]> Git Repo - secp256k1.git/blob - src/scalar_4x64_impl.h
Detailed comments for secp256k1_scalar_split_lambda
[secp256k1.git] / src / scalar_4x64_impl.h
1 /**********************************************************************
2  * Copyright (c) 2013, 2014 Pieter Wuille                             *
3  * Distributed under the MIT software license, see the accompanying   *
4  * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5  **********************************************************************/
6
7 #ifndef SECP256K1_SCALAR_REPR_IMPL_H
8 #define SECP256K1_SCALAR_REPR_IMPL_H
9
10 /* Limbs of the secp256k1 order. */
11 #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
12 #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
13 #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
14 #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
15
16 /* Limbs of 2^256 minus the secp256k1 order. */
17 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
18 #define SECP256K1_N_C_1 (~SECP256K1_N_1)
19 #define SECP256K1_N_C_2 (1)
20
21 /* Limbs of half the secp256k1 order. */
22 #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
23 #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
24 #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
25 #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
26
27 SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
28     r->d[0] = 0;
29     r->d[1] = 0;
30     r->d[2] = 0;
31     r->d[3] = 0;
32 }
33
34 SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
35     r->d[0] = v;
36     r->d[1] = 0;
37     r->d[2] = 0;
38     r->d[3] = 0;
39 }
40
41 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
42     VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
43     return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
44 }
45
46 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
47     VERIFY_CHECK(count < 32);
48     VERIFY_CHECK(offset + count <= 256);
49     if ((offset + count - 1) >> 6 == offset >> 6) {
50         return secp256k1_scalar_get_bits(a, offset, count);
51     } else {
52         VERIFY_CHECK((offset >> 6) + 1 < 4);
53         return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
54     }
55 }
56
57 SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
58     int yes = 0;
59     int no = 0;
60     no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
61     no |= (a->d[2] < SECP256K1_N_2);
62     yes |= (a->d[2] > SECP256K1_N_2) & ~no;
63     no |= (a->d[1] < SECP256K1_N_1);
64     yes |= (a->d[1] > SECP256K1_N_1) & ~no;
65     yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
66     return yes;
67 }
68
69 SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
70     uint128_t t;
71     VERIFY_CHECK(overflow <= 1);
72     t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
73     r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
74     t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
75     r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
76     t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
77     r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
78     t += (uint64_t)r->d[3];
79     r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
80     return overflow;
81 }
82
83 static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
84     int overflow;
85     uint128_t t = (uint128_t)a->d[0] + b->d[0];
86     r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
87     t += (uint128_t)a->d[1] + b->d[1];
88     r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
89     t += (uint128_t)a->d[2] + b->d[2];
90     r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
91     t += (uint128_t)a->d[3] + b->d[3];
92     r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
93     overflow = t + secp256k1_scalar_check_overflow(r);
94     VERIFY_CHECK(overflow == 0 || overflow == 1);
95     secp256k1_scalar_reduce(r, overflow);
96     return overflow;
97 }
98
99 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
100     uint128_t t;
101     VERIFY_CHECK(bit < 256);
102     bit += ((uint32_t) flag - 1) & 0x100;  /* forcing (bit >> 6) > 3 makes this a noop */
103     t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
104     r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
105     t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
106     r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
107     t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
108     r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
109     t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
110     r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
111 #ifdef VERIFY
112     VERIFY_CHECK((t >> 64) == 0);
113     VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
114 #endif
115 }
116
117 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
118     int over;
119     r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
120     r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
121     r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
122     r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
123     over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
124     if (overflow) {
125         *overflow = over;
126     }
127 }
128
129 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
130     bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
131     bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
132     bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
133     bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
134 }
135
136 SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
137     return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
138 }
139
140 static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
141     uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
142     uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
143     r->d[0] = t & nonzero; t >>= 64;
144     t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
145     r->d[1] = t & nonzero; t >>= 64;
146     t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
147     r->d[2] = t & nonzero; t >>= 64;
148     t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
149     r->d[3] = t & nonzero;
150 }
151
152 SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
153     return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
154 }
155
156 static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
157     int yes = 0;
158     int no = 0;
159     no |= (a->d[3] < SECP256K1_N_H_3);
160     yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
161     no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
162     no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
163     yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
164     yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
165     return yes;
166 }
167
168 static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
169     /* If we are flag = 0, mask = 00...00 and this is a no-op;
170      * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
171     uint64_t mask = !flag - 1;
172     uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
173     uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
174     r->d[0] = t & nonzero; t >>= 64;
175     t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
176     r->d[1] = t & nonzero; t >>= 64;
177     t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
178     r->d[2] = t & nonzero; t >>= 64;
179     t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
180     r->d[3] = t & nonzero;
181     return 2 * (mask == 0) - 1;
182 }
183
184 /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
185
186 /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
187 #define muladd(a,b) { \
188     uint64_t tl, th; \
189     { \
190         uint128_t t = (uint128_t)a * b; \
191         th = t >> 64;         /* at most 0xFFFFFFFFFFFFFFFE */ \
192         tl = t; \
193     } \
194     c0 += tl;                 /* overflow is handled on the next line */ \
195     th += (c0 < tl);          /* at most 0xFFFFFFFFFFFFFFFF */ \
196     c1 += th;                 /* overflow is handled on the next line */ \
197     c2 += (c1 < th);          /* never overflows by contract (verified in the next line) */ \
198     VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
199 }
200
201 /** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
202 #define muladd_fast(a,b) { \
203     uint64_t tl, th; \
204     { \
205         uint128_t t = (uint128_t)a * b; \
206         th = t >> 64;         /* at most 0xFFFFFFFFFFFFFFFE */ \
207         tl = t; \
208     } \
209     c0 += tl;                 /* overflow is handled on the next line */ \
210     th += (c0 < tl);          /* at most 0xFFFFFFFFFFFFFFFF */ \
211     c1 += th;                 /* never overflows by contract (verified in the next line) */ \
212     VERIFY_CHECK(c1 >= th); \
213 }
214
215 /** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
216 #define muladd2(a,b) { \
217     uint64_t tl, th, th2, tl2; \
218     { \
219         uint128_t t = (uint128_t)a * b; \
220         th = t >> 64;               /* at most 0xFFFFFFFFFFFFFFFE */ \
221         tl = t; \
222     } \
223     th2 = th + th;                  /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
224     c2 += (th2 < th);               /* never overflows by contract (verified the next line) */ \
225     VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
226     tl2 = tl + tl;                  /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
227     th2 += (tl2 < tl);              /* at most 0xFFFFFFFFFFFFFFFF */ \
228     c0 += tl2;                      /* overflow is handled on the next line */ \
229     th2 += (c0 < tl2);              /* second overflow is handled on the next line */ \
230     c2 += (c0 < tl2) & (th2 == 0);  /* never overflows by contract (verified the next line) */ \
231     VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
232     c1 += th2;                      /* overflow is handled on the next line */ \
233     c2 += (c1 < th2);               /* never overflows by contract (verified the next line) */ \
234     VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
235 }
236
237 /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
238 #define sumadd(a) { \
239     unsigned int over; \
240     c0 += (a);                  /* overflow is handled on the next line */ \
241     over = (c0 < (a));         \
242     c1 += over;                 /* overflow is handled on the next line */ \
243     c2 += (c1 < over);          /* never overflows by contract */ \
244 }
245
246 /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
247 #define sumadd_fast(a) { \
248     c0 += (a);                 /* overflow is handled on the next line */ \
249     c1 += (c0 < (a));          /* never overflows by contract (verified the next line) */ \
250     VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
251     VERIFY_CHECK(c2 == 0); \
252 }
253
254 /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
255 #define extract(n) { \
256     (n) = c0; \
257     c0 = c1; \
258     c1 = c2; \
259     c2 = 0; \
260 }
261
262 /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
263 #define extract_fast(n) { \
264     (n) = c0; \
265     c0 = c1; \
266     c1 = 0; \
267     VERIFY_CHECK(c2 == 0); \
268 }
269
270 static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
271 #ifdef USE_ASM_X86_64
272     /* Reduce 512 bits into 385. */
273     uint64_t m0, m1, m2, m3, m4, m5, m6;
274     uint64_t p0, p1, p2, p3, p4;
275     uint64_t c;
276
277     __asm__ __volatile__(
278     /* Preload. */
279     "movq 32(%%rsi), %%r11\n"
280     "movq 40(%%rsi), %%r12\n"
281     "movq 48(%%rsi), %%r13\n"
282     "movq 56(%%rsi), %%r14\n"
283     /* Initialize r8,r9,r10 */
284     "movq 0(%%rsi), %%r8\n"
285     "xorq %%r9, %%r9\n"
286     "xorq %%r10, %%r10\n"
287     /* (r8,r9) += n0 * c0 */
288     "movq %8, %%rax\n"
289     "mulq %%r11\n"
290     "addq %%rax, %%r8\n"
291     "adcq %%rdx, %%r9\n"
292     /* extract m0 */
293     "movq %%r8, %q0\n"
294     "xorq %%r8, %%r8\n"
295     /* (r9,r10) += l1 */
296     "addq 8(%%rsi), %%r9\n"
297     "adcq $0, %%r10\n"
298     /* (r9,r10,r8) += n1 * c0 */
299     "movq %8, %%rax\n"
300     "mulq %%r12\n"
301     "addq %%rax, %%r9\n"
302     "adcq %%rdx, %%r10\n"
303     "adcq $0, %%r8\n"
304     /* (r9,r10,r8) += n0 * c1 */
305     "movq %9, %%rax\n"
306     "mulq %%r11\n"
307     "addq %%rax, %%r9\n"
308     "adcq %%rdx, %%r10\n"
309     "adcq $0, %%r8\n"
310     /* extract m1 */
311     "movq %%r9, %q1\n"
312     "xorq %%r9, %%r9\n"
313     /* (r10,r8,r9) += l2 */
314     "addq 16(%%rsi), %%r10\n"
315     "adcq $0, %%r8\n"
316     "adcq $0, %%r9\n"
317     /* (r10,r8,r9) += n2 * c0 */
318     "movq %8, %%rax\n"
319     "mulq %%r13\n"
320     "addq %%rax, %%r10\n"
321     "adcq %%rdx, %%r8\n"
322     "adcq $0, %%r9\n"
323     /* (r10,r8,r9) += n1 * c1 */
324     "movq %9, %%rax\n"
325     "mulq %%r12\n"
326     "addq %%rax, %%r10\n"
327     "adcq %%rdx, %%r8\n"
328     "adcq $0, %%r9\n"
329     /* (r10,r8,r9) += n0 */
330     "addq %%r11, %%r10\n"
331     "adcq $0, %%r8\n"
332     "adcq $0, %%r9\n"
333     /* extract m2 */
334     "movq %%r10, %q2\n"
335     "xorq %%r10, %%r10\n"
336     /* (r8,r9,r10) += l3 */
337     "addq 24(%%rsi), %%r8\n"
338     "adcq $0, %%r9\n"
339     "adcq $0, %%r10\n"
340     /* (r8,r9,r10) += n3 * c0 */
341     "movq %8, %%rax\n"
342     "mulq %%r14\n"
343     "addq %%rax, %%r8\n"
344     "adcq %%rdx, %%r9\n"
345     "adcq $0, %%r10\n"
346     /* (r8,r9,r10) += n2 * c1 */
347     "movq %9, %%rax\n"
348     "mulq %%r13\n"
349     "addq %%rax, %%r8\n"
350     "adcq %%rdx, %%r9\n"
351     "adcq $0, %%r10\n"
352     /* (r8,r9,r10) += n1 */
353     "addq %%r12, %%r8\n"
354     "adcq $0, %%r9\n"
355     "adcq $0, %%r10\n"
356     /* extract m3 */
357     "movq %%r8, %q3\n"
358     "xorq %%r8, %%r8\n"
359     /* (r9,r10,r8) += n3 * c1 */
360     "movq %9, %%rax\n"
361     "mulq %%r14\n"
362     "addq %%rax, %%r9\n"
363     "adcq %%rdx, %%r10\n"
364     "adcq $0, %%r8\n"
365     /* (r9,r10,r8) += n2 */
366     "addq %%r13, %%r9\n"
367     "adcq $0, %%r10\n"
368     "adcq $0, %%r8\n"
369     /* extract m4 */
370     "movq %%r9, %q4\n"
371     /* (r10,r8) += n3 */
372     "addq %%r14, %%r10\n"
373     "adcq $0, %%r8\n"
374     /* extract m5 */
375     "movq %%r10, %q5\n"
376     /* extract m6 */
377     "movq %%r8, %q6\n"
378     : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
379     : "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
380     : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
381
382     /* Reduce 385 bits into 258. */
383     __asm__ __volatile__(
384     /* Preload */
385     "movq %q9, %%r11\n"
386     "movq %q10, %%r12\n"
387     "movq %q11, %%r13\n"
388     /* Initialize (r8,r9,r10) */
389     "movq %q5, %%r8\n"
390     "xorq %%r9, %%r9\n"
391     "xorq %%r10, %%r10\n"
392     /* (r8,r9) += m4 * c0 */
393     "movq %12, %%rax\n"
394     "mulq %%r11\n"
395     "addq %%rax, %%r8\n"
396     "adcq %%rdx, %%r9\n"
397     /* extract p0 */
398     "movq %%r8, %q0\n"
399     "xorq %%r8, %%r8\n"
400     /* (r9,r10) += m1 */
401     "addq %q6, %%r9\n"
402     "adcq $0, %%r10\n"
403     /* (r9,r10,r8) += m5 * c0 */
404     "movq %12, %%rax\n"
405     "mulq %%r12\n"
406     "addq %%rax, %%r9\n"
407     "adcq %%rdx, %%r10\n"
408     "adcq $0, %%r8\n"
409     /* (r9,r10,r8) += m4 * c1 */
410     "movq %13, %%rax\n"
411     "mulq %%r11\n"
412     "addq %%rax, %%r9\n"
413     "adcq %%rdx, %%r10\n"
414     "adcq $0, %%r8\n"
415     /* extract p1 */
416     "movq %%r9, %q1\n"
417     "xorq %%r9, %%r9\n"
418     /* (r10,r8,r9) += m2 */
419     "addq %q7, %%r10\n"
420     "adcq $0, %%r8\n"
421     "adcq $0, %%r9\n"
422     /* (r10,r8,r9) += m6 * c0 */
423     "movq %12, %%rax\n"
424     "mulq %%r13\n"
425     "addq %%rax, %%r10\n"
426     "adcq %%rdx, %%r8\n"
427     "adcq $0, %%r9\n"
428     /* (r10,r8,r9) += m5 * c1 */
429     "movq %13, %%rax\n"
430     "mulq %%r12\n"
431     "addq %%rax, %%r10\n"
432     "adcq %%rdx, %%r8\n"
433     "adcq $0, %%r9\n"
434     /* (r10,r8,r9) += m4 */
435     "addq %%r11, %%r10\n"
436     "adcq $0, %%r8\n"
437     "adcq $0, %%r9\n"
438     /* extract p2 */
439     "movq %%r10, %q2\n"
440     /* (r8,r9) += m3 */
441     "addq %q8, %%r8\n"
442     "adcq $0, %%r9\n"
443     /* (r8,r9) += m6 * c1 */
444     "movq %13, %%rax\n"
445     "mulq %%r13\n"
446     "addq %%rax, %%r8\n"
447     "adcq %%rdx, %%r9\n"
448     /* (r8,r9) += m5 */
449     "addq %%r12, %%r8\n"
450     "adcq $0, %%r9\n"
451     /* extract p3 */
452     "movq %%r8, %q3\n"
453     /* (r9) += m6 */
454     "addq %%r13, %%r9\n"
455     /* extract p4 */
456     "movq %%r9, %q4\n"
457     : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
458     : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
459     : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
460
461     /* Reduce 258 bits into 256. */
462     __asm__ __volatile__(
463     /* Preload */
464     "movq %q5, %%r10\n"
465     /* (rax,rdx) = p4 * c0 */
466     "movq %7, %%rax\n"
467     "mulq %%r10\n"
468     /* (rax,rdx) += p0 */
469     "addq %q1, %%rax\n"
470     "adcq $0, %%rdx\n"
471     /* extract r0 */
472     "movq %%rax, 0(%q6)\n"
473     /* Move to (r8,r9) */
474     "movq %%rdx, %%r8\n"
475     "xorq %%r9, %%r9\n"
476     /* (r8,r9) += p1 */
477     "addq %q2, %%r8\n"
478     "adcq $0, %%r9\n"
479     /* (r8,r9) += p4 * c1 */
480     "movq %8, %%rax\n"
481     "mulq %%r10\n"
482     "addq %%rax, %%r8\n"
483     "adcq %%rdx, %%r9\n"
484     /* Extract r1 */
485     "movq %%r8, 8(%q6)\n"
486     "xorq %%r8, %%r8\n"
487     /* (r9,r8) += p4 */
488     "addq %%r10, %%r9\n"
489     "adcq $0, %%r8\n"
490     /* (r9,r8) += p2 */
491     "addq %q3, %%r9\n"
492     "adcq $0, %%r8\n"
493     /* Extract r2 */
494     "movq %%r9, 16(%q6)\n"
495     "xorq %%r9, %%r9\n"
496     /* (r8,r9) += p3 */
497     "addq %q4, %%r8\n"
498     "adcq $0, %%r9\n"
499     /* Extract r3 */
500     "movq %%r8, 24(%q6)\n"
501     /* Extract c */
502     "movq %%r9, %q0\n"
503     : "=g"(c)
504     : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
505     : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
506 #else
507     uint128_t c;
508     uint64_t c0, c1, c2;
509     uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
510     uint64_t m0, m1, m2, m3, m4, m5;
511     uint32_t m6;
512     uint64_t p0, p1, p2, p3;
513     uint32_t p4;
514
515     /* Reduce 512 bits into 385. */
516     /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
517     c0 = l[0]; c1 = 0; c2 = 0;
518     muladd_fast(n0, SECP256K1_N_C_0);
519     extract_fast(m0);
520     sumadd_fast(l[1]);
521     muladd(n1, SECP256K1_N_C_0);
522     muladd(n0, SECP256K1_N_C_1);
523     extract(m1);
524     sumadd(l[2]);
525     muladd(n2, SECP256K1_N_C_0);
526     muladd(n1, SECP256K1_N_C_1);
527     sumadd(n0);
528     extract(m2);
529     sumadd(l[3]);
530     muladd(n3, SECP256K1_N_C_0);
531     muladd(n2, SECP256K1_N_C_1);
532     sumadd(n1);
533     extract(m3);
534     muladd(n3, SECP256K1_N_C_1);
535     sumadd(n2);
536     extract(m4);
537     sumadd_fast(n3);
538     extract_fast(m5);
539     VERIFY_CHECK(c0 <= 1);
540     m6 = c0;
541
542     /* Reduce 385 bits into 258. */
543     /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
544     c0 = m0; c1 = 0; c2 = 0;
545     muladd_fast(m4, SECP256K1_N_C_0);
546     extract_fast(p0);
547     sumadd_fast(m1);
548     muladd(m5, SECP256K1_N_C_0);
549     muladd(m4, SECP256K1_N_C_1);
550     extract(p1);
551     sumadd(m2);
552     muladd(m6, SECP256K1_N_C_0);
553     muladd(m5, SECP256K1_N_C_1);
554     sumadd(m4);
555     extract(p2);
556     sumadd_fast(m3);
557     muladd_fast(m6, SECP256K1_N_C_1);
558     sumadd_fast(m5);
559     extract_fast(p3);
560     p4 = c0 + m6;
561     VERIFY_CHECK(p4 <= 2);
562
563     /* Reduce 258 bits into 256. */
564     /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
565     c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
566     r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
567     c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
568     r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
569     c += p2 + (uint128_t)p4;
570     r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
571     c += p3;
572     r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
573 #endif
574
575     /* Final reduction of r. */
576     secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
577 }
578
579 static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
580 #ifdef USE_ASM_X86_64
581     const uint64_t *pb = b->d;
582     __asm__ __volatile__(
583     /* Preload */
584     "movq 0(%%rdi), %%r15\n"
585     "movq 8(%%rdi), %%rbx\n"
586     "movq 16(%%rdi), %%rcx\n"
587     "movq 0(%%rdx), %%r11\n"
588     "movq 8(%%rdx), %%r12\n"
589     "movq 16(%%rdx), %%r13\n"
590     "movq 24(%%rdx), %%r14\n"
591     /* (rax,rdx) = a0 * b0 */
592     "movq %%r15, %%rax\n"
593     "mulq %%r11\n"
594     /* Extract l0 */
595     "movq %%rax, 0(%%rsi)\n"
596     /* (r8,r9,r10) = (rdx) */
597     "movq %%rdx, %%r8\n"
598     "xorq %%r9, %%r9\n"
599     "xorq %%r10, %%r10\n"
600     /* (r8,r9,r10) += a0 * b1 */
601     "movq %%r15, %%rax\n"
602     "mulq %%r12\n"
603     "addq %%rax, %%r8\n"
604     "adcq %%rdx, %%r9\n"
605     "adcq $0, %%r10\n"
606     /* (r8,r9,r10) += a1 * b0 */
607     "movq %%rbx, %%rax\n"
608     "mulq %%r11\n"
609     "addq %%rax, %%r8\n"
610     "adcq %%rdx, %%r9\n"
611     "adcq $0, %%r10\n"
612     /* Extract l1 */
613     "movq %%r8, 8(%%rsi)\n"
614     "xorq %%r8, %%r8\n"
615     /* (r9,r10,r8) += a0 * b2 */
616     "movq %%r15, %%rax\n"
617     "mulq %%r13\n"
618     "addq %%rax, %%r9\n"
619     "adcq %%rdx, %%r10\n"
620     "adcq $0, %%r8\n"
621     /* (r9,r10,r8) += a1 * b1 */
622     "movq %%rbx, %%rax\n"
623     "mulq %%r12\n"
624     "addq %%rax, %%r9\n"
625     "adcq %%rdx, %%r10\n"
626     "adcq $0, %%r8\n"
627     /* (r9,r10,r8) += a2 * b0 */
628     "movq %%rcx, %%rax\n"
629     "mulq %%r11\n"
630     "addq %%rax, %%r9\n"
631     "adcq %%rdx, %%r10\n"
632     "adcq $0, %%r8\n"
633     /* Extract l2 */
634     "movq %%r9, 16(%%rsi)\n"
635     "xorq %%r9, %%r9\n"
636     /* (r10,r8,r9) += a0 * b3 */
637     "movq %%r15, %%rax\n"
638     "mulq %%r14\n"
639     "addq %%rax, %%r10\n"
640     "adcq %%rdx, %%r8\n"
641     "adcq $0, %%r9\n"
642     /* Preload a3 */
643     "movq 24(%%rdi), %%r15\n"
644     /* (r10,r8,r9) += a1 * b2 */
645     "movq %%rbx, %%rax\n"
646     "mulq %%r13\n"
647     "addq %%rax, %%r10\n"
648     "adcq %%rdx, %%r8\n"
649     "adcq $0, %%r9\n"
650     /* (r10,r8,r9) += a2 * b1 */
651     "movq %%rcx, %%rax\n"
652     "mulq %%r12\n"
653     "addq %%rax, %%r10\n"
654     "adcq %%rdx, %%r8\n"
655     "adcq $0, %%r9\n"
656     /* (r10,r8,r9) += a3 * b0 */
657     "movq %%r15, %%rax\n"
658     "mulq %%r11\n"
659     "addq %%rax, %%r10\n"
660     "adcq %%rdx, %%r8\n"
661     "adcq $0, %%r9\n"
662     /* Extract l3 */
663     "movq %%r10, 24(%%rsi)\n"
664     "xorq %%r10, %%r10\n"
665     /* (r8,r9,r10) += a1 * b3 */
666     "movq %%rbx, %%rax\n"
667     "mulq %%r14\n"
668     "addq %%rax, %%r8\n"
669     "adcq %%rdx, %%r9\n"
670     "adcq $0, %%r10\n"
671     /* (r8,r9,r10) += a2 * b2 */
672     "movq %%rcx, %%rax\n"
673     "mulq %%r13\n"
674     "addq %%rax, %%r8\n"
675     "adcq %%rdx, %%r9\n"
676     "adcq $0, %%r10\n"
677     /* (r8,r9,r10) += a3 * b1 */
678     "movq %%r15, %%rax\n"
679     "mulq %%r12\n"
680     "addq %%rax, %%r8\n"
681     "adcq %%rdx, %%r9\n"
682     "adcq $0, %%r10\n"
683     /* Extract l4 */
684     "movq %%r8, 32(%%rsi)\n"
685     "xorq %%r8, %%r8\n"
686     /* (r9,r10,r8) += a2 * b3 */
687     "movq %%rcx, %%rax\n"
688     "mulq %%r14\n"
689     "addq %%rax, %%r9\n"
690     "adcq %%rdx, %%r10\n"
691     "adcq $0, %%r8\n"
692     /* (r9,r10,r8) += a3 * b2 */
693     "movq %%r15, %%rax\n"
694     "mulq %%r13\n"
695     "addq %%rax, %%r9\n"
696     "adcq %%rdx, %%r10\n"
697     "adcq $0, %%r8\n"
698     /* Extract l5 */
699     "movq %%r9, 40(%%rsi)\n"
700     /* (r10,r8) += a3 * b3 */
701     "movq %%r15, %%rax\n"
702     "mulq %%r14\n"
703     "addq %%rax, %%r10\n"
704     "adcq %%rdx, %%r8\n"
705     /* Extract l6 */
706     "movq %%r10, 48(%%rsi)\n"
707     /* Extract l7 */
708     "movq %%r8, 56(%%rsi)\n"
709     : "+d"(pb)
710     : "S"(l), "D"(a->d)
711     : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
712 #else
713     /* 160 bit accumulator. */
714     uint64_t c0 = 0, c1 = 0;
715     uint32_t c2 = 0;
716
717     /* l[0..7] = a[0..3] * b[0..3]. */
718     muladd_fast(a->d[0], b->d[0]);
719     extract_fast(l[0]);
720     muladd(a->d[0], b->d[1]);
721     muladd(a->d[1], b->d[0]);
722     extract(l[1]);
723     muladd(a->d[0], b->d[2]);
724     muladd(a->d[1], b->d[1]);
725     muladd(a->d[2], b->d[0]);
726     extract(l[2]);
727     muladd(a->d[0], b->d[3]);
728     muladd(a->d[1], b->d[2]);
729     muladd(a->d[2], b->d[1]);
730     muladd(a->d[3], b->d[0]);
731     extract(l[3]);
732     muladd(a->d[1], b->d[3]);
733     muladd(a->d[2], b->d[2]);
734     muladd(a->d[3], b->d[1]);
735     extract(l[4]);
736     muladd(a->d[2], b->d[3]);
737     muladd(a->d[3], b->d[2]);
738     extract(l[5]);
739     muladd_fast(a->d[3], b->d[3]);
740     extract_fast(l[6]);
741     VERIFY_CHECK(c1 == 0);
742     l[7] = c0;
743 #endif
744 }
745
746 static void secp256k1_scalar_sqr_512(uint64_t l[8], const secp256k1_scalar *a) {
747 #ifdef USE_ASM_X86_64
748     __asm__ __volatile__(
749     /* Preload */
750     "movq 0(%%rdi), %%r11\n"
751     "movq 8(%%rdi), %%r12\n"
752     "movq 16(%%rdi), %%r13\n"
753     "movq 24(%%rdi), %%r14\n"
754     /* (rax,rdx) = a0 * a0 */
755     "movq %%r11, %%rax\n"
756     "mulq %%r11\n"
757     /* Extract l0 */
758     "movq %%rax, 0(%%rsi)\n"
759     /* (r8,r9,r10) = (rdx,0) */
760     "movq %%rdx, %%r8\n"
761     "xorq %%r9, %%r9\n"
762     "xorq %%r10, %%r10\n"
763     /* (r8,r9,r10) += 2 * a0 * a1 */
764     "movq %%r11, %%rax\n"
765     "mulq %%r12\n"
766     "addq %%rax, %%r8\n"
767     "adcq %%rdx, %%r9\n"
768     "adcq $0, %%r10\n"
769     "addq %%rax, %%r8\n"
770     "adcq %%rdx, %%r9\n"
771     "adcq $0, %%r10\n"
772     /* Extract l1 */
773     "movq %%r8, 8(%%rsi)\n"
774     "xorq %%r8, %%r8\n"
775     /* (r9,r10,r8) += 2 * a0 * a2 */
776     "movq %%r11, %%rax\n"
777     "mulq %%r13\n"
778     "addq %%rax, %%r9\n"
779     "adcq %%rdx, %%r10\n"
780     "adcq $0, %%r8\n"
781     "addq %%rax, %%r9\n"
782     "adcq %%rdx, %%r10\n"
783     "adcq $0, %%r8\n"
784     /* (r9,r10,r8) += a1 * a1 */
785     "movq %%r12, %%rax\n"
786     "mulq %%r12\n"
787     "addq %%rax, %%r9\n"
788     "adcq %%rdx, %%r10\n"
789     "adcq $0, %%r8\n"
790     /* Extract l2 */
791     "movq %%r9, 16(%%rsi)\n"
792     "xorq %%r9, %%r9\n"
793     /* (r10,r8,r9) += 2 * a0 * a3 */
794     "movq %%r11, %%rax\n"
795     "mulq %%r14\n"
796     "addq %%rax, %%r10\n"
797     "adcq %%rdx, %%r8\n"
798     "adcq $0, %%r9\n"
799     "addq %%rax, %%r10\n"
800     "adcq %%rdx, %%r8\n"
801     "adcq $0, %%r9\n"
802     /* (r10,r8,r9) += 2 * a1 * a2 */
803     "movq %%r12, %%rax\n"
804     "mulq %%r13\n"
805     "addq %%rax, %%r10\n"
806     "adcq %%rdx, %%r8\n"
807     "adcq $0, %%r9\n"
808     "addq %%rax, %%r10\n"
809     "adcq %%rdx, %%r8\n"
810     "adcq $0, %%r9\n"
811     /* Extract l3 */
812     "movq %%r10, 24(%%rsi)\n"
813     "xorq %%r10, %%r10\n"
814     /* (r8,r9,r10) += 2 * a1 * a3 */
815     "movq %%r12, %%rax\n"
816     "mulq %%r14\n"
817     "addq %%rax, %%r8\n"
818     "adcq %%rdx, %%r9\n"
819     "adcq $0, %%r10\n"
820     "addq %%rax, %%r8\n"
821     "adcq %%rdx, %%r9\n"
822     "adcq $0, %%r10\n"
823     /* (r8,r9,r10) += a2 * a2 */
824     "movq %%r13, %%rax\n"
825     "mulq %%r13\n"
826     "addq %%rax, %%r8\n"
827     "adcq %%rdx, %%r9\n"
828     "adcq $0, %%r10\n"
829     /* Extract l4 */
830     "movq %%r8, 32(%%rsi)\n"
831     "xorq %%r8, %%r8\n"
832     /* (r9,r10,r8) += 2 * a2 * a3 */
833     "movq %%r13, %%rax\n"
834     "mulq %%r14\n"
835     "addq %%rax, %%r9\n"
836     "adcq %%rdx, %%r10\n"
837     "adcq $0, %%r8\n"
838     "addq %%rax, %%r9\n"
839     "adcq %%rdx, %%r10\n"
840     "adcq $0, %%r8\n"
841     /* Extract l5 */
842     "movq %%r9, 40(%%rsi)\n"
843     /* (r10,r8) += a3 * a3 */
844     "movq %%r14, %%rax\n"
845     "mulq %%r14\n"
846     "addq %%rax, %%r10\n"
847     "adcq %%rdx, %%r8\n"
848     /* Extract l6 */
849     "movq %%r10, 48(%%rsi)\n"
850     /* Extract l7 */
851     "movq %%r8, 56(%%rsi)\n"
852     :
853     : "S"(l), "D"(a->d)
854     : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc", "memory");
855 #else
856     /* 160 bit accumulator. */
857     uint64_t c0 = 0, c1 = 0;
858     uint32_t c2 = 0;
859
860     /* l[0..7] = a[0..3] * b[0..3]. */
861     muladd_fast(a->d[0], a->d[0]);
862     extract_fast(l[0]);
863     muladd2(a->d[0], a->d[1]);
864     extract(l[1]);
865     muladd2(a->d[0], a->d[2]);
866     muladd(a->d[1], a->d[1]);
867     extract(l[2]);
868     muladd2(a->d[0], a->d[3]);
869     muladd2(a->d[1], a->d[2]);
870     extract(l[3]);
871     muladd2(a->d[1], a->d[3]);
872     muladd(a->d[2], a->d[2]);
873     extract(l[4]);
874     muladd2(a->d[2], a->d[3]);
875     extract(l[5]);
876     muladd_fast(a->d[3], a->d[3]);
877     extract_fast(l[6]);
878     VERIFY_CHECK(c1 == 0);
879     l[7] = c0;
880 #endif
881 }
882
883 #undef sumadd
884 #undef sumadd_fast
885 #undef muladd
886 #undef muladd_fast
887 #undef muladd2
888 #undef extract
889 #undef extract_fast
890
891 static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
892     uint64_t l[8];
893     secp256k1_scalar_mul_512(l, a, b);
894     secp256k1_scalar_reduce_512(r, l);
895 }
896
897 static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
898     int ret;
899     VERIFY_CHECK(n > 0);
900     VERIFY_CHECK(n < 16);
901     ret = r->d[0] & ((1 << n) - 1);
902     r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
903     r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
904     r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
905     r->d[3] = (r->d[3] >> n);
906     return ret;
907 }
908
909 static void secp256k1_scalar_sqr(secp256k1_scalar *r, const secp256k1_scalar *a) {
910     uint64_t l[8];
911     secp256k1_scalar_sqr_512(l, a);
912     secp256k1_scalar_reduce_512(r, l);
913 }
914
915 #ifdef USE_ENDOMORPHISM
916 static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
917     r1->d[0] = k->d[0];
918     r1->d[1] = k->d[1];
919     r1->d[2] = 0;
920     r1->d[3] = 0;
921     r2->d[0] = k->d[2];
922     r2->d[1] = k->d[3];
923     r2->d[2] = 0;
924     r2->d[3] = 0;
925 }
926 #endif
927
928 SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
929     return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
930 }
931
932 SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
933     uint64_t l[8];
934     unsigned int shiftlimbs;
935     unsigned int shiftlow;
936     unsigned int shifthigh;
937     VERIFY_CHECK(shift >= 256);
938     secp256k1_scalar_mul_512(l, a, b);
939     shiftlimbs = shift >> 6;
940     shiftlow = shift & 0x3F;
941     shifthigh = 64 - shiftlow;
942     r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
943     r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
944     r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
945     r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
946     secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
947 }
948
949 static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
950     uint64_t mask0, mask1;
951     VG_CHECK_VERIFY(r->d, sizeof(r->d));
952     mask0 = flag + ~((uint64_t)0);
953     mask1 = ~mask0;
954     r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
955     r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
956     r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
957     r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
958 }
959
960 #endif /* SECP256K1_SCALAR_REPR_IMPL_H */
This page took 0.078535 seconds and 4 git commands to generate.