]>
Commit | Line | Data |
---|---|---|
44015000 AP |
1 | /********************************************************************** |
2 | * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra * | |
3 | * Distributed under the MIT software license, see the accompanying * | |
4 | * file COPYING or http://www.opensource.org/licenses/mit-license.php.* | |
5 | **********************************************************************/ | |
6 | ||
7 | #ifndef _SECP256K1_ECMULT_CONST_IMPL_ | |
8 | #define _SECP256K1_ECMULT_CONST_IMPL_ | |
9 | ||
10 | #include "scalar.h" | |
11 | #include "group.h" | |
12 | #include "ecmult_const.h" | |
13 | #include "ecmult_impl.h" | |
14 | ||
15 | #define WNAF_BITS 256 | |
16 | #define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w)) | |
17 | ||
18 | /* This is like `ECMULT_TABLE_GET_GE` but is constant time */ | |
19 | #define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \ | |
20 | int m; \ | |
21 | int abs_n = (n) * (((n) > 0) * 2 - 1); \ | |
22 | secp256k1_fe_t neg_y; \ | |
23 | VERIFY_CHECK(((n) & 1) == 1); \ | |
24 | VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \ | |
25 | VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \ | |
26 | for (m = 1; m < (1 << ((w) - 1)); m += 2) { \ | |
27 | /* This loop is used to avoid secret data in array indices. See | |
28 | * the comment in ecmult_gen_impl.h for rationale. */ \ | |
29 | secp256k1_fe_cmov(&(r)->x, &(pre)[(m - 1) / 2].x, m == abs_n); \ | |
30 | secp256k1_fe_cmov(&(r)->y, &(pre)[(m - 1) / 2].y, m == abs_n); \ | |
31 | } \ | |
32 | (r)->infinity = 0; \ | |
33 | secp256k1_fe_normalize_weak(&(r)->x); \ | |
34 | secp256k1_fe_normalize_weak(&(r)->y); \ | |
35 | secp256k1_fe_negate(&neg_y, &(r)->y, 1); \ | |
36 | secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \ | |
37 | } while(0) | |
38 | ||
39 | ||
40 | /** Convert a number to WNAF notation. The number becomes represented by sum(2^{wi} * wnaf[i], i=0..return_val) | |
41 | * with the following guarantees: | |
42 | * - each wnaf[i] an odd integer between -(1 << w) and (1 << w) | |
43 | * - each wnaf[i] is nonzero | |
44 | * - the number of words set is returned; this is always (WNAF_BITS + w - 1) / w | |
45 | * | |
46 | * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar | |
47 | * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.) | |
48 | * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003 | |
49 | * | |
50 | * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335 | |
51 | */ | |
52 | static void secp256k1_wnaf_const(int *wnaf, const secp256k1_scalar_t *a, int w) { | |
53 | secp256k1_scalar_t s = *a; | |
54 | /* Negate to force oddness */ | |
55 | int is_even = secp256k1_scalar_is_even(&s); | |
56 | int global_sign = secp256k1_scalar_cond_negate(&s, is_even); | |
57 | ||
58 | int word = 0; | |
59 | /* 1 2 3 */ | |
60 | int u_last = secp256k1_scalar_shr_int(&s, w); | |
61 | int u; | |
62 | /* 4 */ | |
63 | while (word * w < WNAF_BITS) { | |
64 | int sign; | |
65 | int even; | |
66 | ||
67 | /* 4.1 4.4 */ | |
68 | u = secp256k1_scalar_shr_int(&s, w); | |
69 | /* 4.2 */ | |
70 | even = ((u & 1) == 0); | |
71 | sign = 2 * (u_last > 0) - 1; | |
72 | u += sign * even; | |
73 | u_last -= sign * even * (1 << w); | |
74 | ||
75 | /* 4.3, adapted for global sign change */ | |
76 | wnaf[word++] = u_last * global_sign; | |
77 | ||
78 | u_last = u; | |
79 | } | |
80 | wnaf[word] = u * global_sign; | |
81 | ||
82 | VERIFY_CHECK(secp256k1_scalar_is_zero(&s)); | |
83 | VERIFY_CHECK(word == WNAF_SIZE(w)); | |
84 | } | |
85 | ||
86 | ||
87 | static void secp256k1_ecmult_const(secp256k1_gej_t *r, const secp256k1_ge_t *a, const secp256k1_scalar_t *scalar) { | |
88 | secp256k1_ge_t pre_a[ECMULT_TABLE_SIZE(WINDOW_A)]; | |
89 | secp256k1_ge_t tmpa; | |
90 | secp256k1_fe_t Z; | |
91 | ||
92 | int wnaf[1 + WNAF_SIZE(WINDOW_A - 1)]; | |
93 | ||
94 | int i; | |
95 | int is_zero = secp256k1_scalar_is_zero(scalar); | |
96 | secp256k1_scalar_t sc = *scalar; | |
97 | /* the wNAF ladder cannot handle zero, so bump this to one .. we will | |
98 | * correct the result after the fact */ | |
99 | sc.d[0] += is_zero; | |
100 | ||
101 | /* build wnaf representation for q. */ | |
102 | secp256k1_wnaf_const(wnaf, &sc, WINDOW_A - 1); | |
103 | ||
104 | /* Calculate odd multiples of a. | |
105 | * All multiples are brought to the same Z 'denominator', which is stored | |
106 | * in Z. Due to secp256k1' isomorphism we can do all operations pretending | |
107 | * that the Z coordinate was 1, use affine addition formulae, and correct | |
108 | * the Z coordinate of the result once at the end. | |
109 | */ | |
110 | secp256k1_gej_set_ge(r, a); | |
111 | secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r); | |
112 | ||
113 | /* first loop iteration (separated out so we can directly set r, rather | |
114 | * than having it start at infinity, get doubled several times, then have | |
115 | * its new value added to it) */ | |
116 | i = wnaf[WNAF_SIZE(WINDOW_A - 1)]; | |
117 | VERIFY_CHECK(i != 0); | |
118 | ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A); | |
119 | secp256k1_gej_set_ge(r, &tmpa); | |
120 | /* remaining loop iterations */ | |
121 | for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) { | |
122 | int n; | |
123 | int j; | |
124 | for (j = 0; j < WINDOW_A - 1; ++j) { | |
125 | secp256k1_gej_double_nonzero(r, r, NULL); | |
126 | } | |
127 | n = wnaf[i]; | |
128 | VERIFY_CHECK(n != 0); | |
129 | ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A); | |
130 | secp256k1_gej_add_ge(r, r, &tmpa); | |
131 | } | |
132 | ||
133 | secp256k1_fe_mul(&r->z, &r->z, &Z); | |
134 | ||
135 | /* correct for zero */ | |
136 | r->infinity |= is_zero; | |
137 | } | |
138 | ||
139 | #endif |