]> Git Repo - secp256k1.git/blame - src/ecmult_const_impl.h
Add pippenger_wnaf ecmult_multi
[secp256k1.git] / src / ecmult_const_impl.h
CommitLineData
44015000
AP
1/**********************************************************************
2 * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
abe2d3e8
DR
7#ifndef SECP256K1_ECMULT_CONST_IMPL_H
8#define SECP256K1_ECMULT_CONST_IMPL_H
44015000
AP
9
10#include "scalar.h"
11#include "group.h"
12#include "ecmult_const.h"
13#include "ecmult_impl.h"
14
44015000
AP
15/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
16#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
17 int m; \
18 int abs_n = (n) * (((n) > 0) * 2 - 1); \
72ae443a 19 int idx_n = abs_n / 2; \
dd891e0e 20 secp256k1_fe neg_y; \
44015000
AP
21 VERIFY_CHECK(((n) & 1) == 1); \
22 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
23 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
72ae443a
PD
24 VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
25 VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
26 for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
44015000
AP
27 /* This loop is used to avoid secret data in array indices. See
28 * the comment in ecmult_gen_impl.h for rationale. */ \
72ae443a
PD
29 secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
30 secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
44015000
AP
31 } \
32 (r)->infinity = 0; \
44015000
AP
33 secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
34 secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
35} while(0)
36
37
768514ba
JN
38/** Convert a number to WNAF notation.
39 * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
40 * It has the following guarantees:
44015000
AP
41 * - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
42 * - each wnaf[i] is nonzero
768514ba 43 * - the number of words set is always WNAF_SIZE(w) + 1
44015000
AP
44 *
45 * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
46 * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
47 * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
48 *
49 * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
50 */
dd891e0e 51static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
cfe0ed91 52 int global_sign;
92e53fc4 53 int skew = 0;
44015000 54 int word = 0;
c6191fde 55
44015000 56 /* 1 2 3 */
92e53fc4 57 int u_last;
44015000 58 int u;
92e53fc4 59
cfe0ed91
GM
60 int flip;
61 int bit;
62 secp256k1_scalar neg_s;
63 int not_neg_one;
c6191fde
AP
64 /* Note that we cannot handle even numbers by negating them to be odd, as is
65 * done in other implementations, since if our scalars were specified to have
66 * width < 256 for performance reasons, their negations would have width 256
67 * and we'd lose any performance benefit. Instead, we use a technique from
92e53fc4 68 * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
c6191fde
AP
69 * or 2 (for odd) to the number we are encoding, returning a skew value indicating
70 * this, and having the caller compensate after doing the multiplication. */
71
72 /* Negative numbers will be negated to keep their bit representation below the maximum width */
cfe0ed91 73 flip = secp256k1_scalar_is_high(&s);
92e53fc4 74 /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
83836a95 75 bit = flip ^ !secp256k1_scalar_is_even(&s);
92e53fc4 76 /* We check for negative one, since adding 2 to it will cause an overflow */
92e53fc4
AP
77 secp256k1_scalar_negate(&neg_s, &s);
78 not_neg_one = !secp256k1_scalar_is_one(&neg_s);
79 secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
80 /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
81 * that we added two to it and flipped it. In fact for -1 these operations are
82 * identical. We only flipped, but since skewing is required (in the sense that
83 * the skew must be 1 or 2, never zero) and flipping is not, we need to change
84 * our flags to claim that we only skewed. */
85 global_sign = secp256k1_scalar_cond_negate(&s, flip);
86 global_sign *= not_neg_one * 2 - 1;
87 skew = 1 << bit;
92e53fc4 88
44015000 89 /* 4 */
92e53fc4 90 u_last = secp256k1_scalar_shr_int(&s, w);
44015000
AP
91 while (word * w < WNAF_BITS) {
92 int sign;
93 int even;
94
95 /* 4.1 4.4 */
96 u = secp256k1_scalar_shr_int(&s, w);
97 /* 4.2 */
98 even = ((u & 1) == 0);
99 sign = 2 * (u_last > 0) - 1;
100 u += sign * even;
101 u_last -= sign * even * (1 << w);
102
103 /* 4.3, adapted for global sign change */
104 wnaf[word++] = u_last * global_sign;
105
106 u_last = u;
107 }
108 wnaf[word] = u * global_sign;
109
110 VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
111 VERIFY_CHECK(word == WNAF_SIZE(w));
92e53fc4 112 return skew;
44015000
AP
113}
114
115
dd891e0e
PW
116static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
117 secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
118 secp256k1_ge tmpa;
119 secp256k1_fe Z;
44015000 120
c6191fde
AP
121 int skew_1;
122 int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
92e53fc4 123#ifdef USE_ENDOMORPHISM
dd891e0e 124 secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
92e53fc4 125 int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
92e53fc4 126 int skew_lam;
dd891e0e 127 secp256k1_scalar q_1, q_lam;
92e53fc4 128#endif
44015000
AP
129
130 int i;
dd891e0e 131 secp256k1_scalar sc = *scalar;
92e53fc4
AP
132
133 /* build wnaf representation for q. */
134#ifdef USE_ENDOMORPHISM
135 /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
136 secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
92e53fc4
AP
137 skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
138 skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
139#else
c6191fde 140 skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
92e53fc4 141#endif
44015000
AP
142
143 /* Calculate odd multiples of a.
144 * All multiples are brought to the same Z 'denominator', which is stored
145 * in Z. Due to secp256k1' isomorphism we can do all operations pretending
146 * that the Z coordinate was 1, use affine addition formulae, and correct
147 * the Z coordinate of the result once at the end.
148 */
149 secp256k1_gej_set_ge(r, a);
150 secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
72ae443a
PD
151 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
152 secp256k1_fe_normalize_weak(&pre_a[i].y);
153 }
92e53fc4
AP
154#ifdef USE_ENDOMORPHISM
155 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
156 secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
157 }
158#endif
44015000
AP
159
160 /* first loop iteration (separated out so we can directly set r, rather
161 * than having it start at infinity, get doubled several times, then have
162 * its new value added to it) */
92e53fc4
AP
163 i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
164 VERIFY_CHECK(i != 0);
165 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
166 secp256k1_gej_set_ge(r, &tmpa);
c6191fde 167#ifdef USE_ENDOMORPHISM
92e53fc4
AP
168 i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
169 VERIFY_CHECK(i != 0);
170 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
171 secp256k1_gej_add_ge(r, r, &tmpa);
92e53fc4 172#endif
44015000
AP
173 /* remaining loop iterations */
174 for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
175 int n;
176 int j;
177 for (j = 0; j < WINDOW_A - 1; ++j) {
178 secp256k1_gej_double_nonzero(r, r, NULL);
179 }
c6191fde 180
92e53fc4
AP
181 n = wnaf_1[i];
182 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
183 VERIFY_CHECK(n != 0);
184 secp256k1_gej_add_ge(r, r, &tmpa);
c6191fde 185#ifdef USE_ENDOMORPHISM
92e53fc4
AP
186 n = wnaf_lam[i];
187 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
188 VERIFY_CHECK(n != 0);
189 secp256k1_gej_add_ge(r, r, &tmpa);
92e53fc4 190#endif
44015000
AP
191 }
192
193 secp256k1_fe_mul(&r->z, &r->z, &Z);
194
92e53fc4
AP
195 {
196 /* Correct for wNAF skew */
dd891e0e
PW
197 secp256k1_ge correction = *a;
198 secp256k1_ge_storage correction_1_stor;
c6191fde 199#ifdef USE_ENDOMORPHISM
dd891e0e 200 secp256k1_ge_storage correction_lam_stor;
c6191fde 201#endif
dd891e0e
PW
202 secp256k1_ge_storage a2_stor;
203 secp256k1_gej tmpj;
92e53fc4
AP
204 secp256k1_gej_set_ge(&tmpj, &correction);
205 secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
206 secp256k1_ge_set_gej(&correction, &tmpj);
207 secp256k1_ge_to_storage(&correction_1_stor, a);
c6191fde 208#ifdef USE_ENDOMORPHISM
92e53fc4 209 secp256k1_ge_to_storage(&correction_lam_stor, a);
c6191fde 210#endif
92e53fc4
AP
211 secp256k1_ge_to_storage(&a2_stor, &correction);
212
213 /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
214 secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
c6191fde 215#ifdef USE_ENDOMORPHISM
92e53fc4 216 secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
c6191fde 217#endif
92e53fc4
AP
218
219 /* Apply the correction */
220 secp256k1_ge_from_storage(&correction, &correction_1_stor);
221 secp256k1_ge_neg(&correction, &correction);
222 secp256k1_gej_add_ge(r, r, &correction);
223
c6191fde 224#ifdef USE_ENDOMORPHISM
92e53fc4
AP
225 secp256k1_ge_from_storage(&correction, &correction_lam_stor);
226 secp256k1_ge_neg(&correction, &correction);
227 secp256k1_ge_mul_lambda(&correction, &correction);
228 secp256k1_gej_add_ge(r, r, &correction);
92e53fc4 229#endif
c6191fde 230 }
44015000
AP
231}
232
abe2d3e8 233#endif /* SECP256K1_ECMULT_CONST_IMPL_H */
This page took 0.051847 seconds and 4 git commands to generate.