1 /***********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
5 ***********************************************************************/
7 #ifndef SECP256K1_SCALAR_REPR_IMPL_H
8 #define SECP256K1_SCALAR_REPR_IMPL_H
10 #include "modinv64_impl.h"
12 /* Limbs of the secp256k1 order. */
13 #define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
14 #define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
15 #define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
16 #define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
18 /* Limbs of 2^256 minus the secp256k1 order. */
19 #define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
20 #define SECP256K1_N_C_1 (~SECP256K1_N_1)
21 #define SECP256K1_N_C_2 (1)
23 /* Limbs of half the secp256k1 order. */
24 #define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
25 #define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
26 #define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
27 #define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)
29 SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar *r) {
36 SECP256K1_INLINE static void secp256k1_scalar_set_int(secp256k1_scalar *r, unsigned int v) {
43 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
44 VERIFY_CHECK((offset + count - 1) >> 6 == offset >> 6);
45 return (a->d[offset >> 6] >> (offset & 0x3F)) & ((((uint64_t)1) << count) - 1);
48 SECP256K1_INLINE static unsigned int secp256k1_scalar_get_bits_var(const secp256k1_scalar *a, unsigned int offset, unsigned int count) {
49 VERIFY_CHECK(count < 32);
50 VERIFY_CHECK(offset + count <= 256);
51 if ((offset + count - 1) >> 6 == offset >> 6) {
52 return secp256k1_scalar_get_bits(a, offset, count);
54 VERIFY_CHECK((offset >> 6) + 1 < 4);
55 return ((a->d[offset >> 6] >> (offset & 0x3F)) | (a->d[(offset >> 6) + 1] << (64 - (offset & 0x3F)))) & ((((uint64_t)1) << count) - 1);
59 SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar *a) {
62 no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
63 no |= (a->d[2] < SECP256K1_N_2);
64 yes |= (a->d[2] > SECP256K1_N_2) & ~no;
65 no |= (a->d[1] < SECP256K1_N_1);
66 yes |= (a->d[1] > SECP256K1_N_1) & ~no;
67 yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
71 SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar *r, unsigned int overflow) {
73 VERIFY_CHECK(overflow <= 1);
74 t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
75 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
76 t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
77 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
78 t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
79 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
80 t += (uint64_t)r->d[3];
81 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
85 static int secp256k1_scalar_add(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
87 uint128_t t = (uint128_t)a->d[0] + b->d[0];
88 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
89 t += (uint128_t)a->d[1] + b->d[1];
90 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
91 t += (uint128_t)a->d[2] + b->d[2];
92 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
93 t += (uint128_t)a->d[3] + b->d[3];
94 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
95 overflow = t + secp256k1_scalar_check_overflow(r);
96 VERIFY_CHECK(overflow == 0 || overflow == 1);
97 secp256k1_scalar_reduce(r, overflow);
101 static void secp256k1_scalar_cadd_bit(secp256k1_scalar *r, unsigned int bit, int flag) {
103 VERIFY_CHECK(bit < 256);
104 bit += ((uint32_t) flag - 1) & 0x100; /* forcing (bit >> 6) > 3 makes this a noop */
105 t = (uint128_t)r->d[0] + (((uint64_t)((bit >> 6) == 0)) << (bit & 0x3F));
106 r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
107 t += (uint128_t)r->d[1] + (((uint64_t)((bit >> 6) == 1)) << (bit & 0x3F));
108 r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
109 t += (uint128_t)r->d[2] + (((uint64_t)((bit >> 6) == 2)) << (bit & 0x3F));
110 r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
111 t += (uint128_t)r->d[3] + (((uint64_t)((bit >> 6) == 3)) << (bit & 0x3F));
112 r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
114 VERIFY_CHECK((t >> 64) == 0);
115 VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
119 static void secp256k1_scalar_set_b32(secp256k1_scalar *r, const unsigned char *b32, int *overflow) {
121 r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
122 r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
123 r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
124 r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
125 over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
131 static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar* a) {
132 bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
133 bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
134 bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
135 bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
138 SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar *a) {
139 return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
142 static void secp256k1_scalar_negate(secp256k1_scalar *r, const secp256k1_scalar *a) {
143 uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
144 uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
145 r->d[0] = t & nonzero; t >>= 64;
146 t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
147 r->d[1] = t & nonzero; t >>= 64;
148 t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
149 r->d[2] = t & nonzero; t >>= 64;
150 t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
151 r->d[3] = t & nonzero;
154 SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar *a) {
155 return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
158 static int secp256k1_scalar_is_high(const secp256k1_scalar *a) {
161 no |= (a->d[3] < SECP256K1_N_H_3);
162 yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
163 no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
164 no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
165 yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
166 yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
170 static int secp256k1_scalar_cond_negate(secp256k1_scalar *r, int flag) {
171 /* If we are flag = 0, mask = 00...00 and this is a no-op;
172 * if we are flag = 1, mask = 11...11 and this is identical to secp256k1_scalar_negate */
173 uint64_t mask = !flag - 1;
174 uint64_t nonzero = (secp256k1_scalar_is_zero(r) != 0) - 1;
175 uint128_t t = (uint128_t)(r->d[0] ^ mask) + ((SECP256K1_N_0 + 1) & mask);
176 r->d[0] = t & nonzero; t >>= 64;
177 t += (uint128_t)(r->d[1] ^ mask) + (SECP256K1_N_1 & mask);
178 r->d[1] = t & nonzero; t >>= 64;
179 t += (uint128_t)(r->d[2] ^ mask) + (SECP256K1_N_2 & mask);
180 r->d[2] = t & nonzero; t >>= 64;
181 t += (uint128_t)(r->d[3] ^ mask) + (SECP256K1_N_3 & mask);
182 r->d[3] = t & nonzero;
183 return 2 * (mask == 0) - 1;
186 /* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */
188 /** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
189 #define muladd(a,b) { \
192 uint128_t t = (uint128_t)a * b; \
193 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
196 c0 += tl; /* overflow is handled on the next line */ \
197 th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
198 c1 += th; /* overflow is handled on the next line */ \
199 c2 += (c1 < th); /* never overflows by contract (verified in the next line) */ \
200 VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
203 /** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
204 #define muladd_fast(a,b) { \
207 uint128_t t = (uint128_t)a * b; \
208 th = t >> 64; /* at most 0xFFFFFFFFFFFFFFFE */ \
211 c0 += tl; /* overflow is handled on the next line */ \
212 th += (c0 < tl); /* at most 0xFFFFFFFFFFFFFFFF */ \
213 c1 += th; /* never overflows by contract (verified in the next line) */ \
214 VERIFY_CHECK(c1 >= th); \
217 /** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
218 #define sumadd(a) { \
220 c0 += (a); /* overflow is handled on the next line */ \
222 c1 += over; /* overflow is handled on the next line */ \
223 c2 += (c1 < over); /* never overflows by contract */ \
226 /** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
227 #define sumadd_fast(a) { \
228 c0 += (a); /* overflow is handled on the next line */ \
229 c1 += (c0 < (a)); /* never overflows by contract (verified the next line) */ \
230 VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
231 VERIFY_CHECK(c2 == 0); \
234 /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
235 #define extract(n) { \
242 /** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
243 #define extract_fast(n) { \
247 VERIFY_CHECK(c2 == 0); \
250 static void secp256k1_scalar_reduce_512(secp256k1_scalar *r, const uint64_t *l) {
251 #ifdef USE_ASM_X86_64
252 /* Reduce 512 bits into 385. */
253 uint64_t m0, m1, m2, m3, m4, m5, m6;
254 uint64_t p0, p1, p2, p3, p4;
257 __asm__ __volatile__(
259 "movq 32(%%rsi), %%r11\n"
260 "movq 40(%%rsi), %%r12\n"
261 "movq 48(%%rsi), %%r13\n"
262 "movq 56(%%rsi), %%r14\n"
263 /* Initialize r8,r9,r10 */
264 "movq 0(%%rsi), %%r8\n"
266 "xorq %%r10, %%r10\n"
267 /* (r8,r9) += n0 * c0 */
276 "addq 8(%%rsi), %%r9\n"
278 /* (r9,r10,r8) += n1 * c0 */
282 "adcq %%rdx, %%r10\n"
284 /* (r9,r10,r8) += n0 * c1 */
288 "adcq %%rdx, %%r10\n"
293 /* (r10,r8,r9) += l2 */
294 "addq 16(%%rsi), %%r10\n"
297 /* (r10,r8,r9) += n2 * c0 */
300 "addq %%rax, %%r10\n"
303 /* (r10,r8,r9) += n1 * c1 */
306 "addq %%rax, %%r10\n"
309 /* (r10,r8,r9) += n0 */
310 "addq %%r11, %%r10\n"
315 "xorq %%r10, %%r10\n"
316 /* (r8,r9,r10) += l3 */
317 "addq 24(%%rsi), %%r8\n"
320 /* (r8,r9,r10) += n3 * c0 */
326 /* (r8,r9,r10) += n2 * c1 */
332 /* (r8,r9,r10) += n1 */
339 /* (r9,r10,r8) += n3 * c1 */
343 "adcq %%rdx, %%r10\n"
345 /* (r9,r10,r8) += n2 */
352 "addq %%r14, %%r10\n"
358 : "=g"(m0), "=g"(m1), "=g"(m2), "=g"(m3), "=g"(m4), "=g"(m5), "=g"(m6)
359 : "S"(l), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
360 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "cc");
362 /* Reduce 385 bits into 258. */
363 __asm__ __volatile__(
368 /* Initialize (r8,r9,r10) */
371 "xorq %%r10, %%r10\n"
372 /* (r8,r9) += m4 * c0 */
383 /* (r9,r10,r8) += m5 * c0 */
387 "adcq %%rdx, %%r10\n"
389 /* (r9,r10,r8) += m4 * c1 */
393 "adcq %%rdx, %%r10\n"
398 /* (r10,r8,r9) += m2 */
402 /* (r10,r8,r9) += m6 * c0 */
405 "addq %%rax, %%r10\n"
408 /* (r10,r8,r9) += m5 * c1 */
411 "addq %%rax, %%r10\n"
414 /* (r10,r8,r9) += m4 */
415 "addq %%r11, %%r10\n"
423 /* (r8,r9) += m6 * c1 */
437 : "=&g"(p0), "=&g"(p1), "=&g"(p2), "=g"(p3), "=g"(p4)
438 : "g"(m0), "g"(m1), "g"(m2), "g"(m3), "g"(m4), "g"(m5), "g"(m6), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
439 : "rax", "rdx", "r8", "r9", "r10", "r11", "r12", "r13", "cc");
441 /* Reduce 258 bits into 256. */
442 __asm__ __volatile__(
445 /* (rax,rdx) = p4 * c0 */
448 /* (rax,rdx) += p0 */
452 "movq %%rax, 0(%q6)\n"
453 /* Move to (r8,r9) */
459 /* (r8,r9) += p4 * c1 */
465 "movq %%r8, 8(%q6)\n"
474 "movq %%r9, 16(%q6)\n"
480 "movq %%r8, 24(%q6)\n"
484 : "g"(p0), "g"(p1), "g"(p2), "g"(p3), "g"(p4), "D"(r), "i"(SECP256K1_N_C_0), "i"(SECP256K1_N_C_1)
485 : "rax", "rdx", "r8", "r9", "r10", "cc", "memory");
489 uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];
490 uint64_t m0, m1, m2, m3, m4, m5;
492 uint64_t p0, p1, p2, p3;
495 /* Reduce 512 bits into 385. */
496 /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
497 c0 = l[0]; c1 = 0; c2 = 0;
498 muladd_fast(n0, SECP256K1_N_C_0);
501 muladd(n1, SECP256K1_N_C_0);
502 muladd(n0, SECP256K1_N_C_1);
505 muladd(n2, SECP256K1_N_C_0);
506 muladd(n1, SECP256K1_N_C_1);
510 muladd(n3, SECP256K1_N_C_0);
511 muladd(n2, SECP256K1_N_C_1);
514 muladd(n3, SECP256K1_N_C_1);
519 VERIFY_CHECK(c0 <= 1);
522 /* Reduce 385 bits into 258. */
523 /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
524 c0 = m0; c1 = 0; c2 = 0;
525 muladd_fast(m4, SECP256K1_N_C_0);
528 muladd(m5, SECP256K1_N_C_0);
529 muladd(m4, SECP256K1_N_C_1);
532 muladd(m6, SECP256K1_N_C_0);
533 muladd(m5, SECP256K1_N_C_1);
537 muladd_fast(m6, SECP256K1_N_C_1);
541 VERIFY_CHECK(p4 <= 2);
543 /* Reduce 258 bits into 256. */
544 /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
545 c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
546 r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
547 c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
548 r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
549 c += p2 + (uint128_t)p4;
550 r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
552 r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
555 /* Final reduction of r. */
556 secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
559 static void secp256k1_scalar_mul_512(uint64_t l[8], const secp256k1_scalar *a, const secp256k1_scalar *b) {
560 #ifdef USE_ASM_X86_64
561 const uint64_t *pb = b->d;
562 __asm__ __volatile__(
564 "movq 0(%%rdi), %%r15\n"
565 "movq 8(%%rdi), %%rbx\n"
566 "movq 16(%%rdi), %%rcx\n"
567 "movq 0(%%rdx), %%r11\n"
568 "movq 8(%%rdx), %%r12\n"
569 "movq 16(%%rdx), %%r13\n"
570 "movq 24(%%rdx), %%r14\n"
571 /* (rax,rdx) = a0 * b0 */
572 "movq %%r15, %%rax\n"
575 "movq %%rax, 0(%%rsi)\n"
576 /* (r8,r9,r10) = (rdx) */
579 "xorq %%r10, %%r10\n"
580 /* (r8,r9,r10) += a0 * b1 */
581 "movq %%r15, %%rax\n"
586 /* (r8,r9,r10) += a1 * b0 */
587 "movq %%rbx, %%rax\n"
593 "movq %%r8, 8(%%rsi)\n"
595 /* (r9,r10,r8) += a0 * b2 */
596 "movq %%r15, %%rax\n"
599 "adcq %%rdx, %%r10\n"
601 /* (r9,r10,r8) += a1 * b1 */
602 "movq %%rbx, %%rax\n"
605 "adcq %%rdx, %%r10\n"
607 /* (r9,r10,r8) += a2 * b0 */
608 "movq %%rcx, %%rax\n"
611 "adcq %%rdx, %%r10\n"
614 "movq %%r9, 16(%%rsi)\n"
616 /* (r10,r8,r9) += a0 * b3 */
617 "movq %%r15, %%rax\n"
619 "addq %%rax, %%r10\n"
623 "movq 24(%%rdi), %%r15\n"
624 /* (r10,r8,r9) += a1 * b2 */
625 "movq %%rbx, %%rax\n"
627 "addq %%rax, %%r10\n"
630 /* (r10,r8,r9) += a2 * b1 */
631 "movq %%rcx, %%rax\n"
633 "addq %%rax, %%r10\n"
636 /* (r10,r8,r9) += a3 * b0 */
637 "movq %%r15, %%rax\n"
639 "addq %%rax, %%r10\n"
643 "movq %%r10, 24(%%rsi)\n"
644 "xorq %%r10, %%r10\n"
645 /* (r8,r9,r10) += a1 * b3 */
646 "movq %%rbx, %%rax\n"
651 /* (r8,r9,r10) += a2 * b2 */
652 "movq %%rcx, %%rax\n"
657 /* (r8,r9,r10) += a3 * b1 */
658 "movq %%r15, %%rax\n"
664 "movq %%r8, 32(%%rsi)\n"
666 /* (r9,r10,r8) += a2 * b3 */
667 "movq %%rcx, %%rax\n"
670 "adcq %%rdx, %%r10\n"
672 /* (r9,r10,r8) += a3 * b2 */
673 "movq %%r15, %%rax\n"
676 "adcq %%rdx, %%r10\n"
679 "movq %%r9, 40(%%rsi)\n"
680 /* (r10,r8) += a3 * b3 */
681 "movq %%r15, %%rax\n"
683 "addq %%rax, %%r10\n"
686 "movq %%r10, 48(%%rsi)\n"
688 "movq %%r8, 56(%%rsi)\n"
691 : "rax", "rbx", "rcx", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", "cc", "memory");
693 /* 160 bit accumulator. */
694 uint64_t c0 = 0, c1 = 0;
697 /* l[0..7] = a[0..3] * b[0..3]. */
698 muladd_fast(a->d[0], b->d[0]);
700 muladd(a->d[0], b->d[1]);
701 muladd(a->d[1], b->d[0]);
703 muladd(a->d[0], b->d[2]);
704 muladd(a->d[1], b->d[1]);
705 muladd(a->d[2], b->d[0]);
707 muladd(a->d[0], b->d[3]);
708 muladd(a->d[1], b->d[2]);
709 muladd(a->d[2], b->d[1]);
710 muladd(a->d[3], b->d[0]);
712 muladd(a->d[1], b->d[3]);
713 muladd(a->d[2], b->d[2]);
714 muladd(a->d[3], b->d[1]);
716 muladd(a->d[2], b->d[3]);
717 muladd(a->d[3], b->d[2]);
719 muladd_fast(a->d[3], b->d[3]);
721 VERIFY_CHECK(c1 == 0);
733 static void secp256k1_scalar_mul(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b) {
735 secp256k1_scalar_mul_512(l, a, b);
736 secp256k1_scalar_reduce_512(r, l);
739 static int secp256k1_scalar_shr_int(secp256k1_scalar *r, int n) {
742 VERIFY_CHECK(n < 16);
743 ret = r->d[0] & ((1 << n) - 1);
744 r->d[0] = (r->d[0] >> n) + (r->d[1] << (64 - n));
745 r->d[1] = (r->d[1] >> n) + (r->d[2] << (64 - n));
746 r->d[2] = (r->d[2] >> n) + (r->d[3] << (64 - n));
747 r->d[3] = (r->d[3] >> n);
751 static void secp256k1_scalar_split_128(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *k) {
762 SECP256K1_INLINE static int secp256k1_scalar_eq(const secp256k1_scalar *a, const secp256k1_scalar *b) {
763 return ((a->d[0] ^ b->d[0]) | (a->d[1] ^ b->d[1]) | (a->d[2] ^ b->d[2]) | (a->d[3] ^ b->d[3])) == 0;
766 SECP256K1_INLINE static void secp256k1_scalar_mul_shift_var(secp256k1_scalar *r, const secp256k1_scalar *a, const secp256k1_scalar *b, unsigned int shift) {
768 unsigned int shiftlimbs;
769 unsigned int shiftlow;
770 unsigned int shifthigh;
771 VERIFY_CHECK(shift >= 256);
772 secp256k1_scalar_mul_512(l, a, b);
773 shiftlimbs = shift >> 6;
774 shiftlow = shift & 0x3F;
775 shifthigh = 64 - shiftlow;
776 r->d[0] = shift < 512 ? (l[0 + shiftlimbs] >> shiftlow | (shift < 448 && shiftlow ? (l[1 + shiftlimbs] << shifthigh) : 0)) : 0;
777 r->d[1] = shift < 448 ? (l[1 + shiftlimbs] >> shiftlow | (shift < 384 && shiftlow ? (l[2 + shiftlimbs] << shifthigh) : 0)) : 0;
778 r->d[2] = shift < 384 ? (l[2 + shiftlimbs] >> shiftlow | (shift < 320 && shiftlow ? (l[3 + shiftlimbs] << shifthigh) : 0)) : 0;
779 r->d[3] = shift < 320 ? (l[3 + shiftlimbs] >> shiftlow) : 0;
780 secp256k1_scalar_cadd_bit(r, 0, (l[(shift - 1) >> 6] >> ((shift - 1) & 0x3f)) & 1);
783 static SECP256K1_INLINE void secp256k1_scalar_cmov(secp256k1_scalar *r, const secp256k1_scalar *a, int flag) {
784 uint64_t mask0, mask1;
785 VG_CHECK_VERIFY(r->d, sizeof(r->d));
786 mask0 = flag + ~((uint64_t)0);
788 r->d[0] = (r->d[0] & mask0) | (a->d[0] & mask1);
789 r->d[1] = (r->d[1] & mask0) | (a->d[1] & mask1);
790 r->d[2] = (r->d[2] & mask0) | (a->d[2] & mask1);
791 r->d[3] = (r->d[3] & mask0) | (a->d[3] & mask1);
794 static void secp256k1_scalar_from_signed62(secp256k1_scalar *r, const secp256k1_modinv64_signed62 *a) {
795 const uint64_t a0 = a->v[0], a1 = a->v[1], a2 = a->v[2], a3 = a->v[3], a4 = a->v[4];
797 /* The output from secp256k1_modinv64{_var} should be normalized to range [0,modulus), and
798 * have limbs in [0,2^62). The modulus is < 2^256, so the top limb must be below 2^(256-62*4).
800 VERIFY_CHECK(a0 >> 62 == 0);
801 VERIFY_CHECK(a1 >> 62 == 0);
802 VERIFY_CHECK(a2 >> 62 == 0);
803 VERIFY_CHECK(a3 >> 62 == 0);
804 VERIFY_CHECK(a4 >> 8 == 0);
806 r->d[0] = a0 | a1 << 62;
807 r->d[1] = a1 >> 2 | a2 << 60;
808 r->d[2] = a2 >> 4 | a3 << 58;
809 r->d[3] = a3 >> 6 | a4 << 56;
812 VERIFY_CHECK(secp256k1_scalar_check_overflow(r) == 0);
816 static void secp256k1_scalar_to_signed62(secp256k1_modinv64_signed62 *r, const secp256k1_scalar *a) {
817 const uint64_t M62 = UINT64_MAX >> 2;
818 const uint64_t a0 = a->d[0], a1 = a->d[1], a2 = a->d[2], a3 = a->d[3];
821 VERIFY_CHECK(secp256k1_scalar_check_overflow(a) == 0);
825 r->v[1] = (a0 >> 62 | a1 << 2) & M62;
826 r->v[2] = (a1 >> 60 | a2 << 4) & M62;
827 r->v[3] = (a2 >> 58 | a3 << 6) & M62;
831 static const secp256k1_modinv64_modinfo secp256k1_const_modinfo_scalar = {
832 {{0x3FD25E8CD0364141LL, 0x2ABB739ABD2280EELL, -0x15LL, 0, 256}},
836 static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
837 secp256k1_modinv64_signed62 s;
839 int zero_in = secp256k1_scalar_is_zero(x);
841 secp256k1_scalar_to_signed62(&s, x);
842 secp256k1_modinv64(&s, &secp256k1_const_modinfo_scalar);
843 secp256k1_scalar_from_signed62(r, &s);
846 VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
850 static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
851 secp256k1_modinv64_signed62 s;
853 int zero_in = secp256k1_scalar_is_zero(x);
855 secp256k1_scalar_to_signed62(&s, x);
856 secp256k1_modinv64_var(&s, &secp256k1_const_modinfo_scalar);
857 secp256k1_scalar_from_signed62(r, &s);
860 VERIFY_CHECK(secp256k1_scalar_is_zero(r) == zero_in);
864 SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
865 return !(a->d[0] & 1);
868 #endif /* SECP256K1_SCALAR_REPR_IMPL_H */