to mem */
1581 INTERNAL_SIZE_T hd; /* its head field */
1582 INTERNAL_SIZE_T sz; /* its size */
1583 int idx; /* its bin index */
1584 mchunkptr next; /* next contiguous chunk */
1585 INTERNAL_SIZE_T nextsz; /* its size */
1586 INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
1587 mchunkptr bck; /* misc temp for linking */
1588 mchunkptr fwd; /* misc temp for linking */
1589 int islr; /* track whether merging with last_remainder */
1590
3d6d5075 1591#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
d59476b6 1592 /* free() is a no-op - all the memory will be freed on relocation */
bdaeea1b
SA
1593 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
1594 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
d59476b6 1595 return;
bdaeea1b 1596 }
d59476b6
SG
1597#endif
1598
199adb60 1599 if (mem == NULL) /* free(0) has no effect */
217c9dad
WD
1600 return;
1601
1602 p = mem2chunk(mem);
1603 hd = p->size;
1604
1605#if HAVE_MMAP
1606 if (hd & IS_MMAPPED) /* release mmapped memory. */
1607 {
1608 munmap_chunk(p);
1609 return;
1610 }
1611#endif
1612
1613 check_inuse_chunk(p);
1614
1615 sz = hd & ~PREV_INUSE;
1616 next = chunk_at_offset(p, sz);
1617 nextsz = chunksize(next);
bdaeea1b 1618 VALGRIND_FREELIKE_BLOCK(mem, SIZE_SZ);
217c9dad
WD
1619
1620 if (next == top) /* merge with top */
1621 {
1622 sz += nextsz;
1623
1624 if (!(hd & PREV_INUSE)) /* consolidate backward */
1625 {
1626 prevsz = p->prev_size;
1627 p = chunk_at_offset(p, -((long) prevsz));
1628 sz += prevsz;
1629 unlink(p, bck, fwd);
1630 }
1631
1632 set_head(p, sz | PREV_INUSE);
1633 top = p;
1634 if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
1635 malloc_trim(top_pad);
1636 return;
1637 }
1638
1639 set_head(next, nextsz); /* clear inuse bit */
1640
1641 islr = 0;
1642
1643 if (!(hd & PREV_INUSE)) /* consolidate backward */
1644 {
1645 prevsz = p->prev_size;
1646 p = chunk_at_offset(p, -((long) prevsz));
1647 sz += prevsz;
1648
1649 if (p->fd == last_remainder) /* keep as last_remainder */
1650 islr = 1;
1651 else
1652 unlink(p, bck, fwd);
1653 }
1654
1655 if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */
1656 {
1657 sz += nextsz;
1658
1659 if (!islr && next->fd == last_remainder) /* re-insert last_remainder */
1660 {
1661 islr = 1;
1662 link_last_remainder(p);
1663 }
1664 else
1665 unlink(next, bck, fwd);
1666 }
1667
1668
1669 set_head(p, sz | PREV_INUSE);
1670 set_foot(p, sz);
1671 if (!islr)
1672 frontlink(p, sz, idx, bck, fwd);
1673}
1674
1675
d93041a4 1676
217c9dad
WD
1677
1678
1679/*
1680
1681 Realloc algorithm:
1682
1683 Chunks that were obtained via mmap cannot be extended or shrunk
1684 unless HAVE_MREMAP is defined, in which case mremap is used.
1685 Otherwise, if their reallocation is for additional space, they are
1686 copied. If for less, they are just left alone.
1687
1688 Otherwise, if the reallocation is for additional space, and the
1689 chunk can be extended, it is, else a malloc-copy-free sequence is
1690 taken. There are several different ways that a chunk could be
1691 extended. All are tried:
1692
1693 * Extending forward into following adjacent free chunk.
1694 * Shifting backwards, joining preceding adjacent space
1695 * Both shifting backwards and extending forward.
1696 * Extending into newly sbrked space
1697
1698 Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
1699 size argument of zero (re)allocates a minimum-sized chunk.
1700
1701 If the reallocation is for less space, and the new request is for
1702 a `small' (<512 bytes) size, then the newly unused space is lopped
1703 off and freed.
1704
1705 The old unix realloc convention of allowing the last-free'd chunk
1706 to be used as an argument to realloc is no longer supported.
1707 I don't know of any programs still relying on this feature,
1708 and allowing it would also allow too many other incorrect
1709 usages of realloc to be sensible.
1710
1711
1712*/
1713
1714
c82ff481 1715STATIC_IF_MCHECK
217c9dad 1716#if __STD_C
c82ff481 1717Void_t* rEALLOc_impl(Void_t* oldmem, size_t bytes)
217c9dad 1718#else
c82ff481 1719Void_t* rEALLOc_impl(oldmem, bytes) Void_t* oldmem; size_t bytes;
217c9dad
WD
1720#endif
1721{
1722 INTERNAL_SIZE_T nb; /* padded request size */
1723
1724 mchunkptr oldp; /* chunk corresponding to oldmem */
1725 INTERNAL_SIZE_T oldsize; /* its size */
1726
1727 mchunkptr newp; /* chunk to return */
1728 INTERNAL_SIZE_T newsize; /* its size */
1729 Void_t* newmem; /* corresponding user mem */
1730
1731 mchunkptr next; /* next contiguous chunk after oldp */
1732 INTERNAL_SIZE_T nextsize; /* its size */
1733
1734 mchunkptr prev; /* previous contiguous chunk before oldp */
1735 INTERNAL_SIZE_T prevsize; /* its size */
1736
1737 mchunkptr remainder; /* holds split off extra space from newp */
1738 INTERNAL_SIZE_T remainder_size; /* its size */
1739
1740 mchunkptr bck; /* misc temp for linking */
1741 mchunkptr fwd; /* misc temp for linking */
1742
1743#ifdef REALLOC_ZERO_BYTES_FREES
a874cac3 1744 if (!bytes) {
c82ff481 1745 fREe_impl(oldmem);
a874cac3
HS
1746 return NULL;
1747 }
217c9dad
WD
1748#endif
1749
199adb60 1750 if ((long)bytes < 0) return NULL;
217c9dad
WD
1751
1752 /* realloc of null is supposed to be same as malloc */
c82ff481 1753 if (oldmem == NULL) return mALLOc_impl(bytes);
217c9dad 1754
3d6d5075 1755#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
c9356be3 1756 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
d59476b6
SG
1757 /* This is harder to support and should not be needed */
1758 panic("pre-reloc realloc() is not supported");
1759 }
1760#endif
1761
217c9dad
WD
1762 newp = oldp = mem2chunk(oldmem);
1763 newsize = oldsize = chunksize(oldp);
1764
1765
1766 nb = request2size(bytes);
1767
1768#if HAVE_MMAP
1769 if (chunk_is_mmapped(oldp))
1770 {
1771#if HAVE_MREMAP
1772 newp = mremap_chunk(oldp, nb);
1773 if(newp) return chunk2mem(newp);
1774#endif
1775 /* Note the extra SIZE_SZ overhead. */
1776 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
1777 /* Must alloc, copy, free. */
c82ff481 1778 newmem = mALLOc_impl(bytes);
a874cac3
HS
1779 if (!newmem)
1780 return NULL; /* propagate failure */
217c9dad
WD
1781 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
1782 munmap_chunk(oldp);
1783 return newmem;
1784 }
1785#endif
1786
1787 check_inuse_chunk(oldp);
1788
1789 if ((long)(oldsize) < (long)(nb))
1790 {
1791
1792 /* Try expanding forward */
1793
1794 next = chunk_at_offset(oldp, oldsize);
1795 if (next == top || !inuse(next))
1796 {
1797 nextsize = chunksize(next);
1798
1799 /* Forward into top only if a remainder */
1800 if (next == top)
1801 {
8bde7f77
WD
1802 if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
1803 {
1804 newsize += nextsize;
1805 top = chunk_at_offset(oldp, nb);
1806 set_head(top, (newsize - nb) | PREV_INUSE);
1807 set_head_size(oldp, nb);
bdaeea1b
SA
1808 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1809 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
8bde7f77
WD
1810 return chunk2mem(oldp);
1811 }
217c9dad
WD
1812 }
1813
1814 /* Forward into next chunk */
1815 else if (((long)(nextsize + newsize) >= (long)(nb)))
1816 {
8bde7f77
WD
1817 unlink(next, bck, fwd);
1818 newsize += nextsize;
bdaeea1b
SA
1819 VALGRIND_RESIZEINPLACE_BLOCK(chunk2mem(oldp), 0, bytes, SIZE_SZ);
1820 VALGRIND_MAKE_MEM_DEFINED(chunk2mem(oldp), bytes);
8bde7f77 1821 goto split;
217c9dad
WD
1822 }
1823 }
1824 else
1825 {
199adb60 1826 next = NULL;
217c9dad
WD
1827 nextsize = 0;
1828 }
1829
1830 /* Try shifting backwards. */
1831
1832 if (!prev_inuse(oldp))
1833 {
1834 prev = prev_chunk(oldp);
1835 prevsize = chunksize(prev);
1836
1837 /* try forward + backward first to save a later consolidation */
1838
199adb60 1839 if (next != NULL)
217c9dad 1840 {
8bde7f77
WD
1841 /* into top */
1842 if (next == top)
1843 {
1844 if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
1845 {
1846 unlink(prev, bck, fwd);
1847 newp = prev;
1848 newsize += prevsize + nextsize;
1849 newmem = chunk2mem(newp);
bdaeea1b 1850 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
8bde7f77
WD
1851 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1852 top = chunk_at_offset(newp, nb);
1853 set_head(top, (newsize - nb) | PREV_INUSE);
1854 set_head_size(newp, nb);
bdaeea1b 1855 VALGRIND_FREELIKE_BLOCK(oldmem, SIZE_SZ);
8bde7f77
WD
1856 return newmem;
1857 }
1858 }
1859
1860 /* into next chunk */
1861 else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
1862 {
1863 unlink(next, bck, fwd);
1864 unlink(prev, bck, fwd);
1865 newp = prev;
1866 newsize += nextsize + prevsize;
1867 newmem = chunk2mem(newp);
bdaeea1b 1868 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
8bde7f77
WD
1869 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1870 goto split;
1871 }
217c9dad
WD
1872 }
1873
1874 /* backward only */
199adb60 1875 if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
217c9dad 1876 {
8bde7f77
WD
1877 unlink(prev, bck, fwd);
1878 newp = prev;
1879 newsize += prevsize;
1880 newmem = chunk2mem(newp);
bdaeea1b 1881 VALGRIND_MALLOCLIKE_BLOCK(newmem, bytes, SIZE_SZ, false);
8bde7f77
WD
1882 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
1883 goto split;
217c9dad
WD
1884 }
1885 }
1886
1887 /* Must allocate */
1888
c82ff481 1889 newmem = mALLOc_impl (bytes);
217c9dad 1890
199adb60
KP
1891 if (newmem == NULL) /* propagate failure */
1892 return NULL;
217c9dad
WD
1893
1894 /* Avoid copy if newp is next chunk after oldp. */
1895 /* (This can only happen when new chunk is sbrk'ed.) */
1896
1897 if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
1898 {
1899 newsize += chunksize(newp);
1900 newp = oldp;
1901 goto split;
1902 }
1903
1904 /* Otherwise copy, free, and exit */
1905 MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
c82ff481 1906 fREe_impl(oldmem);
217c9dad 1907 return newmem;
bdaeea1b
SA
1908 } else {
1909 VALGRIND_RESIZEINPLACE_BLOCK(oldmem, 0, bytes, SIZE_SZ);
1910 VALGRIND_MAKE_MEM_DEFINED(oldmem, bytes);
217c9dad
WD
1911 }
1912
1913
1914 split: /* split off extra room in old or expanded chunk */
1915
1916 if (newsize - nb >= MINSIZE) /* split off remainder */
1917 {
1918 remainder = chunk_at_offset(newp, nb);
1919 remainder_size = newsize - nb;
1920 set_head_size(newp, nb);
1921 set_head(remainder, remainder_size | PREV_INUSE);
1922 set_inuse_bit_at_offset(remainder, remainder_size);
bdaeea1b
SA
1923 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
1924 false);
c82ff481 1925 fREe_impl(chunk2mem(remainder)); /* let free() deal with it */
217c9dad
WD
1926 }
1927 else
1928 {
1929 set_head_size(newp, newsize);
1930 set_inuse_bit_at_offset(newp, newsize);
1931 }
1932
1933 check_inuse_chunk(newp);
1934 return chunk2mem(newp);
1935}
1936
1937
d93041a4 1938
217c9dad
WD
1939
1940/*
1941
1942 memalign algorithm:
1943
1944 memalign requests more than enough space from malloc, finds a spot
1945 within that chunk that meets the alignment request, and then
1946 possibly frees the leading and trailing space.
1947
1948 The alignment argument must be a power of two. This property is not
1949 checked by memalign, so misuse may result in random runtime errors.
1950
1951 8-byte alignment is guaranteed by normal malloc calls, so don't
1952 bother calling memalign with an argument of 8 or less.
1953
1954 Overreliance on memalign is a sure way to fragment space.
1955
1956*/
1957
1958
c82ff481 1959STATIC_IF_MCHECK
217c9dad 1960#if __STD_C
c82ff481 1961Void_t* mEMALIGn_impl(size_t alignment, size_t bytes)
217c9dad 1962#else
c82ff481 1963Void_t* mEMALIGn_impl(alignment, bytes) size_t alignment; size_t bytes;
217c9dad
WD
1964#endif
1965{
1966 INTERNAL_SIZE_T nb; /* padded request size */
1967 char* m; /* memory returned by malloc call */
1968 mchunkptr p; /* corresponding chunk */
1969 char* brk; /* alignment point within p */
1970 mchunkptr newp; /* chunk to return */
1971 INTERNAL_SIZE_T newsize; /* its size */
1972 INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */
1973 mchunkptr remainder; /* spare room at end to split off */
1974 long remainder_size; /* its size */
1975
199adb60 1976 if ((long)bytes < 0) return NULL;
217c9dad 1977
3d6d5075 1978#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
ee038c58 1979 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
4c6be01c 1980 return memalign_simple(alignment, bytes);
ee038c58
LFT
1981 }
1982#endif
1983
217c9dad
WD
1984 /* If need less alignment than we give anyway, just relay to malloc */
1985
c82ff481 1986 if (alignment <= MALLOC_ALIGNMENT) return mALLOc_impl(bytes);
217c9dad
WD
1987
1988 /* Otherwise, ensure that it is at least a minimum chunk size */
1989
1990 if (alignment < MINSIZE) alignment = MINSIZE;
1991
1992 /* Call malloc with worst case padding to hit alignment. */
1993
1994 nb = request2size(bytes);
c82ff481 1995 m = (char*)(mALLOc_impl(nb + alignment + MINSIZE));
217c9dad 1996
4f144a41
SW
1997 /*
1998 * The attempt to over-allocate (with a size large enough to guarantee the
1999 * ability to find an aligned region within allocated memory) failed.
2000 *
2001 * Try again, this time only allocating exactly the size the user wants. If
2002 * the allocation now succeeds and just happens to be aligned, we can still
2003 * fulfill the user's request.
2004 */
2005 if (m == NULL) {
034eda86 2006 size_t extra, extra2;
4f144a41
SW
2007 /*
2008 * Use bytes not nb, since mALLOc internally calls request2size too, and
2009 * each call increases the size to allocate, to account for the header.
2010 */
c82ff481 2011 m = (char*)(mALLOc_impl(bytes));
4f144a41
SW
2012 /* Aligned -> return it */
2013 if ((((unsigned long)(m)) % alignment) == 0)
2014 return m;
034eda86
SW
2015 /*
2016 * Otherwise, try again, requesting enough extra space to be able to
2017 * acquire alignment.
2018 */
c82ff481 2019 fREe_impl(m);
034eda86
SW
2020 /* Add in extra bytes to match misalignment of unexpanded allocation */
2021 extra = alignment - (((unsigned long)(m)) % alignment);
c82ff481 2022 m = (char*)(mALLOc_impl(bytes + extra));
034eda86
SW
2023 /*
2024 * m might not be the same as before. Validate that the previous value of
2025 * extra still works for the current value of m.
2026 * If (!m), extra2=alignment so
2027 */
2028 if (m) {
2029 extra2 = alignment - (((unsigned long)(m)) % alignment);
2030 if (extra2 > extra) {
c82ff481 2031 fREe_impl(m);
034eda86
SW
2032 m = NULL;
2033 }
2034 }
2035 /* Fall through to original NULL check and chunk splitting logic */
4f144a41
SW
2036 }
2037
199adb60 2038 if (m == NULL) return NULL; /* propagate failure */
217c9dad
WD
2039
2040 p = mem2chunk(m);
2041
2042 if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
2043 {
2044#if HAVE_MMAP
2045 if(chunk_is_mmapped(p))
2046 return chunk2mem(p); /* nothing more to do */
2047#endif
2048 }
2049 else /* misaligned */
2050 {
2051 /*
2052 Find an aligned spot inside chunk.
2053 Since we need to give back leading space in a chunk of at
2054 least MINSIZE, if the first calculation places us at
2055 a spot with less than MINSIZE leader, we can move to the
2056 next aligned spot -- we've allocated enough total room so that
2057 this is always possible.
2058 */
2059
2060 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
2061 if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;
2062
2063 newp = (mchunkptr)brk;
2064 leadsize = brk - (char*)(p);
2065 newsize = chunksize(p) - leadsize;
2066
2067#if HAVE_MMAP
2068 if(chunk_is_mmapped(p))
2069 {
2070 newp->prev_size = p->prev_size + leadsize;
2071 set_head(newp, newsize|IS_MMAPPED);
2072 return chunk2mem(newp);
2073 }
2074#endif
2075
2076 /* give back leader, use the rest */
2077
2078 set_head(newp, newsize | PREV_INUSE);
2079 set_inuse_bit_at_offset(newp, newsize);
2080 set_head_size(p, leadsize);
c82ff481 2081 fREe_impl(chunk2mem(p));
217c9dad 2082 p = newp;
bdaeea1b 2083 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(p), bytes, SIZE_SZ, false);
217c9dad
WD
2084
2085 assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
2086 }
2087
2088 /* Also give back spare room at the end */
2089
2090 remainder_size = chunksize(p) - nb;
2091
2092 if (remainder_size >= (long)MINSIZE)
2093 {
2094 remainder = chunk_at_offset(p, nb);
2095 set_head(remainder, remainder_size | PREV_INUSE);
2096 set_head_size(p, nb);
bdaeea1b
SA
2097 VALGRIND_MALLOCLIKE_BLOCK(chunk2mem(remainder), remainder_size, SIZE_SZ,
2098 false);
c82ff481 2099 fREe_impl(chunk2mem(remainder));
217c9dad
WD
2100 }
2101
2102 check_inuse_chunk(p);
2103 return chunk2mem(p);
2104
2105}
2106
d93041a4 2107
217c9dad
WD
2108
2109
2110/*
2111 valloc just invokes memalign with alignment argument equal
2112 to the page size of the system (or as near to this as can
2113 be figured out from all the includes/defines above.)
2114*/
2115
2116#if __STD_C
2117Void_t* vALLOc(size_t bytes)
2118#else
2119Void_t* vALLOc(bytes) size_t bytes;
2120#endif
2121{
2122 return mEMALIGn (malloc_getpagesize, bytes);
2123}
2124
2125/*
2126 pvalloc just invokes valloc for the nearest pagesize
2127 that will accommodate request
2128*/
2129
2130
2131#if __STD_C
2132Void_t* pvALLOc(size_t bytes)
2133#else
2134Void_t* pvALLOc(bytes) size_t bytes;
2135#endif
2136{
2137 size_t pagesize = malloc_getpagesize;
2138 return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
2139}
2140
2141/*
2142
2143 calloc calls malloc, then zeroes out the allocated chunk.
2144
2145*/
2146
c82ff481 2147STATIC_IF_MCHECK
217c9dad 2148#if __STD_C
c82ff481 2149Void_t* cALLOc_impl(size_t n, size_t elem_size)
217c9dad 2150#else
c82ff481 2151Void_t* cALLOc_impl(n, elem_size) size_t n; size_t elem_size;
217c9dad
WD
2152#endif
2153{
2154 mchunkptr p;
2155 INTERNAL_SIZE_T csz;
2156
2157 INTERNAL_SIZE_T sz = n * elem_size;
2158
2159
2160 /* check if expand_top called, in which case don't need to clear */
c9db9a2e 2161#if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
217c9dad
WD
2162#if MORECORE_CLEARS
2163 mchunkptr oldtop = top;
2164 INTERNAL_SIZE_T oldtopsize = chunksize(top);
0aa8a4ad 2165#endif
217c9dad 2166#endif
c82ff481 2167 Void_t* mem = mALLOc_impl (sz);
217c9dad 2168
199adb60 2169 if ((long)n < 0) return NULL;
217c9dad 2170
199adb60
KP
2171 if (mem == NULL)
2172 return NULL;
217c9dad
WD
2173 else
2174 {
3d6d5075 2175#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
c9356be3 2176 if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
bb71a2d9 2177 memset(mem, 0, sz);
d59476b6
SG
2178 return mem;
2179 }
2180#endif
217c9dad
WD
2181 p = mem2chunk(mem);
2182
2183 /* Two optional cases in which clearing not necessary */
2184
2185
2186#if HAVE_MMAP
2187 if (chunk_is_mmapped(p)) return mem;
2188#endif
2189
2190 csz = chunksize(p);
2191
c9db9a2e 2192#if CONFIG_IS_ENABLED(SYS_MALLOC_CLEAR_ON_INIT)
217c9dad
WD
2193#if MORECORE_CLEARS
2194 if (p == oldtop && csz > oldtopsize)
2195 {
2196 /* clear only the bytes from non-freshly-sbrked memory */
2197 csz = oldtopsize;
2198 }
0aa8a4ad 2199#endif
217c9dad
WD
2200#endif
2201
2202 MALLOC_ZERO(mem, csz - SIZE_SZ);
bdaeea1b 2203 VALGRIND_MAKE_MEM_DEFINED(mem, sz);
217c9dad
WD
2204 return mem;
2205 }
2206}
2207
2208/*
2209
2210 cfree just calls free. It is needed/defined on some systems
2211 that pair it with calloc, presumably for odd historical reasons.
2212
2213*/
2214
2215#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
2216#if __STD_C
2217void cfree(Void_t *mem)
2218#else
2219void cfree(mem) Void_t *mem;
2220#endif
2221{
2222 fREe(mem);
2223}
2224#endif
2225
d93041a4 2226
151493a8
EU
2227#ifdef MCHECK_HEAP_PROTECTION
2228 #include "mcheck_core.inc.h"
2229 #if !__STD_C
2230 #error "must have __STD_C"
2231 #endif
2232
2233Void_t *mALLOc(size_t bytes)
2234{
18c1bfaf 2235 mcheck_pedantic_prehook();
151493a8
EU
2236 size_t fullsz = mcheck_alloc_prehook(bytes);
2237 void *p = mALLOc_impl(fullsz);
2238
2239 if (!p)
2240 return p;
2241 return mcheck_alloc_posthook(p, bytes);
2242}
2243
2244void fREe(Void_t *mem) { fREe_impl(mcheck_free_prehook(mem)); }
2245
2246Void_t *rEALLOc(Void_t *oldmem, size_t bytes)
2247{
18c1bfaf 2248 mcheck_pedantic_prehook();
151493a8
EU
2249 if (bytes == 0) {
2250 if (oldmem)
2251 fREe(oldmem);
2252 return NULL;
2253 }
2254
2255 if (oldmem == NULL)
2256 return mALLOc(bytes);
2257
2258 void *p = mcheck_reallocfree_prehook(oldmem);
2259 size_t newsz = mcheck_alloc_prehook(bytes);
2260
2261 p = rEALLOc_impl(p, newsz);
2262 if (!p)
2263 return p;
2264 return mcheck_alloc_noclean_posthook(p, bytes);
2265}
2266
2267Void_t *mEMALIGn(size_t alignment, size_t bytes)
2268{
18c1bfaf 2269 mcheck_pedantic_prehook();
ae838768
EU
2270 size_t fullsz = mcheck_memalign_prehook(alignment, bytes);
2271 void *p = mEMALIGn_impl(alignment, fullsz);
2272
2273 if (!p)
2274 return p;
2275 return mcheck_memalign_posthook(alignment, p, bytes);
151493a8
EU
2276}
2277
2278// pvALLOc, vALLOc - redirect to mEMALIGn, defined here, so they need no wrapping.
2279
2280Void_t *cALLOc(size_t n, size_t elem_size)
2281{
18c1bfaf 2282 mcheck_pedantic_prehook();
151493a8
EU
2283 // NB: here is no overflow check.
2284 size_t fullsz = mcheck_alloc_prehook(n * elem_size);
2285 void *p = cALLOc_impl(1, fullsz);
2286
2287 if (!p)
2288 return p;
2289 return mcheck_alloc_noclean_posthook(p, n * elem_size);
2290}
2291
2292// mcheck API {
18c1bfaf
EU
2293int mcheck_pedantic(mcheck_abortfunc_t f)
2294{
2295 mcheck_initialize(f, 1);
2296 return 0;
2297}
2298
151493a8
EU
2299int mcheck(mcheck_abortfunc_t f)
2300{
2301 mcheck_initialize(f, 0);
2302 return 0;
2303}
2304
18c1bfaf
EU
2305void mcheck_check_all(void) { mcheck_pedantic_check(); }
2306
151493a8
EU
2307enum mcheck_status mprobe(void *__ptr) { return mcheck_mprobe(__ptr); }
2308// mcheck API }
2309#endif
2310
217c9dad
WD
2311
2312/*
2313
2314 Malloc_trim gives memory back to the system (via negative
2315 arguments to sbrk) if there is unused memory at the `high' end of
2316 the malloc pool. You can call this after freeing large blocks of
2317 memory to potentially reduce the system-level memory requirements
2318 of a program. However, it cannot guarantee to reduce memory. Under
2319 some allocation patterns, some large free blocks of memory will be
2320 locked between two used chunks, so they cannot be given back to
2321 the system.
2322
2323 The `pad' argument to malloc_trim represents the amount of free
2324 trailing space to leave untrimmed. If this argument is zero,
2325 only the minimum amount of memory to maintain internal data
2326 structures will be left (one page or less). Non-zero arguments
2327 can be supplied to maintain enough trailing space to service
2328 future expected allocations without having to re-obtain memory
2329 from the system.
2330
2331 Malloc_trim returns 1 if it actually released any memory, else 0.
2332
2333*/
2334
2335#if __STD_C
2336int malloc_trim(size_t pad)
2337#else
2338int malloc_trim(pad) size_t pad;
2339#endif
2340{
2341 long top_size; /* Amount of top-most memory */
2342 long extra; /* Amount to release */
2343 char* current_brk; /* address returned by pre-check sbrk call */
2344 char* new_brk; /* address returned by negative sbrk call */
2345
2346 unsigned long pagesz = malloc_getpagesize;
2347
2348 top_size = chunksize(top);
2349 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
2350
2351 if (extra < (long)pagesz) /* Not enough memory to release */
2352 return 0;
2353
2354 else
2355 {
2356 /* Test to make sure no one else called sbrk */
2357 current_brk = (char*)(MORECORE (0));
2358 if (current_brk != (char*)(top) + top_size)
2359 return 0; /* Apparently we don't own memory; must fail */
2360
2361 else
2362 {
2363 new_brk = (char*)(MORECORE (-extra));
2364
2365 if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
2366 {
8bde7f77
WD
2367 /* Try to figure out what we have */
2368 current_brk = (char*)(MORECORE (0));
2369 top_size = current_brk - (char*)top;
2370 if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
2371 {
2372 sbrked_mem = current_brk - sbrk_base;
2373 set_head(top, top_size | PREV_INUSE);
2374 }
2375 check_chunk(top);
2376 return 0;
217c9dad
WD
2377 }
2378
2379 else
2380 {
8bde7f77
WD
2381 /* Success. Adjust top accordingly. */
2382 set_head(top, (top_size - extra) | PREV_INUSE);
2383 sbrked_mem -= extra;
2384 check_chunk(top);
2385 return 1;
217c9dad
WD
2386 }
2387 }
2388 }
2389}
2390
d93041a4 2391
217c9dad
WD
2392
2393/*
2394 malloc_usable_size:
2395
2396 This routine tells you how many bytes you can actually use in an
2397 allocated chunk, which may be more than you requested (although
2398 often not). You can use this many bytes without worrying about
2399 overwriting other allocated objects. Not a particularly great
2400 programming practice, but still sometimes useful.
2401
2402*/
2403
2404#if __STD_C
2405size_t malloc_usable_size(Void_t* mem)
2406#else
2407size_t malloc_usable_size(mem) Void_t* mem;
2408#endif
2409{
2410 mchunkptr p;
199adb60 2411 if (mem == NULL)
217c9dad
WD
2412 return 0;
2413 else
2414 {
2415 p = mem2chunk(mem);
2416 if(!chunk_is_mmapped(p))
2417 {
2418 if (!inuse(p)) return 0;
2419 check_inuse_chunk(p);
2420 return chunksize(p) - SIZE_SZ;
2421 }
2422 return chunksize(p) - 2*SIZE_SZ;
2423 }
2424}
2425
2426
d93041a4 2427
217c9dad
WD
2428
2429/* Utility to update current_mallinfo for malloc_stats and mallinfo() */
2430
ea882baf 2431#ifdef DEBUG
f88d48cc 2432static void malloc_update_mallinfo(void)
217c9dad
WD
2433{
2434 int i;
2435 mbinptr b;
2436 mchunkptr p;
2437#ifdef DEBUG
2438 mchunkptr q;
2439#endif
2440
2441 INTERNAL_SIZE_T avail = chunksize(top);
2442 int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;
2443
2444 for (i = 1; i < NAV; ++i)
2445 {
2446 b = bin_at(i);
2447 for (p = last(b); p != b; p = p->bk)
2448 {
2449#ifdef DEBUG
2450 check_free_chunk(p);
2451 for (q = next_chunk(p);
8bde7f77
WD
2452 q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
2453 q = next_chunk(q))
2454 check_inuse_chunk(q);
217c9dad
WD
2455#endif
2456 avail += chunksize(p);
2457 navail++;
2458 }
2459 }
2460
2461 current_mallinfo.ordblks = navail;
2462 current_mallinfo.uordblks = sbrked_mem - avail;
2463 current_mallinfo.fordblks = avail;
2464 current_mallinfo.hblks = n_mmaps;
2465 current_mallinfo.hblkhd = mmapped_mem;
2466 current_mallinfo.keepcost = chunksize(top);
2467
2468}
ea882baf 2469#endif /* DEBUG */
217c9dad 2470
d93041a4 2471
217c9dad
WD
2472
2473/*
2474
2475 malloc_stats:
2476
2477 Prints on the amount of space obtain from the system (both
2478 via sbrk and mmap), the maximum amount (which may be more than
2479 current if malloc_trim and/or munmap got called), the maximum
2480 number of simultaneous mmap regions used, and the current number
2481 of bytes allocated via malloc (or realloc, etc) but not yet
2482 freed. (Note that this is the number of bytes allocated, not the
2483 number requested. It will be larger than the number requested
2484 because of alignment and bookkeeping overhead.)
2485
2486*/
2487
ea882baf 2488#ifdef DEBUG
f88d48cc 2489void malloc_stats(void)
217c9dad
WD
2490{
2491 malloc_update_mallinfo();
2492 printf("max system bytes = %10u\n",
8bde7f77 2493 (unsigned int)(max_total_mem));
217c9dad 2494 printf("system bytes = %10u\n",
8bde7f77 2495 (unsigned int)(sbrked_mem + mmapped_mem));
217c9dad 2496 printf("in use bytes = %10u\n",
8bde7f77 2497 (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
217c9dad
WD
2498#if HAVE_MMAP
2499 printf("max mmap regions = %10u\n",
8bde7f77 2500 (unsigned int)max_n_mmaps);
217c9dad
WD
2501#endif
2502}
ea882baf 2503#endif /* DEBUG */
217c9dad
WD
2504
2505/*
2506 mallinfo returns a copy of updated current mallinfo.
2507*/
2508
ea882baf 2509#ifdef DEBUG
f88d48cc 2510struct mallinfo mALLINFo(void)
217c9dad
WD
2511{
2512 malloc_update_mallinfo();
2513 return current_mallinfo;
2514}
ea882baf 2515#endif /* DEBUG */
217c9dad
WD
2516
2517
d93041a4 2518
217c9dad
WD
2519
2520/*
2521 mallopt:
2522
2523 mallopt is the general SVID/XPG interface to tunable parameters.
2524 The format is to provide a (parameter-number, parameter-value) pair.
2525 mallopt then sets the corresponding parameter to the argument
2526 value if it can (i.e., so long as the value is meaningful),
2527 and returns 1 if successful else 0.
2528
2529 See descriptions of tunable parameters above.
2530
2531*/
2532
2533#if __STD_C
2534int mALLOPt(int param_number, int value)
2535#else
2536int mALLOPt(param_number, value) int param_number; int value;
2537#endif
2538{
2539 switch(param_number)
2540 {
2541 case M_TRIM_THRESHOLD:
2542 trim_threshold = value; return 1;
2543 case M_TOP_PAD:
2544 top_pad = value; return 1;
2545 case M_MMAP_THRESHOLD:
2546 mmap_threshold = value; return 1;
2547 case M_MMAP_MAX:
2548#if HAVE_MMAP
2549 n_mmaps_max = value; return 1;
2550#else
2551 if (value != 0) return 0; else n_mmaps_max = value; return 1;
2552#endif
2553
2554 default:
2555 return 0;
2556 }
2557}
2558
fb5cf7f1
SG
2559int initf_malloc(void)
2560{
3d6d5075 2561#if CONFIG_IS_ENABLED(SYS_MALLOC_F)
fb5cf7f1 2562 assert(gd->malloc_base); /* Set up by crt0.S */
f1896c45 2563 gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
fb5cf7f1
SG
2564 gd->malloc_ptr = 0;
2565#endif
2566
2567 return 0;
2568}
2569
62d63838
SG
2570void malloc_enable_testing(int max_allocs)
2571{
2572 malloc_testing = true;
2573 malloc_max_allocs = max_allocs;
2574}
2575
2576void malloc_disable_testing(void)
2577{
2578 malloc_testing = false;
2579}
2580
217c9dad
WD
2581/*
2582
2583History:
2584
2585 V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
2586 * return null for negative arguments
2587 * Added Several WIN32 cleanups from Martin C. Fong <[email protected]>
8bde7f77
WD
2588 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
2589 (e.g. WIN32 platforms)
2590 * Cleanup up header file inclusion for WIN32 platforms
2591 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
2592 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
2593 memory allocation routines
2594 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
2595 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
217c9dad 2596 usage of 'assert' in non-WIN32 code
8bde7f77
WD
2597 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
2598 avoid infinite loop
217c9dad
WD
2599 * Always call 'fREe()' rather than 'free()'
2600
2601 V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
2602 * Fixed ordering problem with boundary-stamping
2603
2604 V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
2605 * Added pvalloc, as recommended by H.J. Liu
2606 * Added 64bit pointer support mainly from Wolfram Gloger
2607 * Added anonymously donated WIN32 sbrk emulation
2608 * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
2609 * malloc_extend_top: fix mask error that caused wastage after
8bde7f77 2610 foreign sbrks
217c9dad
WD
2611 * Add linux mremap support code from HJ Liu
2612
2613 V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
2614 * Integrated most documentation with the code.
2615 * Add support for mmap, with help from
8bde7f77 2616 Wolfram Gloger ([email protected]).
217c9dad
WD
2617 * Use last_remainder in more cases.
2618 * Pack bins using idea from [email protected]
2619 * Use ordered bins instead of best-fit threshhold
2620 * Eliminate block-local decls to simplify tracing and debugging.
2621 * Support another case of realloc via move into top
2622 * Fix error occuring when initial sbrk_base not word-aligned.
2623 * Rely on page size for units instead of SBRK_UNIT to
8bde7f77 2624 avoid surprises about sbrk alignment conventions.
217c9dad 2625 * Add mallinfo, mallopt. Thanks to Raymond Nijssen
8bde7f77 2626 ([email protected]) for the suggestion.
217c9dad
WD
2627 * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
2628 * More precautions for cases where other routines call sbrk,
8bde7f77 2629 courtesy of Wolfram Gloger ([email protected]).
217c9dad 2630 * Added macros etc., allowing use in linux libc from
8bde7f77 2631 H.J. Lu ([email protected])
217c9dad
WD
2632 * Inverted this history list
2633
2634 V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
2635 * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
2636 * Removed all preallocation code since under current scheme
8bde7f77
WD
2637 the work required to undo bad preallocations exceeds
2638 the work saved in good cases for most test programs.
217c9dad 2639 * No longer use return list or unconsolidated bins since
8bde7f77
WD
2640 no scheme using them consistently outperforms those that don't
2641 given above changes.
217c9dad
WD
2642 * Use best fit for very large chunks to prevent some worst-cases.
2643 * Added some support for debugging
2644
2645 V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
2646 * Removed footers when chunks are in use. Thanks to
8bde7f77 2647 Paul Wilson ([email protected]) for the suggestion.
217c9dad
WD
2648
2649 V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
2650 * Added malloc_trim, with help from Wolfram Gloger
8bde7f77 2651 ([email protected]).
217c9dad
WD
2652
2653 V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
2654
2655 V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
2656 * realloc: try to expand in both directions
2657 * malloc: swap order of clean-bin strategy;
2658 * realloc: only conditionally expand backwards
2659 * Try not to scavenge used bins
2660 * Use bin counts as a guide to preallocation
2661 * Occasionally bin return list chunks in first scan
2662 * Add a few optimizations from [email protected]
2663
2664 V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
2665 * faster bin computation & slightly different binning
2666 * merged all consolidations to one part of malloc proper
8bde7f77 2667 (eliminating old malloc_find_space & malloc_clean_bin)
217c9dad
WD
2668 * Scan 2 returns chunks (not just 1)
2669 * Propagate failure in realloc if malloc returns 0
2670 * Add stuff to allow compilation on non-ANSI compilers
8bde7f77 2671 from [email protected]
217c9dad
WD
2672
2673 V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
2674 * removed potential for odd address access in prev_chunk
2675 * removed dependency on getpagesize.h
2676 * misc cosmetics and a bit more internal documentation
2677 * anticosmetics: mangled names in macros to evade debugger strangeness
2678 * tested on sparc, hp-700, dec-mips, rs6000
8bde7f77
WD
2679 with gcc & native cc (hp, dec only) allowing
2680 Detlefs & Zorn comparison study (in SIGPLAN Notices.)
217c9dad
WD
2681
2682 Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
2683 * Based loosely on libg++-1.2X malloc. (It retains some of the overall
8bde7f77 2684 structure of old version, but most details differ.)
217c9dad
WD
2685
2686*/
This page took 0.742975 seconds and 4 git commands to generate.