]>
Commit | Line | Data |
---|---|---|
81673e9a KG |
1 | #include <common.h> |
2 | ||
217c9dad WD |
3 | #if 0 /* Moved to malloc.h */ |
4 | /* ---------- To make a malloc.h, start cutting here ------------ */ | |
5 | ||
6 | /* | |
7 | A version of malloc/free/realloc written by Doug Lea and released to the | |
8 | public domain. Send questions/comments/complaints/performance data | |
9 | to [email protected] | |
10 | ||
11 | * VERSION 2.6.6 Sun Mar 5 19:10:03 2000 Doug Lea (dl at gee) | |
12 | ||
13 | Note: There may be an updated version of this malloc obtainable at | |
8bde7f77 WD |
14 | ftp://g.oswego.edu/pub/misc/malloc.c |
15 | Check before installing! | |
217c9dad WD |
16 | |
17 | * Why use this malloc? | |
18 | ||
19 | This is not the fastest, most space-conserving, most portable, or | |
20 | most tunable malloc ever written. However it is among the fastest | |
21 | while also being among the most space-conserving, portable and tunable. | |
22 | Consistent balance across these factors results in a good general-purpose | |
23 | allocator. For a high-level description, see | |
24 | http://g.oswego.edu/dl/html/malloc.html | |
25 | ||
26 | * Synopsis of public routines | |
27 | ||
28 | (Much fuller descriptions are contained in the program documentation below.) | |
29 | ||
30 | malloc(size_t n); | |
31 | Return a pointer to a newly allocated chunk of at least n bytes, or null | |
32 | if no space is available. | |
33 | free(Void_t* p); | |
34 | Release the chunk of memory pointed to by p, or no effect if p is null. | |
35 | realloc(Void_t* p, size_t n); | |
36 | Return a pointer to a chunk of size n that contains the same data | |
37 | as does chunk p up to the minimum of (n, p's size) bytes, or null | |
38 | if no space is available. The returned pointer may or may not be | |
39 | the same as p. If p is null, equivalent to malloc. Unless the | |
40 | #define REALLOC_ZERO_BYTES_FREES below is set, realloc with a | |
41 | size argument of zero (re)allocates a minimum-sized chunk. | |
42 | memalign(size_t alignment, size_t n); | |
43 | Return a pointer to a newly allocated chunk of n bytes, aligned | |
44 | in accord with the alignment argument, which must be a power of | |
45 | two. | |
46 | valloc(size_t n); | |
47 | Equivalent to memalign(pagesize, n), where pagesize is the page | |
48 | size of the system (or as near to this as can be figured out from | |
49 | all the includes/defines below.) | |
50 | pvalloc(size_t n); | |
51 | Equivalent to valloc(minimum-page-that-holds(n)), that is, | |
52 | round up n to nearest pagesize. | |
53 | calloc(size_t unit, size_t quantity); | |
54 | Returns a pointer to quantity * unit bytes, with all locations | |
55 | set to zero. | |
56 | cfree(Void_t* p); | |
57 | Equivalent to free(p). | |
58 | malloc_trim(size_t pad); | |
59 | Release all but pad bytes of freed top-most memory back | |
60 | to the system. Return 1 if successful, else 0. | |
61 | malloc_usable_size(Void_t* p); | |
62 | Report the number usable allocated bytes associated with allocated | |
63 | chunk p. This may or may not report more bytes than were requested, | |
64 | due to alignment and minimum size constraints. | |
65 | malloc_stats(); | |
66 | Prints brief summary statistics. | |
67 | mallinfo() | |
68 | Returns (by copy) a struct containing various summary statistics. | |
69 | mallopt(int parameter_number, int parameter_value) | |
70 | Changes one of the tunable parameters described below. Returns | |
71 | 1 if successful in changing the parameter, else 0. | |
72 | ||
73 | * Vital statistics: | |
74 | ||
75 | Alignment: 8-byte | |
76 | 8 byte alignment is currently hardwired into the design. This | |
77 | seems to suffice for all current machines and C compilers. | |
78 | ||
79 | Assumed pointer representation: 4 or 8 bytes | |
80 | Code for 8-byte pointers is untested by me but has worked | |
81 | reliably by Wolfram Gloger, who contributed most of the | |
82 | changes supporting this. | |
83 | ||
84 | Assumed size_t representation: 4 or 8 bytes | |
85 | Note that size_t is allowed to be 4 bytes even if pointers are 8. | |
86 | ||
87 | Minimum overhead per allocated chunk: 4 or 8 bytes | |
88 | Each malloced chunk has a hidden overhead of 4 bytes holding size | |
89 | and status information. | |
90 | ||
91 | Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead) | |
8bde7f77 | 92 | 8-byte ptrs: 24/32 bytes (including, 4/8 overhead) |
217c9dad WD |
93 | |
94 | When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte | |
95 | ptrs but 4 byte size) or 24 (for 8/8) additional bytes are | |
96 | needed; 4 (8) for a trailing size field | |
97 | and 8 (16) bytes for free list pointers. Thus, the minimum | |
98 | allocatable size is 16/24/32 bytes. | |
99 | ||
100 | Even a request for zero bytes (i.e., malloc(0)) returns a | |
101 | pointer to something of the minimum allocatable size. | |
102 | ||
103 | Maximum allocated size: 4-byte size_t: 2^31 - 8 bytes | |
8bde7f77 | 104 | 8-byte size_t: 2^63 - 16 bytes |
217c9dad WD |
105 | |
106 | It is assumed that (possibly signed) size_t bit values suffice to | |
107 | represent chunk sizes. `Possibly signed' is due to the fact | |
108 | that `size_t' may be defined on a system as either a signed or | |
109 | an unsigned type. To be conservative, values that would appear | |
110 | as negative numbers are avoided. | |
111 | Requests for sizes with a negative sign bit when the request | |
112 | size is treaded as a long will return null. | |
113 | ||
114 | Maximum overhead wastage per allocated chunk: normally 15 bytes | |
115 | ||
116 | Alignnment demands, plus the minimum allocatable size restriction | |
117 | make the normal worst-case wastage 15 bytes (i.e., up to 15 | |
118 | more bytes will be allocated than were requested in malloc), with | |
119 | two exceptions: | |
8bde7f77 WD |
120 | 1. Because requests for zero bytes allocate non-zero space, |
121 | the worst case wastage for a request of zero bytes is 24 bytes. | |
122 | 2. For requests >= mmap_threshold that are serviced via | |
123 | mmap(), the worst case wastage is 8 bytes plus the remainder | |
124 | from a system page (the minimal mmap unit); typically 4096 bytes. | |
217c9dad WD |
125 | |
126 | * Limitations | |
127 | ||
128 | Here are some features that are NOT currently supported | |
129 | ||
130 | * No user-definable hooks for callbacks and the like. | |
131 | * No automated mechanism for fully checking that all accesses | |
132 | to malloced memory stay within their bounds. | |
133 | * No support for compaction. | |
134 | ||
135 | * Synopsis of compile-time options: | |
136 | ||
137 | People have reported using previous versions of this malloc on all | |
138 | versions of Unix, sometimes by tweaking some of the defines | |
139 | below. It has been tested most extensively on Solaris and | |
140 | Linux. It is also reported to work on WIN32 platforms. | |
141 | People have also reported adapting this malloc for use in | |
142 | stand-alone embedded systems. | |
143 | ||
144 | The implementation is in straight, hand-tuned ANSI C. Among other | |
145 | consequences, it uses a lot of macros. Because of this, to be at | |
146 | all usable, this code should be compiled using an optimizing compiler | |
147 | (for example gcc -O2) that can simplify expressions and control | |
148 | paths. | |
149 | ||
150 | __STD_C (default: derived from C compiler defines) | |
151 | Nonzero if using ANSI-standard C compiler, a C++ compiler, or | |
152 | a C compiler sufficiently close to ANSI to get away with it. | |
153 | DEBUG (default: NOT defined) | |
154 | Define to enable debugging. Adds fairly extensive assertion-based | |
155 | checking to help track down memory errors, but noticeably slows down | |
156 | execution. | |
157 | REALLOC_ZERO_BYTES_FREES (default: NOT defined) | |
158 | Define this if you think that realloc(p, 0) should be equivalent | |
159 | to free(p). Otherwise, since malloc returns a unique pointer for | |
160 | malloc(0), so does realloc(p, 0). | |
161 | HAVE_MEMCPY (default: defined) | |
162 | Define if you are not otherwise using ANSI STD C, but still | |
163 | have memcpy and memset in your C library and want to use them. | |
164 | Otherwise, simple internal versions are supplied. | |
165 | USE_MEMCPY (default: 1 if HAVE_MEMCPY is defined, 0 otherwise) | |
166 | Define as 1 if you want the C library versions of memset and | |
167 | memcpy called in realloc and calloc (otherwise macro versions are used). | |
168 | At least on some platforms, the simple macro versions usually | |
169 | outperform libc versions. | |
170 | HAVE_MMAP (default: defined as 1) | |
171 | Define to non-zero to optionally make malloc() use mmap() to | |
172 | allocate very large blocks. | |
173 | HAVE_MREMAP (default: defined as 0 unless Linux libc set) | |
174 | Define to non-zero to optionally make realloc() use mremap() to | |
175 | reallocate very large blocks. | |
176 | malloc_getpagesize (default: derived from system #includes) | |
177 | Either a constant or routine call returning the system page size. | |
178 | HAVE_USR_INCLUDE_MALLOC_H (default: NOT defined) | |
179 | Optionally define if you are on a system with a /usr/include/malloc.h | |
180 | that declares struct mallinfo. It is not at all necessary to | |
181 | define this even if you do, but will ensure consistency. | |
182 | INTERNAL_SIZE_T (default: size_t) | |
183 | Define to a 32-bit type (probably `unsigned int') if you are on a | |
184 | 64-bit machine, yet do not want or need to allow malloc requests of | |
185 | greater than 2^31 to be handled. This saves space, especially for | |
186 | very small chunks. | |
187 | INTERNAL_LINUX_C_LIB (default: NOT defined) | |
188 | Defined only when compiled as part of Linux libc. | |
189 | Also note that there is some odd internal name-mangling via defines | |
190 | (for example, internally, `malloc' is named `mALLOc') needed | |
191 | when compiling in this case. These look funny but don't otherwise | |
192 | affect anything. | |
193 | WIN32 (default: undefined) | |
194 | Define this on MS win (95, nt) platforms to compile in sbrk emulation. | |
195 | LACKS_UNISTD_H (default: undefined if not WIN32) | |
196 | Define this if your system does not have a <unistd.h>. | |
197 | LACKS_SYS_PARAM_H (default: undefined if not WIN32) | |
198 | Define this if your system does not have a <sys/param.h>. | |
199 | MORECORE (default: sbrk) | |
200 | The name of the routine to call to obtain more memory from the system. | |
201 | MORECORE_FAILURE (default: -1) | |
202 | The value returned upon failure of MORECORE. | |
203 | MORECORE_CLEARS (default 1) | |
204 | True (1) if the routine mapped to MORECORE zeroes out memory (which | |
205 | holds for sbrk). | |
206 | DEFAULT_TRIM_THRESHOLD | |
207 | DEFAULT_TOP_PAD | |
208 | DEFAULT_MMAP_THRESHOLD | |
209 | DEFAULT_MMAP_MAX | |
210 | Default values of tunable parameters (described in detail below) | |
211 | controlling interaction with host system routines (sbrk, mmap, etc). | |
212 | These values may also be changed dynamically via mallopt(). The | |
213 | preset defaults are those that give best performance for typical | |
214 | programs/systems. | |
215 | USE_DL_PREFIX (default: undefined) | |
216 | Prefix all public routines with the string 'dl'. Useful to | |
217 | quickly avoid procedure declaration conflicts and linker symbol | |
218 | conflicts with existing memory allocation routines. | |
219 | ||
220 | ||
221 | */ | |
222 | ||
223 | \f | |
224 | ||
225 | ||
226 | /* Preliminaries */ | |
227 | ||
228 | #ifndef __STD_C | |
229 | #ifdef __STDC__ | |
230 | #define __STD_C 1 | |
231 | #else | |
232 | #if __cplusplus | |
233 | #define __STD_C 1 | |
234 | #else | |
235 | #define __STD_C 0 | |
236 | #endif /*__cplusplus*/ | |
237 | #endif /*__STDC__*/ | |
238 | #endif /*__STD_C*/ | |
239 | ||
240 | #ifndef Void_t | |
241 | #if (__STD_C || defined(WIN32)) | |
242 | #define Void_t void | |
243 | #else | |
244 | #define Void_t char | |
245 | #endif | |
246 | #endif /*Void_t*/ | |
247 | ||
248 | #if __STD_C | |
249 | #include <stddef.h> /* for size_t */ | |
250 | #else | |
251 | #include <sys/types.h> | |
252 | #endif | |
253 | ||
254 | #ifdef __cplusplus | |
255 | extern "C" { | |
256 | #endif | |
257 | ||
258 | #include <stdio.h> /* needed for malloc_stats */ | |
259 | ||
260 | ||
261 | /* | |
262 | Compile-time options | |
263 | */ | |
264 | ||
265 | ||
266 | /* | |
267 | Debugging: | |
268 | ||
269 | Because freed chunks may be overwritten with link fields, this | |
270 | malloc will often die when freed memory is overwritten by user | |
271 | programs. This can be very effective (albeit in an annoying way) | |
272 | in helping track down dangling pointers. | |
273 | ||
274 | If you compile with -DDEBUG, a number of assertion checks are | |
275 | enabled that will catch more memory errors. You probably won't be | |
276 | able to make much sense of the actual assertion errors, but they | |
277 | should help you locate incorrectly overwritten memory. The | |
278 | checking is fairly extensive, and will slow down execution | |
279 | noticeably. Calling malloc_stats or mallinfo with DEBUG set will | |
280 | attempt to check every non-mmapped allocated and free chunk in the | |
281 | course of computing the summmaries. (By nature, mmapped regions | |
282 | cannot be checked very much automatically.) | |
283 | ||
284 | Setting DEBUG may also be helpful if you are trying to modify | |
285 | this code. The assertions in the check routines spell out in more | |
286 | detail the assumptions and invariants underlying the algorithms. | |
287 | ||
288 | */ | |
289 | ||
290 | #ifdef DEBUG | |
291 | #include <assert.h> | |
292 | #else | |
293 | #define assert(x) ((void)0) | |
294 | #endif | |
295 | ||
296 | ||
297 | /* | |
298 | INTERNAL_SIZE_T is the word-size used for internal bookkeeping | |
299 | of chunk sizes. On a 64-bit machine, you can reduce malloc | |
300 | overhead by defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' | |
301 | at the expense of not being able to handle requests greater than | |
302 | 2^31. This limitation is hardly ever a concern; you are encouraged | |
303 | to set this. However, the default version is the same as size_t. | |
304 | */ | |
305 | ||
306 | #ifndef INTERNAL_SIZE_T | |
307 | #define INTERNAL_SIZE_T size_t | |
308 | #endif | |
309 | ||
310 | /* | |
311 | REALLOC_ZERO_BYTES_FREES should be set if a call to | |
312 | realloc with zero bytes should be the same as a call to free. | |
313 | Some people think it should. Otherwise, since this malloc | |
314 | returns a unique pointer for malloc(0), so does realloc(p, 0). | |
315 | */ | |
316 | ||
317 | ||
318 | /* #define REALLOC_ZERO_BYTES_FREES */ | |
319 | ||
320 | ||
321 | /* | |
322 | WIN32 causes an emulation of sbrk to be compiled in | |
323 | mmap-based options are not currently supported in WIN32. | |
324 | */ | |
325 | ||
326 | /* #define WIN32 */ | |
327 | #ifdef WIN32 | |
328 | #define MORECORE wsbrk | |
329 | #define HAVE_MMAP 0 | |
330 | ||
331 | #define LACKS_UNISTD_H | |
332 | #define LACKS_SYS_PARAM_H | |
333 | ||
334 | /* | |
335 | Include 'windows.h' to get the necessary declarations for the | |
336 | Microsoft Visual C++ data structures and routines used in the 'sbrk' | |
337 | emulation. | |
338 | ||
339 | Define WIN32_LEAN_AND_MEAN so that only the essential Microsoft | |
340 | Visual C++ header files are included. | |
341 | */ | |
342 | #define WIN32_LEAN_AND_MEAN | |
343 | #include <windows.h> | |
344 | #endif | |
345 | ||
346 | ||
347 | /* | |
348 | HAVE_MEMCPY should be defined if you are not otherwise using | |
349 | ANSI STD C, but still have memcpy and memset in your C library | |
350 | and want to use them in calloc and realloc. Otherwise simple | |
351 | macro versions are defined here. | |
352 | ||
353 | USE_MEMCPY should be defined as 1 if you actually want to | |
354 | have memset and memcpy called. People report that the macro | |
355 | versions are often enough faster than libc versions on many | |
356 | systems that it is better to use them. | |
357 | ||
358 | */ | |
359 | ||
360 | #define HAVE_MEMCPY | |
361 | ||
362 | #ifndef USE_MEMCPY | |
363 | #ifdef HAVE_MEMCPY | |
364 | #define USE_MEMCPY 1 | |
365 | #else | |
366 | #define USE_MEMCPY 0 | |
367 | #endif | |
368 | #endif | |
369 | ||
370 | #if (__STD_C || defined(HAVE_MEMCPY)) | |
371 | ||
372 | #if __STD_C | |
373 | void* memset(void*, int, size_t); | |
374 | void* memcpy(void*, const void*, size_t); | |
375 | #else | |
376 | #ifdef WIN32 | |
8bde7f77 WD |
377 | /* On Win32 platforms, 'memset()' and 'memcpy()' are already declared in */ |
378 | /* 'windows.h' */ | |
217c9dad WD |
379 | #else |
380 | Void_t* memset(); | |
381 | Void_t* memcpy(); | |
382 | #endif | |
383 | #endif | |
384 | #endif | |
385 | ||
386 | #if USE_MEMCPY | |
387 | ||
388 | /* The following macros are only invoked with (2n+1)-multiples of | |
389 | INTERNAL_SIZE_T units, with a positive integer n. This is exploited | |
390 | for fast inline execution when n is small. */ | |
391 | ||
392 | #define MALLOC_ZERO(charp, nbytes) \ | |
393 | do { \ | |
394 | INTERNAL_SIZE_T mzsz = (nbytes); \ | |
395 | if(mzsz <= 9*sizeof(mzsz)) { \ | |
396 | INTERNAL_SIZE_T* mz = (INTERNAL_SIZE_T*) (charp); \ | |
397 | if(mzsz >= 5*sizeof(mzsz)) { *mz++ = 0; \ | |
8bde7f77 | 398 | *mz++ = 0; \ |
217c9dad | 399 | if(mzsz >= 7*sizeof(mzsz)) { *mz++ = 0; \ |
8bde7f77 WD |
400 | *mz++ = 0; \ |
401 | if(mzsz >= 9*sizeof(mzsz)) { *mz++ = 0; \ | |
402 | *mz++ = 0; }}} \ | |
403 | *mz++ = 0; \ | |
404 | *mz++ = 0; \ | |
405 | *mz = 0; \ | |
217c9dad WD |
406 | } else memset((charp), 0, mzsz); \ |
407 | } while(0) | |
408 | ||
409 | #define MALLOC_COPY(dest,src,nbytes) \ | |
410 | do { \ | |
411 | INTERNAL_SIZE_T mcsz = (nbytes); \ | |
412 | if(mcsz <= 9*sizeof(mcsz)) { \ | |
413 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) (src); \ | |
414 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) (dest); \ | |
415 | if(mcsz >= 5*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ | |
8bde7f77 | 416 | *mcdst++ = *mcsrc++; \ |
217c9dad | 417 | if(mcsz >= 7*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ |
8bde7f77 WD |
418 | *mcdst++ = *mcsrc++; \ |
419 | if(mcsz >= 9*sizeof(mcsz)) { *mcdst++ = *mcsrc++; \ | |
420 | *mcdst++ = *mcsrc++; }}} \ | |
421 | *mcdst++ = *mcsrc++; \ | |
422 | *mcdst++ = *mcsrc++; \ | |
423 | *mcdst = *mcsrc ; \ | |
217c9dad WD |
424 | } else memcpy(dest, src, mcsz); \ |
425 | } while(0) | |
426 | ||
427 | #else /* !USE_MEMCPY */ | |
428 | ||
429 | /* Use Duff's device for good zeroing/copying performance. */ | |
430 | ||
431 | #define MALLOC_ZERO(charp, nbytes) \ | |
432 | do { \ | |
433 | INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \ | |
434 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ | |
435 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ | |
436 | switch (mctmp) { \ | |
437 | case 0: for(;;) { *mzp++ = 0; \ | |
438 | case 7: *mzp++ = 0; \ | |
439 | case 6: *mzp++ = 0; \ | |
440 | case 5: *mzp++ = 0; \ | |
441 | case 4: *mzp++ = 0; \ | |
442 | case 3: *mzp++ = 0; \ | |
443 | case 2: *mzp++ = 0; \ | |
444 | case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \ | |
445 | } \ | |
446 | } while(0) | |
447 | ||
448 | #define MALLOC_COPY(dest,src,nbytes) \ | |
449 | do { \ | |
450 | INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \ | |
451 | INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \ | |
452 | long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T), mcn; \ | |
453 | if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \ | |
454 | switch (mctmp) { \ | |
455 | case 0: for(;;) { *mcdst++ = *mcsrc++; \ | |
456 | case 7: *mcdst++ = *mcsrc++; \ | |
457 | case 6: *mcdst++ = *mcsrc++; \ | |
458 | case 5: *mcdst++ = *mcsrc++; \ | |
459 | case 4: *mcdst++ = *mcsrc++; \ | |
460 | case 3: *mcdst++ = *mcsrc++; \ | |
461 | case 2: *mcdst++ = *mcsrc++; \ | |
462 | case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \ | |
463 | } \ | |
464 | } while(0) | |
465 | ||
466 | #endif | |
467 | ||
468 | ||
469 | /* | |
470 | Define HAVE_MMAP to optionally make malloc() use mmap() to | |
471 | allocate very large blocks. These will be returned to the | |
472 | operating system immediately after a free(). | |
473 | */ | |
474 | ||
475 | #ifndef HAVE_MMAP | |
476 | #define HAVE_MMAP 1 | |
477 | #endif | |
478 | ||
479 | /* | |
480 | Define HAVE_MREMAP to make realloc() use mremap() to re-allocate | |
481 | large blocks. This is currently only possible on Linux with | |
482 | kernel versions newer than 1.3.77. | |
483 | */ | |
484 | ||
485 | #ifndef HAVE_MREMAP | |
486 | #ifdef INTERNAL_LINUX_C_LIB | |
487 | #define HAVE_MREMAP 1 | |
488 | #else | |
489 | #define HAVE_MREMAP 0 | |
490 | #endif | |
491 | #endif | |
492 | ||
493 | #if HAVE_MMAP | |
494 | ||
495 | #include <unistd.h> | |
496 | #include <fcntl.h> | |
497 | #include <sys/mman.h> | |
498 | ||
499 | #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) | |
500 | #define MAP_ANONYMOUS MAP_ANON | |
501 | #endif | |
502 | ||
503 | #endif /* HAVE_MMAP */ | |
504 | ||
505 | /* | |
506 | Access to system page size. To the extent possible, this malloc | |
507 | manages memory from the system in page-size units. | |
508 | ||
509 | The following mechanics for getpagesize were adapted from | |
510 | bsd/gnu getpagesize.h | |
511 | */ | |
512 | ||
513 | #ifndef LACKS_UNISTD_H | |
514 | # include <unistd.h> | |
515 | #endif | |
516 | ||
517 | #ifndef malloc_getpagesize | |
518 | # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ | |
519 | # ifndef _SC_PAGE_SIZE | |
520 | # define _SC_PAGE_SIZE _SC_PAGESIZE | |
521 | # endif | |
522 | # endif | |
523 | # ifdef _SC_PAGE_SIZE | |
524 | # define malloc_getpagesize sysconf(_SC_PAGE_SIZE) | |
525 | # else | |
526 | # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) | |
527 | extern size_t getpagesize(); | |
528 | # define malloc_getpagesize getpagesize() | |
529 | # else | |
530 | # ifdef WIN32 | |
531 | # define malloc_getpagesize (4096) /* TBD: Use 'GetSystemInfo' instead */ | |
532 | # else | |
533 | # ifndef LACKS_SYS_PARAM_H | |
534 | # include <sys/param.h> | |
535 | # endif | |
536 | # ifdef EXEC_PAGESIZE | |
537 | # define malloc_getpagesize EXEC_PAGESIZE | |
538 | # else | |
539 | # ifdef NBPG | |
540 | # ifndef CLSIZE | |
541 | # define malloc_getpagesize NBPG | |
542 | # else | |
543 | # define malloc_getpagesize (NBPG * CLSIZE) | |
544 | # endif | |
545 | # else | |
546 | # ifdef NBPC | |
547 | # define malloc_getpagesize NBPC | |
548 | # else | |
549 | # ifdef PAGESIZE | |
550 | # define malloc_getpagesize PAGESIZE | |
551 | # else | |
552 | # define malloc_getpagesize (4096) /* just guess */ | |
553 | # endif | |
554 | # endif | |
555 | # endif | |
556 | # endif | |
557 | # endif | |
558 | # endif | |
559 | # endif | |
560 | #endif | |
561 | ||
562 | ||
217c9dad WD |
563 | /* |
564 | ||
565 | This version of malloc supports the standard SVID/XPG mallinfo | |
566 | routine that returns a struct containing the same kind of | |
567 | information you can get from malloc_stats. It should work on | |
568 | any SVID/XPG compliant system that has a /usr/include/malloc.h | |
569 | defining struct mallinfo. (If you'd like to install such a thing | |
570 | yourself, cut out the preliminary declarations as described above | |
571 | and below and save them in a malloc.h file. But there's no | |
572 | compelling reason to bother to do this.) | |
573 | ||
574 | The main declaration needed is the mallinfo struct that is returned | |
575 | (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a | |
576 | bunch of fields, most of which are not even meaningful in this | |
577 | version of malloc. Some of these fields are are instead filled by | |
578 | mallinfo() with other numbers that might possibly be of interest. | |
579 | ||
580 | HAVE_USR_INCLUDE_MALLOC_H should be set if you have a | |
581 | /usr/include/malloc.h file that includes a declaration of struct | |
582 | mallinfo. If so, it is included; else an SVID2/XPG2 compliant | |
583 | version is declared below. These must be precisely the same for | |
584 | mallinfo() to work. | |
585 | ||
586 | */ | |
587 | ||
588 | /* #define HAVE_USR_INCLUDE_MALLOC_H */ | |
589 | ||
590 | #if HAVE_USR_INCLUDE_MALLOC_H | |
591 | #include "/usr/include/malloc.h" | |
592 | #else | |
593 | ||
594 | /* SVID2/XPG mallinfo structure */ | |
595 | ||
596 | struct mallinfo { | |
597 | int arena; /* total space allocated from system */ | |
598 | int ordblks; /* number of non-inuse chunks */ | |
599 | int smblks; /* unused -- always zero */ | |
600 | int hblks; /* number of mmapped regions */ | |
601 | int hblkhd; /* total space in mmapped regions */ | |
602 | int usmblks; /* unused -- always zero */ | |
603 | int fsmblks; /* unused -- always zero */ | |
604 | int uordblks; /* total allocated space */ | |
605 | int fordblks; /* total non-inuse space */ | |
606 | int keepcost; /* top-most, releasable (via malloc_trim) space */ | |
607 | }; | |
608 | ||
609 | /* SVID2/XPG mallopt options */ | |
610 | ||
611 | #define M_MXFAST 1 /* UNUSED in this malloc */ | |
612 | #define M_NLBLKS 2 /* UNUSED in this malloc */ | |
613 | #define M_GRAIN 3 /* UNUSED in this malloc */ | |
614 | #define M_KEEP 4 /* UNUSED in this malloc */ | |
615 | ||
616 | #endif | |
617 | ||
618 | /* mallopt options that actually do something */ | |
619 | ||
620 | #define M_TRIM_THRESHOLD -1 | |
621 | #define M_TOP_PAD -2 | |
622 | #define M_MMAP_THRESHOLD -3 | |
623 | #define M_MMAP_MAX -4 | |
624 | ||
625 | ||
217c9dad WD |
626 | #ifndef DEFAULT_TRIM_THRESHOLD |
627 | #define DEFAULT_TRIM_THRESHOLD (128 * 1024) | |
628 | #endif | |
629 | ||
630 | /* | |
631 | M_TRIM_THRESHOLD is the maximum amount of unused top-most memory | |
632 | to keep before releasing via malloc_trim in free(). | |
633 | ||
634 | Automatic trimming is mainly useful in long-lived programs. | |
635 | Because trimming via sbrk can be slow on some systems, and can | |
636 | sometimes be wasteful (in cases where programs immediately | |
637 | afterward allocate more large chunks) the value should be high | |
638 | enough so that your overall system performance would improve by | |
639 | releasing. | |
640 | ||
641 | The trim threshold and the mmap control parameters (see below) | |
642 | can be traded off with one another. Trimming and mmapping are | |
643 | two different ways of releasing unused memory back to the | |
644 | system. Between these two, it is often possible to keep | |
645 | system-level demands of a long-lived program down to a bare | |
646 | minimum. For example, in one test suite of sessions measuring | |
647 | the XF86 X server on Linux, using a trim threshold of 128K and a | |
648 | mmap threshold of 192K led to near-minimal long term resource | |
649 | consumption. | |
650 | ||
651 | If you are using this malloc in a long-lived program, it should | |
652 | pay to experiment with these values. As a rough guide, you | |
653 | might set to a value close to the average size of a process | |
654 | (program) running on your system. Releasing this much memory | |
655 | would allow such a process to run in memory. Generally, it's | |
656 | worth it to tune for trimming rather tham memory mapping when a | |
657 | program undergoes phases where several large chunks are | |
658 | allocated and released in ways that can reuse each other's | |
659 | storage, perhaps mixed with phases where there are no such | |
660 | chunks at all. And in well-behaved long-lived programs, | |
661 | controlling release of large blocks via trimming versus mapping | |
662 | is usually faster. | |
663 | ||
664 | However, in most programs, these parameters serve mainly as | |
665 | protection against the system-level effects of carrying around | |
666 | massive amounts of unneeded memory. Since frequent calls to | |
667 | sbrk, mmap, and munmap otherwise degrade performance, the default | |
668 | parameters are set to relatively high values that serve only as | |
669 | safeguards. | |
670 | ||
671 | The default trim value is high enough to cause trimming only in | |
672 | fairly extreme (by current memory consumption standards) cases. | |
673 | It must be greater than page size to have any useful effect. To | |
674 | disable trimming completely, you can set to (unsigned long)(-1); | |
675 | ||
676 | ||
677 | */ | |
678 | ||
679 | ||
680 | #ifndef DEFAULT_TOP_PAD | |
681 | #define DEFAULT_TOP_PAD (0) | |
682 | #endif | |
683 | ||
684 | /* | |
685 | M_TOP_PAD is the amount of extra `padding' space to allocate or | |
686 | retain whenever sbrk is called. It is used in two ways internally: | |
687 | ||
688 | * When sbrk is called to extend the top of the arena to satisfy | |
8bde7f77 WD |
689 | a new malloc request, this much padding is added to the sbrk |
690 | request. | |
217c9dad WD |
691 | |
692 | * When malloc_trim is called automatically from free(), | |
8bde7f77 | 693 | it is used as the `pad' argument. |
217c9dad WD |
694 | |
695 | In both cases, the actual amount of padding is rounded | |
696 | so that the end of the arena is always a system page boundary. | |
697 | ||
698 | The main reason for using padding is to avoid calling sbrk so | |
699 | often. Having even a small pad greatly reduces the likelihood | |
700 | that nearly every malloc request during program start-up (or | |
701 | after trimming) will invoke sbrk, which needlessly wastes | |
702 | time. | |
703 | ||
704 | Automatic rounding-up to page-size units is normally sufficient | |
705 | to avoid measurable overhead, so the default is 0. However, in | |
706 | systems where sbrk is relatively slow, it can pay to increase | |
707 | this value, at the expense of carrying around more memory than | |
708 | the program needs. | |
709 | ||
710 | */ | |
711 | ||
712 | ||
713 | #ifndef DEFAULT_MMAP_THRESHOLD | |
714 | #define DEFAULT_MMAP_THRESHOLD (128 * 1024) | |
715 | #endif | |
716 | ||
717 | /* | |
718 | ||
719 | M_MMAP_THRESHOLD is the request size threshold for using mmap() | |
720 | to service a request. Requests of at least this size that cannot | |
721 | be allocated using already-existing space will be serviced via mmap. | |
722 | (If enough normal freed space already exists it is used instead.) | |
723 | ||
724 | Using mmap segregates relatively large chunks of memory so that | |
725 | they can be individually obtained and released from the host | |
726 | system. A request serviced through mmap is never reused by any | |
727 | other request (at least not directly; the system may just so | |
728 | happen to remap successive requests to the same locations). | |
729 | ||
730 | Segregating space in this way has the benefit that mmapped space | |
731 | can ALWAYS be individually released back to the system, which | |
732 | helps keep the system level memory demands of a long-lived | |
733 | program low. Mapped memory can never become `locked' between | |
734 | other chunks, as can happen with normally allocated chunks, which | |
735 | menas that even trimming via malloc_trim would not release them. | |
736 | ||
737 | However, it has the disadvantages that: | |
738 | ||
8bde7f77 WD |
739 | 1. The space cannot be reclaimed, consolidated, and then |
740 | used to service later requests, as happens with normal chunks. | |
741 | 2. It can lead to more wastage because of mmap page alignment | |
742 | requirements | |
743 | 3. It causes malloc performance to be more dependent on host | |
744 | system memory management support routines which may vary in | |
745 | implementation quality and may impose arbitrary | |
746 | limitations. Generally, servicing a request via normal | |
747 | malloc steps is faster than going through a system's mmap. | |
217c9dad WD |
748 | |
749 | All together, these considerations should lead you to use mmap | |
750 | only for relatively large requests. | |
751 | ||
752 | ||
753 | */ | |
754 | ||
755 | ||
217c9dad WD |
756 | #ifndef DEFAULT_MMAP_MAX |
757 | #if HAVE_MMAP | |
758 | #define DEFAULT_MMAP_MAX (64) | |
759 | #else | |
760 | #define DEFAULT_MMAP_MAX (0) | |
761 | #endif | |
762 | #endif | |
763 | ||
764 | /* | |
765 | M_MMAP_MAX is the maximum number of requests to simultaneously | |
766 | service using mmap. This parameter exists because: | |
767 | ||
8bde7f77 WD |
768 | 1. Some systems have a limited number of internal tables for |
769 | use by mmap. | |
770 | 2. In most systems, overreliance on mmap can degrade overall | |
771 | performance. | |
772 | 3. If a program allocates many large regions, it is probably | |
773 | better off using normal sbrk-based allocation routines that | |
774 | can reclaim and reallocate normal heap memory. Using a | |
775 | small value allows transition into this mode after the | |
776 | first few allocations. | |
217c9dad WD |
777 | |
778 | Setting to 0 disables all use of mmap. If HAVE_MMAP is not set, | |
779 | the default value is 0, and attempts to set it to non-zero values | |
780 | in mallopt will fail. | |
781 | */ | |
782 | ||
783 | ||
217c9dad WD |
784 | /* |
785 | USE_DL_PREFIX will prefix all public routines with the string 'dl'. | |
786 | Useful to quickly avoid procedure declaration conflicts and linker | |
787 | symbol conflicts with existing memory allocation routines. | |
788 | ||
789 | */ | |
790 | ||
791 | /* #define USE_DL_PREFIX */ | |
792 | ||
793 | ||
217c9dad WD |
794 | /* |
795 | ||
796 | Special defines for linux libc | |
797 | ||
798 | Except when compiled using these special defines for Linux libc | |
799 | using weak aliases, this malloc is NOT designed to work in | |
800 | multithreaded applications. No semaphores or other concurrency | |
801 | control are provided to ensure that multiple malloc or free calls | |
802 | don't run at the same time, which could be disasterous. A single | |
803 | semaphore could be used across malloc, realloc, and free (which is | |
804 | essentially the effect of the linux weak alias approach). It would | |
805 | be hard to obtain finer granularity. | |
806 | ||
807 | */ | |
808 | ||
809 | ||
810 | #ifdef INTERNAL_LINUX_C_LIB | |
811 | ||
812 | #if __STD_C | |
813 | ||
814 | Void_t * __default_morecore_init (ptrdiff_t); | |
815 | Void_t *(*__morecore)(ptrdiff_t) = __default_morecore_init; | |
816 | ||
817 | #else | |
818 | ||
819 | Void_t * __default_morecore_init (); | |
820 | Void_t *(*__morecore)() = __default_morecore_init; | |
821 | ||
822 | #endif | |
823 | ||
824 | #define MORECORE (*__morecore) | |
825 | #define MORECORE_FAILURE 0 | |
826 | #define MORECORE_CLEARS 1 | |
827 | ||
828 | #else /* INTERNAL_LINUX_C_LIB */ | |
829 | ||
830 | #if __STD_C | |
831 | extern Void_t* sbrk(ptrdiff_t); | |
832 | #else | |
833 | extern Void_t* sbrk(); | |
834 | #endif | |
835 | ||
836 | #ifndef MORECORE | |
837 | #define MORECORE sbrk | |
838 | #endif | |
839 | ||
840 | #ifndef MORECORE_FAILURE | |
841 | #define MORECORE_FAILURE -1 | |
842 | #endif | |
843 | ||
844 | #ifndef MORECORE_CLEARS | |
845 | #define MORECORE_CLEARS 1 | |
846 | #endif | |
847 | ||
848 | #endif /* INTERNAL_LINUX_C_LIB */ | |
849 | ||
850 | #if defined(INTERNAL_LINUX_C_LIB) && defined(__ELF__) | |
851 | ||
852 | #define cALLOc __libc_calloc | |
853 | #define fREe __libc_free | |
854 | #define mALLOc __libc_malloc | |
855 | #define mEMALIGn __libc_memalign | |
856 | #define rEALLOc __libc_realloc | |
857 | #define vALLOc __libc_valloc | |
858 | #define pvALLOc __libc_pvalloc | |
859 | #define mALLINFo __libc_mallinfo | |
860 | #define mALLOPt __libc_mallopt | |
861 | ||
862 | #pragma weak calloc = __libc_calloc | |
863 | #pragma weak free = __libc_free | |
864 | #pragma weak cfree = __libc_free | |
865 | #pragma weak malloc = __libc_malloc | |
866 | #pragma weak memalign = __libc_memalign | |
867 | #pragma weak realloc = __libc_realloc | |
868 | #pragma weak valloc = __libc_valloc | |
869 | #pragma weak pvalloc = __libc_pvalloc | |
870 | #pragma weak mallinfo = __libc_mallinfo | |
871 | #pragma weak mallopt = __libc_mallopt | |
872 | ||
873 | #else | |
874 | ||
875 | #ifdef USE_DL_PREFIX | |
876 | #define cALLOc dlcalloc | |
877 | #define fREe dlfree | |
878 | #define mALLOc dlmalloc | |
879 | #define mEMALIGn dlmemalign | |
880 | #define rEALLOc dlrealloc | |
881 | #define vALLOc dlvalloc | |
882 | #define pvALLOc dlpvalloc | |
883 | #define mALLINFo dlmallinfo | |
884 | #define mALLOPt dlmallopt | |
885 | #else /* USE_DL_PREFIX */ | |
886 | #define cALLOc calloc | |
887 | #define fREe free | |
888 | #define mALLOc malloc | |
889 | #define mEMALIGn memalign | |
890 | #define rEALLOc realloc | |
891 | #define vALLOc valloc | |
892 | #define pvALLOc pvalloc | |
893 | #define mALLINFo mallinfo | |
894 | #define mALLOPt mallopt | |
895 | #endif /* USE_DL_PREFIX */ | |
896 | ||
897 | #endif | |
898 | ||
899 | /* Public routines */ | |
900 | ||
901 | #if __STD_C | |
902 | ||
903 | Void_t* mALLOc(size_t); | |
904 | void fREe(Void_t*); | |
905 | Void_t* rEALLOc(Void_t*, size_t); | |
906 | Void_t* mEMALIGn(size_t, size_t); | |
907 | Void_t* vALLOc(size_t); | |
908 | Void_t* pvALLOc(size_t); | |
909 | Void_t* cALLOc(size_t, size_t); | |
910 | void cfree(Void_t*); | |
911 | int malloc_trim(size_t); | |
912 | size_t malloc_usable_size(Void_t*); | |
913 | void malloc_stats(); | |
914 | int mALLOPt(int, int); | |
915 | struct mallinfo mALLINFo(void); | |
916 | #else | |
917 | Void_t* mALLOc(); | |
918 | void fREe(); | |
919 | Void_t* rEALLOc(); | |
920 | Void_t* mEMALIGn(); | |
921 | Void_t* vALLOc(); | |
922 | Void_t* pvALLOc(); | |
923 | Void_t* cALLOc(); | |
924 | void cfree(); | |
925 | int malloc_trim(); | |
926 | size_t malloc_usable_size(); | |
927 | void malloc_stats(); | |
928 | int mALLOPt(); | |
929 | struct mallinfo mALLINFo(); | |
930 | #endif | |
931 | ||
932 | ||
933 | #ifdef __cplusplus | |
934 | }; /* end of extern "C" */ | |
935 | #endif | |
936 | ||
937 | /* ---------- To make a malloc.h, end cutting here ------------ */ | |
938 | #else /* Moved to malloc.h */ | |
939 | ||
940 | #include <malloc.h> | |
941 | #if 0 | |
942 | #if __STD_C | |
943 | static void malloc_update_mallinfo (void); | |
944 | void malloc_stats (void); | |
945 | #else | |
946 | static void malloc_update_mallinfo (); | |
947 | void malloc_stats(); | |
948 | #endif | |
949 | #endif /* 0 */ | |
950 | ||
951 | #endif /* 0 */ /* Moved to malloc.h */ | |
217c9dad | 952 | |
d87080b7 WD |
953 | DECLARE_GLOBAL_DATA_PTR; |
954 | ||
217c9dad WD |
955 | /* |
956 | Emulation of sbrk for WIN32 | |
957 | All code within the ifdef WIN32 is untested by me. | |
958 | ||
959 | Thanks to Martin Fong and others for supplying this. | |
960 | */ | |
961 | ||
962 | ||
963 | #ifdef WIN32 | |
964 | ||
965 | #define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \ | |
966 | ~(malloc_getpagesize-1)) | |
967 | #define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1)) | |
968 | ||
969 | /* resrve 64MB to insure large contiguous space */ | |
970 | #define RESERVED_SIZE (1024*1024*64) | |
971 | #define NEXT_SIZE (2048*1024) | |
972 | #define TOP_MEMORY ((unsigned long)2*1024*1024*1024) | |
973 | ||
974 | struct GmListElement; | |
975 | typedef struct GmListElement GmListElement; | |
976 | ||
977 | struct GmListElement | |
978 | { | |
979 | GmListElement* next; | |
980 | void* base; | |
981 | }; | |
982 | ||
983 | static GmListElement* head = 0; | |
984 | static unsigned int gNextAddress = 0; | |
985 | static unsigned int gAddressBase = 0; | |
986 | static unsigned int gAllocatedSize = 0; | |
987 | ||
988 | static | |
989 | GmListElement* makeGmListElement (void* bas) | |
990 | { | |
991 | GmListElement* this; | |
992 | this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement)); | |
993 | assert (this); | |
994 | if (this) | |
995 | { | |
996 | this->base = bas; | |
997 | this->next = head; | |
998 | head = this; | |
999 | } | |
1000 | return this; | |
1001 | } | |
1002 | ||
1003 | void gcleanup () | |
1004 | { | |
1005 | BOOL rval; | |
1006 | assert ( (head == NULL) || (head->base == (void*)gAddressBase)); | |
1007 | if (gAddressBase && (gNextAddress - gAddressBase)) | |
1008 | { | |
1009 | rval = VirtualFree ((void*)gAddressBase, | |
1010 | gNextAddress - gAddressBase, | |
1011 | MEM_DECOMMIT); | |
8bde7f77 | 1012 | assert (rval); |
217c9dad WD |
1013 | } |
1014 | while (head) | |
1015 | { | |
1016 | GmListElement* next = head->next; | |
1017 | rval = VirtualFree (head->base, 0, MEM_RELEASE); | |
1018 | assert (rval); | |
1019 | LocalFree (head); | |
1020 | head = next; | |
1021 | } | |
1022 | } | |
1023 | ||
1024 | static | |
1025 | void* findRegion (void* start_address, unsigned long size) | |
1026 | { | |
1027 | MEMORY_BASIC_INFORMATION info; | |
1028 | if (size >= TOP_MEMORY) return NULL; | |
1029 | ||
1030 | while ((unsigned long)start_address + size < TOP_MEMORY) | |
1031 | { | |
1032 | VirtualQuery (start_address, &info, sizeof (info)); | |
1033 | if ((info.State == MEM_FREE) && (info.RegionSize >= size)) | |
1034 | return start_address; | |
1035 | else | |
1036 | { | |
8bde7f77 WD |
1037 | /* Requested region is not available so see if the */ |
1038 | /* next region is available. Set 'start_address' */ | |
1039 | /* to the next region and call 'VirtualQuery()' */ | |
1040 | /* again. */ | |
217c9dad WD |
1041 | |
1042 | start_address = (char*)info.BaseAddress + info.RegionSize; | |
1043 | ||
8bde7f77 WD |
1044 | /* Make sure we start looking for the next region */ |
1045 | /* on the *next* 64K boundary. Otherwise, even if */ | |
1046 | /* the new region is free according to */ | |
1047 | /* 'VirtualQuery()', the subsequent call to */ | |
1048 | /* 'VirtualAlloc()' (which follows the call to */ | |
1049 | /* this routine in 'wsbrk()') will round *down* */ | |
1050 | /* the requested address to a 64K boundary which */ | |
1051 | /* we already know is an address in the */ | |
1052 | /* unavailable region. Thus, the subsequent call */ | |
1053 | /* to 'VirtualAlloc()' will fail and bring us back */ | |
1054 | /* here, causing us to go into an infinite loop. */ | |
217c9dad WD |
1055 | |
1056 | start_address = | |
1057 | (void *) AlignPage64K((unsigned long) start_address); | |
1058 | } | |
1059 | } | |
1060 | return NULL; | |
1061 | ||
1062 | } | |
1063 | ||
1064 | ||
1065 | void* wsbrk (long size) | |
1066 | { | |
1067 | void* tmp; | |
1068 | if (size > 0) | |
1069 | { | |
1070 | if (gAddressBase == 0) | |
1071 | { | |
1072 | gAllocatedSize = max (RESERVED_SIZE, AlignPage (size)); | |
1073 | gNextAddress = gAddressBase = | |
1074 | (unsigned int)VirtualAlloc (NULL, gAllocatedSize, | |
1075 | MEM_RESERVE, PAGE_NOACCESS); | |
1076 | } else if (AlignPage (gNextAddress + size) > (gAddressBase + | |
1077 | gAllocatedSize)) | |
1078 | { | |
1079 | long new_size = max (NEXT_SIZE, AlignPage (size)); | |
1080 | void* new_address = (void*)(gAddressBase+gAllocatedSize); | |
1081 | do | |
1082 | { | |
1083 | new_address = findRegion (new_address, new_size); | |
1084 | ||
1085 | if (new_address == 0) | |
1086 | return (void*)-1; | |
1087 | ||
1088 | gAddressBase = gNextAddress = | |
1089 | (unsigned int)VirtualAlloc (new_address, new_size, | |
1090 | MEM_RESERVE, PAGE_NOACCESS); | |
8bde7f77 WD |
1091 | /* repeat in case of race condition */ |
1092 | /* The region that we found has been snagged */ | |
1093 | /* by another thread */ | |
217c9dad WD |
1094 | } |
1095 | while (gAddressBase == 0); | |
1096 | ||
1097 | assert (new_address == (void*)gAddressBase); | |
1098 | ||
1099 | gAllocatedSize = new_size; | |
1100 | ||
1101 | if (!makeGmListElement ((void*)gAddressBase)) | |
1102 | return (void*)-1; | |
1103 | } | |
1104 | if ((size + gNextAddress) > AlignPage (gNextAddress)) | |
1105 | { | |
1106 | void* res; | |
1107 | res = VirtualAlloc ((void*)AlignPage (gNextAddress), | |
1108 | (size + gNextAddress - | |
1109 | AlignPage (gNextAddress)), | |
1110 | MEM_COMMIT, PAGE_READWRITE); | |
1111 | if (res == 0) | |
1112 | return (void*)-1; | |
1113 | } | |
1114 | tmp = (void*)gNextAddress; | |
1115 | gNextAddress = (unsigned int)tmp + size; | |
1116 | return tmp; | |
1117 | } | |
1118 | else if (size < 0) | |
1119 | { | |
1120 | unsigned int alignedGoal = AlignPage (gNextAddress + size); | |
1121 | /* Trim by releasing the virtual memory */ | |
1122 | if (alignedGoal >= gAddressBase) | |
1123 | { | |
1124 | VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal, | |
1125 | MEM_DECOMMIT); | |
1126 | gNextAddress = gNextAddress + size; | |
1127 | return (void*)gNextAddress; | |
1128 | } | |
1129 | else | |
1130 | { | |
1131 | VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase, | |
1132 | MEM_DECOMMIT); | |
1133 | gNextAddress = gAddressBase; | |
1134 | return (void*)-1; | |
1135 | } | |
1136 | } | |
1137 | else | |
1138 | { | |
1139 | return (void*)gNextAddress; | |
1140 | } | |
1141 | } | |
1142 | ||
1143 | #endif | |
1144 | ||
1145 | \f | |
1146 | ||
1147 | /* | |
1148 | Type declarations | |
1149 | */ | |
1150 | ||
1151 | ||
1152 | struct malloc_chunk | |
1153 | { | |
1154 | INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */ | |
1155 | INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */ | |
1156 | struct malloc_chunk* fd; /* double links -- used only if free. */ | |
1157 | struct malloc_chunk* bk; | |
1158 | }; | |
1159 | ||
1160 | typedef struct malloc_chunk* mchunkptr; | |
1161 | ||
1162 | /* | |
1163 | ||
1164 | malloc_chunk details: | |
1165 | ||
1166 | (The following includes lightly edited explanations by Colin Plumb.) | |
1167 | ||
1168 | Chunks of memory are maintained using a `boundary tag' method as | |
1169 | described in e.g., Knuth or Standish. (See the paper by Paul | |
1170 | Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a | |
1171 | survey of such techniques.) Sizes of free chunks are stored both | |
1172 | in the front of each chunk and at the end. This makes | |
1173 | consolidating fragmented chunks into bigger chunks very fast. The | |
1174 | size fields also hold bits representing whether chunks are free or | |
1175 | in use. | |
1176 | ||
1177 | An allocated chunk looks like this: | |
1178 | ||
1179 | ||
1180 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1181 | | Size of previous chunk, if allocated | | |
1182 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1183 | | Size of chunk, in bytes |P| | |
217c9dad | 1184 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
1185 | | User data starts here... . |
1186 | . . | |
1187 | . (malloc_usable_space() bytes) . | |
1188 | . | | |
217c9dad | 1189 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
8bde7f77 WD |
1190 | | Size of chunk | |
1191 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
1192 | |
1193 | ||
1194 | Where "chunk" is the front of the chunk for the purpose of most of | |
1195 | the malloc code, but "mem" is the pointer that is returned to the | |
1196 | user. "Nextchunk" is the beginning of the next contiguous chunk. | |
1197 | ||
1198 | Chunks always begin on even word boundries, so the mem portion | |
1199 | (which is returned to the user) is also on an even word boundary, and | |
1200 | thus double-word aligned. | |
1201 | ||
1202 | Free chunks are stored in circular doubly-linked lists, and look like this: | |
1203 | ||
1204 | chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1205 | | Size of previous chunk | |
1206 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
217c9dad WD |
1207 | `head:' | Size of chunk, in bytes |P| |
1208 | mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
8bde7f77 WD |
1209 | | Forward pointer to next chunk in list | |
1210 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1211 | | Back pointer to previous chunk in list | | |
1212 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
1213 | | Unused space (may be 0 bytes long) . | |
1214 | . . | |
1215 | . | | |
217c9dad WD |
1216 | nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
1217 | `foot:' | Size of chunk, in bytes | | |
8bde7f77 | 1218 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
217c9dad WD |
1219 | |
1220 | The P (PREV_INUSE) bit, stored in the unused low-order bit of the | |
1221 | chunk size (which is always a multiple of two words), is an in-use | |
1222 | bit for the *previous* chunk. If that bit is *clear*, then the | |
1223 | word before the current chunk size contains the previous chunk | |
1224 | size, and can be used to find the front of the previous chunk. | |
1225 | (The very first chunk allocated always has this bit set, | |
1226 | preventing access to non-existent (or non-owned) memory.) | |
1227 | ||
1228 | Note that the `foot' of the current chunk is actually represented | |
1229 | as the prev_size of the NEXT chunk. (This makes it easier to | |
1230 | deal with alignments etc). | |
1231 | ||
1232 | The two exceptions to all this are | |
1233 | ||
1234 | 1. The special chunk `top', which doesn't bother using the | |
8bde7f77 WD |
1235 | trailing size field since there is no |
1236 | next contiguous chunk that would have to index off it. (After | |
1237 | initialization, `top' is forced to always exist. If it would | |
1238 | become less than MINSIZE bytes long, it is replenished via | |
1239 | malloc_extend_top.) | |
217c9dad WD |
1240 | |
1241 | 2. Chunks allocated via mmap, which have the second-lowest-order | |
8bde7f77 WD |
1242 | bit (IS_MMAPPED) set in their size fields. Because they are |
1243 | never merged or traversed from any other chunk, they have no | |
1244 | foot size or inuse information. | |
217c9dad WD |
1245 | |
1246 | Available chunks are kept in any of several places (all declared below): | |
1247 | ||
1248 | * `av': An array of chunks serving as bin headers for consolidated | |
1249 | chunks. Each bin is doubly linked. The bins are approximately | |
1250 | proportionally (log) spaced. There are a lot of these bins | |
1251 | (128). This may look excessive, but works very well in | |
1252 | practice. All procedures maintain the invariant that no | |
1253 | consolidated chunk physically borders another one. Chunks in | |
1254 | bins are kept in size order, with ties going to the | |
1255 | approximately least recently used chunk. | |
1256 | ||
1257 | The chunks in each bin are maintained in decreasing sorted order by | |
1258 | size. This is irrelevant for the small bins, which all contain | |
1259 | the same-sized chunks, but facilitates best-fit allocation for | |
1260 | larger chunks. (These lists are just sequential. Keeping them in | |
1261 | order almost never requires enough traversal to warrant using | |
1262 | fancier ordered data structures.) Chunks of the same size are | |
1263 | linked with the most recently freed at the front, and allocations | |
1264 | are taken from the back. This results in LRU or FIFO allocation | |
1265 | order, which tends to give each chunk an equal opportunity to be | |
1266 | consolidated with adjacent freed chunks, resulting in larger free | |
1267 | chunks and less fragmentation. | |
1268 | ||
1269 | * `top': The top-most available chunk (i.e., the one bordering the | |
1270 | end of available memory) is treated specially. It is never | |
1271 | included in any bin, is used only if no other chunk is | |
1272 | available, and is released back to the system if it is very | |
1273 | large (see M_TRIM_THRESHOLD). | |
1274 | ||
1275 | * `last_remainder': A bin holding only the remainder of the | |
1276 | most recently split (non-top) chunk. This bin is checked | |
1277 | before other non-fitting chunks, so as to provide better | |
1278 | locality for runs of sequentially allocated chunks. | |
1279 | ||
1280 | * Implicitly, through the host system's memory mapping tables. | |
1281 | If supported, requests greater than a threshold are usually | |
1282 | serviced via calls to mmap, and then later released via munmap. | |
1283 | ||
1284 | */ | |
217c9dad | 1285 | \f |
217c9dad WD |
1286 | /* sizes, alignments */ |
1287 | ||
1288 | #define SIZE_SZ (sizeof(INTERNAL_SIZE_T)) | |
1289 | #define MALLOC_ALIGNMENT (SIZE_SZ + SIZE_SZ) | |
1290 | #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1) | |
1291 | #define MINSIZE (sizeof(struct malloc_chunk)) | |
1292 | ||
1293 | /* conversion from malloc headers to user pointers, and back */ | |
1294 | ||
1295 | #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ)) | |
1296 | #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ)) | |
1297 | ||
1298 | /* pad request bytes into a usable size */ | |
1299 | ||
1300 | #define request2size(req) \ | |
1301 | (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \ | |
1302 | (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \ | |
1303 | (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK))) | |
1304 | ||
1305 | /* Check if m has acceptable alignment */ | |
1306 | ||
1307 | #define aligned_OK(m) (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0) | |
1308 | ||
1309 | ||
1310 | \f | |
1311 | ||
1312 | /* | |
1313 | Physical chunk operations | |
1314 | */ | |
1315 | ||
1316 | ||
1317 | /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */ | |
1318 | ||
1319 | #define PREV_INUSE 0x1 | |
1320 | ||
1321 | /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */ | |
1322 | ||
1323 | #define IS_MMAPPED 0x2 | |
1324 | ||
1325 | /* Bits to mask off when extracting size */ | |
1326 | ||
1327 | #define SIZE_BITS (PREV_INUSE|IS_MMAPPED) | |
1328 | ||
1329 | ||
1330 | /* Ptr to next physical malloc_chunk. */ | |
1331 | ||
1332 | #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) )) | |
1333 | ||
1334 | /* Ptr to previous physical malloc_chunk */ | |
1335 | ||
1336 | #define prev_chunk(p)\ | |
1337 | ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) )) | |
1338 | ||
1339 | ||
1340 | /* Treat space at ptr + offset as a chunk */ | |
1341 | ||
1342 | #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) | |
1343 | ||
1344 | ||
1345 | \f | |
1346 | ||
1347 | /* | |
1348 | Dealing with use bits | |
1349 | */ | |
1350 | ||
1351 | /* extract p's inuse bit */ | |
1352 | ||
1353 | #define inuse(p)\ | |
1354 | ((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE) | |
1355 | ||
1356 | /* extract inuse bit of previous chunk */ | |
1357 | ||
1358 | #define prev_inuse(p) ((p)->size & PREV_INUSE) | |
1359 | ||
1360 | /* check for mmap()'ed chunk */ | |
1361 | ||
1362 | #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) | |
1363 | ||
1364 | /* set/clear chunk as in use without otherwise disturbing */ | |
1365 | ||
1366 | #define set_inuse(p)\ | |
1367 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE | |
1368 | ||
1369 | #define clear_inuse(p)\ | |
1370 | ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE) | |
1371 | ||
1372 | /* check/set/clear inuse bits in known places */ | |
1373 | ||
1374 | #define inuse_bit_at_offset(p, s)\ | |
1375 | (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE) | |
1376 | ||
1377 | #define set_inuse_bit_at_offset(p, s)\ | |
1378 | (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE) | |
1379 | ||
1380 | #define clear_inuse_bit_at_offset(p, s)\ | |
1381 | (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE)) | |
1382 | ||
1383 | ||
1384 | \f | |
1385 | ||
1386 | /* | |
1387 | Dealing with size fields | |
1388 | */ | |
1389 | ||
1390 | /* Get size, ignoring use bits */ | |
1391 | ||
1392 | #define chunksize(p) ((p)->size & ~(SIZE_BITS)) | |
1393 | ||
1394 | /* Set size at head, without disturbing its use bit */ | |
1395 | ||
1396 | #define set_head_size(p, s) ((p)->size = (((p)->size & PREV_INUSE) | (s))) | |
1397 | ||
1398 | /* Set size/use ignoring previous bits in header */ | |
1399 | ||
1400 | #define set_head(p, s) ((p)->size = (s)) | |
1401 | ||
1402 | /* Set size at footer (only when chunk is not in use) */ | |
1403 | ||
1404 | #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s)) | |
1405 | ||
1406 | ||
1407 | \f | |
1408 | ||
1409 | ||
1410 | /* | |
1411 | Bins | |
1412 | ||
1413 | The bins, `av_' are an array of pairs of pointers serving as the | |
1414 | heads of (initially empty) doubly-linked lists of chunks, laid out | |
1415 | in a way so that each pair can be treated as if it were in a | |
1416 | malloc_chunk. (This way, the fd/bk offsets for linking bin heads | |
1417 | and chunks are the same). | |
1418 | ||
1419 | Bins for sizes < 512 bytes contain chunks of all the same size, spaced | |
1420 | 8 bytes apart. Larger bins are approximately logarithmically | |
1421 | spaced. (See the table below.) The `av_' array is never mentioned | |
1422 | directly in the code, but instead via bin access macros. | |
1423 | ||
1424 | Bin layout: | |
1425 | ||
1426 | 64 bins of size 8 | |
1427 | 32 bins of size 64 | |
1428 | 16 bins of size 512 | |
1429 | 8 bins of size 4096 | |
1430 | 4 bins of size 32768 | |
1431 | 2 bins of size 262144 | |
1432 | 1 bin of size what's left | |
1433 | ||
1434 | There is actually a little bit of slop in the numbers in bin_index | |
1435 | for the sake of speed. This makes no difference elsewhere. | |
1436 | ||
1437 | The special chunks `top' and `last_remainder' get their own bins, | |
1438 | (this is implemented via yet more trickery with the av_ array), | |
1439 | although `top' is never properly linked to its bin since it is | |
1440 | always handled specially. | |
1441 | ||
1442 | */ | |
1443 | ||
1444 | #define NAV 128 /* number of bins */ | |
1445 | ||
1446 | typedef struct malloc_chunk* mbinptr; | |
1447 | ||
1448 | /* access macros */ | |
1449 | ||
1450 | #define bin_at(i) ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ)) | |
1451 | #define next_bin(b) ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr))) | |
1452 | #define prev_bin(b) ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr))) | |
1453 | ||
1454 | /* | |
1455 | The first 2 bins are never indexed. The corresponding av_ cells are instead | |
1456 | used for bookkeeping. This is not to save space, but to simplify | |
1457 | indexing, maintain locality, and avoid some initialization tests. | |
1458 | */ | |
1459 | ||
f2302d44 | 1460 | #define top (av_[2]) /* The topmost chunk */ |
217c9dad WD |
1461 | #define last_remainder (bin_at(1)) /* remainder from last split */ |
1462 | ||
1463 | ||
1464 | /* | |
1465 | Because top initially points to its own bin with initial | |
1466 | zero size, thus forcing extension on the first malloc request, | |
1467 | we avoid having any special code in malloc to check whether | |
1468 | it even exists yet. But we still need to in malloc_extend_top. | |
1469 | */ | |
1470 | ||
1471 | #define initial_top ((mchunkptr)(bin_at(0))) | |
1472 | ||
1473 | /* Helper macro to initialize bins */ | |
1474 | ||
1475 | #define IAV(i) bin_at(i), bin_at(i) | |
1476 | ||
1477 | static mbinptr av_[NAV * 2 + 2] = { | |
1478 | 0, 0, | |
1479 | IAV(0), IAV(1), IAV(2), IAV(3), IAV(4), IAV(5), IAV(6), IAV(7), | |
1480 | IAV(8), IAV(9), IAV(10), IAV(11), IAV(12), IAV(13), IAV(14), IAV(15), | |
1481 | IAV(16), IAV(17), IAV(18), IAV(19), IAV(20), IAV(21), IAV(22), IAV(23), | |
1482 | IAV(24), IAV(25), IAV(26), IAV(27), IAV(28), IAV(29), IAV(30), IAV(31), | |
1483 | IAV(32), IAV(33), IAV(34), IAV(35), IAV(36), IAV(37), IAV(38), IAV(39), | |
1484 | IAV(40), IAV(41), IAV(42), IAV(43), IAV(44), IAV(45), IAV(46), IAV(47), | |
1485 | IAV(48), IAV(49), IAV(50), IAV(51), IAV(52), IAV(53), IAV(54), IAV(55), | |
1486 | IAV(56), IAV(57), IAV(58), IAV(59), IAV(60), IAV(61), IAV(62), IAV(63), | |
1487 | IAV(64), IAV(65), IAV(66), IAV(67), IAV(68), IAV(69), IAV(70), IAV(71), | |
1488 | IAV(72), IAV(73), IAV(74), IAV(75), IAV(76), IAV(77), IAV(78), IAV(79), | |
1489 | IAV(80), IAV(81), IAV(82), IAV(83), IAV(84), IAV(85), IAV(86), IAV(87), | |
1490 | IAV(88), IAV(89), IAV(90), IAV(91), IAV(92), IAV(93), IAV(94), IAV(95), | |
1491 | IAV(96), IAV(97), IAV(98), IAV(99), IAV(100), IAV(101), IAV(102), IAV(103), | |
1492 | IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111), | |
1493 | IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119), | |
1494 | IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127) | |
1495 | }; | |
1496 | ||
521af04d | 1497 | #ifndef CONFIG_RELOC_FIXUP_WORKS |
217c9dad WD |
1498 | void malloc_bin_reloc (void) |
1499 | { | |
217c9dad WD |
1500 | unsigned long *p = (unsigned long *)(&av_[2]); |
1501 | int i; | |
1502 | for (i=2; i<(sizeof(av_)/sizeof(mbinptr)); ++i) { | |
1503 | *p++ += gd->reloc_off; | |
1504 | } | |
1505 | } | |
521af04d | 1506 | #endif |
5e93bd1c PT |
1507 | |
1508 | ulong mem_malloc_start = 0; | |
1509 | ulong mem_malloc_end = 0; | |
1510 | ulong mem_malloc_brk = 0; | |
1511 | ||
1512 | void *sbrk(ptrdiff_t increment) | |
1513 | { | |
1514 | ulong old = mem_malloc_brk; | |
1515 | ulong new = old + increment; | |
1516 | ||
1517 | if ((new < mem_malloc_start) || (new > mem_malloc_end)) | |
ae30b8c2 | 1518 | return (void *)MORECORE_FAILURE; |
5e93bd1c PT |
1519 | |
1520 | mem_malloc_brk = new; | |
1521 | ||
1522 | return (void *)old; | |
1523 | } | |
217c9dad | 1524 | |
d4e8ada0 PT |
1525 | void mem_malloc_init(ulong start, ulong size) |
1526 | { | |
1527 | mem_malloc_start = start; | |
1528 | mem_malloc_end = start + size; | |
1529 | mem_malloc_brk = start; | |
1530 | ||
1531 | memset((void *)mem_malloc_start, 0, size); | |
1532 | } | |
d4e8ada0 | 1533 | |
217c9dad WD |
1534 | /* field-extraction macros */ |
1535 | ||
1536 | #define first(b) ((b)->fd) | |
1537 | #define last(b) ((b)->bk) | |
1538 | ||
1539 | /* | |
1540 | Indexing into bins | |
1541 | */ | |
1542 | ||
1543 | #define bin_index(sz) \ | |
1544 | (((((unsigned long)(sz)) >> 9) == 0) ? (((unsigned long)(sz)) >> 3): \ | |
1545 | ((((unsigned long)(sz)) >> 9) <= 4) ? 56 + (((unsigned long)(sz)) >> 6): \ | |
1546 | ((((unsigned long)(sz)) >> 9) <= 20) ? 91 + (((unsigned long)(sz)) >> 9): \ | |
1547 | ((((unsigned long)(sz)) >> 9) <= 84) ? 110 + (((unsigned long)(sz)) >> 12): \ | |
1548 | ((((unsigned long)(sz)) >> 9) <= 340) ? 119 + (((unsigned long)(sz)) >> 15): \ | |
1549 | ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \ | |
8bde7f77 | 1550 | 126) |
217c9dad WD |
1551 | /* |
1552 | bins for chunks < 512 are all spaced 8 bytes apart, and hold | |
1553 | identically sized chunks. This is exploited in malloc. | |
1554 | */ | |
1555 | ||
1556 | #define MAX_SMALLBIN 63 | |
1557 | #define MAX_SMALLBIN_SIZE 512 | |
1558 | #define SMALLBIN_WIDTH 8 | |
1559 | ||
1560 | #define smallbin_index(sz) (((unsigned long)(sz)) >> 3) | |
1561 | ||
1562 | /* | |
1563 | Requests are `small' if both the corresponding and the next bin are small | |
1564 | */ | |
1565 | ||
1566 | #define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH) | |
1567 | ||
1568 | \f | |
1569 | ||
1570 | /* | |
1571 | To help compensate for the large number of bins, a one-level index | |
1572 | structure is used for bin-by-bin searching. `binblocks' is a | |
1573 | one-word bitvector recording whether groups of BINBLOCKWIDTH bins | |
1574 | have any (possibly) non-empty bins, so they can be skipped over | |
1575 | all at once during during traversals. The bits are NOT always | |
1576 | cleared as soon as all bins in a block are empty, but instead only | |
1577 | when all are noticed to be empty during traversal in malloc. | |
1578 | */ | |
1579 | ||
1580 | #define BINBLOCKWIDTH 4 /* bins per block */ | |
1581 | ||
f2302d44 SR |
1582 | #define binblocks_r ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */ |
1583 | #define binblocks_w (av_[1]) | |
217c9dad WD |
1584 | |
1585 | /* bin<->block macros */ | |
1586 | ||
1587 | #define idx2binblock(ix) ((unsigned)1 << (ix / BINBLOCKWIDTH)) | |
f2302d44 SR |
1588 | #define mark_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii))) |
1589 | #define clear_binblock(ii) (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii)))) | |
217c9dad WD |
1590 | |
1591 | ||
1592 | \f | |
1593 | ||
1594 | ||
1595 | /* Other static bookkeeping data */ | |
1596 | ||
1597 | /* variables holding tunable values */ | |
1598 | ||
1599 | static unsigned long trim_threshold = DEFAULT_TRIM_THRESHOLD; | |
1600 | static unsigned long top_pad = DEFAULT_TOP_PAD; | |
1601 | static unsigned int n_mmaps_max = DEFAULT_MMAP_MAX; | |
1602 | static unsigned long mmap_threshold = DEFAULT_MMAP_THRESHOLD; | |
1603 | ||
1604 | /* The first value returned from sbrk */ | |
1605 | static char* sbrk_base = (char*)(-1); | |
1606 | ||
1607 | /* The maximum memory obtained from system via sbrk */ | |
1608 | static unsigned long max_sbrked_mem = 0; | |
1609 | ||
1610 | /* The maximum via either sbrk or mmap */ | |
1611 | static unsigned long max_total_mem = 0; | |
1612 | ||
1613 | /* internal working copy of mallinfo */ | |
1614 | static struct mallinfo current_mallinfo = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; | |
1615 | ||
1616 | /* The total memory obtained from system via sbrk */ | |
1617 | #define sbrked_mem (current_mallinfo.arena) | |
1618 | ||
1619 | /* Tracking mmaps */ | |
1620 | ||
1621 | #if 0 | |
1622 | static unsigned int n_mmaps = 0; | |
1623 | #endif /* 0 */ | |
1624 | static unsigned long mmapped_mem = 0; | |
1625 | #if HAVE_MMAP | |
1626 | static unsigned int max_n_mmaps = 0; | |
1627 | static unsigned long max_mmapped_mem = 0; | |
1628 | #endif | |
1629 | ||
1630 | \f | |
1631 | ||
1632 | /* | |
1633 | Debugging support | |
1634 | */ | |
1635 | ||
1636 | #ifdef DEBUG | |
1637 | ||
1638 | ||
1639 | /* | |
1640 | These routines make a number of assertions about the states | |
1641 | of data structures that should be true at all times. If any | |
1642 | are not true, it's very likely that a user program has somehow | |
1643 | trashed memory. (It's also possible that there is a coding error | |
1644 | in malloc. In which case, please report it!) | |
1645 | */ | |
1646 | ||
1647 | #if __STD_C | |
1648 | static void do_check_chunk(mchunkptr p) | |
1649 | #else | |
1650 | static void do_check_chunk(p) mchunkptr p; | |
1651 | #endif | |
1652 | { | |
1653 | #if 0 /* causes warnings because assert() is off */ | |
1654 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
1655 | #endif /* 0 */ | |
1656 | ||
1657 | /* No checkable chunk is mmapped */ | |
1658 | assert(!chunk_is_mmapped(p)); | |
1659 | ||
1660 | /* Check for legal address ... */ | |
1661 | assert((char*)p >= sbrk_base); | |
1662 | if (p != top) | |
1663 | assert((char*)p + sz <= (char*)top); | |
1664 | else | |
1665 | assert((char*)p + sz <= sbrk_base + sbrked_mem); | |
1666 | ||
1667 | } | |
1668 | ||
1669 | ||
1670 | #if __STD_C | |
1671 | static void do_check_free_chunk(mchunkptr p) | |
1672 | #else | |
1673 | static void do_check_free_chunk(p) mchunkptr p; | |
1674 | #endif | |
1675 | { | |
1676 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
1677 | #if 0 /* causes warnings because assert() is off */ | |
1678 | mchunkptr next = chunk_at_offset(p, sz); | |
1679 | #endif /* 0 */ | |
1680 | ||
1681 | do_check_chunk(p); | |
1682 | ||
1683 | /* Check whether it claims to be free ... */ | |
1684 | assert(!inuse(p)); | |
1685 | ||
1686 | /* Unless a special marker, must have OK fields */ | |
1687 | if ((long)sz >= (long)MINSIZE) | |
1688 | { | |
1689 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
1690 | assert(aligned_OK(chunk2mem(p))); | |
1691 | /* ... matching footer field */ | |
1692 | assert(next->prev_size == sz); | |
1693 | /* ... and is fully consolidated */ | |
1694 | assert(prev_inuse(p)); | |
1695 | assert (next == top || inuse(next)); | |
1696 | ||
1697 | /* ... and has minimally sane links */ | |
1698 | assert(p->fd->bk == p); | |
1699 | assert(p->bk->fd == p); | |
1700 | } | |
1701 | else /* markers are always of size SIZE_SZ */ | |
1702 | assert(sz == SIZE_SZ); | |
1703 | } | |
1704 | ||
1705 | #if __STD_C | |
1706 | static void do_check_inuse_chunk(mchunkptr p) | |
1707 | #else | |
1708 | static void do_check_inuse_chunk(p) mchunkptr p; | |
1709 | #endif | |
1710 | { | |
1711 | mchunkptr next = next_chunk(p); | |
1712 | do_check_chunk(p); | |
1713 | ||
1714 | /* Check whether it claims to be in use ... */ | |
1715 | assert(inuse(p)); | |
1716 | ||
1717 | /* ... and is surrounded by OK chunks. | |
1718 | Since more things can be checked with free chunks than inuse ones, | |
1719 | if an inuse chunk borders them and debug is on, it's worth doing them. | |
1720 | */ | |
1721 | if (!prev_inuse(p)) | |
1722 | { | |
1723 | mchunkptr prv = prev_chunk(p); | |
1724 | assert(next_chunk(prv) == p); | |
1725 | do_check_free_chunk(prv); | |
1726 | } | |
1727 | if (next == top) | |
1728 | { | |
1729 | assert(prev_inuse(next)); | |
1730 | assert(chunksize(next) >= MINSIZE); | |
1731 | } | |
1732 | else if (!inuse(next)) | |
1733 | do_check_free_chunk(next); | |
1734 | ||
1735 | } | |
1736 | ||
1737 | #if __STD_C | |
1738 | static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s) | |
1739 | #else | |
1740 | static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s; | |
1741 | #endif | |
1742 | { | |
1743 | #if 0 /* causes warnings because assert() is off */ | |
1744 | INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE; | |
1745 | long room = sz - s; | |
1746 | #endif /* 0 */ | |
1747 | ||
1748 | do_check_inuse_chunk(p); | |
1749 | ||
1750 | /* Legal size ... */ | |
1751 | assert((long)sz >= (long)MINSIZE); | |
1752 | assert((sz & MALLOC_ALIGN_MASK) == 0); | |
1753 | assert(room >= 0); | |
1754 | assert(room < (long)MINSIZE); | |
1755 | ||
1756 | /* ... and alignment */ | |
1757 | assert(aligned_OK(chunk2mem(p))); | |
1758 | ||
1759 | ||
1760 | /* ... and was allocated at front of an available chunk */ | |
1761 | assert(prev_inuse(p)); | |
1762 | ||
1763 | } | |
1764 | ||
1765 | ||
1766 | #define check_free_chunk(P) do_check_free_chunk(P) | |
1767 | #define check_inuse_chunk(P) do_check_inuse_chunk(P) | |
1768 | #define check_chunk(P) do_check_chunk(P) | |
1769 | #define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N) | |
1770 | #else | |
1771 | #define check_free_chunk(P) | |
1772 | #define check_inuse_chunk(P) | |
1773 | #define check_chunk(P) | |
1774 | #define check_malloced_chunk(P,N) | |
1775 | #endif | |
1776 | ||
1777 | \f | |
1778 | ||
1779 | /* | |
1780 | Macro-based internal utilities | |
1781 | */ | |
1782 | ||
1783 | ||
1784 | /* | |
1785 | Linking chunks in bin lists. | |
1786 | Call these only with variables, not arbitrary expressions, as arguments. | |
1787 | */ | |
1788 | ||
1789 | /* | |
1790 | Place chunk p of size s in its bin, in size order, | |
1791 | putting it ahead of others of same size. | |
1792 | */ | |
1793 | ||
1794 | ||
1795 | #define frontlink(P, S, IDX, BK, FD) \ | |
1796 | { \ | |
1797 | if (S < MAX_SMALLBIN_SIZE) \ | |
1798 | { \ | |
1799 | IDX = smallbin_index(S); \ | |
1800 | mark_binblock(IDX); \ | |
1801 | BK = bin_at(IDX); \ | |
1802 | FD = BK->fd; \ | |
1803 | P->bk = BK; \ | |
1804 | P->fd = FD; \ | |
1805 | FD->bk = BK->fd = P; \ | |
1806 | } \ | |
1807 | else \ | |
1808 | { \ | |
1809 | IDX = bin_index(S); \ | |
1810 | BK = bin_at(IDX); \ | |
1811 | FD = BK->fd; \ | |
1812 | if (FD == BK) mark_binblock(IDX); \ | |
1813 | else \ | |
1814 | { \ | |
1815 | while (FD != BK && S < chunksize(FD)) FD = FD->fd; \ | |
1816 | BK = FD->bk; \ | |
1817 | } \ | |
1818 | P->bk = BK; \ | |
1819 | P->fd = FD; \ | |
1820 | FD->bk = BK->fd = P; \ | |
1821 | } \ | |
1822 | } | |
1823 | ||
1824 | ||
1825 | /* take a chunk off a list */ | |
1826 | ||
1827 | #define unlink(P, BK, FD) \ | |
1828 | { \ | |
1829 | BK = P->bk; \ | |
1830 | FD = P->fd; \ | |
1831 | FD->bk = BK; \ | |
1832 | BK->fd = FD; \ | |
1833 | } \ | |
1834 | ||
1835 | /* Place p as the last remainder */ | |
1836 | ||
1837 | #define link_last_remainder(P) \ | |
1838 | { \ | |
1839 | last_remainder->fd = last_remainder->bk = P; \ | |
1840 | P->fd = P->bk = last_remainder; \ | |
1841 | } | |
1842 | ||
1843 | /* Clear the last_remainder bin */ | |
1844 | ||
1845 | #define clear_last_remainder \ | |
1846 | (last_remainder->fd = last_remainder->bk = last_remainder) | |
1847 | ||
1848 | ||
217c9dad WD |
1849 | \f |
1850 | ||
1851 | ||
1852 | /* Routines dealing with mmap(). */ | |
1853 | ||
1854 | #if HAVE_MMAP | |
1855 | ||
1856 | #if __STD_C | |
1857 | static mchunkptr mmap_chunk(size_t size) | |
1858 | #else | |
1859 | static mchunkptr mmap_chunk(size) size_t size; | |
1860 | #endif | |
1861 | { | |
1862 | size_t page_mask = malloc_getpagesize - 1; | |
1863 | mchunkptr p; | |
1864 | ||
1865 | #ifndef MAP_ANONYMOUS | |
1866 | static int fd = -1; | |
1867 | #endif | |
1868 | ||
1869 | if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */ | |
1870 | ||
1871 | /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because | |
1872 | * there is no following chunk whose prev_size field could be used. | |
1873 | */ | |
1874 | size = (size + SIZE_SZ + page_mask) & ~page_mask; | |
1875 | ||
1876 | #ifdef MAP_ANONYMOUS | |
1877 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, | |
1878 | MAP_PRIVATE|MAP_ANONYMOUS, -1, 0); | |
1879 | #else /* !MAP_ANONYMOUS */ | |
1880 | if (fd < 0) | |
1881 | { | |
1882 | fd = open("/dev/zero", O_RDWR); | |
1883 | if(fd < 0) return 0; | |
1884 | } | |
1885 | p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0); | |
1886 | #endif | |
1887 | ||
1888 | if(p == (mchunkptr)-1) return 0; | |
1889 | ||
1890 | n_mmaps++; | |
1891 | if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps; | |
1892 | ||
1893 | /* We demand that eight bytes into a page must be 8-byte aligned. */ | |
1894 | assert(aligned_OK(chunk2mem(p))); | |
1895 | ||
1896 | /* The offset to the start of the mmapped region is stored | |
1897 | * in the prev_size field of the chunk; normally it is zero, | |
1898 | * but that can be changed in memalign(). | |
1899 | */ | |
1900 | p->prev_size = 0; | |
1901 | set_head(p, size|IS_MMAPPED); | |
1902 | ||
1903 | mmapped_mem += size; | |
1904 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1905 | max_mmapped_mem = mmapped_mem; | |
1906 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1907 | max_total_mem = mmapped_mem + sbrked_mem; | |
1908 | return p; | |
1909 | } | |
1910 | ||
1911 | #if __STD_C | |
1912 | static void munmap_chunk(mchunkptr p) | |
1913 | #else | |
1914 | static void munmap_chunk(p) mchunkptr p; | |
1915 | #endif | |
1916 | { | |
1917 | INTERNAL_SIZE_T size = chunksize(p); | |
1918 | int ret; | |
1919 | ||
1920 | assert (chunk_is_mmapped(p)); | |
1921 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1922 | assert((n_mmaps > 0)); | |
1923 | assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0); | |
1924 | ||
1925 | n_mmaps--; | |
1926 | mmapped_mem -= (size + p->prev_size); | |
1927 | ||
1928 | ret = munmap((char *)p - p->prev_size, size + p->prev_size); | |
1929 | ||
1930 | /* munmap returns non-zero on failure */ | |
1931 | assert(ret == 0); | |
1932 | } | |
1933 | ||
1934 | #if HAVE_MREMAP | |
1935 | ||
1936 | #if __STD_C | |
1937 | static mchunkptr mremap_chunk(mchunkptr p, size_t new_size) | |
1938 | #else | |
1939 | static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size; | |
1940 | #endif | |
1941 | { | |
1942 | size_t page_mask = malloc_getpagesize - 1; | |
1943 | INTERNAL_SIZE_T offset = p->prev_size; | |
1944 | INTERNAL_SIZE_T size = chunksize(p); | |
1945 | char *cp; | |
1946 | ||
1947 | assert (chunk_is_mmapped(p)); | |
1948 | assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem)); | |
1949 | assert((n_mmaps > 0)); | |
1950 | assert(((size + offset) & (malloc_getpagesize-1)) == 0); | |
1951 | ||
1952 | /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */ | |
1953 | new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask; | |
1954 | ||
1955 | cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1); | |
1956 | ||
1957 | if (cp == (char *)-1) return 0; | |
1958 | ||
1959 | p = (mchunkptr)(cp + offset); | |
1960 | ||
1961 | assert(aligned_OK(chunk2mem(p))); | |
1962 | ||
1963 | assert((p->prev_size == offset)); | |
1964 | set_head(p, (new_size - offset)|IS_MMAPPED); | |
1965 | ||
1966 | mmapped_mem -= size + offset; | |
1967 | mmapped_mem += new_size; | |
1968 | if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem) | |
1969 | max_mmapped_mem = mmapped_mem; | |
1970 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
1971 | max_total_mem = mmapped_mem + sbrked_mem; | |
1972 | return p; | |
1973 | } | |
1974 | ||
1975 | #endif /* HAVE_MREMAP */ | |
1976 | ||
1977 | #endif /* HAVE_MMAP */ | |
1978 | ||
1979 | ||
1980 | \f | |
1981 | ||
1982 | /* | |
1983 | Extend the top-most chunk by obtaining memory from system. | |
1984 | Main interface to sbrk (but see also malloc_trim). | |
1985 | */ | |
1986 | ||
1987 | #if __STD_C | |
1988 | static void malloc_extend_top(INTERNAL_SIZE_T nb) | |
1989 | #else | |
1990 | static void malloc_extend_top(nb) INTERNAL_SIZE_T nb; | |
1991 | #endif | |
1992 | { | |
1993 | char* brk; /* return value from sbrk */ | |
1994 | INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */ | |
1995 | INTERNAL_SIZE_T correction; /* bytes for 2nd sbrk call */ | |
1996 | char* new_brk; /* return of 2nd sbrk call */ | |
1997 | INTERNAL_SIZE_T top_size; /* new size of top chunk */ | |
1998 | ||
1999 | mchunkptr old_top = top; /* Record state of old top */ | |
2000 | INTERNAL_SIZE_T old_top_size = chunksize(old_top); | |
2001 | char* old_end = (char*)(chunk_at_offset(old_top, old_top_size)); | |
2002 | ||
2003 | /* Pad request with top_pad plus minimal overhead */ | |
2004 | ||
2005 | INTERNAL_SIZE_T sbrk_size = nb + top_pad + MINSIZE; | |
2006 | unsigned long pagesz = malloc_getpagesize; | |
2007 | ||
2008 | /* If not the first time through, round to preserve page boundary */ | |
2009 | /* Otherwise, we need to correct to a page size below anyway. */ | |
2010 | /* (We also correct below if an intervening foreign sbrk call.) */ | |
2011 | ||
2012 | if (sbrk_base != (char*)(-1)) | |
2013 | sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1); | |
2014 | ||
2015 | brk = (char*)(MORECORE (sbrk_size)); | |
2016 | ||
2017 | /* Fail if sbrk failed or if a foreign sbrk call killed our space */ | |
2018 | if (brk == (char*)(MORECORE_FAILURE) || | |
2019 | (brk < old_end && old_top != initial_top)) | |
2020 | return; | |
2021 | ||
2022 | sbrked_mem += sbrk_size; | |
2023 | ||
2024 | if (brk == old_end) /* can just add bytes to current top */ | |
2025 | { | |
2026 | top_size = sbrk_size + old_top_size; | |
2027 | set_head(top, top_size | PREV_INUSE); | |
2028 | } | |
2029 | else | |
2030 | { | |
2031 | if (sbrk_base == (char*)(-1)) /* First time through. Record base */ | |
2032 | sbrk_base = brk; | |
2033 | else /* Someone else called sbrk(). Count those bytes as sbrked_mem. */ | |
2034 | sbrked_mem += brk - (char*)old_end; | |
2035 | ||
2036 | /* Guarantee alignment of first new chunk made from this space */ | |
2037 | front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK; | |
2038 | if (front_misalign > 0) | |
2039 | { | |
2040 | correction = (MALLOC_ALIGNMENT) - front_misalign; | |
2041 | brk += correction; | |
2042 | } | |
2043 | else | |
2044 | correction = 0; | |
2045 | ||
2046 | /* Guarantee the next brk will be at a page boundary */ | |
2047 | ||
2048 | correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) & | |
8bde7f77 | 2049 | ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size)); |
217c9dad WD |
2050 | |
2051 | /* Allocate correction */ | |
2052 | new_brk = (char*)(MORECORE (correction)); | |
2053 | if (new_brk == (char*)(MORECORE_FAILURE)) return; | |
2054 | ||
2055 | sbrked_mem += correction; | |
2056 | ||
2057 | top = (mchunkptr)brk; | |
2058 | top_size = new_brk - brk + correction; | |
2059 | set_head(top, top_size | PREV_INUSE); | |
2060 | ||
2061 | if (old_top != initial_top) | |
2062 | { | |
2063 | ||
2064 | /* There must have been an intervening foreign sbrk call. */ | |
2065 | /* A double fencepost is necessary to prevent consolidation */ | |
2066 | ||
2067 | /* If not enough space to do this, then user did something very wrong */ | |
2068 | if (old_top_size < MINSIZE) | |
2069 | { | |
8bde7f77 WD |
2070 | set_head(top, PREV_INUSE); /* will force null return from malloc */ |
2071 | return; | |
217c9dad WD |
2072 | } |
2073 | ||
2074 | /* Also keep size a multiple of MALLOC_ALIGNMENT */ | |
2075 | old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK; | |
2076 | set_head_size(old_top, old_top_size); | |
2077 | chunk_at_offset(old_top, old_top_size )->size = | |
8bde7f77 | 2078 | SIZE_SZ|PREV_INUSE; |
217c9dad | 2079 | chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size = |
8bde7f77 | 2080 | SIZE_SZ|PREV_INUSE; |
217c9dad WD |
2081 | /* If possible, release the rest. */ |
2082 | if (old_top_size >= MINSIZE) | |
8bde7f77 | 2083 | fREe(chunk2mem(old_top)); |
217c9dad WD |
2084 | } |
2085 | } | |
2086 | ||
2087 | if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem) | |
2088 | max_sbrked_mem = sbrked_mem; | |
2089 | if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem) | |
2090 | max_total_mem = mmapped_mem + sbrked_mem; | |
2091 | ||
2092 | /* We always land on a page boundary */ | |
2093 | assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0); | |
2094 | } | |
2095 | ||
2096 | ||
2097 | \f | |
2098 | ||
2099 | /* Main public routines */ | |
2100 | ||
2101 | ||
2102 | /* | |
2103 | Malloc Algorthim: | |
2104 | ||
2105 | The requested size is first converted into a usable form, `nb'. | |
2106 | This currently means to add 4 bytes overhead plus possibly more to | |
2107 | obtain 8-byte alignment and/or to obtain a size of at least | |
2108 | MINSIZE (currently 16 bytes), the smallest allocatable size. | |
2109 | (All fits are considered `exact' if they are within MINSIZE bytes.) | |
2110 | ||
2111 | From there, the first successful of the following steps is taken: | |
2112 | ||
2113 | 1. The bin corresponding to the request size is scanned, and if | |
8bde7f77 | 2114 | a chunk of exactly the right size is found, it is taken. |
217c9dad WD |
2115 | |
2116 | 2. The most recently remaindered chunk is used if it is big | |
8bde7f77 WD |
2117 | enough. This is a form of (roving) first fit, used only in |
2118 | the absence of exact fits. Runs of consecutive requests use | |
2119 | the remainder of the chunk used for the previous such request | |
2120 | whenever possible. This limited use of a first-fit style | |
2121 | allocation strategy tends to give contiguous chunks | |
2122 | coextensive lifetimes, which improves locality and can reduce | |
2123 | fragmentation in the long run. | |
217c9dad WD |
2124 | |
2125 | 3. Other bins are scanned in increasing size order, using a | |
8bde7f77 WD |
2126 | chunk big enough to fulfill the request, and splitting off |
2127 | any remainder. This search is strictly by best-fit; i.e., | |
2128 | the smallest (with ties going to approximately the least | |
2129 | recently used) chunk that fits is selected. | |
217c9dad WD |
2130 | |
2131 | 4. If large enough, the chunk bordering the end of memory | |
8bde7f77 WD |
2132 | (`top') is split off. (This use of `top' is in accord with |
2133 | the best-fit search rule. In effect, `top' is treated as | |
2134 | larger (and thus less well fitting) than any other available | |
2135 | chunk since it can be extended to be as large as necessary | |
2136 | (up to system limitations). | |
217c9dad WD |
2137 | |
2138 | 5. If the request size meets the mmap threshold and the | |
8bde7f77 WD |
2139 | system supports mmap, and there are few enough currently |
2140 | allocated mmapped regions, and a call to mmap succeeds, | |
2141 | the request is allocated via direct memory mapping. | |
217c9dad WD |
2142 | |
2143 | 6. Otherwise, the top of memory is extended by | |
8bde7f77 WD |
2144 | obtaining more space from the system (normally using sbrk, |
2145 | but definable to anything else via the MORECORE macro). | |
2146 | Memory is gathered from the system (in system page-sized | |
2147 | units) in a way that allows chunks obtained across different | |
2148 | sbrk calls to be consolidated, but does not require | |
2149 | contiguous memory. Thus, it should be safe to intersperse | |
2150 | mallocs with other sbrk calls. | |
217c9dad WD |
2151 | |
2152 | ||
2153 | All allocations are made from the the `lowest' part of any found | |
2154 | chunk. (The implementation invariant is that prev_inuse is | |
2155 | always true of any allocated chunk; i.e., that each allocated | |
2156 | chunk borders either a previously allocated and still in-use chunk, | |
2157 | or the base of its memory arena.) | |
2158 | ||
2159 | */ | |
2160 | ||
2161 | #if __STD_C | |
2162 | Void_t* mALLOc(size_t bytes) | |
2163 | #else | |
2164 | Void_t* mALLOc(bytes) size_t bytes; | |
2165 | #endif | |
2166 | { | |
2167 | mchunkptr victim; /* inspected/selected chunk */ | |
2168 | INTERNAL_SIZE_T victim_size; /* its size */ | |
2169 | int idx; /* index for bin traversal */ | |
2170 | mbinptr bin; /* associated bin */ | |
2171 | mchunkptr remainder; /* remainder from a split */ | |
2172 | long remainder_size; /* its size */ | |
2173 | int remainder_index; /* its bin index */ | |
2174 | unsigned long block; /* block traverser bit */ | |
2175 | int startidx; /* first bin of a traversed block */ | |
2176 | mchunkptr fwd; /* misc temp for linking */ | |
2177 | mchunkptr bck; /* misc temp for linking */ | |
2178 | mbinptr q; /* misc temp */ | |
2179 | ||
2180 | INTERNAL_SIZE_T nb; | |
2181 | ||
27405448 WD |
2182 | /* check if mem_malloc_init() was run */ |
2183 | if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) { | |
2184 | /* not initialized yet */ | |
2185 | return 0; | |
2186 | } | |
2187 | ||
217c9dad WD |
2188 | if ((long)bytes < 0) return 0; |
2189 | ||
2190 | nb = request2size(bytes); /* padded request size; */ | |
2191 | ||
2192 | /* Check for exact match in a bin */ | |
2193 | ||
2194 | if (is_small_request(nb)) /* Faster version for small requests */ | |
2195 | { | |
2196 | idx = smallbin_index(nb); | |
2197 | ||
2198 | /* No traversal or size check necessary for small bins. */ | |
2199 | ||
2200 | q = bin_at(idx); | |
2201 | victim = last(q); | |
2202 | ||
2203 | /* Also scan the next one, since it would have a remainder < MINSIZE */ | |
2204 | if (victim == q) | |
2205 | { | |
2206 | q = next_bin(q); | |
2207 | victim = last(q); | |
2208 | } | |
2209 | if (victim != q) | |
2210 | { | |
2211 | victim_size = chunksize(victim); | |
2212 | unlink(victim, bck, fwd); | |
2213 | set_inuse_bit_at_offset(victim, victim_size); | |
2214 | check_malloced_chunk(victim, nb); | |
2215 | return chunk2mem(victim); | |
2216 | } | |
2217 | ||
2218 | idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */ | |
2219 | ||
2220 | } | |
2221 | else | |
2222 | { | |
2223 | idx = bin_index(nb); | |
2224 | bin = bin_at(idx); | |
2225 | ||
2226 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
2227 | { | |
2228 | victim_size = chunksize(victim); | |
2229 | remainder_size = victim_size - nb; | |
2230 | ||
2231 | if (remainder_size >= (long)MINSIZE) /* too big */ | |
2232 | { | |
8bde7f77 WD |
2233 | --idx; /* adjust to rescan below after checking last remainder */ |
2234 | break; | |
217c9dad WD |
2235 | } |
2236 | ||
2237 | else if (remainder_size >= 0) /* exact fit */ | |
2238 | { | |
8bde7f77 WD |
2239 | unlink(victim, bck, fwd); |
2240 | set_inuse_bit_at_offset(victim, victim_size); | |
2241 | check_malloced_chunk(victim, nb); | |
2242 | return chunk2mem(victim); | |
217c9dad WD |
2243 | } |
2244 | } | |
2245 | ||
2246 | ++idx; | |
2247 | ||
2248 | } | |
2249 | ||
2250 | /* Try to use the last split-off remainder */ | |
2251 | ||
2252 | if ( (victim = last_remainder->fd) != last_remainder) | |
2253 | { | |
2254 | victim_size = chunksize(victim); | |
2255 | remainder_size = victim_size - nb; | |
2256 | ||
2257 | if (remainder_size >= (long)MINSIZE) /* re-split */ | |
2258 | { | |
2259 | remainder = chunk_at_offset(victim, nb); | |
2260 | set_head(victim, nb | PREV_INUSE); | |
2261 | link_last_remainder(remainder); | |
2262 | set_head(remainder, remainder_size | PREV_INUSE); | |
2263 | set_foot(remainder, remainder_size); | |
2264 | check_malloced_chunk(victim, nb); | |
2265 | return chunk2mem(victim); | |
2266 | } | |
2267 | ||
2268 | clear_last_remainder; | |
2269 | ||
2270 | if (remainder_size >= 0) /* exhaust */ | |
2271 | { | |
2272 | set_inuse_bit_at_offset(victim, victim_size); | |
2273 | check_malloced_chunk(victim, nb); | |
2274 | return chunk2mem(victim); | |
2275 | } | |
2276 | ||
2277 | /* Else place in bin */ | |
2278 | ||
2279 | frontlink(victim, victim_size, remainder_index, bck, fwd); | |
2280 | } | |
2281 | ||
2282 | /* | |
2283 | If there are any possibly nonempty big-enough blocks, | |
2284 | search for best fitting chunk by scanning bins in blockwidth units. | |
2285 | */ | |
2286 | ||
f2302d44 | 2287 | if ( (block = idx2binblock(idx)) <= binblocks_r) |
217c9dad WD |
2288 | { |
2289 | ||
2290 | /* Get to the first marked block */ | |
2291 | ||
f2302d44 | 2292 | if ( (block & binblocks_r) == 0) |
217c9dad WD |
2293 | { |
2294 | /* force to an even block boundary */ | |
2295 | idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH; | |
2296 | block <<= 1; | |
f2302d44 | 2297 | while ((block & binblocks_r) == 0) |
217c9dad | 2298 | { |
8bde7f77 WD |
2299 | idx += BINBLOCKWIDTH; |
2300 | block <<= 1; | |
217c9dad WD |
2301 | } |
2302 | } | |
2303 | ||
2304 | /* For each possibly nonempty block ... */ | |
2305 | for (;;) | |
2306 | { | |
2307 | startidx = idx; /* (track incomplete blocks) */ | |
2308 | q = bin = bin_at(idx); | |
2309 | ||
2310 | /* For each bin in this block ... */ | |
2311 | do | |
2312 | { | |
8bde7f77 WD |
2313 | /* Find and use first big enough chunk ... */ |
2314 | ||
2315 | for (victim = last(bin); victim != bin; victim = victim->bk) | |
2316 | { | |
2317 | victim_size = chunksize(victim); | |
2318 | remainder_size = victim_size - nb; | |
2319 | ||
2320 | if (remainder_size >= (long)MINSIZE) /* split */ | |
2321 | { | |
2322 | remainder = chunk_at_offset(victim, nb); | |
2323 | set_head(victim, nb | PREV_INUSE); | |
2324 | unlink(victim, bck, fwd); | |
2325 | link_last_remainder(remainder); | |
2326 | set_head(remainder, remainder_size | PREV_INUSE); | |
2327 | set_foot(remainder, remainder_size); | |
2328 | check_malloced_chunk(victim, nb); | |
2329 | return chunk2mem(victim); | |
2330 | } | |
2331 | ||
2332 | else if (remainder_size >= 0) /* take */ | |
2333 | { | |
2334 | set_inuse_bit_at_offset(victim, victim_size); | |
2335 | unlink(victim, bck, fwd); | |
2336 | check_malloced_chunk(victim, nb); | |
2337 | return chunk2mem(victim); | |
2338 | } | |
2339 | ||
2340 | } | |
217c9dad WD |
2341 | |
2342 | bin = next_bin(bin); | |
2343 | ||
2344 | } while ((++idx & (BINBLOCKWIDTH - 1)) != 0); | |
2345 | ||
2346 | /* Clear out the block bit. */ | |
2347 | ||
2348 | do /* Possibly backtrack to try to clear a partial block */ | |
2349 | { | |
8bde7f77 WD |
2350 | if ((startidx & (BINBLOCKWIDTH - 1)) == 0) |
2351 | { | |
f2302d44 | 2352 | av_[1] = (mbinptr)(binblocks_r & ~block); |
8bde7f77 WD |
2353 | break; |
2354 | } | |
2355 | --startidx; | |
217c9dad WD |
2356 | q = prev_bin(q); |
2357 | } while (first(q) == q); | |
2358 | ||
2359 | /* Get to the next possibly nonempty block */ | |
2360 | ||
f2302d44 | 2361 | if ( (block <<= 1) <= binblocks_r && (block != 0) ) |
217c9dad | 2362 | { |
f2302d44 | 2363 | while ((block & binblocks_r) == 0) |
8bde7f77 WD |
2364 | { |
2365 | idx += BINBLOCKWIDTH; | |
2366 | block <<= 1; | |
2367 | } | |
217c9dad WD |
2368 | } |
2369 | else | |
8bde7f77 | 2370 | break; |
217c9dad WD |
2371 | } |
2372 | } | |
2373 | ||
2374 | ||
2375 | /* Try to use top chunk */ | |
2376 | ||
2377 | /* Require that there be a remainder, ensuring top always exists */ | |
2378 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
2379 | { | |
2380 | ||
2381 | #if HAVE_MMAP | |
2382 | /* If big and would otherwise need to extend, try to use mmap instead */ | |
2383 | if ((unsigned long)nb >= (unsigned long)mmap_threshold && | |
8bde7f77 | 2384 | (victim = mmap_chunk(nb)) != 0) |
217c9dad WD |
2385 | return chunk2mem(victim); |
2386 | #endif | |
2387 | ||
2388 | /* Try to extend */ | |
2389 | malloc_extend_top(nb); | |
2390 | if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE) | |
2391 | return 0; /* propagate failure */ | |
2392 | } | |
2393 | ||
2394 | victim = top; | |
2395 | set_head(victim, nb | PREV_INUSE); | |
2396 | top = chunk_at_offset(victim, nb); | |
2397 | set_head(top, remainder_size | PREV_INUSE); | |
2398 | check_malloced_chunk(victim, nb); | |
2399 | return chunk2mem(victim); | |
2400 | ||
2401 | } | |
2402 | ||
2403 | ||
2404 | \f | |
2405 | ||
2406 | /* | |
2407 | ||
2408 | free() algorithm : | |
2409 | ||
2410 | cases: | |
2411 | ||
2412 | 1. free(0) has no effect. | |
2413 | ||
2414 | 2. If the chunk was allocated via mmap, it is release via munmap(). | |
2415 | ||
2416 | 3. If a returned chunk borders the current high end of memory, | |
8bde7f77 WD |
2417 | it is consolidated into the top, and if the total unused |
2418 | topmost memory exceeds the trim threshold, malloc_trim is | |
2419 | called. | |
217c9dad WD |
2420 | |
2421 | 4. Other chunks are consolidated as they arrive, and | |
8bde7f77 WD |
2422 | placed in corresponding bins. (This includes the case of |
2423 | consolidating with the current `last_remainder'). | |
217c9dad WD |
2424 | |
2425 | */ | |
2426 | ||
2427 | ||
2428 | #if __STD_C | |
2429 | void fREe(Void_t* mem) | |
2430 | #else | |
2431 | void fREe(mem) Void_t* mem; | |
2432 | #endif | |
2433 | { | |
2434 | mchunkptr p; /* chunk corresponding to mem */ | |
2435 | INTERNAL_SIZE_T hd; /* its head field */ | |
2436 | INTERNAL_SIZE_T sz; /* its size */ | |
2437 | int idx; /* its bin index */ | |
2438 | mchunkptr next; /* next contiguous chunk */ | |
2439 | INTERNAL_SIZE_T nextsz; /* its size */ | |
2440 | INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */ | |
2441 | mchunkptr bck; /* misc temp for linking */ | |
2442 | mchunkptr fwd; /* misc temp for linking */ | |
2443 | int islr; /* track whether merging with last_remainder */ | |
2444 | ||
2445 | if (mem == 0) /* free(0) has no effect */ | |
2446 | return; | |
2447 | ||
2448 | p = mem2chunk(mem); | |
2449 | hd = p->size; | |
2450 | ||
2451 | #if HAVE_MMAP | |
2452 | if (hd & IS_MMAPPED) /* release mmapped memory. */ | |
2453 | { | |
2454 | munmap_chunk(p); | |
2455 | return; | |
2456 | } | |
2457 | #endif | |
2458 | ||
2459 | check_inuse_chunk(p); | |
2460 | ||
2461 | sz = hd & ~PREV_INUSE; | |
2462 | next = chunk_at_offset(p, sz); | |
2463 | nextsz = chunksize(next); | |
2464 | ||
2465 | if (next == top) /* merge with top */ | |
2466 | { | |
2467 | sz += nextsz; | |
2468 | ||
2469 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
2470 | { | |
2471 | prevsz = p->prev_size; | |
2472 | p = chunk_at_offset(p, -((long) prevsz)); | |
2473 | sz += prevsz; | |
2474 | unlink(p, bck, fwd); | |
2475 | } | |
2476 | ||
2477 | set_head(p, sz | PREV_INUSE); | |
2478 | top = p; | |
2479 | if ((unsigned long)(sz) >= (unsigned long)trim_threshold) | |
2480 | malloc_trim(top_pad); | |
2481 | return; | |
2482 | } | |
2483 | ||
2484 | set_head(next, nextsz); /* clear inuse bit */ | |
2485 | ||
2486 | islr = 0; | |
2487 | ||
2488 | if (!(hd & PREV_INUSE)) /* consolidate backward */ | |
2489 | { | |
2490 | prevsz = p->prev_size; | |
2491 | p = chunk_at_offset(p, -((long) prevsz)); | |
2492 | sz += prevsz; | |
2493 | ||
2494 | if (p->fd == last_remainder) /* keep as last_remainder */ | |
2495 | islr = 1; | |
2496 | else | |
2497 | unlink(p, bck, fwd); | |
2498 | } | |
2499 | ||
2500 | if (!(inuse_bit_at_offset(next, nextsz))) /* consolidate forward */ | |
2501 | { | |
2502 | sz += nextsz; | |
2503 | ||
2504 | if (!islr && next->fd == last_remainder) /* re-insert last_remainder */ | |
2505 | { | |
2506 | islr = 1; | |
2507 | link_last_remainder(p); | |
2508 | } | |
2509 | else | |
2510 | unlink(next, bck, fwd); | |
2511 | } | |
2512 | ||
2513 | ||
2514 | set_head(p, sz | PREV_INUSE); | |
2515 | set_foot(p, sz); | |
2516 | if (!islr) | |
2517 | frontlink(p, sz, idx, bck, fwd); | |
2518 | } | |
2519 | ||
2520 | ||
2521 | \f | |
2522 | ||
2523 | ||
2524 | /* | |
2525 | ||
2526 | Realloc algorithm: | |
2527 | ||
2528 | Chunks that were obtained via mmap cannot be extended or shrunk | |
2529 | unless HAVE_MREMAP is defined, in which case mremap is used. | |
2530 | Otherwise, if their reallocation is for additional space, they are | |
2531 | copied. If for less, they are just left alone. | |
2532 | ||
2533 | Otherwise, if the reallocation is for additional space, and the | |
2534 | chunk can be extended, it is, else a malloc-copy-free sequence is | |
2535 | taken. There are several different ways that a chunk could be | |
2536 | extended. All are tried: | |
2537 | ||
2538 | * Extending forward into following adjacent free chunk. | |
2539 | * Shifting backwards, joining preceding adjacent space | |
2540 | * Both shifting backwards and extending forward. | |
2541 | * Extending into newly sbrked space | |
2542 | ||
2543 | Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a | |
2544 | size argument of zero (re)allocates a minimum-sized chunk. | |
2545 | ||
2546 | If the reallocation is for less space, and the new request is for | |
2547 | a `small' (<512 bytes) size, then the newly unused space is lopped | |
2548 | off and freed. | |
2549 | ||
2550 | The old unix realloc convention of allowing the last-free'd chunk | |
2551 | to be used as an argument to realloc is no longer supported. | |
2552 | I don't know of any programs still relying on this feature, | |
2553 | and allowing it would also allow too many other incorrect | |
2554 | usages of realloc to be sensible. | |
2555 | ||
2556 | ||
2557 | */ | |
2558 | ||
2559 | ||
2560 | #if __STD_C | |
2561 | Void_t* rEALLOc(Void_t* oldmem, size_t bytes) | |
2562 | #else | |
2563 | Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes; | |
2564 | #endif | |
2565 | { | |
2566 | INTERNAL_SIZE_T nb; /* padded request size */ | |
2567 | ||
2568 | mchunkptr oldp; /* chunk corresponding to oldmem */ | |
2569 | INTERNAL_SIZE_T oldsize; /* its size */ | |
2570 | ||
2571 | mchunkptr newp; /* chunk to return */ | |
2572 | INTERNAL_SIZE_T newsize; /* its size */ | |
2573 | Void_t* newmem; /* corresponding user mem */ | |
2574 | ||
2575 | mchunkptr next; /* next contiguous chunk after oldp */ | |
2576 | INTERNAL_SIZE_T nextsize; /* its size */ | |
2577 | ||
2578 | mchunkptr prev; /* previous contiguous chunk before oldp */ | |
2579 | INTERNAL_SIZE_T prevsize; /* its size */ | |
2580 | ||
2581 | mchunkptr remainder; /* holds split off extra space from newp */ | |
2582 | INTERNAL_SIZE_T remainder_size; /* its size */ | |
2583 | ||
2584 | mchunkptr bck; /* misc temp for linking */ | |
2585 | mchunkptr fwd; /* misc temp for linking */ | |
2586 | ||
2587 | #ifdef REALLOC_ZERO_BYTES_FREES | |
2588 | if (bytes == 0) { fREe(oldmem); return 0; } | |
2589 | #endif | |
2590 | ||
2591 | if ((long)bytes < 0) return 0; | |
2592 | ||
2593 | /* realloc of null is supposed to be same as malloc */ | |
2594 | if (oldmem == 0) return mALLOc(bytes); | |
2595 | ||
2596 | newp = oldp = mem2chunk(oldmem); | |
2597 | newsize = oldsize = chunksize(oldp); | |
2598 | ||
2599 | ||
2600 | nb = request2size(bytes); | |
2601 | ||
2602 | #if HAVE_MMAP | |
2603 | if (chunk_is_mmapped(oldp)) | |
2604 | { | |
2605 | #if HAVE_MREMAP | |
2606 | newp = mremap_chunk(oldp, nb); | |
2607 | if(newp) return chunk2mem(newp); | |
2608 | #endif | |
2609 | /* Note the extra SIZE_SZ overhead. */ | |
2610 | if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */ | |
2611 | /* Must alloc, copy, free. */ | |
2612 | newmem = mALLOc(bytes); | |
2613 | if (newmem == 0) return 0; /* propagate failure */ | |
2614 | MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ); | |
2615 | munmap_chunk(oldp); | |
2616 | return newmem; | |
2617 | } | |
2618 | #endif | |
2619 | ||
2620 | check_inuse_chunk(oldp); | |
2621 | ||
2622 | if ((long)(oldsize) < (long)(nb)) | |
2623 | { | |
2624 | ||
2625 | /* Try expanding forward */ | |
2626 | ||
2627 | next = chunk_at_offset(oldp, oldsize); | |
2628 | if (next == top || !inuse(next)) | |
2629 | { | |
2630 | nextsize = chunksize(next); | |
2631 | ||
2632 | /* Forward into top only if a remainder */ | |
2633 | if (next == top) | |
2634 | { | |
8bde7f77 WD |
2635 | if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE)) |
2636 | { | |
2637 | newsize += nextsize; | |
2638 | top = chunk_at_offset(oldp, nb); | |
2639 | set_head(top, (newsize - nb) | PREV_INUSE); | |
2640 | set_head_size(oldp, nb); | |
2641 | return chunk2mem(oldp); | |
2642 | } | |
217c9dad WD |
2643 | } |
2644 | ||
2645 | /* Forward into next chunk */ | |
2646 | else if (((long)(nextsize + newsize) >= (long)(nb))) | |
2647 | { | |
8bde7f77 WD |
2648 | unlink(next, bck, fwd); |
2649 | newsize += nextsize; | |
2650 | goto split; | |
217c9dad WD |
2651 | } |
2652 | } | |
2653 | else | |
2654 | { | |
2655 | next = 0; | |
2656 | nextsize = 0; | |
2657 | } | |
2658 | ||
2659 | /* Try shifting backwards. */ | |
2660 | ||
2661 | if (!prev_inuse(oldp)) | |
2662 | { | |
2663 | prev = prev_chunk(oldp); | |
2664 | prevsize = chunksize(prev); | |
2665 | ||
2666 | /* try forward + backward first to save a later consolidation */ | |
2667 | ||
2668 | if (next != 0) | |
2669 | { | |
8bde7f77 WD |
2670 | /* into top */ |
2671 | if (next == top) | |
2672 | { | |
2673 | if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE)) | |
2674 | { | |
2675 | unlink(prev, bck, fwd); | |
2676 | newp = prev; | |
2677 | newsize += prevsize + nextsize; | |
2678 | newmem = chunk2mem(newp); | |
2679 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2680 | top = chunk_at_offset(newp, nb); | |
2681 | set_head(top, (newsize - nb) | PREV_INUSE); | |
2682 | set_head_size(newp, nb); | |
2683 | return newmem; | |
2684 | } | |
2685 | } | |
2686 | ||
2687 | /* into next chunk */ | |
2688 | else if (((long)(nextsize + prevsize + newsize) >= (long)(nb))) | |
2689 | { | |
2690 | unlink(next, bck, fwd); | |
2691 | unlink(prev, bck, fwd); | |
2692 | newp = prev; | |
2693 | newsize += nextsize + prevsize; | |
2694 | newmem = chunk2mem(newp); | |
2695 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2696 | goto split; | |
2697 | } | |
217c9dad WD |
2698 | } |
2699 | ||
2700 | /* backward only */ | |
2701 | if (prev != 0 && (long)(prevsize + newsize) >= (long)nb) | |
2702 | { | |
8bde7f77 WD |
2703 | unlink(prev, bck, fwd); |
2704 | newp = prev; | |
2705 | newsize += prevsize; | |
2706 | newmem = chunk2mem(newp); | |
2707 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2708 | goto split; | |
217c9dad WD |
2709 | } |
2710 | } | |
2711 | ||
2712 | /* Must allocate */ | |
2713 | ||
2714 | newmem = mALLOc (bytes); | |
2715 | ||
2716 | if (newmem == 0) /* propagate failure */ | |
2717 | return 0; | |
2718 | ||
2719 | /* Avoid copy if newp is next chunk after oldp. */ | |
2720 | /* (This can only happen when new chunk is sbrk'ed.) */ | |
2721 | ||
2722 | if ( (newp = mem2chunk(newmem)) == next_chunk(oldp)) | |
2723 | { | |
2724 | newsize += chunksize(newp); | |
2725 | newp = oldp; | |
2726 | goto split; | |
2727 | } | |
2728 | ||
2729 | /* Otherwise copy, free, and exit */ | |
2730 | MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ); | |
2731 | fREe(oldmem); | |
2732 | return newmem; | |
2733 | } | |
2734 | ||
2735 | ||
2736 | split: /* split off extra room in old or expanded chunk */ | |
2737 | ||
2738 | if (newsize - nb >= MINSIZE) /* split off remainder */ | |
2739 | { | |
2740 | remainder = chunk_at_offset(newp, nb); | |
2741 | remainder_size = newsize - nb; | |
2742 | set_head_size(newp, nb); | |
2743 | set_head(remainder, remainder_size | PREV_INUSE); | |
2744 | set_inuse_bit_at_offset(remainder, remainder_size); | |
2745 | fREe(chunk2mem(remainder)); /* let free() deal with it */ | |
2746 | } | |
2747 | else | |
2748 | { | |
2749 | set_head_size(newp, newsize); | |
2750 | set_inuse_bit_at_offset(newp, newsize); | |
2751 | } | |
2752 | ||
2753 | check_inuse_chunk(newp); | |
2754 | return chunk2mem(newp); | |
2755 | } | |
2756 | ||
2757 | ||
2758 | \f | |
2759 | ||
2760 | /* | |
2761 | ||
2762 | memalign algorithm: | |
2763 | ||
2764 | memalign requests more than enough space from malloc, finds a spot | |
2765 | within that chunk that meets the alignment request, and then | |
2766 | possibly frees the leading and trailing space. | |
2767 | ||
2768 | The alignment argument must be a power of two. This property is not | |
2769 | checked by memalign, so misuse may result in random runtime errors. | |
2770 | ||
2771 | 8-byte alignment is guaranteed by normal malloc calls, so don't | |
2772 | bother calling memalign with an argument of 8 or less. | |
2773 | ||
2774 | Overreliance on memalign is a sure way to fragment space. | |
2775 | ||
2776 | */ | |
2777 | ||
2778 | ||
2779 | #if __STD_C | |
2780 | Void_t* mEMALIGn(size_t alignment, size_t bytes) | |
2781 | #else | |
2782 | Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes; | |
2783 | #endif | |
2784 | { | |
2785 | INTERNAL_SIZE_T nb; /* padded request size */ | |
2786 | char* m; /* memory returned by malloc call */ | |
2787 | mchunkptr p; /* corresponding chunk */ | |
2788 | char* brk; /* alignment point within p */ | |
2789 | mchunkptr newp; /* chunk to return */ | |
2790 | INTERNAL_SIZE_T newsize; /* its size */ | |
2791 | INTERNAL_SIZE_T leadsize; /* leading space befor alignment point */ | |
2792 | mchunkptr remainder; /* spare room at end to split off */ | |
2793 | long remainder_size; /* its size */ | |
2794 | ||
2795 | if ((long)bytes < 0) return 0; | |
2796 | ||
2797 | /* If need less alignment than we give anyway, just relay to malloc */ | |
2798 | ||
2799 | if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes); | |
2800 | ||
2801 | /* Otherwise, ensure that it is at least a minimum chunk size */ | |
2802 | ||
2803 | if (alignment < MINSIZE) alignment = MINSIZE; | |
2804 | ||
2805 | /* Call malloc with worst case padding to hit alignment. */ | |
2806 | ||
2807 | nb = request2size(bytes); | |
2808 | m = (char*)(mALLOc(nb + alignment + MINSIZE)); | |
2809 | ||
2810 | if (m == 0) return 0; /* propagate failure */ | |
2811 | ||
2812 | p = mem2chunk(m); | |
2813 | ||
2814 | if ((((unsigned long)(m)) % alignment) == 0) /* aligned */ | |
2815 | { | |
2816 | #if HAVE_MMAP | |
2817 | if(chunk_is_mmapped(p)) | |
2818 | return chunk2mem(p); /* nothing more to do */ | |
2819 | #endif | |
2820 | } | |
2821 | else /* misaligned */ | |
2822 | { | |
2823 | /* | |
2824 | Find an aligned spot inside chunk. | |
2825 | Since we need to give back leading space in a chunk of at | |
2826 | least MINSIZE, if the first calculation places us at | |
2827 | a spot with less than MINSIZE leader, we can move to the | |
2828 | next aligned spot -- we've allocated enough total room so that | |
2829 | this is always possible. | |
2830 | */ | |
2831 | ||
2832 | brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment)); | |
2833 | if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment; | |
2834 | ||
2835 | newp = (mchunkptr)brk; | |
2836 | leadsize = brk - (char*)(p); | |
2837 | newsize = chunksize(p) - leadsize; | |
2838 | ||
2839 | #if HAVE_MMAP | |
2840 | if(chunk_is_mmapped(p)) | |
2841 | { | |
2842 | newp->prev_size = p->prev_size + leadsize; | |
2843 | set_head(newp, newsize|IS_MMAPPED); | |
2844 | return chunk2mem(newp); | |
2845 | } | |
2846 | #endif | |
2847 | ||
2848 | /* give back leader, use the rest */ | |
2849 | ||
2850 | set_head(newp, newsize | PREV_INUSE); | |
2851 | set_inuse_bit_at_offset(newp, newsize); | |
2852 | set_head_size(p, leadsize); | |
2853 | fREe(chunk2mem(p)); | |
2854 | p = newp; | |
2855 | ||
2856 | assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0); | |
2857 | } | |
2858 | ||
2859 | /* Also give back spare room at the end */ | |
2860 | ||
2861 | remainder_size = chunksize(p) - nb; | |
2862 | ||
2863 | if (remainder_size >= (long)MINSIZE) | |
2864 | { | |
2865 | remainder = chunk_at_offset(p, nb); | |
2866 | set_head(remainder, remainder_size | PREV_INUSE); | |
2867 | set_head_size(p, nb); | |
2868 | fREe(chunk2mem(remainder)); | |
2869 | } | |
2870 | ||
2871 | check_inuse_chunk(p); | |
2872 | return chunk2mem(p); | |
2873 | ||
2874 | } | |
2875 | ||
2876 | \f | |
2877 | ||
2878 | ||
2879 | /* | |
2880 | valloc just invokes memalign with alignment argument equal | |
2881 | to the page size of the system (or as near to this as can | |
2882 | be figured out from all the includes/defines above.) | |
2883 | */ | |
2884 | ||
2885 | #if __STD_C | |
2886 | Void_t* vALLOc(size_t bytes) | |
2887 | #else | |
2888 | Void_t* vALLOc(bytes) size_t bytes; | |
2889 | #endif | |
2890 | { | |
2891 | return mEMALIGn (malloc_getpagesize, bytes); | |
2892 | } | |
2893 | ||
2894 | /* | |
2895 | pvalloc just invokes valloc for the nearest pagesize | |
2896 | that will accommodate request | |
2897 | */ | |
2898 | ||
2899 | ||
2900 | #if __STD_C | |
2901 | Void_t* pvALLOc(size_t bytes) | |
2902 | #else | |
2903 | Void_t* pvALLOc(bytes) size_t bytes; | |
2904 | #endif | |
2905 | { | |
2906 | size_t pagesize = malloc_getpagesize; | |
2907 | return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1)); | |
2908 | } | |
2909 | ||
2910 | /* | |
2911 | ||
2912 | calloc calls malloc, then zeroes out the allocated chunk. | |
2913 | ||
2914 | */ | |
2915 | ||
2916 | #if __STD_C | |
2917 | Void_t* cALLOc(size_t n, size_t elem_size) | |
2918 | #else | |
2919 | Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size; | |
2920 | #endif | |
2921 | { | |
2922 | mchunkptr p; | |
2923 | INTERNAL_SIZE_T csz; | |
2924 | ||
2925 | INTERNAL_SIZE_T sz = n * elem_size; | |
2926 | ||
2927 | ||
2928 | /* check if expand_top called, in which case don't need to clear */ | |
2929 | #if MORECORE_CLEARS | |
2930 | mchunkptr oldtop = top; | |
2931 | INTERNAL_SIZE_T oldtopsize = chunksize(top); | |
2932 | #endif | |
2933 | Void_t* mem = mALLOc (sz); | |
2934 | ||
2935 | if ((long)n < 0) return 0; | |
2936 | ||
2937 | if (mem == 0) | |
2938 | return 0; | |
2939 | else | |
2940 | { | |
2941 | p = mem2chunk(mem); | |
2942 | ||
2943 | /* Two optional cases in which clearing not necessary */ | |
2944 | ||
2945 | ||
2946 | #if HAVE_MMAP | |
2947 | if (chunk_is_mmapped(p)) return mem; | |
2948 | #endif | |
2949 | ||
2950 | csz = chunksize(p); | |
2951 | ||
2952 | #if MORECORE_CLEARS | |
2953 | if (p == oldtop && csz > oldtopsize) | |
2954 | { | |
2955 | /* clear only the bytes from non-freshly-sbrked memory */ | |
2956 | csz = oldtopsize; | |
2957 | } | |
2958 | #endif | |
2959 | ||
2960 | MALLOC_ZERO(mem, csz - SIZE_SZ); | |
2961 | return mem; | |
2962 | } | |
2963 | } | |
2964 | ||
2965 | /* | |
2966 | ||
2967 | cfree just calls free. It is needed/defined on some systems | |
2968 | that pair it with calloc, presumably for odd historical reasons. | |
2969 | ||
2970 | */ | |
2971 | ||
2972 | #if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__) | |
2973 | #if __STD_C | |
2974 | void cfree(Void_t *mem) | |
2975 | #else | |
2976 | void cfree(mem) Void_t *mem; | |
2977 | #endif | |
2978 | { | |
2979 | fREe(mem); | |
2980 | } | |
2981 | #endif | |
2982 | ||
2983 | \f | |
2984 | ||
2985 | /* | |
2986 | ||
2987 | Malloc_trim gives memory back to the system (via negative | |
2988 | arguments to sbrk) if there is unused memory at the `high' end of | |
2989 | the malloc pool. You can call this after freeing large blocks of | |
2990 | memory to potentially reduce the system-level memory requirements | |
2991 | of a program. However, it cannot guarantee to reduce memory. Under | |
2992 | some allocation patterns, some large free blocks of memory will be | |
2993 | locked between two used chunks, so they cannot be given back to | |
2994 | the system. | |
2995 | ||
2996 | The `pad' argument to malloc_trim represents the amount of free | |
2997 | trailing space to leave untrimmed. If this argument is zero, | |
2998 | only the minimum amount of memory to maintain internal data | |
2999 | structures will be left (one page or less). Non-zero arguments | |
3000 | can be supplied to maintain enough trailing space to service | |
3001 | future expected allocations without having to re-obtain memory | |
3002 | from the system. | |
3003 | ||
3004 | Malloc_trim returns 1 if it actually released any memory, else 0. | |
3005 | ||
3006 | */ | |
3007 | ||
3008 | #if __STD_C | |
3009 | int malloc_trim(size_t pad) | |
3010 | #else | |
3011 | int malloc_trim(pad) size_t pad; | |
3012 | #endif | |
3013 | { | |
3014 | long top_size; /* Amount of top-most memory */ | |
3015 | long extra; /* Amount to release */ | |
3016 | char* current_brk; /* address returned by pre-check sbrk call */ | |
3017 | char* new_brk; /* address returned by negative sbrk call */ | |
3018 | ||
3019 | unsigned long pagesz = malloc_getpagesize; | |
3020 | ||
3021 | top_size = chunksize(top); | |
3022 | extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz; | |
3023 | ||
3024 | if (extra < (long)pagesz) /* Not enough memory to release */ | |
3025 | return 0; | |
3026 | ||
3027 | else | |
3028 | { | |
3029 | /* Test to make sure no one else called sbrk */ | |
3030 | current_brk = (char*)(MORECORE (0)); | |
3031 | if (current_brk != (char*)(top) + top_size) | |
3032 | return 0; /* Apparently we don't own memory; must fail */ | |
3033 | ||
3034 | else | |
3035 | { | |
3036 | new_brk = (char*)(MORECORE (-extra)); | |
3037 | ||
3038 | if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */ | |
3039 | { | |
8bde7f77 WD |
3040 | /* Try to figure out what we have */ |
3041 | current_brk = (char*)(MORECORE (0)); | |
3042 | top_size = current_brk - (char*)top; | |
3043 | if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */ | |
3044 | { | |
3045 | sbrked_mem = current_brk - sbrk_base; | |
3046 | set_head(top, top_size | PREV_INUSE); | |
3047 | } | |
3048 | check_chunk(top); | |
3049 | return 0; | |
217c9dad WD |
3050 | } |
3051 | ||
3052 | else | |
3053 | { | |
8bde7f77 WD |
3054 | /* Success. Adjust top accordingly. */ |
3055 | set_head(top, (top_size - extra) | PREV_INUSE); | |
3056 | sbrked_mem -= extra; | |
3057 | check_chunk(top); | |
3058 | return 1; | |
217c9dad WD |
3059 | } |
3060 | } | |
3061 | } | |
3062 | } | |
3063 | ||
3064 | \f | |
3065 | ||
3066 | /* | |
3067 | malloc_usable_size: | |
3068 | ||
3069 | This routine tells you how many bytes you can actually use in an | |
3070 | allocated chunk, which may be more than you requested (although | |
3071 | often not). You can use this many bytes without worrying about | |
3072 | overwriting other allocated objects. Not a particularly great | |
3073 | programming practice, but still sometimes useful. | |
3074 | ||
3075 | */ | |
3076 | ||
3077 | #if __STD_C | |
3078 | size_t malloc_usable_size(Void_t* mem) | |
3079 | #else | |
3080 | size_t malloc_usable_size(mem) Void_t* mem; | |
3081 | #endif | |
3082 | { | |
3083 | mchunkptr p; | |
3084 | if (mem == 0) | |
3085 | return 0; | |
3086 | else | |
3087 | { | |
3088 | p = mem2chunk(mem); | |
3089 | if(!chunk_is_mmapped(p)) | |
3090 | { | |
3091 | if (!inuse(p)) return 0; | |
3092 | check_inuse_chunk(p); | |
3093 | return chunksize(p) - SIZE_SZ; | |
3094 | } | |
3095 | return chunksize(p) - 2*SIZE_SZ; | |
3096 | } | |
3097 | } | |
3098 | ||
3099 | ||
3100 | \f | |
3101 | ||
3102 | /* Utility to update current_mallinfo for malloc_stats and mallinfo() */ | |
3103 | ||
3104 | #if 0 | |
3105 | static void malloc_update_mallinfo() | |
3106 | { | |
3107 | int i; | |
3108 | mbinptr b; | |
3109 | mchunkptr p; | |
3110 | #ifdef DEBUG | |
3111 | mchunkptr q; | |
3112 | #endif | |
3113 | ||
3114 | INTERNAL_SIZE_T avail = chunksize(top); | |
3115 | int navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0; | |
3116 | ||
3117 | for (i = 1; i < NAV; ++i) | |
3118 | { | |
3119 | b = bin_at(i); | |
3120 | for (p = last(b); p != b; p = p->bk) | |
3121 | { | |
3122 | #ifdef DEBUG | |
3123 | check_free_chunk(p); | |
3124 | for (q = next_chunk(p); | |
8bde7f77 WD |
3125 | q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE; |
3126 | q = next_chunk(q)) | |
3127 | check_inuse_chunk(q); | |
217c9dad WD |
3128 | #endif |
3129 | avail += chunksize(p); | |
3130 | navail++; | |
3131 | } | |
3132 | } | |
3133 | ||
3134 | current_mallinfo.ordblks = navail; | |
3135 | current_mallinfo.uordblks = sbrked_mem - avail; | |
3136 | current_mallinfo.fordblks = avail; | |
3137 | current_mallinfo.hblks = n_mmaps; | |
3138 | current_mallinfo.hblkhd = mmapped_mem; | |
3139 | current_mallinfo.keepcost = chunksize(top); | |
3140 | ||
3141 | } | |
3142 | #endif /* 0 */ | |
3143 | ||
3144 | \f | |
3145 | ||
3146 | /* | |
3147 | ||
3148 | malloc_stats: | |
3149 | ||
3150 | Prints on the amount of space obtain from the system (both | |
3151 | via sbrk and mmap), the maximum amount (which may be more than | |
3152 | current if malloc_trim and/or munmap got called), the maximum | |
3153 | number of simultaneous mmap regions used, and the current number | |
3154 | of bytes allocated via malloc (or realloc, etc) but not yet | |
3155 | freed. (Note that this is the number of bytes allocated, not the | |
3156 | number requested. It will be larger than the number requested | |
3157 | because of alignment and bookkeeping overhead.) | |
3158 | ||
3159 | */ | |
3160 | ||
3161 | #if 0 | |
3162 | void malloc_stats() | |
3163 | { | |
3164 | malloc_update_mallinfo(); | |
3165 | printf("max system bytes = %10u\n", | |
8bde7f77 | 3166 | (unsigned int)(max_total_mem)); |
217c9dad | 3167 | printf("system bytes = %10u\n", |
8bde7f77 | 3168 | (unsigned int)(sbrked_mem + mmapped_mem)); |
217c9dad | 3169 | printf("in use bytes = %10u\n", |
8bde7f77 | 3170 | (unsigned int)(current_mallinfo.uordblks + mmapped_mem)); |
217c9dad WD |
3171 | #if HAVE_MMAP |
3172 | printf("max mmap regions = %10u\n", | |
8bde7f77 | 3173 | (unsigned int)max_n_mmaps); |
217c9dad WD |
3174 | #endif |
3175 | } | |
3176 | #endif /* 0 */ | |
3177 | ||
3178 | /* | |
3179 | mallinfo returns a copy of updated current mallinfo. | |
3180 | */ | |
3181 | ||
3182 | #if 0 | |
3183 | struct mallinfo mALLINFo() | |
3184 | { | |
3185 | malloc_update_mallinfo(); | |
3186 | return current_mallinfo; | |
3187 | } | |
3188 | #endif /* 0 */ | |
3189 | ||
3190 | ||
3191 | \f | |
3192 | ||
3193 | /* | |
3194 | mallopt: | |
3195 | ||
3196 | mallopt is the general SVID/XPG interface to tunable parameters. | |
3197 | The format is to provide a (parameter-number, parameter-value) pair. | |
3198 | mallopt then sets the corresponding parameter to the argument | |
3199 | value if it can (i.e., so long as the value is meaningful), | |
3200 | and returns 1 if successful else 0. | |
3201 | ||
3202 | See descriptions of tunable parameters above. | |
3203 | ||
3204 | */ | |
3205 | ||
3206 | #if __STD_C | |
3207 | int mALLOPt(int param_number, int value) | |
3208 | #else | |
3209 | int mALLOPt(param_number, value) int param_number; int value; | |
3210 | #endif | |
3211 | { | |
3212 | switch(param_number) | |
3213 | { | |
3214 | case M_TRIM_THRESHOLD: | |
3215 | trim_threshold = value; return 1; | |
3216 | case M_TOP_PAD: | |
3217 | top_pad = value; return 1; | |
3218 | case M_MMAP_THRESHOLD: | |
3219 | mmap_threshold = value; return 1; | |
3220 | case M_MMAP_MAX: | |
3221 | #if HAVE_MMAP | |
3222 | n_mmaps_max = value; return 1; | |
3223 | #else | |
3224 | if (value != 0) return 0; else n_mmaps_max = value; return 1; | |
3225 | #endif | |
3226 | ||
3227 | default: | |
3228 | return 0; | |
3229 | } | |
3230 | } | |
3231 | ||
3232 | /* | |
3233 | ||
3234 | History: | |
3235 | ||
3236 | V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) | |
3237 | * return null for negative arguments | |
3238 | * Added Several WIN32 cleanups from Martin C. Fong <[email protected]> | |
8bde7f77 WD |
3239 | * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' |
3240 | (e.g. WIN32 platforms) | |
3241 | * Cleanup up header file inclusion for WIN32 platforms | |
3242 | * Cleanup code to avoid Microsoft Visual C++ compiler complaints | |
3243 | * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing | |
3244 | memory allocation routines | |
3245 | * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) | |
3246 | * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to | |
217c9dad | 3247 | usage of 'assert' in non-WIN32 code |
8bde7f77 WD |
3248 | * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to |
3249 | avoid infinite loop | |
217c9dad WD |
3250 | * Always call 'fREe()' rather than 'free()' |
3251 | ||
3252 | V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) | |
3253 | * Fixed ordering problem with boundary-stamping | |
3254 | ||
3255 | V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) | |
3256 | * Added pvalloc, as recommended by H.J. Liu | |
3257 | * Added 64bit pointer support mainly from Wolfram Gloger | |
3258 | * Added anonymously donated WIN32 sbrk emulation | |
3259 | * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen | |
3260 | * malloc_extend_top: fix mask error that caused wastage after | |
8bde7f77 | 3261 | foreign sbrks |
217c9dad WD |
3262 | * Add linux mremap support code from HJ Liu |
3263 | ||
3264 | V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) | |
3265 | * Integrated most documentation with the code. | |
3266 | * Add support for mmap, with help from | |
8bde7f77 | 3267 | Wolfram Gloger ([email protected]). |
217c9dad WD |
3268 | * Use last_remainder in more cases. |
3269 | * Pack bins using idea from [email protected] | |
3270 | * Use ordered bins instead of best-fit threshhold | |
3271 | * Eliminate block-local decls to simplify tracing and debugging. | |
3272 | * Support another case of realloc via move into top | |
3273 | * Fix error occuring when initial sbrk_base not word-aligned. | |
3274 | * Rely on page size for units instead of SBRK_UNIT to | |
8bde7f77 | 3275 | avoid surprises about sbrk alignment conventions. |
217c9dad | 3276 | * Add mallinfo, mallopt. Thanks to Raymond Nijssen |
8bde7f77 | 3277 | ([email protected]) for the suggestion. |
217c9dad WD |
3278 | * Add `pad' argument to malloc_trim and top_pad mallopt parameter. |
3279 | * More precautions for cases where other routines call sbrk, | |
8bde7f77 | 3280 | courtesy of Wolfram Gloger ([email protected]). |
217c9dad | 3281 | * Added macros etc., allowing use in linux libc from |
8bde7f77 | 3282 | H.J. Lu ([email protected]) |
217c9dad WD |
3283 | * Inverted this history list |
3284 | ||
3285 | V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) | |
3286 | * Re-tuned and fixed to behave more nicely with V2.6.0 changes. | |
3287 | * Removed all preallocation code since under current scheme | |
8bde7f77 WD |
3288 | the work required to undo bad preallocations exceeds |
3289 | the work saved in good cases for most test programs. | |
217c9dad | 3290 | * No longer use return list or unconsolidated bins since |
8bde7f77 WD |
3291 | no scheme using them consistently outperforms those that don't |
3292 | given above changes. | |
217c9dad WD |
3293 | * Use best fit for very large chunks to prevent some worst-cases. |
3294 | * Added some support for debugging | |
3295 | ||
3296 | V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) | |
3297 | * Removed footers when chunks are in use. Thanks to | |
8bde7f77 | 3298 | Paul Wilson ([email protected]) for the suggestion. |
217c9dad WD |
3299 | |
3300 | V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) | |
3301 | * Added malloc_trim, with help from Wolfram Gloger | |
8bde7f77 | 3302 | ([email protected]). |
217c9dad WD |
3303 | |
3304 | V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) | |
3305 | ||
3306 | V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) | |
3307 | * realloc: try to expand in both directions | |
3308 | * malloc: swap order of clean-bin strategy; | |
3309 | * realloc: only conditionally expand backwards | |
3310 | * Try not to scavenge used bins | |
3311 | * Use bin counts as a guide to preallocation | |
3312 | * Occasionally bin return list chunks in first scan | |
3313 | * Add a few optimizations from [email protected] | |
3314 | ||
3315 | V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) | |
3316 | * faster bin computation & slightly different binning | |
3317 | * merged all consolidations to one part of malloc proper | |
8bde7f77 | 3318 | (eliminating old malloc_find_space & malloc_clean_bin) |
217c9dad WD |
3319 | * Scan 2 returns chunks (not just 1) |
3320 | * Propagate failure in realloc if malloc returns 0 | |
3321 | * Add stuff to allow compilation on non-ANSI compilers | |
8bde7f77 | 3322 | from [email protected] |
217c9dad WD |
3323 | |
3324 | V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) | |
3325 | * removed potential for odd address access in prev_chunk | |
3326 | * removed dependency on getpagesize.h | |
3327 | * misc cosmetics and a bit more internal documentation | |
3328 | * anticosmetics: mangled names in macros to evade debugger strangeness | |
3329 | * tested on sparc, hp-700, dec-mips, rs6000 | |
8bde7f77 WD |
3330 | with gcc & native cc (hp, dec only) allowing |
3331 | Detlefs & Zorn comparison study (in SIGPLAN Notices.) | |
217c9dad WD |
3332 | |
3333 | Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) | |
3334 | * Based loosely on libg++-1.2X malloc. (It retains some of the overall | |
8bde7f77 | 3335 | structure of old version, but most details differ.) |
217c9dad WD |
3336 | |
3337 | */ |