]>
Commit | Line | Data |
---|---|---|
0a433ea2 PW |
1 | // Copyright (c) 2013 Pieter Wuille |
2 | // Distributed under the MIT/X11 software license, see the accompanying | |
3 | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | |
4 | ||
7a4b7691 PW |
5 | #ifndef _SECP256K1_GROUP_IMPL_H_ |
6 | #define _SECP256K1_GROUP_IMPL_H_ | |
7 | ||
f11ff5be | 8 | #include <string.h> |
607884fc | 9 | |
11ab5622 PW |
10 | #include "num.h" |
11 | #include "field.h" | |
12 | #include "group.h" | |
607884fc | 13 | |
f11ff5be PW |
14 | void static secp256k1_ge_set_infinity(secp256k1_ge_t *r) { |
15 | r->infinity = 1; | |
607884fc PW |
16 | } |
17 | ||
f11ff5be PW |
18 | void static secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { |
19 | r->infinity = 0; | |
20 | r->x = *x; | |
21 | r->y = *y; | |
607884fc PW |
22 | } |
23 | ||
f11ff5be PW |
24 | int static secp256k1_ge_is_infinity(const secp256k1_ge_t *a) { |
25 | return a->infinity; | |
607884fc PW |
26 | } |
27 | ||
f11ff5be PW |
28 | void static secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) { |
29 | r->infinity = a->infinity; | |
30 | r->x = a->x; | |
31 | r->y = a->y; | |
32 | secp256k1_fe_normalize(&r->y); | |
33 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
607884fc PW |
34 | } |
35 | ||
f11ff5be PW |
36 | void static secp256k1_ge_get_hex(char *r, int *rlen, const secp256k1_ge_t *a) { |
37 | char cx[65]; int lx=65; | |
38 | char cy[65]; int ly=65; | |
39 | secp256k1_fe_get_hex(cx, &lx, &a->x); | |
40 | secp256k1_fe_get_hex(cy, &ly, &a->y); | |
41 | lx = strlen(cx); | |
42 | ly = strlen(cy); | |
43 | int len = lx + ly + 3 + 1; | |
44 | if (*rlen < len) { | |
45 | *rlen = len; | |
46 | return; | |
47 | } | |
48 | *rlen = len; | |
49 | r[0] = '('; | |
50 | memcpy(r+1, cx, lx); | |
51 | r[1+lx] = ','; | |
52 | memcpy(r+2+lx, cy, ly); | |
53 | r[2+lx+ly] = ')'; | |
54 | r[3+lx+ly] = 0; | |
55 | } | |
56 | ||
57 | void static secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) { | |
da55986f PW |
58 | r->infinity = a->infinity; |
59 | secp256k1_fe_inv(&a->z, &a->z); | |
60 | secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |
61 | secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); | |
62 | secp256k1_fe_mul(&a->x, &a->x, &z2); | |
63 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
64 | secp256k1_fe_set_int(&a->z, 1); | |
65 | r->x = a->x; | |
66 | r->y = a->y; | |
67 | } | |
68 | ||
69 | void static secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) { | |
1136bedb PW |
70 | r->infinity = a->infinity; |
71 | if (a->infinity) { | |
72 | return; | |
73 | } | |
f11ff5be PW |
74 | secp256k1_fe_inv_var(&a->z, &a->z); |
75 | secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |
76 | secp256k1_fe_t z3; secp256k1_fe_mul(&z3, &a->z, &z2); | |
77 | secp256k1_fe_mul(&a->x, &a->x, &z2); | |
78 | secp256k1_fe_mul(&a->y, &a->y, &z3); | |
79 | secp256k1_fe_set_int(&a->z, 1); | |
f11ff5be PW |
80 | r->x = a->x; |
81 | r->y = a->y; | |
607884fc PW |
82 | } |
83 | ||
da55986f | 84 | void static secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t r[len], const secp256k1_gej_t a[len]) { |
f16be77f PD |
85 | int count = 0; |
86 | secp256k1_fe_t az[len]; | |
87 | for (int i=0; i<len; i++) { | |
88 | if (!a[i].infinity) { | |
89 | az[count++] = a[i].z; | |
90 | } | |
91 | } | |
92 | ||
93 | secp256k1_fe_t azi[count]; | |
94 | secp256k1_fe_inv_all_var(count, azi, az); | |
95 | ||
96 | count = 0; | |
97 | for (int i=0; i<len; i++) { | |
98 | r[i].infinity = a[i].infinity; | |
99 | if (!a[i].infinity) { | |
100 | secp256k1_fe_t *zi = &azi[count++]; | |
101 | secp256k1_fe_t zi2; secp256k1_fe_sqr(&zi2, zi); | |
102 | secp256k1_fe_t zi3; secp256k1_fe_mul(&zi3, &zi2, zi); | |
103 | secp256k1_fe_mul(&r[i].x, &a[i].x, &zi2); | |
104 | secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3); | |
105 | } | |
106 | } | |
107 | } | |
108 | ||
f11ff5be PW |
109 | void static secp256k1_gej_set_infinity(secp256k1_gej_t *r) { |
110 | r->infinity = 1; | |
9338dbf7 PW |
111 | secp256k1_fe_set_int(&r->x, 0); |
112 | secp256k1_fe_set_int(&r->y, 0); | |
113 | secp256k1_fe_set_int(&r->z, 0); | |
607884fc PW |
114 | } |
115 | ||
f11ff5be PW |
116 | void static secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) { |
117 | r->infinity = 0; | |
118 | r->x = *x; | |
119 | r->y = *y; | |
120 | secp256k1_fe_set_int(&r->z, 1); | |
607884fc PW |
121 | } |
122 | ||
2f6c8019 GM |
123 | void static secp256k1_gej_clear(secp256k1_gej_t *r) { |
124 | r->infinity = 0; | |
125 | secp256k1_fe_clear(&r->x); | |
126 | secp256k1_fe_clear(&r->y); | |
127 | secp256k1_fe_clear(&r->z); | |
128 | } | |
129 | ||
130 | void static secp256k1_ge_clear(secp256k1_ge_t *r) { | |
131 | r->infinity = 0; | |
132 | secp256k1_fe_clear(&r->x); | |
133 | secp256k1_fe_clear(&r->y); | |
134 | } | |
135 | ||
09ca4f32 | 136 | int static secp256k1_ge_set_xo(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) { |
f11ff5be PW |
137 | r->x = *x; |
138 | secp256k1_fe_t x2; secp256k1_fe_sqr(&x2, x); | |
139 | secp256k1_fe_t x3; secp256k1_fe_mul(&x3, x, &x2); | |
eb0be8ee | 140 | r->infinity = 0; |
f11ff5be PW |
141 | secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); |
142 | secp256k1_fe_add(&c, &x3); | |
09ca4f32 PD |
143 | if (!secp256k1_fe_sqrt(&r->y, &c)) |
144 | return 0; | |
f11ff5be PW |
145 | secp256k1_fe_normalize(&r->y); |
146 | if (secp256k1_fe_is_odd(&r->y) != odd) | |
147 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
09ca4f32 | 148 | return 1; |
910d0de4 | 149 | } |
607884fc | 150 | |
f11ff5be PW |
151 | void static secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) { |
152 | r->infinity = a->infinity; | |
153 | r->x = a->x; | |
154 | r->y = a->y; | |
155 | secp256k1_fe_set_int(&r->z, 1); | |
910d0de4 | 156 | } |
607884fc | 157 | |
da55986f | 158 | void static secp256k1_gej_get_x_var(secp256k1_fe_t *r, const secp256k1_gej_t *a) { |
f11ff5be PW |
159 | secp256k1_fe_t zi2; secp256k1_fe_inv_var(&zi2, &a->z); secp256k1_fe_sqr(&zi2, &zi2); |
160 | secp256k1_fe_mul(r, &a->x, &zi2); | |
910d0de4 | 161 | } |
607884fc | 162 | |
f11ff5be PW |
163 | void static secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
164 | r->infinity = a->infinity; | |
165 | r->x = a->x; | |
166 | r->y = a->y; | |
167 | r->z = a->z; | |
168 | secp256k1_fe_normalize(&r->y); | |
169 | secp256k1_fe_negate(&r->y, &r->y, 1); | |
607884fc PW |
170 | } |
171 | ||
f11ff5be PW |
172 | int static secp256k1_gej_is_infinity(const secp256k1_gej_t *a) { |
173 | return a->infinity; | |
0a07e62f PW |
174 | } |
175 | ||
f11ff5be PW |
176 | int static secp256k1_gej_is_valid(const secp256k1_gej_t *a) { |
177 | if (a->infinity) | |
eb0be8ee | 178 | return 0; |
607884fc PW |
179 | // y^2 = x^3 + 7 |
180 | // (Y/Z^3)^2 = (X/Z^2)^3 + 7 | |
181 | // Y^2 / Z^6 = X^3 / Z^6 + 7 | |
182 | // Y^2 = X^3 + 7*Z^6 | |
f11ff5be PW |
183 | secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); |
184 | secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
185 | secp256k1_fe_t z2; secp256k1_fe_sqr(&z2, &a->z); | |
910d0de4 PW |
186 | secp256k1_fe_t z6; secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); |
187 | secp256k1_fe_mul_int(&z6, 7); | |
188 | secp256k1_fe_add(&x3, &z6); | |
189 | secp256k1_fe_normalize(&y2); | |
190 | secp256k1_fe_normalize(&x3); | |
191 | return secp256k1_fe_equal(&y2, &x3); | |
607884fc PW |
192 | } |
193 | ||
764332d0 PW |
194 | int static secp256k1_ge_is_valid(const secp256k1_ge_t *a) { |
195 | if (a->infinity) | |
196 | return 0; | |
197 | // y^2 = x^3 + 7 | |
198 | secp256k1_fe_t y2; secp256k1_fe_sqr(&y2, &a->y); | |
199 | secp256k1_fe_t x3; secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); | |
200 | secp256k1_fe_t c; secp256k1_fe_set_int(&c, 7); | |
201 | secp256k1_fe_add(&x3, &c); | |
202 | secp256k1_fe_normalize(&y2); | |
203 | secp256k1_fe_normalize(&x3); | |
204 | return secp256k1_fe_equal(&y2, &x3); | |
205 | } | |
206 | ||
da55986f | 207 | void static secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
03bfc07b PW |
208 | if (a->infinity) { |
209 | r->infinity = 1; | |
210 | return; | |
211 | } | |
212 | ||
f11ff5be | 213 | secp256k1_fe_t t5 = a->y; |
910d0de4 | 214 | secp256k1_fe_normalize(&t5); |
03bfc07b | 215 | if (secp256k1_fe_is_zero(&t5)) { |
eb0be8ee | 216 | r->infinity = 1; |
607884fc PW |
217 | return; |
218 | } | |
219 | ||
910d0de4 | 220 | secp256k1_fe_t t1,t2,t3,t4; |
f11ff5be PW |
221 | secp256k1_fe_mul(&r->z, &t5, &a->z); |
222 | secp256k1_fe_mul_int(&r->z, 2); // Z' = 2*Y*Z (2) | |
223 | secp256k1_fe_sqr(&t1, &a->x); | |
224 | secp256k1_fe_mul_int(&t1, 3); // T1 = 3*X^2 (3) | |
225 | secp256k1_fe_sqr(&t2, &t1); // T2 = 9*X^4 (1) | |
910d0de4 | 226 | secp256k1_fe_sqr(&t3, &t5); |
f11ff5be | 227 | secp256k1_fe_mul_int(&t3, 2); // T3 = 2*Y^2 (2) |
910d0de4 | 228 | secp256k1_fe_sqr(&t4, &t3); |
f11ff5be PW |
229 | secp256k1_fe_mul_int(&t4, 2); // T4 = 8*Y^4 (2) |
230 | secp256k1_fe_mul(&t3, &a->x, &t3); // T3 = 2*X*Y^2 (1) | |
231 | r->x = t3; | |
232 | secp256k1_fe_mul_int(&r->x, 4); // X' = 8*X*Y^2 (4) | |
233 | secp256k1_fe_negate(&r->x, &r->x, 4); // X' = -8*X*Y^2 (5) | |
234 | secp256k1_fe_add(&r->x, &t2); // X' = 9*X^4 - 8*X*Y^2 (6) | |
235 | secp256k1_fe_negate(&t2, &t2, 1); // T2 = -9*X^4 (2) | |
236 | secp256k1_fe_mul_int(&t3, 6); // T3 = 12*X*Y^2 (6) | |
237 | secp256k1_fe_add(&t3, &t2); // T3 = 12*X*Y^2 - 9*X^4 (8) | |
238 | secp256k1_fe_mul(&r->y, &t1, &t3); // Y' = 36*X^3*Y^2 - 27*X^6 (1) | |
239 | secp256k1_fe_negate(&t2, &t4, 2); // T2 = -8*Y^4 (3) | |
240 | secp256k1_fe_add(&r->y, &t2); // Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) | |
eb0be8ee | 241 | r->infinity = 0; |
607884fc PW |
242 | } |
243 | ||
da55986f | 244 | void static secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) { |
f11ff5be PW |
245 | if (a->infinity) { |
246 | *r = *b; | |
607884fc PW |
247 | return; |
248 | } | |
f11ff5be PW |
249 | if (b->infinity) { |
250 | *r = *a; | |
607884fc PW |
251 | return; |
252 | } | |
eb0be8ee | 253 | r->infinity = 0; |
f11ff5be PW |
254 | secp256k1_fe_t z22; secp256k1_fe_sqr(&z22, &b->z); |
255 | secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); | |
256 | secp256k1_fe_t u1; secp256k1_fe_mul(&u1, &a->x, &z22); | |
257 | secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); | |
258 | secp256k1_fe_t s1; secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); | |
259 | secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
910d0de4 PW |
260 | secp256k1_fe_normalize(&u1); |
261 | secp256k1_fe_normalize(&u2); | |
262 | if (secp256k1_fe_equal(&u1, &u2)) { | |
263 | secp256k1_fe_normalize(&s1); | |
264 | secp256k1_fe_normalize(&s2); | |
265 | if (secp256k1_fe_equal(&s1, &s2)) { | |
da55986f | 266 | secp256k1_gej_double_var(r, a); |
607884fc | 267 | } else { |
eb0be8ee | 268 | r->infinity = 1; |
607884fc PW |
269 | } |
270 | return; | |
271 | } | |
910d0de4 | 272 | secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); |
f11ff5be PW |
273 | secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); |
274 | secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); | |
910d0de4 PW |
275 | secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); |
276 | secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 277 | secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h); |
910d0de4 | 278 | secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
279 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
280 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 281 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 282 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
283 | } |
284 | ||
da55986f | 285 | void static secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { |
f11ff5be PW |
286 | if (a->infinity) { |
287 | r->infinity = b->infinity; | |
288 | r->x = b->x; | |
289 | r->y = b->y; | |
290 | secp256k1_fe_set_int(&r->z, 1); | |
607884fc PW |
291 | return; |
292 | } | |
f11ff5be PW |
293 | if (b->infinity) { |
294 | *r = *a; | |
607884fc PW |
295 | return; |
296 | } | |
eb0be8ee | 297 | r->infinity = 0; |
f11ff5be PW |
298 | secp256k1_fe_t z12; secp256k1_fe_sqr(&z12, &a->z); |
299 | secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1); | |
300 | secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &z12); | |
301 | secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1); | |
302 | secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); | |
910d0de4 PW |
303 | secp256k1_fe_normalize(&u1); |
304 | secp256k1_fe_normalize(&u2); | |
305 | if (secp256k1_fe_equal(&u1, &u2)) { | |
306 | secp256k1_fe_normalize(&s1); | |
307 | secp256k1_fe_normalize(&s2); | |
308 | if (secp256k1_fe_equal(&s1, &s2)) { | |
da55986f | 309 | secp256k1_gej_double_var(r, a); |
607884fc | 310 | } else { |
eb0be8ee | 311 | r->infinity = 1; |
607884fc PW |
312 | } |
313 | return; | |
314 | } | |
910d0de4 | 315 | secp256k1_fe_t h; secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); |
f11ff5be PW |
316 | secp256k1_fe_t i; secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); |
317 | secp256k1_fe_t i2; secp256k1_fe_sqr(&i2, &i); | |
910d0de4 PW |
318 | secp256k1_fe_t h2; secp256k1_fe_sqr(&h2, &h); |
319 | secp256k1_fe_t h3; secp256k1_fe_mul(&h3, &h, &h2); | |
f11ff5be | 320 | r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); |
910d0de4 | 321 | secp256k1_fe_t t; secp256k1_fe_mul(&t, &u1, &h2); |
f11ff5be PW |
322 | r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); |
323 | secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); | |
910d0de4 | 324 | secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); |
f11ff5be | 325 | secp256k1_fe_add(&r->y, &h3); |
607884fc PW |
326 | } |
327 | ||
9338dbf7 PW |
328 | void static secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) { |
329 | VERIFY_CHECK(!b->infinity); | |
330 | VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); | |
331 | ||
332 | // In: | |
333 | // Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. | |
334 | // In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. | |
335 | // we find as solution for a unified addition/doubling formula: | |
336 | // lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. | |
337 | // x3 = lambda^2 - (x1 + x2) | |
338 | // 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). | |
339 | // | |
340 | // Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: | |
341 | // U1 = X1*Z2^2, U2 = X2*Z1^2 | |
342 | // S1 = X1*Z2^3, S2 = X2*Z2^3 | |
343 | // Z = Z1*Z2 | |
344 | // T = U1+U2 | |
345 | // M = S1+S2 | |
346 | // Q = T*M^2 | |
347 | // R = T^2-U1*U2 | |
348 | // X3 = 4*(R^2-Q) | |
349 | // Y3 = 4*(R*(3*Q-2*R^2)-M^4) | |
350 | // Z3 = 2*M*Z | |
351 | // (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) | |
352 | ||
353 | secp256k1_fe_t zz; secp256k1_fe_sqr(&zz, &a->z); // z = Z1^2 | |
354 | secp256k1_fe_t u1 = a->x; secp256k1_fe_normalize(&u1); // u1 = U1 = X1*Z2^2 (1) | |
355 | secp256k1_fe_t u2; secp256k1_fe_mul(&u2, &b->x, &zz); // u2 = U2 = X2*Z1^2 (1) | |
356 | secp256k1_fe_t s1 = a->y; secp256k1_fe_normalize(&s1); // s1 = S1 = Y1*Z2^3 (1) | |
357 | secp256k1_fe_t s2; secp256k1_fe_mul(&s2, &b->y, &zz); // s2 = Y2*Z2^2 (1) | |
358 | secp256k1_fe_mul(&s2, &s2, &a->z); // s2 = S2 = Y2*Z1^3 (1) | |
359 | secp256k1_fe_t z = a->z; // z = Z = Z1*Z2 (8) | |
360 | secp256k1_fe_t t = u1; secp256k1_fe_add(&t, &u2); // t = T = U1+U2 (2) | |
361 | secp256k1_fe_t m = s1; secp256k1_fe_add(&m, &s2); // m = M = S1+S2 (2) | |
362 | secp256k1_fe_t n; secp256k1_fe_sqr(&n, &m); // n = M^2 (1) | |
363 | secp256k1_fe_t q; secp256k1_fe_mul(&q, &n, &t); // q = Q = T*M^2 (1) | |
364 | secp256k1_fe_sqr(&n, &n); // n = M^4 (1) | |
9338dbf7 PW |
365 | secp256k1_fe_t rr; secp256k1_fe_sqr(&rr, &t); // rr = T^2 (1) |
366 | secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); // t = -U1*U2 (2) | |
367 | secp256k1_fe_add(&rr, &t); // rr = R = T^2-U1*U2 (3) | |
368 | secp256k1_fe_sqr(&t, &rr); // t = R^2 (1) | |
369 | secp256k1_fe_mul(&r->z, &m, &z); // r->z = M*Z (1) | |
370 | secp256k1_fe_normalize(&r->z); | |
371 | int infinity = secp256k1_fe_is_zero(&r->z) * (1 - a->infinity); | |
372 | secp256k1_fe_mul_int(&r->z, 2 * (1 - a->infinity)); // r->z = Z3 = 2*M*Z (2) | |
373 | r->x = t; // r->x = R^2 (1) | |
9338dbf7 | 374 | secp256k1_fe_negate(&q, &q, 1); // q = -Q (2) |
9338dbf7 PW |
375 | secp256k1_fe_add(&r->x, &q); // r->x = R^2-Q (3) |
376 | secp256k1_fe_normalize(&r->x); | |
fb1bb0b4 PD |
377 | secp256k1_fe_mul_int(&q, 3); // q = -3*Q (6) |
378 | secp256k1_fe_mul_int(&t, 2); // t = 2*R^2 (2) | |
379 | secp256k1_fe_add(&t, &q); // t = 2*R^2-3*Q (8) | |
380 | secp256k1_fe_mul(&t, &t, &rr); // t = R*(2*R^2-3*Q) (1) | |
381 | secp256k1_fe_add(&t, &n); // t = R*(2*R^2-3*Q)+M^4 (2) | |
382 | secp256k1_fe_negate(&r->y, &t, 2); // r->y = R*(3*Q-2*R^2)-M^4 (3) | |
9338dbf7 PW |
383 | secp256k1_fe_normalize(&r->y); |
384 | secp256k1_fe_mul_int(&r->x, 4 * (1 - a->infinity)); // r->x = X3 = 4*(R^2-Q) | |
385 | secp256k1_fe_mul_int(&r->y, 4 * (1 - a->infinity)); // r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) | |
386 | ||
387 | // In case a->infinity == 1, the above code results in r->x, r->y, and r->z all equal to 0. | |
388 | // Add b->x to x, b->y to y, and 1 to z in that case. | |
389 | t = b->x; secp256k1_fe_mul_int(&t, a->infinity); | |
390 | secp256k1_fe_add(&r->x, &t); | |
391 | t = b->y; secp256k1_fe_mul_int(&t, a->infinity); | |
392 | secp256k1_fe_add(&r->y, &t); | |
393 | secp256k1_fe_set_int(&t, a->infinity); | |
394 | secp256k1_fe_add(&r->z, &t); | |
395 | r->infinity = infinity; | |
396 | } | |
397 | ||
398 | ||
399 | ||
f11ff5be PW |
400 | void static secp256k1_gej_get_hex(char *r, int *rlen, const secp256k1_gej_t *a) { |
401 | secp256k1_gej_t c = *a; | |
402 | secp256k1_ge_t t; secp256k1_ge_set_gej(&t, &c); | |
403 | secp256k1_ge_get_hex(r, rlen, &t); | |
607884fc PW |
404 | } |
405 | ||
399c03f2 | 406 | #ifdef USE_ENDOMORPHISM |
f11ff5be PW |
407 | void static secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) { |
408 | const secp256k1_fe_t *beta = &secp256k1_ge_consts->beta; | |
409 | *r = *a; | |
410 | secp256k1_fe_mul(&r->x, &r->x, beta); | |
607884fc PW |
411 | } |
412 | ||
da55986f | 413 | void static secp256k1_gej_split_exp_var(secp256k1_num_t *r1, secp256k1_num_t *r2, const secp256k1_num_t *a) { |
f11ff5be | 414 | const secp256k1_ge_consts_t *c = secp256k1_ge_consts; |
4adf6b2a PW |
415 | secp256k1_num_t bnc1, bnc2, bnt1, bnt2, bnn2; |
416 | ||
f11ff5be | 417 | secp256k1_num_copy(&bnn2, &c->order); |
4adf6b2a PW |
418 | secp256k1_num_shift(&bnn2, 1); |
419 | ||
f11ff5be | 420 | secp256k1_num_mul(&bnc1, a, &c->a1b2); |
4adf6b2a | 421 | secp256k1_num_add(&bnc1, &bnc1, &bnn2); |
f11ff5be | 422 | secp256k1_num_div(&bnc1, &bnc1, &c->order); |
4adf6b2a | 423 | |
f11ff5be | 424 | secp256k1_num_mul(&bnc2, a, &c->b1); |
4adf6b2a | 425 | secp256k1_num_add(&bnc2, &bnc2, &bnn2); |
f11ff5be | 426 | secp256k1_num_div(&bnc2, &bnc2, &c->order); |
4adf6b2a | 427 | |
f11ff5be PW |
428 | secp256k1_num_mul(&bnt1, &bnc1, &c->a1b2); |
429 | secp256k1_num_mul(&bnt2, &bnc2, &c->a2); | |
4adf6b2a | 430 | secp256k1_num_add(&bnt1, &bnt1, &bnt2); |
f11ff5be PW |
431 | secp256k1_num_sub(r1, a, &bnt1); |
432 | secp256k1_num_mul(&bnt1, &bnc1, &c->b1); | |
433 | secp256k1_num_mul(&bnt2, &bnc2, &c->a1b2); | |
434 | secp256k1_num_sub(r2, &bnt1, &bnt2); | |
607884fc | 435 | } |
399c03f2 | 436 | #endif |
607884fc | 437 | |
f11ff5be PW |
438 | |
439 | void static secp256k1_ge_start(void) { | |
ff29b855 PW |
440 | static const unsigned char secp256k1_ge_consts_order[] = { |
441 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | |
442 | 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, | |
443 | 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, | |
444 | 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 | |
445 | }; | |
446 | static const unsigned char secp256k1_ge_consts_g_x[] = { | |
447 | 0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC, | |
448 | 0x55,0xA0,0x62,0x95,0xCE,0x87,0x0B,0x07, | |
449 | 0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9, | |
450 | 0x59,0xF2,0x81,0x5B,0x16,0xF8,0x17,0x98 | |
451 | }; | |
452 | static const unsigned char secp256k1_ge_consts_g_y[] = { | |
453 | 0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65, | |
454 | 0x5D,0xA4,0xFB,0xFC,0x0E,0x11,0x08,0xA8, | |
455 | 0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19, | |
456 | 0x9C,0x47,0xD0,0x8F,0xFB,0x10,0xD4,0xB8 | |
457 | }; | |
399c03f2 | 458 | #ifdef USE_ENDOMORPHISM |
ff29b855 PW |
459 | // properties of secp256k1's efficiently computable endomorphism |
460 | static const unsigned char secp256k1_ge_consts_lambda[] = { | |
461 | 0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0, | |
462 | 0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, | |
463 | 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78, | |
464 | 0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72 | |
465 | }; | |
466 | static const unsigned char secp256k1_ge_consts_beta[] = { | |
467 | 0x7a,0xe9,0x6a,0x2b,0x65,0x7c,0x07,0x10, | |
468 | 0x6e,0x64,0x47,0x9e,0xac,0x34,0x34,0xe9, | |
469 | 0x9c,0xf0,0x49,0x75,0x12,0xf5,0x89,0x95, | |
470 | 0xc1,0x39,0x6c,0x28,0x71,0x95,0x01,0xee | |
471 | }; | |
472 | static const unsigned char secp256k1_ge_consts_a1b2[] = { | |
473 | 0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd, | |
474 | 0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15 | |
475 | }; | |
476 | static const unsigned char secp256k1_ge_consts_b1[] = { | |
477 | 0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28, | |
478 | 0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3 | |
479 | }; | |
480 | static const unsigned char secp256k1_ge_consts_a2[] = { | |
481 | 0x01, | |
482 | 0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6, | |
483 | 0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8 | |
484 | }; | |
399c03f2 | 485 | #endif |
f11ff5be PW |
486 | if (secp256k1_ge_consts == NULL) { |
487 | secp256k1_ge_consts_t *ret = (secp256k1_ge_consts_t*)malloc(sizeof(secp256k1_ge_consts_t)); | |
399c03f2 PW |
488 | secp256k1_num_set_bin(&ret->order, secp256k1_ge_consts_order, sizeof(secp256k1_ge_consts_order)); |
489 | secp256k1_num_copy(&ret->half_order, &ret->order); | |
490 | secp256k1_num_shift(&ret->half_order, 1); | |
491 | #ifdef USE_ENDOMORPHISM | |
f11ff5be PW |
492 | secp256k1_num_set_bin(&ret->lambda, secp256k1_ge_consts_lambda, sizeof(secp256k1_ge_consts_lambda)); |
493 | secp256k1_num_set_bin(&ret->a1b2, secp256k1_ge_consts_a1b2, sizeof(secp256k1_ge_consts_a1b2)); | |
494 | secp256k1_num_set_bin(&ret->a2, secp256k1_ge_consts_a2, sizeof(secp256k1_ge_consts_a2)); | |
495 | secp256k1_num_set_bin(&ret->b1, secp256k1_ge_consts_b1, sizeof(secp256k1_ge_consts_b1)); | |
496 | secp256k1_fe_set_b32(&ret->beta, secp256k1_ge_consts_beta); | |
399c03f2 | 497 | #endif |
f11ff5be PW |
498 | secp256k1_fe_t g_x, g_y; |
499 | secp256k1_fe_set_b32(&g_x, secp256k1_ge_consts_g_x); | |
500 | secp256k1_fe_set_b32(&g_y, secp256k1_ge_consts_g_y); | |
501 | secp256k1_ge_set_xy(&ret->g, &g_x, &g_y); | |
502 | secp256k1_ge_consts = ret; | |
503 | } | |
504 | } | |
505 | ||
506 | void static secp256k1_ge_stop(void) { | |
507 | if (secp256k1_ge_consts != NULL) { | |
508 | secp256k1_ge_consts_t *c = (secp256k1_ge_consts_t*)secp256k1_ge_consts; | |
f11ff5be PW |
509 | free((void*)c); |
510 | secp256k1_ge_consts = NULL; | |
511 | } | |
512 | } | |
7a4b7691 PW |
513 | |
514 | #endif |