]> Git Repo - secp256k1.git/blame - src/group_impl.h
Merge pull request #263
[secp256k1.git] / src / group_impl.h
CommitLineData
71712b27
GM
1/**********************************************************************
2 * Copyright (c) 2013, 2014 Pieter Wuille *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
0a433ea2 6
7a4b7691
PW
7#ifndef _SECP256K1_GROUP_IMPL_H_
8#define _SECP256K1_GROUP_IMPL_H_
9
f11ff5be 10#include <string.h>
607884fc 11
11ab5622
PW
12#include "num.h"
13#include "field.h"
14#include "group.h"
607884fc 15
6efd6e77
GM
16/** Generator for secp256k1, value 'g' defined in
17 * "Standards for Efficient Cryptography" (SEC2) 2.7.1.
18 */
443cd4b8
PW
19static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST(
20 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
21 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
22 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
23 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
24);
4732d260 25
4f9791ab
PD
26static void secp256k1_ge_set_gej_zinv(secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zi) {
27 secp256k1_fe_t zi2;
28 secp256k1_fe_t zi3;
29 secp256k1_fe_sqr(&zi2, zi);
30 secp256k1_fe_mul(&zi3, &zi2, zi);
31 secp256k1_fe_mul(&r->x, &a->x, &zi2);
32 secp256k1_fe_mul(&r->y, &a->y, &zi3);
33 r->infinity = a->infinity;
34}
35
a4a43d75 36static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
f11ff5be 37 r->infinity = 1;
607884fc
PW
38}
39
a4a43d75 40static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
f11ff5be
PW
41 r->infinity = 0;
42 r->x = *x;
43 r->y = *y;
607884fc
PW
44}
45
a4a43d75 46static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
f11ff5be 47 return a->infinity;
607884fc
PW
48}
49
a4a43d75 50static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
39bd94d8 51 *r = *a;
0295f0a3 52 secp256k1_fe_normalize_weak(&r->y);
39bd94d8
PW
53 secp256k1_fe_negate(&r->y, &r->y, 1);
54}
55
a4a43d75 56static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
f735446c 57 secp256k1_fe_t z2, z3;
da55986f
PW
58 r->infinity = a->infinity;
59 secp256k1_fe_inv(&a->z, &a->z);
f735446c
GM
60 secp256k1_fe_sqr(&z2, &a->z);
61 secp256k1_fe_mul(&z3, &a->z, &z2);
da55986f
PW
62 secp256k1_fe_mul(&a->x, &a->x, &z2);
63 secp256k1_fe_mul(&a->y, &a->y, &z3);
64 secp256k1_fe_set_int(&a->z, 1);
65 r->x = a->x;
66 r->y = a->y;
67}
68
a4a43d75 69static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
f735446c 70 secp256k1_fe_t z2, z3;
1136bedb
PW
71 r->infinity = a->infinity;
72 if (a->infinity) {
73 return;
74 }
f11ff5be 75 secp256k1_fe_inv_var(&a->z, &a->z);
f735446c
GM
76 secp256k1_fe_sqr(&z2, &a->z);
77 secp256k1_fe_mul(&z3, &a->z, &z2);
f11ff5be
PW
78 secp256k1_fe_mul(&a->x, &a->x, &z2);
79 secp256k1_fe_mul(&a->y, &a->y, &z3);
80 secp256k1_fe_set_int(&a->z, 1);
f11ff5be
PW
81 r->x = a->x;
82 r->y = a->y;
607884fc
PW
83}
84
3627437d 85static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a) {
f735446c
GM
86 secp256k1_fe_t *az;
87 secp256k1_fe_t *azi;
88 size_t i;
65a14abb 89 size_t count = 0;
c01df1ad 90 az = (secp256k1_fe_t *)checked_malloc(sizeof(secp256k1_fe_t) * len);
f735446c 91 for (i = 0; i < len; i++) {
f16be77f
PD
92 if (!a[i].infinity) {
93 az[count++] = a[i].z;
94 }
95 }
96
c01df1ad 97 azi = (secp256k1_fe_t *)checked_malloc(sizeof(secp256k1_fe_t) * count);
f16be77f 98 secp256k1_fe_inv_all_var(count, azi, az);
f461b769 99 free(az);
f16be77f
PD
100
101 count = 0;
f735446c 102 for (i = 0; i < len; i++) {
f16be77f
PD
103 r[i].infinity = a[i].infinity;
104 if (!a[i].infinity) {
4f9791ab 105 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
f16be77f
PD
106 }
107 }
f461b769 108 free(azi);
f16be77f
PD
109}
110
4f9791ab
PD
111static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) {
112 size_t i = len - 1;
113 secp256k1_fe_t zi;
114
115 if (len < 1)
116 return;
117
118 /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
119 secp256k1_fe_inv(&zi, &a[i].z);
120 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
121
122 /* Work out way backwards, using the z-ratios to scale the x/y values. */
123 while (i > 0) {
124 secp256k1_fe_mul(&zi, &zi, &zr[i]);
125 i--;
126 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
127 }
128}
129
130static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, secp256k1_fe_t *globalz, const secp256k1_gej_t *a, const secp256k1_fe_t *zr) {
131 size_t i = len - 1;
132 secp256k1_fe_t zs;
133
134 if (len < 1)
135 return;
136
137 /* The z of the final point gives us the "global Z" for the table. */
138 r[i].x = a[i].x;
139 r[i].y = a[i].y;
140 *globalz = a[i].z;
141 r[i].infinity = 0;
142 zs = zr[i];
143
144 /* Work our way backwards, using the z-ratios to scale the x/y values. */
145 while (i > 0) {
146 if (i != len - 1) {
147 secp256k1_fe_mul(&zs, &zs, &zr[i]);
148 }
149 i--;
150 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
151 }
152}
153
a4a43d75 154static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
f11ff5be 155 r->infinity = 1;
9338dbf7
PW
156 secp256k1_fe_set_int(&r->x, 0);
157 secp256k1_fe_set_int(&r->y, 0);
158 secp256k1_fe_set_int(&r->z, 0);
607884fc
PW
159}
160
a4a43d75 161static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
f11ff5be
PW
162 r->infinity = 0;
163 r->x = *x;
164 r->y = *y;
165 secp256k1_fe_set_int(&r->z, 1);
607884fc
PW
166}
167
a4a43d75 168static void secp256k1_gej_clear(secp256k1_gej_t *r) {
2f6c8019
GM
169 r->infinity = 0;
170 secp256k1_fe_clear(&r->x);
171 secp256k1_fe_clear(&r->y);
172 secp256k1_fe_clear(&r->z);
173}
174
a4a43d75 175static void secp256k1_ge_clear(secp256k1_ge_t *r) {
2f6c8019
GM
176 r->infinity = 0;
177 secp256k1_fe_clear(&r->x);
178 secp256k1_fe_clear(&r->y);
179}
180
39bd94d8 181static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
f735446c 182 secp256k1_fe_t x2, x3, c;
f11ff5be 183 r->x = *x;
f735446c
GM
184 secp256k1_fe_sqr(&x2, x);
185 secp256k1_fe_mul(&x3, x, &x2);
eb0be8ee 186 r->infinity = 0;
f735446c 187 secp256k1_fe_set_int(&c, 7);
f11ff5be 188 secp256k1_fe_add(&c, &x3);
26320197 189 if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
09ca4f32 190 return 0;
26320197 191 }
39bd94d8 192 secp256k1_fe_normalize_var(&r->y);
26320197 193 if (secp256k1_fe_is_odd(&r->y) != odd) {
f11ff5be 194 secp256k1_fe_negate(&r->y, &r->y, 1);
26320197 195 }
09ca4f32 196 return 1;
910d0de4 197}
607884fc 198
a4a43d75 199static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
f11ff5be
PW
200 r->infinity = a->infinity;
201 r->x = a->x;
202 r->y = a->y;
203 secp256k1_fe_set_int(&r->z, 1);
910d0de4 204}
607884fc 205
ce7eb6fb 206static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) {
f735446c 207 secp256k1_fe_t r, r2;
ce7eb6fb 208 VERIFY_CHECK(!a->infinity);
f735446c
GM
209 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
210 r2 = a->x; secp256k1_fe_normalize_weak(&r2);
d7174edf 211 return secp256k1_fe_equal_var(&r, &r2);
910d0de4 212}
607884fc 213
0295f0a3 214static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
f11ff5be
PW
215 r->infinity = a->infinity;
216 r->x = a->x;
217 r->y = a->y;
218 r->z = a->z;
0295f0a3 219 secp256k1_fe_normalize_weak(&r->y);
f11ff5be 220 secp256k1_fe_negate(&r->y, &r->y, 1);
607884fc
PW
221}
222
a4a43d75 223static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
f11ff5be 224 return a->infinity;
0a07e62f
PW
225}
226
39bd94d8 227static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
f735446c 228 secp256k1_fe_t y2, x3, z2, z6;
26320197 229 if (a->infinity) {
eb0be8ee 230 return 0;
26320197 231 }
71712b27
GM
232 /** y^2 = x^3 + 7
233 * (Y/Z^3)^2 = (X/Z^2)^3 + 7
234 * Y^2 / Z^6 = X^3 / Z^6 + 7
235 * Y^2 = X^3 + 7*Z^6
236 */
f735446c
GM
237 secp256k1_fe_sqr(&y2, &a->y);
238 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
239 secp256k1_fe_sqr(&z2, &a->z);
240 secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
910d0de4
PW
241 secp256k1_fe_mul_int(&z6, 7);
242 secp256k1_fe_add(&x3, &z6);
d7174edf
PW
243 secp256k1_fe_normalize_weak(&x3);
244 return secp256k1_fe_equal_var(&y2, &x3);
607884fc
PW
245}
246
39bd94d8 247static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
f735446c 248 secp256k1_fe_t y2, x3, c;
26320197 249 if (a->infinity) {
764332d0 250 return 0;
26320197 251 }
71712b27 252 /* y^2 = x^3 + 7 */
f735446c
GM
253 secp256k1_fe_sqr(&y2, &a->y);
254 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
255 secp256k1_fe_set_int(&c, 7);
764332d0 256 secp256k1_fe_add(&x3, &c);
d7174edf
PW
257 secp256k1_fe_normalize_weak(&x3);
258 return secp256k1_fe_equal_var(&y2, &x3);
764332d0
PW
259}
260
4f9791ab 261static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr) {
d61e8995 262 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
f735446c 263 secp256k1_fe_t t1,t2,t3,t4;
3627437d
GM
264 /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
265 * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
266 * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
267 */
f7dc1c65
PW
268 r->infinity = a->infinity;
269 if (r->infinity) {
4f9791ab
PD
270 if (rzr) {
271 secp256k1_fe_set_int(rzr, 1);
272 }
607884fc
PW
273 return;
274 }
275
4f9791ab
PD
276 if (rzr) {
277 *rzr = a->y;
278 secp256k1_fe_normalize_weak(rzr);
279 secp256k1_fe_mul_int(rzr, 2);
280 }
281
be82e92f 282 secp256k1_fe_mul(&r->z, &a->z, &a->y);
71712b27 283 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */
f11ff5be 284 secp256k1_fe_sqr(&t1, &a->x);
71712b27
GM
285 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */
286 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */
f7dc1c65 287 secp256k1_fe_sqr(&t3, &a->y);
71712b27 288 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */
910d0de4 289 secp256k1_fe_sqr(&t4, &t3);
71712b27 290 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */
be82e92f 291 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */
f11ff5be 292 r->x = t3;
71712b27
GM
293 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */
294 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
295 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */
296 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */
297 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */
298 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */
299 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
300 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */
301 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
607884fc
PW
302}
303
4f9791ab 304static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b, secp256k1_fe_t *rzr) {
d61e8995 305 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
f735446c 306 secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
4f9791ab 307
f11ff5be 308 if (a->infinity) {
4f9791ab 309 VERIFY_CHECK(rzr == NULL);
f11ff5be 310 *r = *b;
607884fc
PW
311 return;
312 }
4f9791ab 313
f11ff5be 314 if (b->infinity) {
4f9791ab
PD
315 if (rzr) {
316 secp256k1_fe_set_int(rzr, 1);
317 }
f11ff5be 318 *r = *a;
607884fc
PW
319 return;
320 }
4f9791ab 321
eb0be8ee 322 r->infinity = 0;
f735446c
GM
323 secp256k1_fe_sqr(&z22, &b->z);
324 secp256k1_fe_sqr(&z12, &a->z);
325 secp256k1_fe_mul(&u1, &a->x, &z22);
326 secp256k1_fe_mul(&u2, &b->x, &z12);
327 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
328 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
329 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
330 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
49ee0dbe
PD
331 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
332 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
4f9791ab 333 secp256k1_gej_double_var(r, a, rzr);
607884fc 334 } else {
4f9791ab
PD
335 if (rzr) {
336 secp256k1_fe_set_int(rzr, 0);
337 }
eb0be8ee 338 r->infinity = 1;
607884fc
PW
339 }
340 return;
341 }
f735446c
GM
342 secp256k1_fe_sqr(&i2, &i);
343 secp256k1_fe_sqr(&h2, &h);
344 secp256k1_fe_mul(&h3, &h, &h2);
4f9791ab
PD
345 secp256k1_fe_mul(&h, &h, &b->z);
346 if (rzr) {
347 *rzr = h;
348 }
349 secp256k1_fe_mul(&r->z, &a->z, &h);
f735446c 350 secp256k1_fe_mul(&t, &u1, &h2);
f11ff5be
PW
351 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
352 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
910d0de4 353 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
f11ff5be 354 secp256k1_fe_add(&r->y, &h3);
607884fc
PW
355}
356
2d5a186c 357static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, secp256k1_fe_t *rzr) {
d61e8995 358 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
f735446c 359 secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
f11ff5be 360 if (a->infinity) {
2d5a186c
PD
361 VERIFY_CHECK(rzr == NULL);
362 secp256k1_gej_set_ge(r, b);
607884fc
PW
363 return;
364 }
f11ff5be 365 if (b->infinity) {
2d5a186c
PD
366 if (rzr) {
367 secp256k1_fe_set_int(rzr, 1);
368 }
f11ff5be 369 *r = *a;
607884fc
PW
370 return;
371 }
eb0be8ee 372 r->infinity = 0;
4f9791ab 373
f735446c
GM
374 secp256k1_fe_sqr(&z12, &a->z);
375 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
376 secp256k1_fe_mul(&u2, &b->x, &z12);
377 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
378 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
379 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
380 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
49ee0dbe
PD
381 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
382 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
2d5a186c 383 secp256k1_gej_double_var(r, a, rzr);
4f9791ab 384 } else {
2d5a186c
PD
385 if (rzr) {
386 secp256k1_fe_set_int(rzr, 0);
387 }
4f9791ab
PD
388 r->infinity = 1;
389 }
390 return;
391 }
392 secp256k1_fe_sqr(&i2, &i);
393 secp256k1_fe_sqr(&h2, &h);
394 secp256k1_fe_mul(&h3, &h, &h2);
2d5a186c
PD
395 if (rzr) {
396 *rzr = h;
397 }
398 secp256k1_fe_mul(&r->z, &a->z, &h);
4f9791ab
PD
399 secp256k1_fe_mul(&t, &u1, &h2);
400 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
401 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
402 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
403 secp256k1_fe_add(&r->y, &h3);
404}
405
406static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, const secp256k1_fe_t *bzinv) {
407 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
408 secp256k1_fe_t az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
409
410 if (b->infinity) {
411 *r = *a;
412 return;
413 }
414 if (a->infinity) {
415 secp256k1_fe_t bzinv2, bzinv3;
416 r->infinity = b->infinity;
417 secp256k1_fe_sqr(&bzinv2, bzinv);
418 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
419 secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
420 secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
421 secp256k1_fe_set_int(&r->z, 1);
422 return;
423 }
424 r->infinity = 0;
425
426 /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
427 * secp256k1's isomorphism we can multiply the Z coordinates on both sides
428 * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
429 * This means that (rx,ry,rz) can be calculated as
430 * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
431 * The variable az below holds the modified Z coordinate for a, which is used
432 * for the computation of rx and ry, but not for rz.
433 */
434 secp256k1_fe_mul(&az, &a->z, bzinv);
435
436 secp256k1_fe_sqr(&z12, &az);
437 u1 = a->x; secp256k1_fe_normalize_weak(&u1);
438 secp256k1_fe_mul(&u2, &b->x, &z12);
439 s1 = a->y; secp256k1_fe_normalize_weak(&s1);
440 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
441 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
442 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
443 if (secp256k1_fe_normalizes_to_zero_var(&h)) {
444 if (secp256k1_fe_normalizes_to_zero_var(&i)) {
445 secp256k1_gej_double_var(r, a, NULL);
607884fc 446 } else {
eb0be8ee 447 r->infinity = 1;
607884fc
PW
448 }
449 return;
450 }
f735446c
GM
451 secp256k1_fe_sqr(&i2, &i);
452 secp256k1_fe_sqr(&h2, &h);
453 secp256k1_fe_mul(&h3, &h, &h2);
f11ff5be 454 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
f735446c 455 secp256k1_fe_mul(&t, &u1, &h2);
f11ff5be
PW
456 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
457 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
910d0de4 458 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
f11ff5be 459 secp256k1_fe_add(&r->y, &h3);
607884fc
PW
460}
461
4f9791ab 462
a4a43d75 463static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
5a43124c 464 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
bb0ea50d 465 static const secp256k1_fe_t fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
b28d02a5 466 secp256k1_fe_t zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
5de4c5df
AP
467 secp256k1_fe_t m_alt, rr_alt;
468 int infinity, degenerate;
9338dbf7
PW
469 VERIFY_CHECK(!b->infinity);
470 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
471
71712b27
GM
472 /** In:
473 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
474 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
475 * we find as solution for a unified addition/doubling formula:
476 * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
477 * x3 = lambda^2 - (x1 + x2)
478 * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
479 *
480 * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
481 * U1 = X1*Z2^2, U2 = X2*Z1^2
2a54f9bc 482 * S1 = Y1*Z2^3, S2 = Y2*Z1^3
71712b27
GM
483 * Z = Z1*Z2
484 * T = U1+U2
485 * M = S1+S2
486 * Q = T*M^2
487 * R = T^2-U1*U2
488 * X3 = 4*(R^2-Q)
489 * Y3 = 4*(R*(3*Q-2*R^2)-M^4)
490 * Z3 = 2*M*Z
491 * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
5de4c5df
AP
492 *
493 * This formula has the benefit of being the same for both addition
494 * of distinct points and doubling. However, it breaks down in the
495 * case that either point is infinity, or that y1 = -y2. We handle
496 * these cases in the following ways:
497 *
498 * - If b is infinity we simply bail by means of a VERIFY_CHECK.
499 *
500 * - If a is infinity, we detect this, and at the end of the
501 * computation replace the result (which will be meaningless,
502 * but we compute to be constant-time) with b.x : b.y : 1.
503 *
504 * - If a = -b, we have y1 = -y2, which is a degenerate case.
505 * But here the answer is infinity, so we simply set the
506 * infinity flag of the result, overriding the computed values
507 * without even needing to cmov.
508 *
509 * - If y1 = -y2 but x1 != x2, which does occur thanks to certain
510 * properties of our curve (specifically, 1 has nontrivial cube
511 * roots in our field, and the curve equation has no x coefficient)
512 * then the answer is not infinity but also not given by the above
513 * equation. In this case, we cmov in place an alternate expression
514 * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
515 * expressions for lambda are defined, they are equal, and can be
516 * obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
517 * then substitution of x^3 + 7 for y^2 (using the curve equation).
518 * For all pairs of nonzero points (a, b) at least one is defined,
519 * so this covers everything.
71712b27
GM
520 */
521
f735446c
GM
522 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */
523 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */
524 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */
525 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */
526 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z2^2 (1) */
527 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */
f735446c
GM
528 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */
529 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */
bcf2fcfd 530 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */
a5d796e0 531 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */
7d054cd0
PD
532 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */
533 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */
5de4c5df
AP
534 /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
535 * case that Z = z1z2 = 0, and this is special-cased later on). */
536 degenerate = secp256k1_fe_normalizes_to_zero(&m) &
537 secp256k1_fe_normalizes_to_zero(&rr);
538 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
539 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
540 * a nontrivial cube root of one. In either case, an alternate
541 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
542 * so we set R/M equal to this. */
5a43124c
PD
543 rr_alt = s1;
544 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
a5d796e0 545 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */
5de4c5df
AP
546
547 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
548 secp256k1_fe_cmov(&m_alt, &m, !degenerate);
549 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
550 * From here on out Ralt and Malt represent the numerator
551 * and denominator of lambda; R and M represent the explicit
552 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
553 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */
554 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */
555 /* These two lines use the observation that either M == Malt or M == 0,
556 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
557 * zero (which is "computed" by cmov). So the cost is one squaring
558 * versus two multiplications. */
55e7fc32
PD
559 secp256k1_fe_sqr(&n, &n);
560 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */
5de4c5df 561 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */
b28d02a5 562 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */
f735446c 563 infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
5de4c5df 564 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */
71712b27 565 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */
55e7fc32
PD
566 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */
567 secp256k1_fe_normalize_weak(&t);
568 r->x = t; /* r->x = Ralt^2-Q (1) */
bcf2fcfd 569 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */
55e7fc32 570 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */
5de4c5df 571 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */
55e7fc32
PD
572 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
573 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
0295f0a3 574 secp256k1_fe_normalize_weak(&r->y);
5de4c5df
AP
575 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */
576 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
9338dbf7 577
a1d5ae15 578 /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
bb0ea50d
GM
579 secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
580 secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
581 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
9338dbf7
PW
582 r->infinity = infinity;
583}
584
d2275795
GM
585static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *s) {
586 /* Operations: 4 mul, 1 sqr */
587 secp256k1_fe_t zz;
588 VERIFY_CHECK(!secp256k1_fe_is_zero(s));
589 secp256k1_fe_sqr(&zz, s);
590 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */
591 secp256k1_fe_mul(&r->y, &r->y, &zz);
592 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */
593 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */
594}
595
e68d7208
PW
596static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) {
597 secp256k1_fe_t x, y;
598 VERIFY_CHECK(!a->infinity);
599 x = a->x;
600 secp256k1_fe_normalize(&x);
601 y = a->y;
602 secp256k1_fe_normalize(&y);
603 secp256k1_fe_to_storage(&r->x, &x);
604 secp256k1_fe_to_storage(&r->y, &y);
605}
606
607static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) {
608 secp256k1_fe_from_storage(&r->x, &a->x);
609 secp256k1_fe_from_storage(&r->y, &a->y);
610 r->infinity = 0;
611}
612
55422b6a
PW
613static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) {
614 secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
615 secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
616}
617
399c03f2 618#ifdef USE_ENDOMORPHISM
4f9791ab 619static void secp256k1_ge_mul_lambda(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
4732d260
PW
620 static const secp256k1_fe_t beta = SECP256K1_FE_CONST(
621 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
622 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
623 );
f11ff5be 624 *r = *a;
4732d260 625 secp256k1_fe_mul(&r->x, &r->x, &beta);
607884fc 626}
399c03f2 627#endif
607884fc 628
7a4b7691 629#endif
This page took 0.134099 seconds and 4 git commands to generate.