]>
Commit | Line | Data |
---|---|---|
81673e9a KG |
1 | #include <common.h> |
2 | ||
6d7601e7 SG |
3 | #ifdef CONFIG_SANDBOX |
4 | #define DEBUG | |
5 | #endif | |
6 | ||
217c9dad WD |
7 | #if 0 /* Moved to malloc.h */ |
8 | /* ---------- To make a malloc.h, start cutting here ------------ */ | |
9 | ||
10 | /* | |
11 | A version of malloc/free/realloc written by Doug Lea and released to the | |
12 | public domain. Send questions/comments/complaints/performance data | |
13 | to [email protected] | |
14 | ||
15 | * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) | |
16 | ||
17 | Note: There may be an updated version of this malloc obtainable at | |
8bde7f77 WD |
18 | ftp://g.oswego.edu/pub/misc/malloc.c |
19 | Check before installing! | |
217c9dad WD |
20 | |
21 | * Why use this malloc? | |
22 | ||
23 | This is not the fastest, most space-conserving, most portable, or | |
24 | most tunable malloc ever written. However it is among the fastest | |
25 | while also being among the most space-conserving, portable and tunable. | |
26 | Consistent balance across these factors results in a good general-purpose | |
27 | allocator. For a high-level description, see | |
28 | http://g.oswego.edu/dl/html/malloc.html | |
29 | ||
30 | * Synopsis of public routines | |
31 | ||
32 | (Much fuller descriptions are contained in the program documentation below.) | |
33 | ||
34 | malloc(size_t n); | |
35 | Return a pointer to a newly allocated chunk of at least n bytes, or null | |
36 | if no space is available. | |
37 | free(Void_t* p); | |
38 | Release the chunk of memory pointed to by p, or no effect if p is null. | |
39 | realloc(Void_t* p, size_t n); | |
40 | Return a pointer to a chunk of size n that contains the same data | |
41 | as does chunk p up to the minimum of (n, p's size) bytes, or null | |
42 | if no space is available. The returned pointer may or may not be | |
43 | the same as p. If p is null, equivalent to malloc. Unless the | |
44 | #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a | |
45 | size argument of zero (re)allocates a minimum-sized chunk. | |
46 | memalign(size_t alignment, size_t n); | |
47 | Return a pointer to a newly allocated chunk of n bytes, aligned | |
48 | in accord with the alignment argument, which must be a power of | |
49 | two. | |
50 | valloc(size_t n); | |
51 | Equivalent to memalign(pagesize, n), where pagesize is the page | |
52 | size of the system (or as near to this as can be figured out from | |
53 | all the includes/defines below.) | |
54 | pvalloc(size_t n); | |
55 | Equivalent to valloc(minimum-page-that-holds(n)), that is, | |
56 | round up n to nearest pagesize. | |
57 | calloc(size_t unit, size_t quantity); | |
58 | Returns a pointer to quantity * unit bytes, with all locations | |
59 | set to zero. | |
60 | cfree(Void_t* p); | |
61 | Equivalent to free(p). | |
62 | malloc_trim(size_t pad); | |
63 | Release all but pad bytes of freed top-most memory back | |
64 | to the system. Return 1 if successful, else 0. | |
65 | malloc_usable_size(Void_t* p); | |
66 | Report the number usable allocated bytes associated with allocated | |
67 | chunk p. This may or may not report more bytes than were requested, | |
68 | due to alignment and minimum size constraints. | |
69 | malloc_stats(); | |
70 | Prints brief summary statistics. | |
71 | mallinfo() | |
72 | Returns (by copy) a struct containing various summary statistics. | |
73 | mallopt(int parameter_number, int parameter_value) | |
74 | Changes one of the tunable parameters described below. Returns | |
75 | 1 if successful in changing the parameter, else 0. | |
76 | ||
77 | * Vital statistics: | |
78 | ||
79 | Alignment: 8-byte | |
80 | 8 byte alignment is currently hardwired into the design. This | |
81 | seems to suffice for all current machines and C compilers. | |
82 | ||
83 | Assumed pointer representation: 4 or 8 bytes | |
84 | Code for 8-byte pointers is untested by me but has worked | |
85 | reliably by Wolfram Gloger, who contributed most of the | |
86 | changes supporting this. | |
87 | ||
88 | Assumed size_t representation: 4 or 8 bytes | |
89 | Note that size_t is allowed to be 4 bytes even if pointers are 8. | |
90 | ||
91 | Minimum overhead per allocated chunk: 4 or 8 bytes | |
92 | Each malloced chunk has a hidden overhead of 4 bytes holding size | |
93 | and status information. | |
94 | ||
95 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) | |
8bde7f77 | 96 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
217c9dad WD |
97 | |
98 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte | |
99 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are | |
100 | needed; 4 (8) for a trailing size field | |
101 | and 8 (16) bytes for free list pointers. Thus, the minimum | |
102 | allocatable size is 16/24/32 bytes. | |
103 | ||
104 | Even a request for zero bytes (i.e., malloc(0)) returns a | |
105 | pointer to something of the minimum allocatable size. | |
106 | ||
107 | Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes | |
8bde7f77 | 108 | 8-byte size_t: 2^63 - 16 bytes |
217c9dad WD |
109 | |
110 | It is assumed that (possibly signed) size_t bit values suffice to | |
111 | represent chunk sizes. `Possibly signed' is due to the fact | |
112 | that `size_t' may be defined on a system as either a signed or | |
113 | an unsigned type. To be conservative, values that would appear | |
114 | as negative numbers are avoided. | |
115 | Requests for sizes with a negative sign bit when the request | |
116 | size is treaded as a long will return null. | |
117 | ||
118 | Maximum overhead wastage per allocated chunk: normally 15 bytes | |
119 | ||
120 | Alignnment demands, plus the minimum allocatable size restriction | |
121 | make the normal worst-case wastage 15 bytes (i.e., up to 15 | |
122 | more bytes will be allocated than were requested in malloc), with | |
123 | two exceptions: | |
8bde7f77 WD |
124 | 1. Because requests for zero bytes allocate non-zero space, |
125 | the worst case wastage for a request of zero bytes is 24 bytes. | |
126 | 2. For requests >= mmap_threshold that are serviced via | |
127 | mmap(), the worst case wastage is 8 bytes plus the remainder | |
128 | from a system page (the minimal mmap unit); typically 4096 bytes. | |
217c9dad WD |
129 | |
130 | * Limitations | |
131 | ||
132 | Here are some features that are NOT currently supported | |
133 | ||
134 | * No user-definable hooks for callbacks and the like. | |
135 | * No automated mechanism for fully checking that all accesses | |
136 | to malloced memory stay within their bounds. | |
137 | * No support for compaction. | |
138 | ||
139 | * Synopsis of compile-time options: | |
140 | ||
141 | People have reported using previous versions of this malloc on all | |
142 | versions of Unix, sometimes by tweaking some of the defines | |
143 | below. It has been tested most extensively on Solaris and | |
144 | Linux. It is also reported to work on WIN32 platforms. | |
145 | People have also reported adapting this malloc for use in | |
146 | stand-alone embedded systems. | |
147 | ||
148 | The implementation is in straight, hand-tuned ANSI C. Among other | |
149 | consequences, it uses a lot of macros. Because of this, to be at | |
150 | all usable, this code should be compiled using an optimizing compiler | |
151 | (for example gcc -O2) that can simplify expressions and control | |
152 | paths. | |
153 | ||
154 | __STD_C (default: derived from C compiler defines) | |
155 | Nonzero if using ANSI-standard C compiler, a C++ compiler, or | |
156 | a C compiler sufficiently close to ANSI to get away with it. | |
157 | DEBUG (default: NOT defined) | |
158 | Define to enable debugging. Adds fairly extensive assertion-based | |
159 | checking to help track down memory errors, but noticeably slows down | |
160 | execution. | |
161 | REALLOC_ZERO_BYTES_FREES (default: NOT defined) | |
162 | Define this if you think that realloc(p, 0) should be equivalent | |
163 | to free(p). Otherwise, since malloc returns a unique pointer for | |
164 | malloc(0), so does realloc(p, 0). | |
165 | HAVE_MEMCPY (default: defined) | |
166 | Define if you are not otherwise using ANSI STD C, but still | |
167 | have memcpy and memset in your C library and want to use them. | |
168 | Otherwise, simple internal versions are supplied. | |
169 | USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) | |
170 | Define as 1 if you want the C library versions of memset and | |
171 | memcpy called in realloc and calloc (otherwise macro versions are used). | |
172 | At least on some platforms, the simple macro versions usually | |
173 | outperform libc versions. | |
174 | HAVE_MMAP (default: defined as 1) | |
175 | Define to non-zero to optionally make malloc() use mmap() to | |
176 | allocate very large blocks. | |
177 | HAVE_MREMAP (default: defined as 0 unless Linux libc set) | |
178 | Define to non-zero to optionally make realloc() use mremap() to | |
179 | reallocate very large blocks. | |
180 | malloc_getpagesize (default: derived from system #includes) | |
181 | Either a constant or routine call returning the system page size. | |
182 | HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) | |
183 | Optionally define if you are on a system with a /usr/include/malloc.h | |
184 | that declares struct mallinfo. It is not at all necessary to | |
185 | define this even if you do, but will ensure consistency. | |
186 | INTERNAL_SIZE_T (default: size_t) | |
187 | Define to a 32-bit type (probably `unsigned int') if you are on a | |
188 | 64-bit machine, yet do not want or need to allow malloc requests of | |
189 | greater than 2^31 to be handled. This saves space, especially for | |
190 | very small chunks. | |
191 | INTERNAL_LINUX_C_LIB (default: NOT defined) | |
192 | Defined only when compiled as part of Linux libc. | |
193 | Also note that there is some odd internal name-mangling via defines | |
194 | (for example, internally, `malloc' is named `mALLOc') needed | |
195 | when compiling in this case. These look funny but don't otherwise | |
196 | affect anything. | |
197 | WIN32 (default: undefined) | |
198 | Define this on MS win (95, nt) platforms to compile in sbrk emulation. | |
199 | LACKS_UNISTD_H (default: undefined if not WIN32) | |
200 | Define this if your system does not have a <unistd.h>. | |
201 | LACKS_SYS_PARAM_H (default: undefined if not WIN32) | |
202 | Define this if your system does not have a <sys/param.h>. | |
203 | MORECORE (default: sbrk) | |
204 | The name of the routine to call to obtain more memory from the system. | |
205 | MORECORE_FAILURE (default: -1) | |
206 | The value returned upon failure of MORECORE. | |
207 | MORECORE_CLEARS (default 1) | |
472d5460 | 208 | true (1) if the routine mapped to MORECORE zeroes out memory (which |
217c9dad WD |
209 | holds for sbrk). |
210 | DEFAULT_TRIM_THRESHOLD | |
211 | DEFAULT_TOP_PAD | |
212 | DEFAULT_MMAP_THRESHOLD | |
213 | DEFAULT_MMAP_MAX | |
214 | Default values of tunable parameters (described in detail below) | |
215 | controlling interaction with host system routines (sbrk, mmap, etc). | |
216 | These values may also be changed dynamically via mallopt(). The | |
217 | preset defaults are those that give best performance for typical | |
218 | programs/systems. | |
219 | USE_DL_PREFIX (default: undefined) | |
220 | Prefix all public routines with the string 'dl'. Useful to | |
221 | quickly avoid procedure declaration conflicts and linker symbol | |
222 | conflicts with existing memory allocation routines. | |
223 | ||
224 | ||
225 | */ | |
226 | ||
d93041a4 | 227 | |
217c9dad | 228 | |
217c9dad WD |
229 | /* Preliminaries */ |
230 | ||
231 | #ifndef __STD_C | |
232 | #ifdef __STDC__ | |
233 | #define __STD_C 1 | |
234 | #else | |
235 | #if __cplusplus | |
236 | #define __STD_C 1 | |
237 | #else | |
238 | #define __STD_C 0 | |
239 | #endif /*__cplusplus*/ | |
240 | #endif /*__STDC__*/ | |
241 | #endif /*__STD_C*/ | |
242 | ||
243 | #ifndef Void_t | |
244 | #if (__STD_C || defined(WIN32)) | |
245 | #define Void_t void | |
246 | #else | |
247 | #define Void_t char | |
248 | #endif | |
249 | #endif /*Void_t*/ | |
250 | ||
251 | #if __STD_C | |
252 | #include <stddef.h> /* for size_t */ | |
253 | #else | |
254 | #include <sys/types.h> | |
255 | #endif | |
256 | ||
257 | #ifdef __cplusplus | |
258 | extern "C" { | |
259 | #endif | |
260 | ||
261 | #include <stdio.h> /* needed for malloc_stats */ | |
262 | ||
263 | ||
264 | /* | |
265 | Compile-time options | |
266 | */ | |
267 | ||
268 | ||
269 | /* | |
270 | Debugging: | |
271 | ||
272 | Because freed chunks may be overwritten with link fields, this | |
273 | malloc will often die when freed memory is overwritten by user | |
274 | programs. This can be very effective (albeit in an annoying way) | |
275 | in helping track down dangling pointers. | |
276 | ||
277 | If you compile with -DDEBUG, a number of assertion checks are | |
278 | enabled that will catch more memory errors. You probably won't be | |
279 | able to make much sense of the actual assertion errors, but they | |
280 | should help you locate incorrectly overwritten memory. The | |
281 | checking is fairly extensive, and will slow down execution | |
282 | noticeably. Calling malloc_stats or mallinfo with DEBUG set will | |
283 | attempt to check every non-mmapped allocated and free chunk in the | |
284 | course of computing the summmaries. (By nature, mmapped regions | |
285 | cannot be checked very much automatically.) | |
286 | ||
287 | Setting DEBUG may also be helpful if you are trying to modify | |
288 | this code. The assertions in the check routines spell out in more | |
289 | detail the assumptions and invariants underlying the algorithms. | |
290 | ||
291 | */ | |
292 | ||
217c9dad WD |
293 | /* |
294 | INTERNAL_SIZE_T is the word-size used for internal bookkeeping | |
295 | of chunk sizes. On a 64-bit machine, you can reduce malloc | |
296 | overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' | |
297 | at the expense of not being able to handle requests greater than | |
298 | 2^31. This limitation is hardly ever a concern; you are encouraged | |
299 | to set this. However, the default version is the same as size_t. | |
300 | */ | |
301 | ||
302 | #ifndef INTERNAL_SIZE_T | |
303 | #define INTERNAL_SIZE_T size_t | |
304 | #endif | |
305 | ||
306 | /* | |
307 | REALLOC_ZERO_BYTES_FREES should be set if a call to | |
308 | realloc with zero bytes should be the same as a call to free. | |
309 | Some people think it should. Otherwise, since this malloc | |
310 | returns a unique pointer for malloc(0), so does realloc(p, 0). | |
311 | */ | |
312 | ||
313 | ||
314 | /* #define REALLOC_ZERO_BYTES_FREES */ | |
315 | ||
316 | ||
317 | /* | |
318 | WIN32 causes an emulation of sbrk to be compiled in | |
319 | mmap-based options are not currently supported in WIN32. | |
320 | */ | |
321 | ||
322 | /* #define WIN32 */ | |
323 | #ifdef WIN32 | |
324 | #define MORECORE wsbrk | |
325 | #define HAVE_MMAP 0 | |
326 | ||
327 | #define LACKS_UNISTD_H | |
328 | #define LACKS_SYS_PARAM_H | |
329 | ||
330 | /* | |
331 | Include 'windows.h' to get the necessary declarations for the | |
332 | Microsoft Visual C++ data structures and routines used in the 'sbrk' | |
333 | emulation. | |
334 | ||
335 | Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft | |
336 | Visual C++ header files are included. | |
337 | */ | |
338 | #define WIN32_LEAN_AND_MEAN | |
339 | #include <windows.h> | |
340 | #endif | |
341 | ||
342 | ||
343 | /* | |
344 | HAVE_MEMCPY should be defined if you are not otherwise using | |
345 | ANSI STD C, but still have memcpy and memset in your C library | |
346 | and want to use them in calloc and realloc. Otherwise simple | |
347 | macro versions are defined here. | |
348 | ||
349 | USE_MEMCPY should be defined as 1 if you actually want to | |
350 | have memset and memcpy called. People report that the macro | |
351 | versions are often enough faster than libc versions on many | |
352 | systems that it is better to use them. | |
353 | ||
354 | */ | |
355 | ||
356 | #define HAVE_MEMCPY | |
357 | ||
358 | #ifndef USE_MEMCPY | |
359 | #ifdef HAVE_MEMCPY | |
360 | #define USE_MEMCPY 1 | |
361 | #else | |
362 | #define USE_MEMCPY 0 | |
363 | #endif | |
364 | #endif | |
365 | ||
366 | #if (__STD_C || defined(HAVE_MEMCPY)) | |
367 | ||
368 | #if __STD_C | |
369 | void* memset(void*, int, size_t); | |
370 | void* memcpy(void*, const void*, size_t); | |
371 | #else | |
372 | #ifdef WIN32 | |
8bde7f77 WD |
373 | /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */ |
374 | /* 'windows.h' */ | |
217c9dad WD |
375 | #else |
376 | Void_t* memset(); | |
377 | Void_t* memcpy(); | |
378 | #endif | |
379 | #endif | |
380 | #endif | |
381 | ||
382 | #if USE_MEMCPY | |
383 | ||
384 | /* The following macros are only invoked with (2n+1)-multiples of | |
385 | INTERNAL_SIZE_T units, with a positive integer n. This is exploited | |
386 | for fast inline execution when n is small. */ | |
387 | ||
388 | #define MALLOC_ZERO(charp, nbytes) \ | |
389 | do { \ | |
390 | INTERNAL_SIZE_T mzsz = (nbytes); \ | |
391 | if(mzsz <= 9*sizeof(mzsz)) { \ | |
392 | INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ | |
393 | if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ | |
8bde7f77 | 394 | *mz++ = 0; \ |
217c9dad | 395 | if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ |
8bde7f77 WD |
396 | *mz++ = 0; \ |
397 | if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ | |
398 | *mz++ = 0; }}} \ | |
399 | *mz++ = 0; \ | |
400 | *mz++ = 0; \ | |
401 | *mz = 0; \ | |
217c9dad WD |
402 | } else memset((charp), 0, mzsz); \ |
403 | } while(0) | |
404 | ||
405 | #define MALLOC_COPY(dest,src,nbytes) \ | |
406 | do { \ | |
407 | INTERNAL_SIZE_T mcsz = (nbytes); \ | |
408 | if(mcsz <= 9*sizeof(mcsz)) { \ | |
409 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ | |
410 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ | |
411 | if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ | |
8bde7f77 | 412 | *mcdst++ = *mcsrc++; \ |
217c9dad | 413 | if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ |
8bde7f77 WD |
414 | *mcdst++ = *mcsrc++; \ |
415 | if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ | |
416 | *mcdst++ = *mcsrc++; }}} \ | |
417 | *mcdst++ = *mcsrc++; \ | |
418 | *mcdst++ = *mcsrc++; \ | |
419 | *mcdst = *mcsrc ; \ | |
217c9dad WD |
420 | } else memcpy(dest, src, mcsz); \ |
421 | } while(0) | |
422 | ||
423 | #else /* !USE_MEMCPY */ | |
424 | ||
425 | /* Use Duff's device for good zeroing/copying performance. */ | |
426 | ||
427 | #define MALLOC_ZERO(charp, nbytes) \ | |
428 | do { \ | |
429 | INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ | |
430 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ | |
431 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ | |
432 | switch (mctmp) { \ | |
433 | case 0: for(;;) { *mzp++ = 0; \ | |
434 | case 7: *mzp++ = 0; \ | |
435 | case 6: *mzp++ = 0; \ | |
436 | case 5: *mzp++ = 0; \ | |
437 | case 4: *mzp++ = 0; \ | |
438 | case 3: *mzp++ = 0; \ | |
439 | case 2: *mzp++ = 0; \ | |
440 | case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ | |
441 | } \ | |
442 | } while(0) | |
443 | ||
444 | #define MALLOC_COPY(dest,src,nbytes) \ | |
445 | do { \ | |
446 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ | |
447 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ | |
448 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ | |
449 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ | |
450 | switch (mctmp) { \ | |
451 | case 0: for(;;) { *mcdst++ = *mcsrc++; \ | |
452 | case 7: *mcdst++ = *mcsrc++; \ | |
453 | case 6: *mcdst++ = *mcsrc++; \ | |
454 | case 5: *mcdst++ = *mcsrc++; \ | |
455 | case 4: *mcdst++ = *mcsrc++; \ | |
456 | case 3: *mcdst++ = *mcsrc++; \ | |
457 | case 2: *mcdst++ = *mcsrc++; \ | |
458 | case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ | |
459 | } \ | |
460 | } while(0) | |
461 | ||
462 | #endif | |
463 | ||
464 | ||
465 | /* | |
466 | Define HAVE_MMAP to optionally make malloc() use mmap() to | |
467 | allocate very large blocks. These will be returned to the | |
468 | operating system immediately after a free(). | |
469 | */ | |
470 | ||
471 | #ifndef HAVE_MMAP | |
472 | #define HAVE_MMAP 1 | |
473 | #endif | |
474 | ||
475 | /* | |
476 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate | |
477 | large blocks. This is currently only possible on Linux with | |
478 | kernel versions newer than 1.3.77. | |
479 | */ | |
480 | ||
481 | #ifndef HAVE_MREMAP | |
482 | #ifdef INTERNAL_LINUX_C_LIB | |
483 | #define HAVE_MREMAP 1 | |
484 | #else | |
485 | #define HAVE_MREMAP 0 | |
486 | #endif | |
487 | #endif | |
488 | ||
489 | #if HAVE_MMAP | |
490 | ||
491 | #include <unistd.h> | |
492 | #include <fcntl.h> | |
493 | #include <sys/mman.h> | |
494 | ||
495 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) | |
496 | #define MAP_ANONYMOUS MAP_ANON | |
497 | #endif | |
498 | ||
499 | #endif /* HAVE_MMAP */ | |
500 | ||
501 | /* | |
502 | Access to system page size. To the extent possible, this malloc | |
503 | manages memory from the system in page-size units. | |
504 | ||
505 | The following mechanics for getpagesize were adapted from | |
506 | bsd/gnu getpagesize.h | |
507 | */ | |
508 | ||
509 | #ifndef LACKS_UNISTD_H | |
510 | # include <unistd.h> | |
511 | #endif | |
512 | ||
513 | #ifndef malloc_getpagesize | |
514 | # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ | |
515 | # ifndef _SC_PAGE_SIZE | |
516 | # define _SC_PAGE_SIZE _SC_PAGESIZE | |
517 | # endif | |
518 | # endif | |
519 | # ifdef _SC_PAGE_SIZE | |
520 | # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) | |
521 | # else | |
522 | # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) | |
523 | extern size_t getpagesize(); | |
524 | # define malloc_getpagesize getpagesize() | |
525 | # else | |
526 | # ifdef WIN32 | |
527 | # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ | |
528 | # else | |
529 | # ifndef LACKS_SYS_PARAM_H | |
530 | # include <sys/param.h> | |
531 | # endif | |
532 | # ifdef EXEC_PAGESIZE | |
533 | # define malloc_getpagesize EXEC_PAGESIZE | |
534 | # else | |
535 | # ifdef NBPG | |
536 | # ifndef CLSIZE | |
537 | # define malloc_getpagesize NBPG | |
538 | # else | |
539 | # define malloc_getpagesize (NBPG * CLSIZE) | |
540 | # endif | |
541 | # else | |
542 | # ifdef NBPC | |
543 | # define malloc_getpagesize NBPC | |
544 | # else | |
545 | # ifdef PAGESIZE | |
546 | # define malloc_getpagesize PAGESIZE | |
547 | # else | |
548 | # define malloc_getpagesize (4096) /* just guess */ | |
549 | # endif | |
550 | # endif | |
551 | # endif | |
552 | # endif | |
553 | # endif | |
554 | # endif | |
555 | # endif | |
556 | #endif | |
557 | ||
558 | ||
217c9dad WD |
559 | /* |
560 | ||
561 | This version of malloc supports the standard SVID/XPG mallinfo | |
562 | routine that returns a struct containing the same kind of | |
563 | information you can get from malloc_stats. It should work on | |
564 | any SVID/XPG compliant system that has a /usr/include/malloc.h | |
565 | defining struct mallinfo. (If you'd like to install such a thing | |
566 | yourself, cut out the preliminary declarations as described above | |
567 | and below and save them in a malloc.h file. But there's no | |
568 | compelling reason to bother to do this.) | |
569 | ||
570 | The main declaration needed is the mallinfo struct that is returned | |
571 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a | |
572 | bunch of fields, most of which are not even meaningful in this | |
573 | version of malloc. Some of these fields are are instead filled by | |
574 | mallinfo() with other numbers that might possibly be of interest. | |
575 | ||
576 | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a | |
577 | /usr/include/malloc.h file that includes a declaration of struct | |
578 | mallinfo. If so, it is included; else an SVID2/XPG2 compliant | |
579 | version is declared below. These must be precisely the same for | |
580 | mallinfo() to work. | |
581 | ||
582 | */ | |
583 | ||
584 | /* #define HAVE_USR_INCLUDE_MALLOC_H */ | |
585 | ||
586 | #if HAVE_USR_INCLUDE_MALLOC_H | |
587 | #include "/usr/include/malloc.h" | |
588 | #else | |
589 | ||
590 | /* SVID2/XPG mallinfo structure */ | |
591 | ||
592 | struct mallinfo { | |
593 | int arena; /* total space allocated from system */ | |
594 | int ordblks; /* number of non-inuse chunks */ | |
595 | int smblks; /* unused -- always zero */ | |
596 | int hblks; /* number of mmapped regions */ | |
597 | int hblkhd; /* total space in mmapped regions */ | |
598 | int usmblks; /* unused -- always zero */ | |
599 | int fsmblks; /* unused -- always zero */ | |
600 | int uordblks; /* total allocated space */ | |
601 | int fordblks; /* total non-inuse space */ | |
602 | int keepcost; /* top-most, releasable (via malloc_trim) space */ | |
603 | }; | |
604 | ||
605 | /* SVID2/XPG mallopt options */ | |
606 | ||
607 | #define M_MXFAST 1 /* UNUSED in this malloc */ | |
608 | #define M_NLBLKS 2 /* UNUSED in this malloc */ | |
609 | #define M_GRAIN 3 /* UNUSED in this malloc */ | |
610 | #define M_KEEP 4 /* UNUSED in this malloc */ | |
611 | ||
612 | #endif | |
613 | ||
614 | /* mallopt options that actually do something */ | |
615 | ||
616 | #define M_TRIM_THRESHOLD -1 | |
617 | #define M_TOP_PAD -2 | |
618 | #define M_MMAP_THRESHOLD -3 | |
619 | #define M_MMAP_MAX -4 | |
620 | ||
621 | ||
217c9dad WD |
622 | #ifndef DEFAULT_TRIM_THRESHOLD |
623 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) | |
624 | #endif | |
625 | ||
626 | /* | |
627 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory | |
628 | to keep before releasing via malloc_trim in free(). | |
629 | ||
630 | Automatic trimming is mainly useful in long-lived programs. | |
631 | Because trimming via sbrk can be slow on some systems, and can | |
632 | sometimes be wasteful (in cases where programs immediately | |
633 | afterward allocate more large chunks) the value should be high | |
634 | enough so that your overall system performance would improve by | |
635 | releasing. | |
636 | ||
637 | The trim threshold and the mmap control parameters (see below) | |
638 | can be traded off with one another. Trimming and mmapping are | |
639 | two different ways of releasing unused memory back to the | |
640 | system. Between these two, it is often possible to keep | |
641 | system-level demands of a long-lived program down to a bare | |
642 | minimum. For example, in one test suite of sessions measuring | |
643 | the XF86 X server on Linux, using a trim threshold of 128K and a | |
644 | mmap threshold of 192K led to near-minimal long term resource | |
645 | consumption. | |
646 | ||
647 | If you are using this malloc in a long-lived program, it should | |
648 | pay to experiment with these values. As a rough guide, you | |
649 | might set to a value close to the average size of a process | |
650 | (program) running on your system. Releasing this much memory | |
651 | would allow such a process to run in memory. Generally, it's | |
652 | worth it to tune for trimming rather tham memory mapping when a | |
653 | program undergoes phases where several large chunks are | |
654 | allocated and released in ways that can reuse each other's | |
655 | storage, perhaps mixed with phases where there are no such | |
656 | chunks at all. And in well-behaved long-lived programs, | |
657 | controlling release of large blocks via trimming versus mapping | |
658 | is usually faster. | |
659 | ||
660 | However, in most programs, these parameters serve mainly as | |
661 | protection against the system-level effects of carrying around | |
662 | massive amounts of unneeded memory. Since frequent calls to | |
663 | sbrk, mmap, and munmap otherwise degrade performance, the default | |
664 | parameters are set to relatively high values that serve only as | |
665 | safeguards. | |
666 | ||
667 | The default trim value is high enough to cause trimming only in | |
668 | fairly extreme (by current memory consumption standards) cases. | |
669 | It must be greater than page size to have any useful effect. To | |
670 | disable trimming completely, you can set to (unsigned long)(-1); | |
671 | ||
672 | ||
673 | */ | |
674 | ||
675 | ||
676 | #ifndef DEFAULT_TOP_PAD | |
677 | #define DEFAULT_TOP_PAD (0) | |
678 | #endif | |
679 | ||
680 | /* | |
681 | M_TOP_PAD is the amount of extra `padding' space to allocate or | |
682 | retain whenever sbrk is called. It is used in two ways internally: | |
683 | ||
684 | * When sbrk is called to extend the top of the arena to satisfy | |
8bde7f77 WD |
685 | a new malloc request, this much padding is added to the sbrk |
686 | request. | |
217c9dad WD |
687 | |
688 | * When malloc_trim is called automatically from free(), | |
8bde7f77 | 689 | it is used as the `pad' argument. |
217c9dad WD |
690 | |
691 | In both cases, the actual amount of padding is rounded | |
692 | so that the end of the arena is always a system page boundary. | |
693 | ||
694 | The main reason for using padding is to avoid calling sbrk so | |
695 | often. Having even a small pad greatly reduces the likelihood | |
696 | that nearly every malloc request during program start-up (or | |
697 | after trimming) will invoke sbrk, which needlessly wastes | |
698 | time. | |
699 | ||
700 | Automatic rounding-up to page-size units is normally sufficient | |
701 | to avoid measurable overhead, so the default is 0. However, in | |
702 | systems where sbrk is relatively slow, it can pay to increase | |
703 | this value, at the expense of carrying around more memory than | |
704 | the program needs. | |
705 | ||
706 | */ | |
707 | ||
708 | ||
709 | #ifndef DEFAULT_MMAP_THRESHOLD | |
710 | #define DEFAULT_MMAP_THRESHOLD (128 * 1024) | |
711 | #endif | |
712 | ||
713 | /* | |
714 | ||
715 | M_MMAP_THRESHOLD is the request size threshold for using mmap() | |
716 | to service a request. Requests of at least this size that cannot | |
717 | be allocated using already-existing space will be serviced via mmap. | |
718 | (If enough normal freed space already exists it is used instead.) | |
719 | ||
720 | Using mmap segregates relatively large chunks of memory so that | |
721 | they can be individually obtained and released from the host | |
722 | system. A request serviced through mmap is never reused by any | |
723 | other request (at least not directly; the system may just so | |
724 | happen to remap successive requests to the same locations). | |
725 | ||
726 | Segregating space in this way has the benefit that mmapped space | |
727 | can ALWAYS be individually released back to the system, which | |
728 | helps keep the system level memory demands of a long-lived | |
729 | program low. Mapped memory can never become `locked' between | |
730 | other chunks, as can happen with normally allocated chunks, which | |
731 | menas that even trimming via malloc_trim would not release them. | |
732 | ||
733 | However, it has the disadvantages that: | |
734 | ||
8bde7f77 WD |
735 | 1. The space cannot be reclaimed, consolidated, and then |
736 | used to service later requests, as happens with normal chunks. | |
737 | 2. It can lead to more wastage because of mmap page alignment | |
738 | requirements | |
739 | 3. It causes malloc performance to be more dependent on host | |
740 | system memory management support routines which may vary in | |
741 | implementation quality and may impose arbitrary | |
742 | limitations. Generally, servicing a request via normal | |
743 | malloc steps is faster than going through a system's mmap. | |
217c9dad WD |
744 | |
745 | All together, these considerations should lead you to use mmap | |
746 | only for relatively large requests. | |
747 | ||
748 | ||
749 | */ | |
750 | ||
751 | ||
217c9dad WD |
752 | #ifndef DEFAULT_MMAP_MAX |
753 | #if HAVE_MMAP | |
754 | #define DEFAULT_MMAP_MAX (64) | |
755 | #else | |
756 | #define DEFAULT_MMAP_MAX (0) | |
757 | #endif | |
758 | #endif | |
759 | ||
760 | /* | |
761 | M_MMAP_MAX is the maximum number of requests to simultaneously | |
762 | service using mmap. This parameter exists because: | |
763 | ||
8bde7f77 WD |
764 | 1. Some systems have a limited number of internal tables for |
765 | use by mmap. | |
766 | 2. In most systems, overreliance on mmap can degrade overall | |
767 | performance. | |
768 | 3. If a program allocates many large regions, it is probably | |
769 | better off using normal sbrk-based allocation routines that | |
770 | can reclaim and reallocate normal heap memory. Using a | |
771 | small value allows transition into this mode after the | |
772 | first few allocations. | |
217c9dad WD |
773 | |
774 | Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, | |
775 | the default value is 0, and attempts to set it to non-zero values | |
776 | in mallopt will fail. | |
777 | */ | |
778 | ||
779 | ||
217c9dad WD |
780 | /* |
781 | USE_DL_PREFIX will prefix all public routines with the string 'dl'. | |
782 | Useful to quickly avoid procedure declaration conflicts and linker | |
783 | symbol conflicts with existing memory allocation routines. | |
784 | ||
785 | */ | |
786 | ||
787 | /* #define USE_DL_PREFIX */ | |
788 | ||
789 | ||
217c9dad WD |
790 | /* |
791 | ||
792 | Special defines for linux libc | |
793 | ||
794 | Except when compiled using these special defines for Linux libc | |
795 | using weak aliases, this malloc is NOT designed to work in | |
796 | multithreaded applications. No semaphores or other concurrency | |
797 | control are provided to ensure that multiple malloc or free calls | |
798 | don't run at the same time, which could be disasterous. A single | |
799 | semaphore could be used across malloc, realloc, and free (which is | |
800 | essentially the effect of the linux weak alias approach). It would | |
801 | be hard to obtain finer granularity. | |
802 | ||
803 | */ | |
804 | ||
805 | ||
806 | #ifdef INTERNAL_LINUX_C_LIB | |
807 | ||
808 | #if __STD_C | |
809 | ||
810 | Void_t * __default_morecore_init (ptrdiff_t); | |
811 | Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; | |
812 | ||
813 | #else | |
814 | ||
815 | Void_t * __default_morecore_init (); | |
816 | Void_t *(*__morecore)() = __default_morecore_init; | |
817 | ||
818 | #endif | |
819 | ||
820 | #define MORECORE (*__morecore) | |
821 | #define MORECORE_FAILURE 0 | |
822 | #define MORECORE_CLEARS 1 | |
823 | ||
824 | #else /* INTERNAL_LINUX_C_LIB */ | |
825 | ||
826 | #if __STD_C | |
827 | extern Void_t* sbrk(ptrdiff_t); | |
828 | #else | |
829 | extern Void_t* sbrk(); | |
830 | #endif | |
831 | ||
832 | #ifndef MORECORE | |
833 | #define MORECORE sbrk | |
834 | #endif | |
835 | ||
836 | #ifndef MORECORE_FAILURE | |
837 | #define MORECORE_FAILURE -1 | |
838 | #endif | |
839 | ||
840 | #ifndef MORECORE_CLEARS | |
841 | #define MORECORE_CLEARS 1 | |
842 | #endif | |
843 | ||
844 | #endif /* INTERNAL_LINUX_C_LIB */ | |
845 | ||
846 | #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) | |
847 | ||
848 | #define cALLOc __libc_calloc | |
849 | #define fREe __libc_free | |
850 | #define mALLOc __libc_malloc | |
851 | #define mEMALIGn __libc_memalign | |
852 | #define rEALLOc __libc_realloc | |
853 | #define vALLOc __libc_valloc | |
854 | #define pvALLOc __libc_pvalloc | |
855 | #define mALLINFo __libc_mallinfo | |
856 | #define mALLOPt __libc_mallopt | |
857 | ||
858 | #pragma weak calloc = __libc_calloc | |
859 | #pragma weak free = __libc_free | |
860 | #pragma weak cfree = __libc_free | |
861 | #pragma weak malloc = __libc_malloc | |
862 | #pragma weak memalign = __libc_memalign | |
863 | #pragma weak realloc = __libc_realloc | |
864 | #pragma weak valloc = __libc_valloc | |
865 | #pragma weak pvalloc = __libc_pvalloc | |
866 | #pragma weak mallinfo = __libc_mallinfo | |
867 | #pragma weak mallopt = __libc_mallopt | |
868 | ||
869 | #else | |
870 | ||
871 | #ifdef USE_DL_PREFIX | |
872 | #define cALLOc dlcalloc | |
873 | #define fREe dlfree | |
874 | #define mALLOc dlmalloc | |
875 | #define mEMALIGn dlmemalign | |
876 | #define rEALLOc dlrealloc | |
877 | #define vALLOc dlvalloc | |
878 | #define pvALLOc dlpvalloc | |
879 | #define mALLINFo dlmallinfo | |
880 | #define mALLOPt dlmallopt | |
881 | #else /* USE_DL_PREFIX */ | |
882 | #define cALLOc calloc | |
883 | #define fREe free | |
884 | #define mALLOc malloc | |
885 | #define mEMALIGn memalign | |
886 | #define rEALLOc realloc | |
887 | #define vALLOc valloc | |
888 | #define pvALLOc pvalloc | |
889 | #define mALLINFo mallinfo | |
890 | #define mALLOPt mallopt | |
891 | #endif /* USE_DL_PREFIX */ | |
892 | ||
893 | #endif | |
894 | ||
895 | /* Public routines */ | |
896 | ||
897 | #if __STD_C | |
898 | ||
899 | Void_t* mALLOc(size_t); | |
900 | void fREe(Void_t*); | |
901 | Void_t* rEALLOc(Void_t*, size_t); | |
902 | Void_t* mEMALIGn(size_t, size_t); | |
903 | Void_t* vALLOc(size_t); | |
904 | Void_t* pvALLOc(size_t); | |
905 | Void_t* cALLOc(size_t, size_t); | |
906 | void cfree(Void_t*); | |
907 | int malloc_trim(size_t); | |
908 | size_t malloc_usable_size(Void_t*); | |
909 | void malloc_stats(); | |
910 | int mALLOPt(int, int); | |
911 | struct mallinfo mALLINFo(void); | |
912 | #else | |
913 | Void_t* mALLOc(); | |
914 | void fREe(); | |
915 | Void_t* rEALLOc(); | |
916 | Void_t* mEMALIGn(); | |
917 | Void_t* vALLOc(); | |
918 | Void_t* pvALLOc(); | |
919 | Void_t* cALLOc(); | |
920 | void cfree(); | |
921 | int malloc_trim(); | |
922 | size_t malloc_usable_size(); | |
923 | void malloc_stats(); | |
924 | int mALLOPt(); | |
925 | struct mallinfo mALLINFo(); | |
926 | #endif | |
927 | ||
928 | ||
929 | #ifdef __cplusplus | |
930 | }; /* end of extern "C" */ | |
931 | #endif | |
932 | ||
933 | /* ---------- To make a malloc.h, end cutting here ------------ */ | |
ea882baf | 934 | #endif /* 0 */ /* Moved to malloc.h */ |
217c9dad WD |
935 | |
936 | #include <malloc.h> | |
d59476b6 SG |
937 | #include <asm/io.h> |
938 | ||
ea882baf | 939 | #ifdef DEBUG |
217c9dad WD |
940 | #if __STD_C |
941 | static void malloc_update_mallinfo (void); | |
942 | void malloc_stats (void); | |
943 | #else | |
944 | static void malloc_update_mallinfo (); | |
945 | void malloc_stats(); | |
946 | #endif | |
ea882baf | 947 | #endif /* DEBUG */ |
217c9dad | 948 | |
d87080b7 WD |
949 | DECLARE_GLOBAL_DATA_PTR; |
950 | ||
217c9dad WD |
951 | /* |
952 | Emulation of sbrk for WIN32 | |
953 | All code within the ifdef WIN32 is untested by me. | |
954 | ||
955 | Thanks to Martin Fong and others for supplying this. | |
956 | */ | |
957 | ||
958 | ||
959 | #ifdef WIN32 | |
960 | ||
961 | #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ | |
962 | ~(malloc_getpagesize-1)) | |
963 | #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) | |
964 | ||
965 | /* resrve 64MB to insure large contiguous space */ | |
966 | #define RESERVED_SIZE (1024*1024*64) | |
967 | #define NEXT_SIZE (2048*1024) | |
968 | #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) | |
969 | ||
970 | struct GmListElement; | |
971 | typedef struct GmListElement GmListElement; | |
972 | ||
973 | struct GmListElement | |
974 | { | |
975 | GmListElement* next; | |
976 | void* base; | |
977 | }; | |
978 | ||
979 | static GmListElement* head = 0; | |
980 | static unsigned int gNextAddress = 0; | |
981 | static unsigned int gAddressBase = 0; | |
982 | static unsigned int gAllocatedSize = 0; | |
983 | ||
984 | static | |
985 | GmListElement* makeGmListElement (void* bas) | |
986 | { | |
987 | GmListElement* this; | |
988 | this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); | |
989 | assert (this); | |
990 | if (this) | |
991 | { | |
992 | this->base = bas; | |
993 | this->next = head; | |
994 | head = this; | |
995 | } | |
996 | return this; | |
997 | } | |
998 | ||
999 | void gcleanup () | |
1000 | { | |
1001 | BOOL rval; | |
1002 | assert ( (head == NULL) || (head->base == (void*)gAddressBase)); | |
1003 | if (gAddressBase && (gNextAddress - gAddressBase)) | |
1004 | { | |
1005 | rval = VirtualFree ((void*)gAddressBase, | |
1006 | gNextAddress - gAddressBase, | |
1007 | MEM_DECOMMIT); | |
8bde7f77 | 1008 | assert (rval); |
217c9dad WD |
1009 | } |
1010 | while (head) | |
1011 | { | |
1012 | GmListElement* next = head->next; | |
1013 | rval = VirtualFree (head->base, 0, MEM_RELEASE); | |
1014 | assert (rval); | |
1015 | LocalFree (head); | |
1016 | head = next; | |
1017 | } | |
1018 | } | |
1019 | ||
1020 | static | |
1021 | void* findRegion (void* start_address, unsigned long size) | |
1022 | { | |
1023 | MEMORY_BASIC_INFORMATION info; | |
1024 | if (size >= TOP_MEMORY) return NULL; | |
1025 | ||
1026 | while ((unsigned long)start_address + size < TOP_MEMORY) | |
1027 | { | |
1028 | VirtualQuery (start_address, &info, sizeof (info)); | |
1029 | if ((info.State == MEM_FREE) && (info.RegionSize >= size)) | |
1030 | return start_address; | |
1031 | else | |
1032 | { | |
8bde7f77 WD |
1033 | /* Requested region is not available so see if the */ |
1034 | /* next region is available. Set 'start_address' */ | |
1035 | /* to the next region and call 'VirtualQuery()' */ | |
1036 | /* again. */ | |
217c9dad WD |
1037 | |
1038 | start_address = (char*)info.BaseAddress + info.RegionSize; | |
1039 | ||
8bde7f77 WD |
1040 | /* Make sure we start looking for the next region */ |
1041 | /* on the *next* 64K boundary. Otherwise, even if */ | |
1042 | /* the new region is free according to */ | |
1043 | /* 'VirtualQuery()', the subsequent call to */ | |
1044 | /* 'VirtualAlloc()' (which follows the call to */ | |
1045 | /* this routine in 'wsbrk()') will round *down* */ | |
1046 | /* the requested address to a 64K boundary which */ | |
1047 | /* we already know is an address in the */ | |
1048 | /* unavailable region. Thus, the subsequent call */ | |
1049 | /* to 'VirtualAlloc()' will fail and bring us back */ | |
1050 | /* here, causing us to go into an infinite loop. */ | |
217c9dad WD |
1051 | |
1052 | start_address = | |
1053 | (void *) AlignPage64K((unsigned long) start_address); | |
1054 | } | |
1055 | } | |
1056 | return NULL; | |
1057 | ||
1058 | } | |
1059 | ||
1060 | ||
1061 | void* wsbrk (long size) | |
1062 | { | |
1063 | void* tmp; | |
1064 | if (size > 0) | |
1065 | { | |
1066 | if (gAddressBase == 0) | |
1067 | { | |
1068 | gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); | |
1069 | gNextAddress = gAddressBase = | |
1070 | (unsigned int)VirtualAlloc (NULL, gAllocatedSize, | |
1071 | MEM_RESERVE, PAGE_NOACCESS); | |
1072 | } else if (AlignPage (gNextAddress + size) > (gAddressBase + | |
1073 | gAllocatedSize)) | |
1074 | { | |
1075 | long new_size = max (NEXT_SIZE, AlignPage (size)); | |
1076 | void* new_address = (void*)(gAddressBase+gAllocatedSize); | |
1077 | do | |
1078 | { | |
1079 | new_address = findRegion (new_address, new_size); | |
1080 | ||
1081 | if (new_address == 0) | |
1082 | return (void*)-1; | |
1083 | ||
1084 | gAddressBase = gNextAddress = | |
1085 | (unsigned int)VirtualAlloc (new_address, new_size, | |
1086 | MEM_RESERVE, PAGE_NOACCESS); | |
8bde7f77 WD |
1087 | /* repeat in case of race condition */ |
1088 | /* The region that we found has been snagged */ | |
1089 | /* by another thread */ | |
217c9dad WD |
1090 | } |
1091 | while (gAddressBase == 0); | |
1092 | ||
1093 | assert (new_address == (void*)gAddressBase); | |
1094 | ||
1095 | gAllocatedSize = new_size; | |
1096 | ||
1097 | if (!makeGmListElement ((void*)gAddressBase)) | |
1098 | return (void*)-1; | |
1099 | } | |
1100 | if ((size + gNextAddress) > AlignPage (gNextAddress)) | |
1101 | { | |
1102 | void* res; | |
1103 | res = VirtualAlloc ((void*)AlignPage (gNextAddress), | |
1104 | (size + gNextAddress - | |
1105 | AlignPage (gNextAddress)), | |
1106 | MEM_COMMIT, PAGE_READWRITE); | |
1107 | if (res == 0) | |
1108 | return (void*)-1; | |
1109 | } | |
1110 | tmp = (void*)gNextAddress; | |
1111 | gNextAddress = (unsigned int)tmp + size; | |
1112 | return tmp; | |
1113 | } | |
1114 | else if (size < 0) | |
1115 | { | |
1116 | unsigned int alignedGoal = AlignPage (gNextAddress + size); | |
1117 | /* Trim by releasing the virtual memory */ | |
1118 | if (alignedGoal >= gAddressBase) | |
1119 | { | |
1120 | VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, | |
1121 | MEM_DECOMMIT); | |
1122 | gNextAddress = gNextAddress + size; | |
1123 | return (void*)gNextAddress; | |
1124 | } | |
1125 | else | |
1126 | { | |
1127 | VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, | |
1128 | MEM_DECOMMIT); | |
1129 | gNextAddress = gAddressBase; | |
1130 | return (void*)-1; | |
1131 | } | |
1132 | } | |
1133 | else | |
1134 | { | |
1135 | return (void*)gNextAddress; | |
1136 | } | |
1137 | } | |
1138 | ||
1139 | #endif | |
1140 | ||
d93041a4 | 1141 | |
217c9dad WD |
1142 | |
1143 | /* | |
1144 | Type declarations | |
1145 | */ | |
1146 | ||
1147 | ||
1148 | struct malloc_chunk | |
1149 | { | |
1150 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ | |
1151 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ | |
1152 | struct malloc_chunk* fd; /* double links -- used only if free. */ | |
1153 | struct malloc_chunk* bk; | |
1ba91ba2 | 1154 | } __attribute__((__may_alias__)) ; |
217c9dad WD |
1155 | |
1156 | typedef struct malloc_chunk* mchunkptr; | |
1157 | ||
1158 | /* | |
1159 | ||
1160 | malloc_chunk details: | |
1161 | ||
1162 | (The following includes lightly edited explanations by Colin Plumb.) | |
1163 | ||
1164 | Chunks of memory are maintained using a `boundary tag' method as | |
1165 | described in e.g., Knuth or Standish. (See the paper by Paul | |
1166 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a | |
1167 | survey of such techniques.) Sizes of free chunks are stored both | |
1168 | in the front of each chunk and at the end. This makes | |
1169 | consolidating fragmented chunks into bigger chunks very fast. The | |
1170 | size fields also hold bits representing whether chunks are free or | |
1171 | in use. | |
1172 | ||
1173 | An allocated chunk looks like this: | |
1174 | ||
1175 | ||
1176 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1177 | | Size of previous chunk, if allocated | | |
1178 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1179 | | Size of chunk, in bytes |P| | |
217c9dad | 1180 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
1181 | | User data starts here... . |
1182 | . . | |
1183 | . (malloc_usable_space() bytes) . | |
1184 | . | | |
217c9dad | 1185 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
1186 | | Size of chunk | |
1187 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
1188 | |
1189 | ||
1190 | Where "chunk" is the front of the chunk for the purpose of most of | |
1191 | the malloc code, but "mem" is the pointer that is returned to the | |
1192 | user. "Nextchunk" is the beginning of the next contiguous chunk. | |
1193 | ||
1194 | Chunks always begin on even word boundries, so the mem portion | |
1195 | (which is returned to the user) is also on an even word boundary, and | |
1196 | thus double-word aligned. | |
1197 | ||
1198 | Free chunks are stored in circular doubly-linked lists, and look like this: | |
1199 | ||
1200 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1201 | | Size of previous chunk | |
1202 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
1203 | `head:' | Size of chunk, in bytes |P| |
1204 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1205 | | Forward pointer to next chunk in list | |
1206 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1207 | | Back pointer to previous chunk in list | | |
1208 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1209 | | Unused space (may be 0 bytes long) . | |
1210 | . . | |
1211 | . | | |
217c9dad WD |
1212 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1213 | `foot:' | Size of chunk, in bytes | | |
8bde7f77 | 1214 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
217c9dad WD |
1215 | |
1216 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the | |
1217 | chunk size (which is always a multiple of two words), is an in-use | |
1218 | bit for the *previous* chunk. If that bit is *clear*, then the | |
1219 | word before the current chunk size contains the previous chunk | |
1220 | size, and can be used to find the front of the previous chunk. | |
1221 | (The very first chunk allocated always has this bit set, | |
1222 | preventing access to non-existent (or non-owned) memory.) | |
1223 | ||
1224 | Note that the `foot' of the current chunk is actually represented | |
1225 | as the prev_size of the NEXT chunk. (This makes it easier to | |
1226 | deal with alignments etc). | |
1227 | ||
1228 | The two exceptions to all this are | |
1229 | ||
1230 | 1. The special chunk `top', which doesn't bother using the | |
8bde7f77 WD |
1231 | trailing size field since there is no |
1232 | next contiguous chunk that would have to index off it. (After | |
1233 | initialization, `top' is forced to always exist. If it would | |
1234 | become less than MINSIZE bytes long, it is replenished via | |
1235 | malloc_extend_top.) | |
217c9dad WD |
1236 | |
1237 | 2. Chunks allocated via mmap, which have the second-lowest-order | |
8bde7f77 WD |
1238 | bit (IS_MMAPPED) set in their size fields. Because they are |
1239 | never merged or traversed from any other chunk, they have no | |
1240 | foot size or inuse information. | |
217c9dad WD |
1241 | |
1242 | Available chunks are kept in any of several places (all declared below): | |
1243 | ||
1244 | * `av': An array of chunks serving as bin headers for consolidated | |
1245 | chunks. Each bin is doubly linked. The bins are approximately | |
1246 | proportionally (log) spaced. There are a lot of these bins | |
1247 | (128). This may look excessive, but works very well in | |
1248 | practice. All procedures maintain the invariant that no | |
1249 | consolidated chunk physically borders another one. Chunks in | |
1250 | bins are kept in size order, with ties going to the | |
1251 | approximately least recently used chunk. | |
1252 | ||
1253 | The chunks in each bin are maintained in decreasing sorted order by | |
1254 | size. This is irrelevant for the small bins, which all contain | |
1255 | the same-sized chunks, but facilitates best-fit allocation for | |
1256 | larger chunks. (These lists are just sequential. Keeping them in | |
1257 | order almost never requires enough traversal to warrant using | |
1258 | fancier ordered data structures.) Chunks of the same size are | |
1259 | linked with the most recently freed at the front, and allocations | |
1260 | are taken from the back. This results in LRU or FIFO allocation | |
1261 | order, which tends to give each chunk an equal opportunity to be | |
1262 | consolidated with adjacent freed chunks, resulting in larger free | |
1263 | chunks and less fragmentation. | |
1264 | ||
1265 | * `top': The top-most available chunk (i.e., the one bordering the | |
1266 | end of available memory) is treated specially. It is never | |
1267 | included in any bin, is used only if no other chunk is | |
1268 | available, and is released back to the system if it is very | |
1269 | large (see M_TRIM_THRESHOLD). | |
1270 | ||
1271 | * `last_remainder': A bin holding only the remainder of the | |
1272 | most recently split (non-top) chunk. This bin is checked | |
1273 | before other non-fitting chunks, so as to provide better | |
1274 | locality for runs of sequentially allocated chunks. | |
1275 | ||
1276 | * Implicitly, through the host system's memory mapping tables. | |
1277 | If supported, requests greater than a threshold are usually | |
1278 | serviced via calls to mmap, and then later released via munmap. | |
1279 | ||
1280 | */ | |
d93041a4 | 1281 | |
217c9dad WD |
1282 | /* sizes, alignments */ |
1283 | ||
1284 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) | |
1285 | #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) | |
1286 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) | |
1287 | #define MINSIZE (sizeof(struct malloc_chunk)) | |
1288 | ||
1289 | /* conversion from malloc headers to user pointers, and back */ | |
1290 | ||
1291 | #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) | |
1292 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) | |
1293 | ||
1294 | /* pad request bytes into a usable size */ | |
1295 | ||
1296 | #define request2size(req) \ | |
1297 | (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ | |
1298 | (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ | |
1299 | (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) | |
1300 | ||
1301 | /* Check if m has acceptable alignment */ | |
1302 | ||
1303 | #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) | |
1304 | ||
1305 | ||
d93041a4 | 1306 | |
217c9dad WD |
1307 | |
1308 | /* | |
1309 | Physical chunk operations | |
1310 | */ | |
1311 | ||
1312 | ||
1313 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ | |
1314 | ||
1315 | #define PREV_INUSE 0x1 | |
1316 | ||
1317 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ | |
1318 | ||
1319 | #define IS_MMAPPED 0x2 | |
1320 | ||
1321 | /* Bits to mask off when extracting size */ | |
1322 | ||
1323 | #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) | |
1324 | ||
1325 | ||
1326 | /* Ptr to next physical malloc_chunk. */ | |
1327 | ||
1328 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) | |
1329 | ||
1330 | /* Ptr to previous physical malloc_chunk */ | |
1331 | ||
1332 | #define prev_chunk(p)\ | |
1333 | ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) | |
1334 | ||
1335 | ||
1336 | /* Treat space at ptr + offset as a chunk */ | |
1337 | ||
1338 | #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) | |
1339 | ||
1340 | ||
d93041a4 | 1341 | |
217c9dad WD |
1342 | |
1343 | /* | |
1344 | Dealing with use bits | |
1345 | */ | |
1346 | ||
1347 | /* extract p's inuse bit */ | |
1348 | ||
1349 | #define inuse(p)\ | |
1350 | ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) | |
1351 | ||
1352 | /* extract inuse bit of previous chunk */ | |
1353 | ||
1354 | #define prev_inuse(p) ((p)->size & PREV_INUSE) | |
1355 | ||
1356 | /* check for mmap()'ed chunk */ | |
1357 | ||
1358 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) | |
1359 | ||
1360 | /* set/clear chunk as in use without otherwise disturbing */ | |
1361 | ||
1362 | #define set_inuse(p)\ | |
1363 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE | |
1364 | ||
1365 | #define clear_inuse(p)\ | |
1366 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) | |
1367 | ||
1368 | /* check/set/clear inuse bits in known places */ | |
1369 | ||
1370 | #define inuse_bit_at_offset(p, s)\ | |
1371 | (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) | |
1372 | ||
1373 | #define set_inuse_bit_at_offset(p, s)\ | |
1374 | (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) | |
1375 | ||
1376 | #define clear_inuse_bit_at_offset(p, s)\ | |
1377 | (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) | |
1378 | ||
1379 | ||
d93041a4 | 1380 | |
217c9dad WD |
1381 | |
1382 | /* | |
1383 | Dealing with size fields | |
1384 | */ | |
1385 | ||
1386 | /* Get size, ignoring use bits */ | |
1387 | ||
1388 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) | |
1389 | ||
1390 | /* Set size at head, without disturbing its use bit */ | |
1391 | ||
1392 | #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) | |
1393 | ||
1394 | /* Set size/use ignoring previous bits in header */ | |
1395 | ||
1396 | #define set_head(p, s) ((p)->size = (s)) | |
1397 | ||
1398 | /* Set size at footer (only when chunk is not in use) */ | |
1399 | ||
1400 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) | |
1401 | ||
1402 | ||
d93041a4 | 1403 | |
217c9dad WD |
1404 | |
1405 | ||
1406 | /* | |
1407 | Bins | |
1408 | ||
1409 | The bins, `av_' are an array of pairs of pointers serving as the | |
1410 | heads of (initially empty) doubly-linked lists of chunks, laid out | |
1411 | in a way so that each pair can be treated as if it were in a | |
1412 | malloc_chunk. (This way, the fd/bk offsets for linking bin heads | |
1413 | and chunks are the same). | |
1414 | ||
1415 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced | |
1416 | 8 bytes apart. Larger bins are approximately logarithmically | |
1417 | spaced. (See the table below.) The `av_' array is never mentioned | |
1418 | directly in the code, but instead via bin access macros. | |
1419 | ||
1420 | Bin layout: | |
1421 | ||
1422 | 64 bins of size 8 | |
1423 | 32 bins of size 64 | |
1424 | 16 bins of size 512 | |
1425 | 8 bins of size 4096 | |
1426 | 4 bins of size 32768 | |
1427 | 2 bins of size 262144 | |
1428 | 1 bin of size what's left | |
1429 | ||
1430 | There is actually a little bit of slop in the numbers in bin_index | |
1431 | for the sake of speed. This makes no difference elsewhere. | |
1432 | ||
1433 | The special chunks `top' and `last_remainder' get their own bins, | |
1434 | (this is implemented via yet more trickery with the av_ array), | |
1435 | although `top' is never properly linked to its bin since it is | |
1436 | always handled specially. | |
1437 | ||
1438 | */ | |
1439 | ||
1440 | #define NAV 128 /* number of bins */ | |
1441 | ||
1442 | typedef struct malloc_chunk* mbinptr; | |
1443 | ||
1444 | /* access macros */ | |
1445 | ||
1446 | #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) | |
1447 | #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) | |
1448 | #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) | |
1449 | ||
1450 | /* | |
1451 | The first 2 bins are never indexed. The corresponding av_ cells are instead | |
1452 | used for bookkeeping. This is not to save space, but to simplify | |
1453 | indexing, maintain locality, and avoid some initialization tests. | |
1454 | */ | |
1455 | ||
f2302d44 | 1456 | #define top (av_[2]) /* The topmost chunk */ |
217c9dad WD |
1457 | #define last_remainder (bin_at(1)) /* remainder from last split */ |
1458 | ||
1459 | ||
1460 | /* | |
1461 | Because top initially points to its own bin with initial | |
1462 | zero size, thus forcing extension on the first malloc request, | |
1463 | we avoid having any special code in malloc to check whether | |
1464 | it even exists yet. But we still need to in malloc_extend_top. | |
1465 | */ | |
1466 | ||
1467 | #define initial_top ((mchunkptr)(bin_at(0))) | |
1468 | ||
1469 | /* Helper macro to initialize bins */ | |
1470 | ||
1471 | #define IAV(i) bin_at(i), bin_at(i) | |
1472 | ||
1473 | static mbinptr av_[NAV * 2 + 2] = { | |
199adb60 | 1474 | NULL, NULL, |
217c9dad WD |
1475 | IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), |
1476 | IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), | |
1477 | IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), | |
1478 | IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), | |
1479 | IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), | |
1480 | IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), | |
1481 | IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), | |
1482 | IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), | |
1483 | IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), | |
1484 | IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), | |
1485 | IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), | |
1486 | IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), | |
1487 | IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), | |
1488 | IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), | |
1489 | IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), | |
1490 | IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) | |
1491 | }; | |
1492 | ||
2e5167cc | 1493 | #ifdef CONFIG_NEEDS_MANUAL_RELOC |
7b395232 | 1494 | static void malloc_bin_reloc(void) |
217c9dad | 1495 | { |
93691842 SG |
1496 | mbinptr *p = &av_[2]; |
1497 | size_t i; | |
1498 | ||
1499 | for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p) | |
1500 | *p = (mbinptr)((ulong)*p + gd->reloc_off); | |
217c9dad | 1501 | } |
7b395232 GJ |
1502 | #else |
1503 | static inline void malloc_bin_reloc(void) {} | |
521af04d | 1504 | #endif |
5e93bd1c PT |
1505 | |
1506 | ulong mem_malloc_start = 0; | |
1507 | ulong mem_malloc_end = 0; | |
1508 | ulong mem_malloc_brk = 0; | |
1509 | ||
1510 | void *sbrk(ptrdiff_t increment) | |
1511 | { | |
1512 | ulong old = mem_malloc_brk; | |
1513 | ulong new = old + increment; | |
1514 | ||
6163f5b4 KG |
1515 | /* |
1516 | * if we are giving memory back make sure we clear it out since | |
1517 | * we set MORECORE_CLEARS to 1 | |
1518 | */ | |
1519 | if (increment < 0) | |
1520 | memset((void *)new, 0, -increment); | |
1521 | ||
5e93bd1c | 1522 | if ((new < mem_malloc_start) || (new > mem_malloc_end)) |
ae30b8c2 | 1523 | return (void *)MORECORE_FAILURE; |
5e93bd1c PT |
1524 | |
1525 | mem_malloc_brk = new; | |
1526 | ||
1527 | return (void *)old; | |
1528 | } | |
217c9dad | 1529 | |
d4e8ada0 PT |
1530 | void mem_malloc_init(ulong start, ulong size) |
1531 | { | |
1532 | mem_malloc_start = start; | |
1533 | mem_malloc_end = start + size; | |
1534 | mem_malloc_brk = start; | |
1535 | ||
868de51d TR |
1536 | debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start, |
1537 | mem_malloc_end); | |
0aa8a4ad PM |
1538 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
1539 | memset((void *)mem_malloc_start, 0x0, size); | |
1540 | #endif | |
7b395232 | 1541 | malloc_bin_reloc(); |
d4e8ada0 | 1542 | } |
d4e8ada0 | 1543 | |
217c9dad WD |
1544 | /* field-extraction macros */ |
1545 | ||
1546 | #define first(b) ((b)->fd) | |
1547 | #define last(b) ((b)->bk) | |
1548 | ||
1549 | /* | |
1550 | Indexing into bins | |
1551 | */ | |
1552 | ||
1553 | #define bin_index(sz) \ | |
1554 | (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ | |
1555 | ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ | |
1556 | ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ | |
1557 | ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ | |
1558 | ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ | |
1559 | ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ | |
8bde7f77 | 1560 | 126) |
217c9dad WD |
1561 | /* |
1562 | bins for chunks < 512 are all spaced 8 bytes apart, and hold | |
1563 | identically sized chunks. This is exploited in malloc. | |
1564 | */ | |
1565 | ||
1566 | #define MAX_SMALLBIN 63 | |
1567 | #define MAX_SMALLBIN_SIZE 512 | |
1568 | #define SMALLBIN_WIDTH 8 | |
1569 | ||
1570 | #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) | |
1571 | ||
1572 | /* | |
1573 | Requests are `small' if both the corresponding and the next bin are small | |
1574 | */ | |
1575 | ||
1576 | #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) | |
1577 | ||
d93041a4 | 1578 | |
217c9dad WD |
1579 | |
1580 | /* | |
1581 | To help compensate for the large number of bins, a one-level index | |
1582 | structure is used for bin-by-bin searching. `binblocks' is a | |
1583 | one-word bitvector recording whether groups of BINBLOCKWIDTH bins | |
1584 | have any (possibly) non-empty bins, so they can be skipped over | |
1585 | all at once during during traversals. The bits are NOT always | |
1586 | cleared as soon as all bins in a block are empty, but instead only | |
1587 | when all are noticed to be empty during traversal in malloc. | |
1588 | */ | |
1589 | ||
1590 | #define BINBLOCKWIDTH 4 /* bins per block */ | |
1591 | ||
f2302d44 SR |
1592 | #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ |
1593 | #define binblocks_w (av_[1]) | |
217c9dad WD |
1594 | |
1595 | /* bin<->block macros */ | |
1596 | ||
1597 | #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) | |
f2302d44 SR |
1598 | #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) |
1599 | #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) | |
217c9dad WD |
1600 | |
1601 | ||
d93041a4 | 1602 | |
217c9dad WD |
1603 | |
1604 | ||
1605 | /* Other static bookkeeping data */ | |
1606 | ||
1607 | /* variables holding tunable values */ | |
1608 | ||
1609 | static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; | |
1610 | static unsigned long top_pad = DEFAULT_TOP_PAD; | |
1611 | static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; | |
1612 | static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; | |
1613 | ||
1614 | /* The first value returned from sbrk */ | |
1615 | static char* sbrk_base = (char*)(-1); | |
1616 | ||
1617 | /* The maximum memory obtained from system via sbrk */ | |
1618 | static unsigned long max_sbrked_mem = 0; | |
1619 | ||
1620 | /* The maximum via either sbrk or mmap */ | |
1621 | static unsigned long max_total_mem = 0; | |
1622 | ||
1623 | /* internal working copy of mallinfo */ | |
1624 | static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
1625 | ||
1626 | /* The total memory obtained from system via sbrk */ | |
1627 | #define sbrked_mem (current_mallinfo.arena) | |
1628 | ||
1629 | /* Tracking mmaps */ | |
1630 | ||
ea882baf | 1631 | #ifdef DEBUG |
217c9dad | 1632 | static unsigned int n_mmaps = 0; |
ea882baf | 1633 | #endif /* DEBUG */ |
217c9dad WD |
1634 | static unsigned long mmapped_mem = 0; |
1635 | #if HAVE_MMAP | |
1636 | static unsigned int max_n_mmaps = 0; | |
1637 | static unsigned long max_mmapped_mem = 0; | |
1638 | #endif | |
1639 | ||
d93041a4 | 1640 | |
217c9dad WD |
1641 | |
1642 | /* | |
1643 | Debugging support | |
1644 | */ | |
1645 | ||
1646 | #ifdef DEBUG | |
1647 | ||
1648 | ||
1649 | /* | |
1650 | These routines make a number of assertions about the states | |
1651 | of data structures that should be true at all times. If any | |
1652 | are not true, it's very likely that a user program has somehow | |
1653 | trashed memory. (It's also possible that there is a coding error | |
1654 | in malloc. In which case, please report it!) | |
1655 | */ | |
1656 | ||
1657 | #if __STD_C | |
1658 | static void do_check_chunk(mchunkptr p) | |
1659 | #else | |
1660 | static void do_check_chunk(p) mchunkptr p; | |
1661 | #endif | |
1662 | { | |
217c9dad | 1663 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
217c9dad WD |
1664 | |
1665 | /* No checkable chunk is mmapped */ | |
1666 | assert(!chunk_is_mmapped(p)); | |
1667 | ||
1668 | /* Check for legal address ... */ | |
1669 | assert((char*)p >= sbrk_base); | |
1670 | if (p != top) | |
1671 | assert((char*)p + sz <= (char*)top); | |
1672 | else | |
1673 | assert((char*)p + sz <= sbrk_base + sbrked_mem); | |
1674 | ||
1675 | } | |
1676 | ||
1677 | ||
1678 | #if __STD_C | |
1679 | static void do_check_free_chunk(mchunkptr p) | |
1680 | #else | |
1681 | static void do_check_free_chunk(p) mchunkptr p; | |
1682 | #endif | |
1683 | { | |
1684 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
217c9dad | 1685 | mchunkptr next = chunk_at_offset(p, sz); |
217c9dad WD |
1686 | |
1687 | do_check_chunk(p); | |
1688 | ||
1689 | /* Check whether it claims to be free ... */ | |
1690 | assert(!inuse(p)); | |
1691 | ||
1692 | /* Unless a special marker, must have OK fields */ | |
1693 | if ((long)sz >= (long)MINSIZE) | |
1694 | { | |
1695 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
1696 | assert(aligned_OK(chunk2mem(p))); | |
1697 | /* ... matching footer field */ | |
1698 | assert(next->prev_size == sz); | |
1699 | /* ... and is fully consolidated */ | |
1700 | assert(prev_inuse(p)); | |
1701 | assert (next == top || inuse(next)); | |
1702 | ||
1703 | /* ... and has minimally sane links */ | |
1704 | assert(p->fd->bk == p); | |
1705 | assert(p->bk->fd == p); | |
1706 | } | |
1707 | else /* markers are always of size SIZE_SZ */ | |
1708 | assert(sz == SIZE_SZ); | |
1709 | } | |
1710 | ||
1711 | #if __STD_C | |
1712 | static void do_check_inuse_chunk(mchunkptr p) | |
1713 | #else | |
1714 | static void do_check_inuse_chunk(p) mchunkptr p; | |
1715 | #endif | |
1716 | { | |
1717 | mchunkptr next = next_chunk(p); | |
1718 | do_check_chunk(p); | |
1719 | ||
1720 | /* Check whether it claims to be in use ... */ | |
1721 | assert(inuse(p)); | |
1722 | ||
1723 | /* ... and is surrounded by OK chunks. | |
1724 | Since more things can be checked with free chunks than inuse ones, | |
1725 | if an inuse chunk borders them and debug is on, it's worth doing them. | |
1726 | */ | |
1727 | if (!prev_inuse(p)) | |
1728 | { | |
1729 | mchunkptr prv = prev_chunk(p); | |
1730 | assert(next_chunk(prv) == p); | |
1731 | do_check_free_chunk(prv); | |
1732 | } | |
1733 | if (next == top) | |
1734 | { | |
1735 | assert(prev_inuse(next)); | |
1736 | assert(chunksize(next) >= MINSIZE); | |
1737 | } | |
1738 | else if (!inuse(next)) | |
1739 | do_check_free_chunk(next); | |
1740 | ||
1741 | } | |
1742 | ||
1743 | #if __STD_C | |
1744 | static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) | |
1745 | #else | |
1746 | static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; | |
1747 | #endif | |
1748 | { | |
217c9dad WD |
1749 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; |
1750 | long room = sz - s; | |
217c9dad WD |
1751 | |
1752 | do_check_inuse_chunk(p); | |
1753 | ||
1754 | /* Legal size ... */ | |
1755 | assert((long)sz >= (long)MINSIZE); | |
1756 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
1757 | assert(room >= 0); | |
1758 | assert(room < (long)MINSIZE); | |
1759 | ||
1760 | /* ... and alignment */ | |
1761 | assert(aligned_OK(chunk2mem(p))); | |
1762 | ||
1763 | ||
1764 | /* ... and was allocated at front of an available chunk */ | |
1765 | assert(prev_inuse(p)); | |
1766 | ||
1767 | } | |
1768 | ||
1769 | ||
1770 | #define check_free_chunk(P) do_check_free_chunk(P) | |
1771 | #define check_inuse_chunk(P) do_check_inuse_chunk(P) | |
1772 | #define check_chunk(P) do_check_chunk(P) | |
1773 | #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) | |
1774 | #else | |
1775 | #define check_free_chunk(P) | |
1776 | #define check_inuse_chunk(P) | |
1777 | #define check_chunk(P) | |
1778 | #define check_malloced_chunk(P,N) | |
1779 | #endif | |
1780 | ||
d93041a4 | 1781 | |
217c9dad WD |
1782 | |
1783 | /* | |
1784 | Macro-based internal utilities | |
1785 | */ | |
1786 | ||
1787 | ||
1788 | /* | |
1789 | Linking chunks in bin lists. | |
1790 | Call these only with variables, not arbitrary expressions, as arguments. | |
1791 | */ | |
1792 | ||
1793 | /* | |
1794 | Place chunk p of size s in its bin, in size order, | |
1795 | putting it ahead of others of same size. | |
1796 | */ | |
1797 | ||
1798 | ||
1799 | #define frontlink(P, S, IDX, BK, FD) \ | |
1800 | { \ | |
1801 | if (S < MAX_SMALLBIN_SIZE) \ | |
1802 | { \ | |
1803 | IDX = smallbin_index(S); \ | |
1804 | mark_binblock(IDX); \ | |
1805 | BK = bin_at(IDX); \ | |
1806 | FD = BK->fd; \ | |
1807 | P->bk = BK; \ | |
1808 | P->fd = FD; \ | |
1809 | FD->bk = BK->fd = P; \ | |
1810 | } \ | |
1811 | else \ | |
1812 | { \ | |
1813 | IDX = bin_index(S); \ | |
1814 | BK = bin_at(IDX); \ | |
1815 | FD = BK->fd; \ | |
1816 | if (FD == BK) mark_binblock(IDX); \ | |
1817 | else \ | |
1818 | { \ | |
1819 | while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ | |
1820 | BK = FD->bk; \ | |
1821 | } \ | |
1822 | P->bk = BK; \ | |
1823 | P->fd = FD; \ | |
1824 | FD->bk = BK->fd = P; \ | |
1825 | } \ | |
1826 | } | |
1827 | ||
1828 | ||
1829 | /* take a chunk off a list */ | |
1830 | ||
1831 | #define unlink(P, BK, FD) \ | |
1832 | { \ | |
1833 | BK = P->bk; \ | |
1834 | FD = P->fd; \ | |
1835 | FD->bk = BK; \ | |
1836 | BK->fd = FD; \ | |
1837 | } \ | |
1838 | ||
1839 | /* Place p as the last remainder */ | |
1840 | ||
1841 | #define link_last_remainder(P) \ | |
1842 | { \ | |
1843 | last_remainder->fd = last_remainder->bk = P; \ | |
1844 | P->fd = P->bk = last_remainder; \ | |
1845 | } | |
1846 | ||
1847 | /* Clear the last_remainder bin */ | |
1848 | ||
1849 | #define clear_last_remainder \ | |
1850 | (last_remainder->fd = last_remainder->bk = last_remainder) | |
1851 | ||
1852 | ||
d93041a4 | 1853 | |
217c9dad WD |
1854 | |
1855 | ||
1856 | /* Routines dealing with mmap(). */ | |
1857 | ||
1858 | #if HAVE_MMAP | |
1859 | ||
1860 | #if __STD_C | |
1861 | static mchunkptr mmap_chunk(size_t size) | |
1862 | #else | |
1863 | static mchunkptr mmap_chunk(size) size_t size; | |
1864 | #endif | |
1865 | { | |
1866 | size_t page_mask = malloc_getpagesize - 1; | |
1867 | mchunkptr p; | |
1868 | ||
1869 | #ifndef MAP_ANONYMOUS | |
1870 | static int fd = -1; | |
1871 | #endif | |
1872 | ||
1873 | if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ | |
1874 | ||
1875 | /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because | |
1876 | * there is no following chunk whose prev_size field could be used. | |
1877 | */ | |
1878 | size = (size + SIZE_SZ + page_mask) & ~page_mask; | |
1879 | ||
1880 | #ifdef MAP_ANONYMOUS | |
1881 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, | |
1882 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | |
1883 | #else /* !MAP_ANONYMOUS */ | |
1884 | if (fd < 0) | |
1885 | { | |
1886 | fd = open("/dev/zero", O_RDWR); | |
1887 | if(fd < 0) return 0; | |
1888 | } | |
1889 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); | |
1890 | #endif | |
1891 | ||
1892 | if(p == (mchunkptr)-1) return 0; | |
1893 | ||
1894 | n_mmaps++; | |
1895 | if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; | |
1896 | ||
1897 | /* We demand that eight bytes into a page must be 8-byte aligned. */ | |
1898 | assert(aligned_OK(chunk2mem(p))); | |
1899 | ||
1900 | /* The offset to the start of the mmapped region is stored | |
1901 | * in the prev_size field of the chunk; normally it is zero, | |
1902 | * but that can be changed in memalign(). | |
1903 | */ | |
1904 | p->prev_size = 0; | |
1905 | set_head(p, size|IS_MMAPPED); | |
1906 | ||
1907 | mmapped_mem += size; | |
1908 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1909 | max_mmapped_mem = mmapped_mem; | |
1910 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1911 | max_total_mem = mmapped_mem + sbrked_mem; | |
1912 | return p; | |
1913 | } | |
1914 | ||
1915 | #if __STD_C | |
1916 | static void munmap_chunk(mchunkptr p) | |
1917 | #else | |
1918 | static void munmap_chunk(p) mchunkptr p; | |
1919 | #endif | |
1920 | { | |
1921 | INTERNAL_SIZE_T size = chunksize(p); | |
1922 | int ret; | |
1923 | ||
1924 | assert (chunk_is_mmapped(p)); | |
1925 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1926 | assert((n_mmaps > 0)); | |
1927 | assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); | |
1928 | ||
1929 | n_mmaps--; | |
1930 | mmapped_mem -= (size + p->prev_size); | |
1931 | ||
1932 | ret = munmap((char *)p - p->prev_size, size + p->prev_size); | |
1933 | ||
1934 | /* munmap returns non-zero on failure */ | |
1935 | assert(ret == 0); | |
1936 | } | |
1937 | ||
1938 | #if HAVE_MREMAP | |
1939 | ||
1940 | #if __STD_C | |
1941 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) | |
1942 | #else | |
1943 | static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; | |
1944 | #endif | |
1945 | { | |
1946 | size_t page_mask = malloc_getpagesize - 1; | |
1947 | INTERNAL_SIZE_T offset = p->prev_size; | |
1948 | INTERNAL_SIZE_T size = chunksize(p); | |
1949 | char *cp; | |
1950 | ||
1951 | assert (chunk_is_mmapped(p)); | |
1952 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1953 | assert((n_mmaps > 0)); | |
1954 | assert(((size + offset) & (malloc_getpagesize-1)) == 0); | |
1955 | ||
1956 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ | |
1957 | new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; | |
1958 | ||
1959 | cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); | |
1960 | ||
1961 | if (cp == (char *)-1) return 0; | |
1962 | ||
1963 | p = (mchunkptr)(cp + offset); | |
1964 | ||
1965 | assert(aligned_OK(chunk2mem(p))); | |
1966 | ||
1967 | assert((p->prev_size == offset)); | |
1968 | set_head(p, (new_size - offset)|IS_MMAPPED); | |
1969 | ||
1970 | mmapped_mem -= size + offset; | |
1971 | mmapped_mem += new_size; | |
1972 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1973 | max_mmapped_mem = mmapped_mem; | |
1974 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1975 | max_total_mem = mmapped_mem + sbrked_mem; | |
1976 | return p; | |
1977 | } | |
1978 | ||
1979 | #endif /* HAVE_MREMAP */ | |
1980 | ||
1981 | #endif /* HAVE_MMAP */ | |
1982 | ||
1983 | ||
d93041a4 | 1984 | |
217c9dad WD |
1985 | |
1986 | /* | |
1987 | Extend the top-most chunk by obtaining memory from system. | |
1988 | Main interface to sbrk (but see also malloc_trim). | |
1989 | */ | |
1990 | ||
1991 | #if __STD_C | |
1992 | static void malloc_extend_top(INTERNAL_SIZE_T nb) | |
1993 | #else | |
1994 | static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; | |
1995 | #endif | |
1996 | { | |
1997 | char* brk; /* return value from sbrk */ | |
1998 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ | |
1999 | INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ | |
2000 | char* new_brk; /* return of 2nd sbrk call */ | |
2001 | INTERNAL_SIZE_T top_size; /* new size of top chunk */ | |
2002 | ||
2003 | mchunkptr old_top = top; /* Record state of old top */ | |
2004 | INTERNAL_SIZE_T old_top_size = chunksize(old_top); | |
2005 | char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); | |
2006 | ||
2007 | /* Pad request with top_pad plus minimal overhead */ | |
2008 | ||
2009 | INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; | |
2010 | unsigned long pagesz = malloc_getpagesize; | |
2011 | ||
2012 | /* If not the first time through, round to preserve page boundary */ | |
2013 | /* Otherwise, we need to correct to a page size below anyway. */ | |
2014 | /* (We also correct below if an intervening foreign sbrk call.) */ | |
2015 | ||
2016 | if (sbrk_base != (char*)(-1)) | |
2017 | sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); | |
2018 | ||
2019 | brk = (char*)(MORECORE (sbrk_size)); | |
2020 | ||
2021 | /* Fail if sbrk failed or if a foreign sbrk call killed our space */ | |
2022 | if (brk == (char*)(MORECORE_FAILURE) || | |
2023 | (brk < old_end && old_top != initial_top)) | |
2024 | return; | |
2025 | ||
2026 | sbrked_mem += sbrk_size; | |
2027 | ||
2028 | if (brk == old_end) /* can just add bytes to current top */ | |
2029 | { | |
2030 | top_size = sbrk_size + old_top_size; | |
2031 | set_head(top, top_size | PREV_INUSE); | |
2032 | } | |
2033 | else | |
2034 | { | |
2035 | if (sbrk_base == (char*)(-1)) /* First time through. Record base */ | |
2036 | sbrk_base = brk; | |
2037 | else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ | |
2038 | sbrked_mem += brk - (char*)old_end; | |
2039 | ||
2040 | /* Guarantee alignment of first new chunk made from this space */ | |
2041 | front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; | |
2042 | if (front_misalign > 0) | |
2043 | { | |
2044 | correction = (MALLOC_ALIGNMENT) - front_misalign; | |
2045 | brk += correction; | |
2046 | } | |
2047 | else | |
2048 | correction = 0; | |
2049 | ||
2050 | /* Guarantee the next brk will be at a page boundary */ | |
2051 | ||
2052 | correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & | |
8bde7f77 | 2053 | ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); |
217c9dad WD |
2054 | |
2055 | /* Allocate correction */ | |
2056 | new_brk = (char*)(MORECORE (correction)); | |
2057 | if (new_brk == (char*)(MORECORE_FAILURE)) return; | |
2058 | ||
2059 | sbrked_mem += correction; | |
2060 | ||
2061 | top = (mchunkptr)brk; | |
2062 | top_size = new_brk - brk + correction; | |
2063 | set_head(top, top_size | PREV_INUSE); | |
2064 | ||
2065 | if (old_top != initial_top) | |
2066 | { | |
2067 | ||
2068 | /* There must have been an intervening foreign sbrk call. */ | |
2069 | /* A double fencepost is necessary to prevent consolidation */ | |
2070 | ||
2071 | /* If not enough space to do this, then user did something very wrong */ | |
2072 | if (old_top_size < MINSIZE) | |
2073 | { | |
8bde7f77 WD |
2074 | set_head(top, PREV_INUSE); /* will force null return from malloc */ |
2075 | return; | |
217c9dad WD |
2076 | } |
2077 | ||
2078 | /* Also keep size a multiple of MALLOC_ALIGNMENT */ | |
2079 | old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; | |
2080 | set_head_size(old_top, old_top_size); | |
2081 | chunk_at_offset(old_top, old_top_size )->size = | |
8bde7f77 | 2082 | SIZE_SZ|PREV_INUSE; |
217c9dad | 2083 | chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = |
8bde7f77 | 2084 | SIZE_SZ|PREV_INUSE; |
217c9dad WD |
2085 | /* If possible, release the rest. */ |
2086 | if (old_top_size >= MINSIZE) | |
8bde7f77 | 2087 | fREe(chunk2mem(old_top)); |
217c9dad WD |
2088 | } |
2089 | } | |
2090 | ||
2091 | if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) | |
2092 | max_sbrked_mem = sbrked_mem; | |
2093 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
2094 | max_total_mem = mmapped_mem + sbrked_mem; | |
2095 | ||
2096 | /* We always land on a page boundary */ | |
2097 | assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); | |
2098 | } | |
2099 | ||
2100 | ||
d93041a4 | 2101 | |
217c9dad WD |
2102 | |
2103 | /* Main public routines */ | |
2104 | ||
2105 | ||
2106 | /* | |
2107 | Malloc Algorthim: | |
2108 | ||
2109 | The requested size is first converted into a usable form, `nb'. | |
2110 | This currently means to add 4 bytes overhead plus possibly more to | |
2111 | obtain 8-byte alignment and/or to obtain a size of at least | |
2112 | MINSIZE (currently 16 bytes), the smallest allocatable size. | |
2113 | (All fits are considered `exact' if they are within MINSIZE bytes.) | |
2114 | ||
2115 | From there, the first successful of the following steps is taken: | |
2116 | ||
2117 | 1. The bin corresponding to the request size is scanned, and if | |
8bde7f77 | 2118 | a chunk of exactly the right size is found, it is taken. |
217c9dad WD |
2119 | |
2120 | 2. The most recently remaindered chunk is used if it is big | |
8bde7f77 WD |
2121 | enough. This is a form of (roving) first fit, used only in |
2122 | the absence of exact fits. Runs of consecutive requests use | |
2123 | the remainder of the chunk used for the previous such request | |
2124 | whenever possible. This limited use of a first-fit style | |
2125 | allocation strategy tends to give contiguous chunks | |
2126 | coextensive lifetimes, which improves locality and can reduce | |
2127 | fragmentation in the long run. | |
217c9dad WD |
2128 | |
2129 | 3. Other bins are scanned in increasing size order, using a | |
8bde7f77 WD |
2130 | chunk big enough to fulfill the request, and splitting off |
2131 | any remainder. This search is strictly by best-fit; i.e., | |
2132 | the smallest (with ties going to approximately the least | |
2133 | recently used) chunk that fits is selected. | |
217c9dad WD |
2134 | |
2135 | 4. If large enough, the chunk bordering the end of memory | |
8bde7f77 WD |
2136 | (`top') is split off. (This use of `top' is in accord with |
2137 | the best-fit search rule. In effect, `top' is treated as | |
2138 | larger (and thus less well fitting) than any other available | |
2139 | chunk since it can be extended to be as large as necessary | |
2140 | (up to system limitations). | |
217c9dad WD |
2141 | |
2142 | 5. If the request size meets the mmap threshold and the | |
8bde7f77 WD |
2143 | system supports mmap, and there are few enough currently |
2144 | allocated mmapped regions, and a call to mmap succeeds, | |
2145 | the request is allocated via direct memory mapping. | |
217c9dad WD |
2146 | |
2147 | 6. Otherwise, the top of memory is extended by | |
8bde7f77 WD |
2148 | obtaining more space from the system (normally using sbrk, |
2149 | but definable to anything else via the MORECORE macro). | |
2150 | Memory is gathered from the system (in system page-sized | |
2151 | units) in a way that allows chunks obtained across different | |
2152 | sbrk calls to be consolidated, but does not require | |
2153 | contiguous memory. Thus, it should be safe to intersperse | |
2154 | mallocs with other sbrk calls. | |
217c9dad WD |
2155 | |
2156 | ||
2157 | All allocations are made from the the `lowest' part of any found | |
2158 | chunk. (The implementation invariant is that prev_inuse is | |
2159 | always true of any allocated chunk; i.e., that each allocated | |
2160 | chunk borders either a previously allocated and still in-use chunk, | |
2161 | or the base of its memory arena.) | |
2162 | ||
2163 | */ | |
2164 | ||
2165 | #if __STD_C | |
2166 | Void_t* mALLOc(size_t bytes) | |
2167 | #else | |
2168 | Void_t* mALLOc(bytes) size_t bytes; | |
2169 | #endif | |
2170 | { | |
2171 | mchunkptr victim; /* inspected/selected chunk */ | |
2172 | INTERNAL_SIZE_T victim_size; /* its size */ | |
2173 | int idx; /* index for bin traversal */ | |
2174 | mbinptr bin; /* associated bin */ | |
2175 | mchunkptr remainder; /* remainder from a split */ | |
2176 | long remainder_size; /* its size */ | |
2177 | int remainder_index; /* its bin index */ | |
2178 | unsigned long block; /* block traverser bit */ | |
2179 | int startidx; /* first bin of a traversed block */ | |
2180 | mchunkptr fwd; /* misc temp for linking */ | |
2181 | mchunkptr bck; /* misc temp for linking */ | |
2182 | mbinptr q; /* misc temp */ | |
2183 | ||
2184 | INTERNAL_SIZE_T nb; | |
2185 | ||
d59476b6 | 2186 | #ifdef CONFIG_SYS_MALLOC_F_LEN |
c9356be3 SG |
2187 | if (gd && !(gd->flags & GD_FLG_FULL_MALLOC_INIT)) |
2188 | return malloc_simple(bytes); | |
d59476b6 SG |
2189 | #endif |
2190 | ||
27405448 WD |
2191 | /* check if mem_malloc_init() was run */ |
2192 | if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) { | |
2193 | /* not initialized yet */ | |
199adb60 | 2194 | return NULL; |
27405448 WD |
2195 | } |
2196 | ||
199adb60 | 2197 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
2198 | |
2199 | nb = request2size(bytes); /* padded request size; */ | |
2200 | ||
2201 | /* Check for exact match in a bin */ | |
2202 | ||
2203 | if (is_small_request(nb)) /* Faster version for small requests */ | |
2204 | { | |
2205 | idx = smallbin_index(nb); | |
2206 | ||
2207 | /* No traversal or size check necessary for small bins. */ | |
2208 | ||
2209 | q = bin_at(idx); | |
2210 | victim = last(q); | |
2211 | ||
2212 | /* Also scan the next one, since it would have a remainder < MINSIZE */ | |
2213 | if (victim == q) | |
2214 | { | |
2215 | q = next_bin(q); | |
2216 | victim = last(q); | |
2217 | } | |
2218 | if (victim != q) | |
2219 | { | |
2220 | victim_size = chunksize(victim); | |
2221 | unlink(victim, bck, fwd); | |
2222 | set_inuse_bit_at_offset(victim, victim_size); | |
2223 | check_malloced_chunk(victim, nb); | |
2224 | return chunk2mem(victim); | |
2225 | } | |
2226 | ||
2227 | idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ | |
2228 | ||
2229 | } | |
2230 | else | |
2231 | { | |
2232 | idx = bin_index(nb); | |
2233 | bin = bin_at(idx); | |
2234 | ||
2235 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
2236 | { | |
2237 | victim_size = chunksize(victim); | |
2238 | remainder_size = victim_size - nb; | |
2239 | ||
2240 | if (remainder_size >= (long)MINSIZE) /* too big */ | |
2241 | { | |
8bde7f77 WD |
2242 | --idx; /* adjust to rescan below after checking last remainder */ |
2243 | break; | |
217c9dad WD |
2244 | } |
2245 | ||
2246 | else if (remainder_size >= 0) /* exact fit */ | |
2247 | { | |
8bde7f77 WD |
2248 | unlink(victim, bck, fwd); |
2249 | set_inuse_bit_at_offset(victim, victim_size); | |
2250 | check_malloced_chunk(victim, nb); | |
2251 | return chunk2mem(victim); | |
217c9dad WD |
2252 | } |
2253 | } | |
2254 | ||
2255 | ++idx; | |
2256 | ||
2257 | } | |
2258 | ||
2259 | /* Try to use the last split-off remainder */ | |
2260 | ||
2261 | if ( (victim = last_remainder->fd) != last_remainder) | |
2262 | { | |
2263 | victim_size = chunksize(victim); | |
2264 | remainder_size = victim_size - nb; | |
2265 | ||
2266 | if (remainder_size >= (long)MINSIZE) /* re-split */ | |
2267 | { | |
2268 | remainder = chunk_at_offset(victim, nb); | |
2269 | set_head(victim, nb | PREV_INUSE); | |
2270 | link_last_remainder(remainder); | |
2271 | set_head(remainder, remainder_size | PREV_INUSE); | |
2272 | set_foot(remainder, remainder_size); | |
2273 | check_malloced_chunk(victim, nb); | |
2274 | return chunk2mem(victim); | |
2275 | } | |
2276 | ||
2277 | clear_last_remainder; | |
2278 | ||
2279 | if (remainder_size >= 0) /* exhaust */ | |
2280 | { | |
2281 | set_inuse_bit_at_offset(victim, victim_size); | |
2282 | check_malloced_chunk(victim, nb); | |
2283 | return chunk2mem(victim); | |
2284 | } | |
2285 | ||
2286 | /* Else place in bin */ | |
2287 | ||
2288 | frontlink(victim, victim_size, remainder_index, bck, fwd); | |
2289 | } | |
2290 | ||
2291 | /* | |
2292 | If there are any possibly nonempty big-enough blocks, | |
2293 | search for best fitting chunk by scanning bins in blockwidth units. | |
2294 | */ | |
2295 | ||
f2302d44 | 2296 | if ( (block = idx2binblock(idx)) <= binblocks_r) |
217c9dad WD |
2297 | { |
2298 | ||
2299 | /* Get to the first marked block */ | |
2300 | ||
f2302d44 | 2301 | if ( (block & binblocks_r) == 0) |
217c9dad WD |
2302 | { |
2303 | /* force to an even block boundary */ | |
2304 | idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; | |
2305 | block <<= 1; | |
f2302d44 | 2306 | while ((block & binblocks_r) == 0) |
217c9dad | 2307 | { |
8bde7f77 WD |
2308 | idx += BINBLOCKWIDTH; |
2309 | block <<= 1; | |
217c9dad WD |
2310 | } |
2311 | } | |
2312 | ||
2313 | /* For each possibly nonempty block ... */ | |
2314 | for (;;) | |
2315 | { | |
2316 | startidx = idx; /* (track incomplete blocks) */ | |
2317 | q = bin = bin_at(idx); | |
2318 | ||
2319 | /* For each bin in this block ... */ | |
2320 | do | |
2321 | { | |
8bde7f77 WD |
2322 | /* Find and use first big enough chunk ... */ |
2323 | ||
2324 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
2325 | { | |
2326 | victim_size = chunksize(victim); | |
2327 | remainder_size = victim_size - nb; | |
2328 | ||
2329 | if (remainder_size >= (long)MINSIZE) /* split */ | |
2330 | { | |
2331 | remainder = chunk_at_offset(victim, nb); | |
2332 | set_head(victim, nb | PREV_INUSE); | |
2333 | unlink(victim, bck, fwd); | |
2334 | link_last_remainder(remainder); | |
2335 | set_head(remainder, remainder_size | PREV_INUSE); | |
2336 | set_foot(remainder, remainder_size); | |
2337 | check_malloced_chunk(victim, nb); | |
2338 | return chunk2mem(victim); | |
2339 | } | |
2340 | ||
2341 | else if (remainder_size >= 0) /* take */ | |
2342 | { | |
2343 | set_inuse_bit_at_offset(victim, victim_size); | |
2344 | unlink(victim, bck, fwd); | |
2345 | check_malloced_chunk(victim, nb); | |
2346 | return chunk2mem(victim); | |
2347 | } | |
2348 | ||
2349 | } | |
217c9dad WD |
2350 | |
2351 | bin = next_bin(bin); | |
2352 | ||
2353 | } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); | |
2354 | ||
2355 | /* Clear out the block bit. */ | |
2356 | ||
2357 | do /* Possibly backtrack to try to clear a partial block */ | |
2358 | { | |
8bde7f77 WD |
2359 | if ((startidx & (BINBLOCKWIDTH - 1)) == 0) |
2360 | { | |
f2302d44 | 2361 | av_[1] = (mbinptr)(binblocks_r & ~block); |
8bde7f77 WD |
2362 | break; |
2363 | } | |
2364 | --startidx; | |
217c9dad WD |
2365 | q = prev_bin(q); |
2366 | } while (first(q) == q); | |
2367 | ||
2368 | /* Get to the next possibly nonempty block */ | |
2369 | ||
f2302d44 | 2370 | if ( (block <<= 1) <= binblocks_r && (block != 0) ) |
217c9dad | 2371 | { |
f2302d44 | 2372 | while ((block & binblocks_r) == 0) |
8bde7f77 WD |
2373 | { |
2374 | idx += BINBLOCKWIDTH; | |
2375 | block <<= 1; | |
2376 | } | |
217c9dad WD |
2377 | } |
2378 | else | |
8bde7f77 | 2379 | break; |
217c9dad WD |
2380 | } |
2381 | } | |
2382 | ||
2383 | ||
2384 | /* Try to use top chunk */ | |
2385 | ||
2386 | /* Require that there be a remainder, ensuring top always exists */ | |
2387 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
2388 | { | |
2389 | ||
2390 | #if HAVE_MMAP | |
2391 | /* If big and would otherwise need to extend, try to use mmap instead */ | |
2392 | if ((unsigned long)nb >= (unsigned long)mmap_threshold && | |
8bde7f77 | 2393 | (victim = mmap_chunk(nb)) != 0) |
217c9dad WD |
2394 | return chunk2mem(victim); |
2395 | #endif | |
2396 | ||
2397 | /* Try to extend */ | |
2398 | malloc_extend_top(nb); | |
2399 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
199adb60 | 2400 | return NULL; /* propagate failure */ |
217c9dad WD |
2401 | } |
2402 | ||
2403 | victim = top; | |
2404 | set_head(victim, nb | PREV_INUSE); | |
2405 | top = chunk_at_offset(victim, nb); | |
2406 | set_head(top, remainder_size | PREV_INUSE); | |
2407 | check_malloced_chunk(victim, nb); | |
2408 | return chunk2mem(victim); | |
2409 | ||
2410 | } | |
2411 | ||
2412 | ||
d93041a4 | 2413 | |
217c9dad WD |
2414 | |
2415 | /* | |
2416 | ||
2417 | free() algorithm : | |
2418 | ||
2419 | cases: | |
2420 | ||
2421 | 1. free(0) has no effect. | |
2422 | ||
2423 | 2. If the chunk was allocated via mmap, it is release via munmap(). | |
2424 | ||
2425 | 3. If a returned chunk borders the current high end of memory, | |
8bde7f77 WD |
2426 | it is consolidated into the top, and if the total unused |
2427 | topmost memory exceeds the trim threshold, malloc_trim is | |
2428 | called. | |
217c9dad WD |
2429 | |
2430 | 4. Other chunks are consolidated as they arrive, and | |
8bde7f77 WD |
2431 | placed in corresponding bins. (This includes the case of |
2432 | consolidating with the current `last_remainder'). | |
217c9dad WD |
2433 | |
2434 | */ | |
2435 | ||
2436 | ||
2437 | #if __STD_C | |
2438 | void fREe(Void_t* mem) | |
2439 | #else | |
2440 | void fREe(mem) Void_t* mem; | |
2441 | #endif | |
2442 | { | |
2443 | mchunkptr p; /* chunk corresponding to mem */ | |
2444 | INTERNAL_SIZE_T hd; /* its head field */ | |
2445 | INTERNAL_SIZE_T sz; /* its size */ | |
2446 | int idx; /* its bin index */ | |
2447 | mchunkptr next; /* next contiguous chunk */ | |
2448 | INTERNAL_SIZE_T nextsz; /* its size */ | |
2449 | INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ | |
2450 | mchunkptr bck; /* misc temp for linking */ | |
2451 | mchunkptr fwd; /* misc temp for linking */ | |
2452 | int islr; /* track whether merging with last_remainder */ | |
2453 | ||
d59476b6 SG |
2454 | #ifdef CONFIG_SYS_MALLOC_F_LEN |
2455 | /* free() is a no-op - all the memory will be freed on relocation */ | |
c9356be3 | 2456 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) |
d59476b6 SG |
2457 | return; |
2458 | #endif | |
2459 | ||
199adb60 | 2460 | if (mem == NULL) /* free(0) has no effect */ |
217c9dad WD |
2461 | return; |
2462 | ||
2463 | p = mem2chunk(mem); | |
2464 | hd = p->size; | |
2465 | ||
2466 | #if HAVE_MMAP | |
2467 | if (hd & IS_MMAPPED) /* release mmapped memory. */ | |
2468 | { | |
2469 | munmap_chunk(p); | |
2470 | return; | |
2471 | } | |
2472 | #endif | |
2473 | ||
2474 | check_inuse_chunk(p); | |
2475 | ||
2476 | sz = hd & ~PREV_INUSE; | |
2477 | next = chunk_at_offset(p, sz); | |
2478 | nextsz = chunksize(next); | |
2479 | ||
2480 | if (next == top) /* merge with top */ | |
2481 | { | |
2482 | sz += nextsz; | |
2483 | ||
2484 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
2485 | { | |
2486 | prevsz = p->prev_size; | |
2487 | p = chunk_at_offset(p, -((long) prevsz)); | |
2488 | sz += prevsz; | |
2489 | unlink(p, bck, fwd); | |
2490 | } | |
2491 | ||
2492 | set_head(p, sz | PREV_INUSE); | |
2493 | top = p; | |
2494 | if ((unsigned long)(sz) >= (unsigned long)trim_threshold) | |
2495 | malloc_trim(top_pad); | |
2496 | return; | |
2497 | } | |
2498 | ||
2499 | set_head(next, nextsz); /* clear inuse bit */ | |
2500 | ||
2501 | islr = 0; | |
2502 | ||
2503 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
2504 | { | |
2505 | prevsz = p->prev_size; | |
2506 | p = chunk_at_offset(p, -((long) prevsz)); | |
2507 | sz += prevsz; | |
2508 | ||
2509 | if (p->fd == last_remainder) /* keep as last_remainder */ | |
2510 | islr = 1; | |
2511 | else | |
2512 | unlink(p, bck, fwd); | |
2513 | } | |
2514 | ||
2515 | if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ | |
2516 | { | |
2517 | sz += nextsz; | |
2518 | ||
2519 | if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ | |
2520 | { | |
2521 | islr = 1; | |
2522 | link_last_remainder(p); | |
2523 | } | |
2524 | else | |
2525 | unlink(next, bck, fwd); | |
2526 | } | |
2527 | ||
2528 | ||
2529 | set_head(p, sz | PREV_INUSE); | |
2530 | set_foot(p, sz); | |
2531 | if (!islr) | |
2532 | frontlink(p, sz, idx, bck, fwd); | |
2533 | } | |
2534 | ||
2535 | ||
d93041a4 | 2536 | |
217c9dad WD |
2537 | |
2538 | ||
2539 | /* | |
2540 | ||
2541 | Realloc algorithm: | |
2542 | ||
2543 | Chunks that were obtained via mmap cannot be extended or shrunk | |
2544 | unless HAVE_MREMAP is defined, in which case mremap is used. | |
2545 | Otherwise, if their reallocation is for additional space, they are | |
2546 | copied. If for less, they are just left alone. | |
2547 | ||
2548 | Otherwise, if the reallocation is for additional space, and the | |
2549 | chunk can be extended, it is, else a malloc-copy-free sequence is | |
2550 | taken. There are several different ways that a chunk could be | |
2551 | extended. All are tried: | |
2552 | ||
2553 | * Extending forward into following adjacent free chunk. | |
2554 | * Shifting backwards, joining preceding adjacent space | |
2555 | * Both shifting backwards and extending forward. | |
2556 | * Extending into newly sbrked space | |
2557 | ||
2558 | Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a | |
2559 | size argument of zero (re)allocates a minimum-sized chunk. | |
2560 | ||
2561 | If the reallocation is for less space, and the new request is for | |
2562 | a `small' (<512 bytes) size, then the newly unused space is lopped | |
2563 | off and freed. | |
2564 | ||
2565 | The old unix realloc convention of allowing the last-free'd chunk | |
2566 | to be used as an argument to realloc is no longer supported. | |
2567 | I don't know of any programs still relying on this feature, | |
2568 | and allowing it would also allow too many other incorrect | |
2569 | usages of realloc to be sensible. | |
2570 | ||
2571 | ||
2572 | */ | |
2573 | ||
2574 | ||
2575 | #if __STD_C | |
2576 | Void_t* rEALLOc(Void_t* oldmem, size_t bytes) | |
2577 | #else | |
2578 | Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; | |
2579 | #endif | |
2580 | { | |
2581 | INTERNAL_SIZE_T nb; /* padded request size */ | |
2582 | ||
2583 | mchunkptr oldp; /* chunk corresponding to oldmem */ | |
2584 | INTERNAL_SIZE_T oldsize; /* its size */ | |
2585 | ||
2586 | mchunkptr newp; /* chunk to return */ | |
2587 | INTERNAL_SIZE_T newsize; /* its size */ | |
2588 | Void_t* newmem; /* corresponding user mem */ | |
2589 | ||
2590 | mchunkptr next; /* next contiguous chunk after oldp */ | |
2591 | INTERNAL_SIZE_T nextsize; /* its size */ | |
2592 | ||
2593 | mchunkptr prev; /* previous contiguous chunk before oldp */ | |
2594 | INTERNAL_SIZE_T prevsize; /* its size */ | |
2595 | ||
2596 | mchunkptr remainder; /* holds split off extra space from newp */ | |
2597 | INTERNAL_SIZE_T remainder_size; /* its size */ | |
2598 | ||
2599 | mchunkptr bck; /* misc temp for linking */ | |
2600 | mchunkptr fwd; /* misc temp for linking */ | |
2601 | ||
2602 | #ifdef REALLOC_ZERO_BYTES_FREES | |
2603 | if (bytes == 0) { fREe(oldmem); return 0; } | |
2604 | #endif | |
2605 | ||
199adb60 | 2606 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
2607 | |
2608 | /* realloc of null is supposed to be same as malloc */ | |
199adb60 | 2609 | if (oldmem == NULL) return mALLOc(bytes); |
217c9dad | 2610 | |
d59476b6 | 2611 | #ifdef CONFIG_SYS_MALLOC_F_LEN |
c9356be3 | 2612 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { |
d59476b6 SG |
2613 | /* This is harder to support and should not be needed */ |
2614 | panic("pre-reloc realloc() is not supported"); | |
2615 | } | |
2616 | #endif | |
2617 | ||
217c9dad WD |
2618 | newp = oldp = mem2chunk(oldmem); |
2619 | newsize = oldsize = chunksize(oldp); | |
2620 | ||
2621 | ||
2622 | nb = request2size(bytes); | |
2623 | ||
2624 | #if HAVE_MMAP | |
2625 | if (chunk_is_mmapped(oldp)) | |
2626 | { | |
2627 | #if HAVE_MREMAP | |
2628 | newp = mremap_chunk(oldp, nb); | |
2629 | if(newp) return chunk2mem(newp); | |
2630 | #endif | |
2631 | /* Note the extra SIZE_SZ overhead. */ | |
2632 | if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ | |
2633 | /* Must alloc, copy, free. */ | |
2634 | newmem = mALLOc(bytes); | |
2635 | if (newmem == 0) return 0; /* propagate failure */ | |
2636 | MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); | |
2637 | munmap_chunk(oldp); | |
2638 | return newmem; | |
2639 | } | |
2640 | #endif | |
2641 | ||
2642 | check_inuse_chunk(oldp); | |
2643 | ||
2644 | if ((long)(oldsize) < (long)(nb)) | |
2645 | { | |
2646 | ||
2647 | /* Try expanding forward */ | |
2648 | ||
2649 | next = chunk_at_offset(oldp, oldsize); | |
2650 | if (next == top || !inuse(next)) | |
2651 | { | |
2652 | nextsize = chunksize(next); | |
2653 | ||
2654 | /* Forward into top only if a remainder */ | |
2655 | if (next == top) | |
2656 | { | |
8bde7f77 WD |
2657 | if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) |
2658 | { | |
2659 | newsize += nextsize; | |
2660 | top = chunk_at_offset(oldp, nb); | |
2661 | set_head(top, (newsize - nb) | PREV_INUSE); | |
2662 | set_head_size(oldp, nb); | |
2663 | return chunk2mem(oldp); | |
2664 | } | |
217c9dad WD |
2665 | } |
2666 | ||
2667 | /* Forward into next chunk */ | |
2668 | else if (((long)(nextsize + newsize) >= (long)(nb))) | |
2669 | { | |
8bde7f77 WD |
2670 | unlink(next, bck, fwd); |
2671 | newsize += nextsize; | |
2672 | goto split; | |
217c9dad WD |
2673 | } |
2674 | } | |
2675 | else | |
2676 | { | |
199adb60 | 2677 | next = NULL; |
217c9dad WD |
2678 | nextsize = 0; |
2679 | } | |
2680 | ||
2681 | /* Try shifting backwards. */ | |
2682 | ||
2683 | if (!prev_inuse(oldp)) | |
2684 | { | |
2685 | prev = prev_chunk(oldp); | |
2686 | prevsize = chunksize(prev); | |
2687 | ||
2688 | /* try forward + backward first to save a later consolidation */ | |
2689 | ||
199adb60 | 2690 | if (next != NULL) |
217c9dad | 2691 | { |
8bde7f77 WD |
2692 | /* into top */ |
2693 | if (next == top) | |
2694 | { | |
2695 | if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) | |
2696 | { | |
2697 | unlink(prev, bck, fwd); | |
2698 | newp = prev; | |
2699 | newsize += prevsize + nextsize; | |
2700 | newmem = chunk2mem(newp); | |
2701 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2702 | top = chunk_at_offset(newp, nb); | |
2703 | set_head(top, (newsize - nb) | PREV_INUSE); | |
2704 | set_head_size(newp, nb); | |
2705 | return newmem; | |
2706 | } | |
2707 | } | |
2708 | ||
2709 | /* into next chunk */ | |
2710 | else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) | |
2711 | { | |
2712 | unlink(next, bck, fwd); | |
2713 | unlink(prev, bck, fwd); | |
2714 | newp = prev; | |
2715 | newsize += nextsize + prevsize; | |
2716 | newmem = chunk2mem(newp); | |
2717 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2718 | goto split; | |
2719 | } | |
217c9dad WD |
2720 | } |
2721 | ||
2722 | /* backward only */ | |
199adb60 | 2723 | if (prev != NULL && (long)(prevsize + newsize) >= (long)nb) |
217c9dad | 2724 | { |
8bde7f77 WD |
2725 | unlink(prev, bck, fwd); |
2726 | newp = prev; | |
2727 | newsize += prevsize; | |
2728 | newmem = chunk2mem(newp); | |
2729 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2730 | goto split; | |
217c9dad WD |
2731 | } |
2732 | } | |
2733 | ||
2734 | /* Must allocate */ | |
2735 | ||
2736 | newmem = mALLOc (bytes); | |
2737 | ||
199adb60 KP |
2738 | if (newmem == NULL) /* propagate failure */ |
2739 | return NULL; | |
217c9dad WD |
2740 | |
2741 | /* Avoid copy if newp is next chunk after oldp. */ | |
2742 | /* (This can only happen when new chunk is sbrk'ed.) */ | |
2743 | ||
2744 | if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) | |
2745 | { | |
2746 | newsize += chunksize(newp); | |
2747 | newp = oldp; | |
2748 | goto split; | |
2749 | } | |
2750 | ||
2751 | /* Otherwise copy, free, and exit */ | |
2752 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2753 | fREe(oldmem); | |
2754 | return newmem; | |
2755 | } | |
2756 | ||
2757 | ||
2758 | split: /* split off extra room in old or expanded chunk */ | |
2759 | ||
2760 | if (newsize - nb >= MINSIZE) /* split off remainder */ | |
2761 | { | |
2762 | remainder = chunk_at_offset(newp, nb); | |
2763 | remainder_size = newsize - nb; | |
2764 | set_head_size(newp, nb); | |
2765 | set_head(remainder, remainder_size | PREV_INUSE); | |
2766 | set_inuse_bit_at_offset(remainder, remainder_size); | |
2767 | fREe(chunk2mem(remainder)); /* let free() deal with it */ | |
2768 | } | |
2769 | else | |
2770 | { | |
2771 | set_head_size(newp, newsize); | |
2772 | set_inuse_bit_at_offset(newp, newsize); | |
2773 | } | |
2774 | ||
2775 | check_inuse_chunk(newp); | |
2776 | return chunk2mem(newp); | |
2777 | } | |
2778 | ||
2779 | ||
d93041a4 | 2780 | |
217c9dad WD |
2781 | |
2782 | /* | |
2783 | ||
2784 | memalign algorithm: | |
2785 | ||
2786 | memalign requests more than enough space from malloc, finds a spot | |
2787 | within that chunk that meets the alignment request, and then | |
2788 | possibly frees the leading and trailing space. | |
2789 | ||
2790 | The alignment argument must be a power of two. This property is not | |
2791 | checked by memalign, so misuse may result in random runtime errors. | |
2792 | ||
2793 | 8-byte alignment is guaranteed by normal malloc calls, so don't | |
2794 | bother calling memalign with an argument of 8 or less. | |
2795 | ||
2796 | Overreliance on memalign is a sure way to fragment space. | |
2797 | ||
2798 | */ | |
2799 | ||
2800 | ||
2801 | #if __STD_C | |
2802 | Void_t* mEMALIGn(size_t alignment, size_t bytes) | |
2803 | #else | |
2804 | Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; | |
2805 | #endif | |
2806 | { | |
2807 | INTERNAL_SIZE_T nb; /* padded request size */ | |
2808 | char* m; /* memory returned by malloc call */ | |
2809 | mchunkptr p; /* corresponding chunk */ | |
2810 | char* brk; /* alignment point within p */ | |
2811 | mchunkptr newp; /* chunk to return */ | |
2812 | INTERNAL_SIZE_T newsize; /* its size */ | |
2813 | INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ | |
2814 | mchunkptr remainder; /* spare room at end to split off */ | |
2815 | long remainder_size; /* its size */ | |
2816 | ||
199adb60 | 2817 | if ((long)bytes < 0) return NULL; |
217c9dad WD |
2818 | |
2819 | /* If need less alignment than we give anyway, just relay to malloc */ | |
2820 | ||
2821 | if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); | |
2822 | ||
2823 | /* Otherwise, ensure that it is at least a minimum chunk size */ | |
2824 | ||
2825 | if (alignment < MINSIZE) alignment = MINSIZE; | |
2826 | ||
2827 | /* Call malloc with worst case padding to hit alignment. */ | |
2828 | ||
2829 | nb = request2size(bytes); | |
2830 | m = (char*)(mALLOc(nb + alignment + MINSIZE)); | |
2831 | ||
199adb60 | 2832 | if (m == NULL) return NULL; /* propagate failure */ |
217c9dad WD |
2833 | |
2834 | p = mem2chunk(m); | |
2835 | ||
2836 | if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ | |
2837 | { | |
2838 | #if HAVE_MMAP | |
2839 | if(chunk_is_mmapped(p)) | |
2840 | return chunk2mem(p); /* nothing more to do */ | |
2841 | #endif | |
2842 | } | |
2843 | else /* misaligned */ | |
2844 | { | |
2845 | /* | |
2846 | Find an aligned spot inside chunk. | |
2847 | Since we need to give back leading space in a chunk of at | |
2848 | least MINSIZE, if the first calculation places us at | |
2849 | a spot with less than MINSIZE leader, we can move to the | |
2850 | next aligned spot -- we've allocated enough total room so that | |
2851 | this is always possible. | |
2852 | */ | |
2853 | ||
2854 | brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); | |
2855 | if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; | |
2856 | ||
2857 | newp = (mchunkptr)brk; | |
2858 | leadsize = brk - (char*)(p); | |
2859 | newsize = chunksize(p) - leadsize; | |
2860 | ||
2861 | #if HAVE_MMAP | |
2862 | if(chunk_is_mmapped(p)) | |
2863 | { | |
2864 | newp->prev_size = p->prev_size + leadsize; | |
2865 | set_head(newp, newsize|IS_MMAPPED); | |
2866 | return chunk2mem(newp); | |
2867 | } | |
2868 | #endif | |
2869 | ||
2870 | /* give back leader, use the rest */ | |
2871 | ||
2872 | set_head(newp, newsize | PREV_INUSE); | |
2873 | set_inuse_bit_at_offset(newp, newsize); | |
2874 | set_head_size(p, leadsize); | |
2875 | fREe(chunk2mem(p)); | |
2876 | p = newp; | |
2877 | ||
2878 | assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); | |
2879 | } | |
2880 | ||
2881 | /* Also give back spare room at the end */ | |
2882 | ||
2883 | remainder_size = chunksize(p) - nb; | |
2884 | ||
2885 | if (remainder_size >= (long)MINSIZE) | |
2886 | { | |
2887 | remainder = chunk_at_offset(p, nb); | |
2888 | set_head(remainder, remainder_size | PREV_INUSE); | |
2889 | set_head_size(p, nb); | |
2890 | fREe(chunk2mem(remainder)); | |
2891 | } | |
2892 | ||
2893 | check_inuse_chunk(p); | |
2894 | return chunk2mem(p); | |
2895 | ||
2896 | } | |
2897 | ||
d93041a4 | 2898 | |
217c9dad WD |
2899 | |
2900 | ||
2901 | /* | |
2902 | valloc just invokes memalign with alignment argument equal | |
2903 | to the page size of the system (or as near to this as can | |
2904 | be figured out from all the includes/defines above.) | |
2905 | */ | |
2906 | ||
2907 | #if __STD_C | |
2908 | Void_t* vALLOc(size_t bytes) | |
2909 | #else | |
2910 | Void_t* vALLOc(bytes) size_t bytes; | |
2911 | #endif | |
2912 | { | |
2913 | return mEMALIGn (malloc_getpagesize, bytes); | |
2914 | } | |
2915 | ||
2916 | /* | |
2917 | pvalloc just invokes valloc for the nearest pagesize | |
2918 | that will accommodate request | |
2919 | */ | |
2920 | ||
2921 | ||
2922 | #if __STD_C | |
2923 | Void_t* pvALLOc(size_t bytes) | |
2924 | #else | |
2925 | Void_t* pvALLOc(bytes) size_t bytes; | |
2926 | #endif | |
2927 | { | |
2928 | size_t pagesize = malloc_getpagesize; | |
2929 | return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); | |
2930 | } | |
2931 | ||
2932 | /* | |
2933 | ||
2934 | calloc calls malloc, then zeroes out the allocated chunk. | |
2935 | ||
2936 | */ | |
2937 | ||
2938 | #if __STD_C | |
2939 | Void_t* cALLOc(size_t n, size_t elem_size) | |
2940 | #else | |
2941 | Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; | |
2942 | #endif | |
2943 | { | |
2944 | mchunkptr p; | |
2945 | INTERNAL_SIZE_T csz; | |
2946 | ||
2947 | INTERNAL_SIZE_T sz = n * elem_size; | |
2948 | ||
2949 | ||
2950 | /* check if expand_top called, in which case don't need to clear */ | |
0aa8a4ad | 2951 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
217c9dad WD |
2952 | #if MORECORE_CLEARS |
2953 | mchunkptr oldtop = top; | |
2954 | INTERNAL_SIZE_T oldtopsize = chunksize(top); | |
0aa8a4ad | 2955 | #endif |
217c9dad WD |
2956 | #endif |
2957 | Void_t* mem = mALLOc (sz); | |
2958 | ||
199adb60 | 2959 | if ((long)n < 0) return NULL; |
217c9dad | 2960 | |
199adb60 KP |
2961 | if (mem == NULL) |
2962 | return NULL; | |
217c9dad WD |
2963 | else |
2964 | { | |
d59476b6 | 2965 | #ifdef CONFIG_SYS_MALLOC_F_LEN |
c9356be3 | 2966 | if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) { |
d59476b6 SG |
2967 | MALLOC_ZERO(mem, sz); |
2968 | return mem; | |
2969 | } | |
2970 | #endif | |
217c9dad WD |
2971 | p = mem2chunk(mem); |
2972 | ||
2973 | /* Two optional cases in which clearing not necessary */ | |
2974 | ||
2975 | ||
2976 | #if HAVE_MMAP | |
2977 | if (chunk_is_mmapped(p)) return mem; | |
2978 | #endif | |
2979 | ||
2980 | csz = chunksize(p); | |
2981 | ||
0aa8a4ad | 2982 | #ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT |
217c9dad WD |
2983 | #if MORECORE_CLEARS |
2984 | if (p == oldtop && csz > oldtopsize) | |
2985 | { | |
2986 | /* clear only the bytes from non-freshly-sbrked memory */ | |
2987 | csz = oldtopsize; | |
2988 | } | |
0aa8a4ad | 2989 | #endif |
217c9dad WD |
2990 | #endif |
2991 | ||
2992 | MALLOC_ZERO(mem, csz - SIZE_SZ); | |
2993 | return mem; | |
2994 | } | |
2995 | } | |
2996 | ||
2997 | /* | |
2998 | ||
2999 | cfree just calls free. It is needed/defined on some systems | |
3000 | that pair it with calloc, presumably for odd historical reasons. | |
3001 | ||
3002 | */ | |
3003 | ||
3004 | #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) | |
3005 | #if __STD_C | |
3006 | void cfree(Void_t *mem) | |
3007 | #else | |
3008 | void cfree(mem) Void_t *mem; | |
3009 | #endif | |
3010 | { | |
3011 | fREe(mem); | |
3012 | } | |
3013 | #endif | |
3014 | ||
d93041a4 | 3015 | |
217c9dad WD |
3016 | |
3017 | /* | |
3018 | ||
3019 | Malloc_trim gives memory back to the system (via negative | |
3020 | arguments to sbrk) if there is unused memory at the `high' end of | |
3021 | the malloc pool. You can call this after freeing large blocks of | |
3022 | memory to potentially reduce the system-level memory requirements | |
3023 | of a program. However, it cannot guarantee to reduce memory. Under | |
3024 | some allocation patterns, some large free blocks of memory will be | |
3025 | locked between two used chunks, so they cannot be given back to | |
3026 | the system. | |
3027 | ||
3028 | The `pad' argument to malloc_trim represents the amount of free | |
3029 | trailing space to leave untrimmed. If this argument is zero, | |
3030 | only the minimum amount of memory to maintain internal data | |
3031 | structures will be left (one page or less). Non-zero arguments | |
3032 | can be supplied to maintain enough trailing space to service | |
3033 | future expected allocations without having to re-obtain memory | |
3034 | from the system. | |
3035 | ||
3036 | Malloc_trim returns 1 if it actually released any memory, else 0. | |
3037 | ||
3038 | */ | |
3039 | ||
3040 | #if __STD_C | |
3041 | int malloc_trim(size_t pad) | |
3042 | #else | |
3043 | int malloc_trim(pad) size_t pad; | |
3044 | #endif | |
3045 | { | |
3046 | long top_size; /* Amount of top-most memory */ | |
3047 | long extra; /* Amount to release */ | |
3048 | char* current_brk; /* address returned by pre-check sbrk call */ | |
3049 | char* new_brk; /* address returned by negative sbrk call */ | |
3050 | ||
3051 | unsigned long pagesz = malloc_getpagesize; | |
3052 | ||
3053 | top_size = chunksize(top); | |
3054 | extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; | |
3055 | ||
3056 | if (extra < (long)pagesz) /* Not enough memory to release */ | |
3057 | return 0; | |
3058 | ||
3059 | else | |
3060 | { | |
3061 | /* Test to make sure no one else called sbrk */ | |
3062 | current_brk = (char*)(MORECORE (0)); | |
3063 | if (current_brk != (char*)(top) + top_size) | |
3064 | return 0; /* Apparently we don't own memory; must fail */ | |
3065 | ||
3066 | else | |
3067 | { | |
3068 | new_brk = (char*)(MORECORE (-extra)); | |
3069 | ||
3070 | if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ | |
3071 | { | |
8bde7f77 WD |
3072 | /* Try to figure out what we have */ |
3073 | current_brk = (char*)(MORECORE (0)); | |
3074 | top_size = current_brk - (char*)top; | |
3075 | if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ | |
3076 | { | |
3077 | sbrked_mem = current_brk - sbrk_base; | |
3078 | set_head(top, top_size | PREV_INUSE); | |
3079 | } | |
3080 | check_chunk(top); | |
3081 | return 0; | |
217c9dad WD |
3082 | } |
3083 | ||
3084 | else | |
3085 | { | |
8bde7f77 WD |
3086 | /* Success. Adjust top accordingly. */ |
3087 | set_head(top, (top_size - extra) | PREV_INUSE); | |
3088 | sbrked_mem -= extra; | |
3089 | check_chunk(top); | |
3090 | return 1; | |
217c9dad WD |
3091 | } |
3092 | } | |
3093 | } | |
3094 | } | |
3095 | ||
d93041a4 | 3096 | |
217c9dad WD |
3097 | |
3098 | /* | |
3099 | malloc_usable_size: | |
3100 | ||
3101 | This routine tells you how many bytes you can actually use in an | |
3102 | allocated chunk, which may be more than you requested (although | |
3103 | often not). You can use this many bytes without worrying about | |
3104 | overwriting other allocated objects. Not a particularly great | |
3105 | programming practice, but still sometimes useful. | |
3106 | ||
3107 | */ | |
3108 | ||
3109 | #if __STD_C | |
3110 | size_t malloc_usable_size(Void_t* mem) | |
3111 | #else | |
3112 | size_t malloc_usable_size(mem) Void_t* mem; | |
3113 | #endif | |
3114 | { | |
3115 | mchunkptr p; | |
199adb60 | 3116 | if (mem == NULL) |
217c9dad WD |
3117 | return 0; |
3118 | else | |
3119 | { | |
3120 | p = mem2chunk(mem); | |
3121 | if(!chunk_is_mmapped(p)) | |
3122 | { | |
3123 | if (!inuse(p)) return 0; | |
3124 | check_inuse_chunk(p); | |
3125 | return chunksize(p) - SIZE_SZ; | |
3126 | } | |
3127 | return chunksize(p) - 2*SIZE_SZ; | |
3128 | } | |
3129 | } | |
3130 | ||
3131 | ||
d93041a4 | 3132 | |
217c9dad WD |
3133 | |
3134 | /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ | |
3135 | ||
ea882baf | 3136 | #ifdef DEBUG |
217c9dad WD |
3137 | static void malloc_update_mallinfo() |
3138 | { | |
3139 | int i; | |
3140 | mbinptr b; | |
3141 | mchunkptr p; | |
3142 | #ifdef DEBUG | |
3143 | mchunkptr q; | |
3144 | #endif | |
3145 | ||
3146 | INTERNAL_SIZE_T avail = chunksize(top); | |
3147 | int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; | |
3148 | ||
3149 | for (i = 1; i < NAV; ++i) | |
3150 | { | |
3151 | b = bin_at(i); | |
3152 | for (p = last(b); p != b; p = p->bk) | |
3153 | { | |
3154 | #ifdef DEBUG | |
3155 | check_free_chunk(p); | |
3156 | for (q = next_chunk(p); | |
8bde7f77 WD |
3157 | q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; |
3158 | q = next_chunk(q)) | |
3159 | check_inuse_chunk(q); | |
217c9dad WD |
3160 | #endif |
3161 | avail += chunksize(p); | |
3162 | navail++; | |
3163 | } | |
3164 | } | |
3165 | ||
3166 | current_mallinfo.ordblks = navail; | |
3167 | current_mallinfo.uordblks = sbrked_mem - avail; | |
3168 | current_mallinfo.fordblks = avail; | |
3169 | current_mallinfo.hblks = n_mmaps; | |
3170 | current_mallinfo.hblkhd = mmapped_mem; | |
3171 | current_mallinfo.keepcost = chunksize(top); | |
3172 | ||
3173 | } | |
ea882baf | 3174 | #endif /* DEBUG */ |
217c9dad | 3175 | |
d93041a4 | 3176 | |
217c9dad WD |
3177 | |
3178 | /* | |
3179 | ||
3180 | malloc_stats: | |
3181 | ||
3182 | Prints on the amount of space obtain from the system (both | |
3183 | via sbrk and mmap), the maximum amount (which may be more than | |
3184 | current if malloc_trim and/or munmap got called), the maximum | |
3185 | number of simultaneous mmap regions used, and the current number | |
3186 | of bytes allocated via malloc (or realloc, etc) but not yet | |
3187 | freed. (Note that this is the number of bytes allocated, not the | |
3188 | number requested. It will be larger than the number requested | |
3189 | because of alignment and bookkeeping overhead.) | |
3190 | ||
3191 | */ | |
3192 | ||
ea882baf | 3193 | #ifdef DEBUG |
217c9dad WD |
3194 | void malloc_stats() |
3195 | { | |
3196 | malloc_update_mallinfo(); | |
3197 | printf("max system bytes = %10u\n", | |
8bde7f77 | 3198 | (unsigned int)(max_total_mem)); |
217c9dad | 3199 | printf("system bytes = %10u\n", |
8bde7f77 | 3200 | (unsigned int)(sbrked_mem + mmapped_mem)); |
217c9dad | 3201 | printf("in use bytes = %10u\n", |
8bde7f77 | 3202 | (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); |
217c9dad WD |
3203 | #if HAVE_MMAP |
3204 | printf("max mmap regions = %10u\n", | |
8bde7f77 | 3205 | (unsigned int)max_n_mmaps); |
217c9dad WD |
3206 | #endif |
3207 | } | |
ea882baf | 3208 | #endif /* DEBUG */ |
217c9dad WD |
3209 | |
3210 | /* | |
3211 | mallinfo returns a copy of updated current mallinfo. | |
3212 | */ | |
3213 | ||
ea882baf | 3214 | #ifdef DEBUG |
217c9dad WD |
3215 | struct mallinfo mALLINFo() |
3216 | { | |
3217 | malloc_update_mallinfo(); | |
3218 | return current_mallinfo; | |
3219 | } | |
ea882baf | 3220 | #endif /* DEBUG */ |
217c9dad WD |
3221 | |
3222 | ||
d93041a4 | 3223 | |
217c9dad WD |
3224 | |
3225 | /* | |
3226 | mallopt: | |
3227 | ||
3228 | mallopt is the general SVID/XPG interface to tunable parameters. | |
3229 | The format is to provide a (parameter-number, parameter-value) pair. | |
3230 | mallopt then sets the corresponding parameter to the argument | |
3231 | value if it can (i.e., so long as the value is meaningful), | |
3232 | and returns 1 if successful else 0. | |
3233 | ||
3234 | See descriptions of tunable parameters above. | |
3235 | ||
3236 | */ | |
3237 | ||
3238 | #if __STD_C | |
3239 | int mALLOPt(int param_number, int value) | |
3240 | #else | |
3241 | int mALLOPt(param_number, value) int param_number; int value; | |
3242 | #endif | |
3243 | { | |
3244 | switch(param_number) | |
3245 | { | |
3246 | case M_TRIM_THRESHOLD: | |
3247 | trim_threshold = value; return 1; | |
3248 | case M_TOP_PAD: | |
3249 | top_pad = value; return 1; | |
3250 | case M_MMAP_THRESHOLD: | |
3251 | mmap_threshold = value; return 1; | |
3252 | case M_MMAP_MAX: | |
3253 | #if HAVE_MMAP | |
3254 | n_mmaps_max = value; return 1; | |
3255 | #else | |
3256 | if (value != 0) return 0; else n_mmaps_max = value; return 1; | |
3257 | #endif | |
3258 | ||
3259 | default: | |
3260 | return 0; | |
3261 | } | |
3262 | } | |
3263 | ||
fb5cf7f1 SG |
3264 | int initf_malloc(void) |
3265 | { | |
3266 | #ifdef CONFIG_SYS_MALLOC_F_LEN | |
3267 | assert(gd->malloc_base); /* Set up by crt0.S */ | |
3268 | gd->malloc_limit = CONFIG_SYS_MALLOC_F_LEN; | |
3269 | gd->malloc_ptr = 0; | |
3270 | #endif | |
3271 | ||
3272 | return 0; | |
3273 | } | |
3274 | ||
217c9dad WD |
3275 | /* |
3276 | ||
3277 | History: | |
3278 | ||
3279 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) | |
3280 | * return null for negative arguments | |
3281 | * Added Several WIN32 cleanups from Martin C. Fong <[email protected]> | |
8bde7f77 WD |
3282 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
3283 | (e.g. WIN32 platforms) | |
3284 | * Cleanup up header file inclusion for WIN32 platforms | |
3285 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints | |
3286 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | |
3287 | memory allocation routines | |
3288 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | |
3289 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | |
217c9dad | 3290 | usage of 'assert' in non-WIN32 code |
8bde7f77 WD |
3291 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
3292 | avoid infinite loop | |
217c9dad WD |
3293 | * Always call 'fREe()' rather than 'free()' |
3294 | ||
3295 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) | |
3296 | * Fixed ordering problem with boundary-stamping | |
3297 | ||
3298 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) | |
3299 | * Added pvalloc, as recommended by H.J. Liu | |
3300 | * Added 64bit pointer support mainly from Wolfram Gloger | |
3301 | * Added anonymously donated WIN32 sbrk emulation | |
3302 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | |
3303 | * malloc_extend_top: fix mask error that caused wastage after | |
8bde7f77 | 3304 | foreign sbrks |
217c9dad WD |
3305 | * Add linux mremap support code from HJ Liu |
3306 | ||
3307 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) | |
3308 | * Integrated most documentation with the code. | |
3309 | * Add support for mmap, with help from | |
8bde7f77 | 3310 | Wolfram Gloger ([email protected]). |
217c9dad WD |
3311 | * Use last_remainder in more cases. |
3312 | * Pack bins using idea from [email protected] | |
3313 | * Use ordered bins instead of best-fit threshhold | |
3314 | * Eliminate block-local decls to simplify tracing and debugging. | |
3315 | * Support another case of realloc via move into top | |
3316 | * Fix error occuring when initial sbrk_base not word-aligned. | |
3317 | * Rely on page size for units instead of SBRK_UNIT to | |
8bde7f77 | 3318 | avoid surprises about sbrk alignment conventions. |
217c9dad | 3319 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
8bde7f77 | 3320 | ([email protected]) for the suggestion. |
217c9dad WD |
3321 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
3322 | * More precautions for cases where other routines call sbrk, | |
8bde7f77 | 3323 | courtesy of Wolfram Gloger ([email protected]). |
217c9dad | 3324 | * Added macros etc., allowing use in linux libc from |
8bde7f77 | 3325 | H.J. Lu ([email protected]) |
217c9dad WD |
3326 | * Inverted this history list |
3327 | ||
3328 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) | |
3329 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | |
3330 | * Removed all preallocation code since under current scheme | |
8bde7f77 WD |
3331 | the work required to undo bad preallocations exceeds |
3332 | the work saved in good cases for most test programs. | |
217c9dad | 3333 | * No longer use return list or unconsolidated bins since |
8bde7f77 WD |
3334 | no scheme using them consistently outperforms those that don't |
3335 | given above changes. | |
217c9dad WD |
3336 | * Use best fit for very large chunks to prevent some worst-cases. |
3337 | * Added some support for debugging | |
3338 | ||
3339 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) | |
3340 | * Removed footers when chunks are in use. Thanks to | |
8bde7f77 | 3341 | Paul Wilson ([email protected]) for the suggestion. |
217c9dad WD |
3342 | |
3343 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) | |
3344 | * Added malloc_trim, with help from Wolfram Gloger | |
8bde7f77 | 3345 | ([email protected]). |
217c9dad WD |
3346 | |
3347 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) | |
3348 | ||
3349 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) | |
3350 | * realloc: try to expand in both directions | |
3351 | * malloc: swap order of clean-bin strategy; | |
3352 | * realloc: only conditionally expand backwards | |
3353 | * Try not to scavenge used bins | |
3354 | * Use bin counts as a guide to preallocation | |
3355 | * Occasionally bin return list chunks in first scan | |
3356 | * Add a few optimizations from [email protected] | |
3357 | ||
3358 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) | |
3359 | * faster bin computation & slightly different binning | |
3360 | * merged all consolidations to one part of malloc proper | |
8bde7f77 | 3361 | (eliminating old malloc_find_space & malloc_clean_bin) |
217c9dad WD |
3362 | * Scan 2 returns chunks (not just 1) |
3363 | * Propagate failure in realloc if malloc returns 0 | |
3364 | * Add stuff to allow compilation on non-ANSI compilers | |
8bde7f77 | 3365 | from [email protected] |
217c9dad WD |
3366 | |
3367 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) | |
3368 | * removed potential for odd address access in prev_chunk | |
3369 | * removed dependency on getpagesize.h | |
3370 | * misc cosmetics and a bit more internal documentation | |
3371 | * anticosmetics: mangled names in macros to evade debugger strangeness | |
3372 | * tested on sparc, hp-700, dec-mips, rs6000 | |
8bde7f77 WD |
3373 | with gcc & native cc (hp, dec only) allowing |
3374 | Detlefs & Zorn comparison study (in SIGPLAN Notices.) | |
217c9dad WD |
3375 | |
3376 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) | |
3377 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall | |
8bde7f77 | 3378 | structure of old version, but most details differ.) |
217c9dad WD |
3379 | |
3380 | */ |