]> Git Repo - secp256k1.git/blame - src/ecmult_const_impl.h
Merge #459: Add pubkey prefix constants to include/secp256k1.h
[secp256k1.git] / src / ecmult_const_impl.h
CommitLineData
44015000
AP
1/**********************************************************************
2 * Copyright (c) 2015 Pieter Wuille, Andrew Poelstra *
3 * Distributed under the MIT software license, see the accompanying *
4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
5 **********************************************************************/
6
7#ifndef _SECP256K1_ECMULT_CONST_IMPL_
8#define _SECP256K1_ECMULT_CONST_IMPL_
9
10#include "scalar.h"
11#include "group.h"
12#include "ecmult_const.h"
13#include "ecmult_impl.h"
14
92e53fc4
AP
15#ifdef USE_ENDOMORPHISM
16 #define WNAF_BITS 128
17#else
18 #define WNAF_BITS 256
19#endif
44015000
AP
20#define WNAF_SIZE(w) ((WNAF_BITS + (w) - 1) / (w))
21
22/* This is like `ECMULT_TABLE_GET_GE` but is constant time */
23#define ECMULT_CONST_TABLE_GET_GE(r,pre,n,w) do { \
24 int m; \
25 int abs_n = (n) * (((n) > 0) * 2 - 1); \
72ae443a 26 int idx_n = abs_n / 2; \
dd891e0e 27 secp256k1_fe neg_y; \
44015000
AP
28 VERIFY_CHECK(((n) & 1) == 1); \
29 VERIFY_CHECK((n) >= -((1 << ((w)-1)) - 1)); \
30 VERIFY_CHECK((n) <= ((1 << ((w)-1)) - 1)); \
72ae443a
PD
31 VERIFY_SETUP(secp256k1_fe_clear(&(r)->x)); \
32 VERIFY_SETUP(secp256k1_fe_clear(&(r)->y)); \
33 for (m = 0; m < ECMULT_TABLE_SIZE(w); m++) { \
44015000
AP
34 /* This loop is used to avoid secret data in array indices. See
35 * the comment in ecmult_gen_impl.h for rationale. */ \
72ae443a
PD
36 secp256k1_fe_cmov(&(r)->x, &(pre)[m].x, m == idx_n); \
37 secp256k1_fe_cmov(&(r)->y, &(pre)[m].y, m == idx_n); \
44015000
AP
38 } \
39 (r)->infinity = 0; \
44015000
AP
40 secp256k1_fe_negate(&neg_y, &(r)->y, 1); \
41 secp256k1_fe_cmov(&(r)->y, &neg_y, (n) != abs_n); \
42} while(0)
43
44
768514ba
JN
45/** Convert a number to WNAF notation.
46 * The number becomes represented by sum(2^{wi} * wnaf[i], i=0..WNAF_SIZE(w)+1) - return_val.
47 * It has the following guarantees:
44015000
AP
48 * - each wnaf[i] an odd integer between -(1 << w) and (1 << w)
49 * - each wnaf[i] is nonzero
768514ba 50 * - the number of words set is always WNAF_SIZE(w) + 1
44015000
AP
51 *
52 * Adapted from `The Width-w NAF Method Provides Small Memory and Fast Elliptic Scalar
53 * Multiplications Secure against Side Channel Attacks`, Okeya and Tagaki. M. Joye (Ed.)
54 * CT-RSA 2003, LNCS 2612, pp. 328-443, 2003. Springer-Verlagy Berlin Heidelberg 2003
55 *
56 * Numbers reference steps of `Algorithm SPA-resistant Width-w NAF with Odd Scalar` on pp. 335
57 */
dd891e0e 58static int secp256k1_wnaf_const(int *wnaf, secp256k1_scalar s, int w) {
cfe0ed91 59 int global_sign;
92e53fc4 60 int skew = 0;
44015000 61 int word = 0;
c6191fde 62
44015000 63 /* 1 2 3 */
92e53fc4 64 int u_last;
44015000 65 int u;
92e53fc4 66
cfe0ed91
GM
67 int flip;
68 int bit;
69 secp256k1_scalar neg_s;
70 int not_neg_one;
c6191fde
AP
71 /* Note that we cannot handle even numbers by negating them to be odd, as is
72 * done in other implementations, since if our scalars were specified to have
73 * width < 256 for performance reasons, their negations would have width 256
74 * and we'd lose any performance benefit. Instead, we use a technique from
92e53fc4 75 * Section 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for even)
c6191fde
AP
76 * or 2 (for odd) to the number we are encoding, returning a skew value indicating
77 * this, and having the caller compensate after doing the multiplication. */
78
79 /* Negative numbers will be negated to keep their bit representation below the maximum width */
cfe0ed91 80 flip = secp256k1_scalar_is_high(&s);
92e53fc4 81 /* We add 1 to even numbers, 2 to odd ones, noting that negation flips parity */
83836a95 82 bit = flip ^ !secp256k1_scalar_is_even(&s);
92e53fc4 83 /* We check for negative one, since adding 2 to it will cause an overflow */
92e53fc4
AP
84 secp256k1_scalar_negate(&neg_s, &s);
85 not_neg_one = !secp256k1_scalar_is_one(&neg_s);
86 secp256k1_scalar_cadd_bit(&s, bit, not_neg_one);
87 /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so caller expects
88 * that we added two to it and flipped it. In fact for -1 these operations are
89 * identical. We only flipped, but since skewing is required (in the sense that
90 * the skew must be 1 or 2, never zero) and flipping is not, we need to change
91 * our flags to claim that we only skewed. */
92 global_sign = secp256k1_scalar_cond_negate(&s, flip);
93 global_sign *= not_neg_one * 2 - 1;
94 skew = 1 << bit;
92e53fc4 95
44015000 96 /* 4 */
92e53fc4 97 u_last = secp256k1_scalar_shr_int(&s, w);
44015000
AP
98 while (word * w < WNAF_BITS) {
99 int sign;
100 int even;
101
102 /* 4.1 4.4 */
103 u = secp256k1_scalar_shr_int(&s, w);
104 /* 4.2 */
105 even = ((u & 1) == 0);
106 sign = 2 * (u_last > 0) - 1;
107 u += sign * even;
108 u_last -= sign * even * (1 << w);
109
110 /* 4.3, adapted for global sign change */
111 wnaf[word++] = u_last * global_sign;
112
113 u_last = u;
114 }
115 wnaf[word] = u * global_sign;
116
117 VERIFY_CHECK(secp256k1_scalar_is_zero(&s));
118 VERIFY_CHECK(word == WNAF_SIZE(w));
92e53fc4 119 return skew;
44015000
AP
120}
121
122
dd891e0e
PW
123static void secp256k1_ecmult_const(secp256k1_gej *r, const secp256k1_ge *a, const secp256k1_scalar *scalar) {
124 secp256k1_ge pre_a[ECMULT_TABLE_SIZE(WINDOW_A)];
125 secp256k1_ge tmpa;
126 secp256k1_fe Z;
44015000 127
c6191fde
AP
128 int skew_1;
129 int wnaf_1[1 + WNAF_SIZE(WINDOW_A - 1)];
92e53fc4 130#ifdef USE_ENDOMORPHISM
dd891e0e 131 secp256k1_ge pre_a_lam[ECMULT_TABLE_SIZE(WINDOW_A)];
92e53fc4 132 int wnaf_lam[1 + WNAF_SIZE(WINDOW_A - 1)];
92e53fc4 133 int skew_lam;
dd891e0e 134 secp256k1_scalar q_1, q_lam;
92e53fc4 135#endif
44015000
AP
136
137 int i;
dd891e0e 138 secp256k1_scalar sc = *scalar;
92e53fc4
AP
139
140 /* build wnaf representation for q. */
141#ifdef USE_ENDOMORPHISM
142 /* split q into q_1 and q_lam (where q = q_1 + q_lam*lambda, and q_1 and q_lam are ~128 bit) */
143 secp256k1_scalar_split_lambda(&q_1, &q_lam, &sc);
92e53fc4
AP
144 skew_1 = secp256k1_wnaf_const(wnaf_1, q_1, WINDOW_A - 1);
145 skew_lam = secp256k1_wnaf_const(wnaf_lam, q_lam, WINDOW_A - 1);
146#else
c6191fde 147 skew_1 = secp256k1_wnaf_const(wnaf_1, sc, WINDOW_A - 1);
92e53fc4 148#endif
44015000
AP
149
150 /* Calculate odd multiples of a.
151 * All multiples are brought to the same Z 'denominator', which is stored
152 * in Z. Due to secp256k1' isomorphism we can do all operations pretending
153 * that the Z coordinate was 1, use affine addition formulae, and correct
154 * the Z coordinate of the result once at the end.
155 */
156 secp256k1_gej_set_ge(r, a);
157 secp256k1_ecmult_odd_multiples_table_globalz_windowa(pre_a, &Z, r);
72ae443a
PD
158 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
159 secp256k1_fe_normalize_weak(&pre_a[i].y);
160 }
92e53fc4
AP
161#ifdef USE_ENDOMORPHISM
162 for (i = 0; i < ECMULT_TABLE_SIZE(WINDOW_A); i++) {
163 secp256k1_ge_mul_lambda(&pre_a_lam[i], &pre_a[i]);
164 }
165#endif
44015000
AP
166
167 /* first loop iteration (separated out so we can directly set r, rather
168 * than having it start at infinity, get doubled several times, then have
169 * its new value added to it) */
92e53fc4
AP
170 i = wnaf_1[WNAF_SIZE(WINDOW_A - 1)];
171 VERIFY_CHECK(i != 0);
172 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, i, WINDOW_A);
173 secp256k1_gej_set_ge(r, &tmpa);
c6191fde 174#ifdef USE_ENDOMORPHISM
92e53fc4
AP
175 i = wnaf_lam[WNAF_SIZE(WINDOW_A - 1)];
176 VERIFY_CHECK(i != 0);
177 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, i, WINDOW_A);
178 secp256k1_gej_add_ge(r, r, &tmpa);
92e53fc4 179#endif
44015000
AP
180 /* remaining loop iterations */
181 for (i = WNAF_SIZE(WINDOW_A - 1) - 1; i >= 0; i--) {
182 int n;
183 int j;
184 for (j = 0; j < WINDOW_A - 1; ++j) {
185 secp256k1_gej_double_nonzero(r, r, NULL);
186 }
c6191fde 187
92e53fc4
AP
188 n = wnaf_1[i];
189 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a, n, WINDOW_A);
190 VERIFY_CHECK(n != 0);
191 secp256k1_gej_add_ge(r, r, &tmpa);
c6191fde 192#ifdef USE_ENDOMORPHISM
92e53fc4
AP
193 n = wnaf_lam[i];
194 ECMULT_CONST_TABLE_GET_GE(&tmpa, pre_a_lam, n, WINDOW_A);
195 VERIFY_CHECK(n != 0);
196 secp256k1_gej_add_ge(r, r, &tmpa);
92e53fc4 197#endif
44015000
AP
198 }
199
200 secp256k1_fe_mul(&r->z, &r->z, &Z);
201
92e53fc4
AP
202 {
203 /* Correct for wNAF skew */
dd891e0e
PW
204 secp256k1_ge correction = *a;
205 secp256k1_ge_storage correction_1_stor;
c6191fde 206#ifdef USE_ENDOMORPHISM
dd891e0e 207 secp256k1_ge_storage correction_lam_stor;
c6191fde 208#endif
dd891e0e
PW
209 secp256k1_ge_storage a2_stor;
210 secp256k1_gej tmpj;
92e53fc4
AP
211 secp256k1_gej_set_ge(&tmpj, &correction);
212 secp256k1_gej_double_var(&tmpj, &tmpj, NULL);
213 secp256k1_ge_set_gej(&correction, &tmpj);
214 secp256k1_ge_to_storage(&correction_1_stor, a);
c6191fde 215#ifdef USE_ENDOMORPHISM
92e53fc4 216 secp256k1_ge_to_storage(&correction_lam_stor, a);
c6191fde 217#endif
92e53fc4
AP
218 secp256k1_ge_to_storage(&a2_stor, &correction);
219
220 /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
221 secp256k1_ge_storage_cmov(&correction_1_stor, &a2_stor, skew_1 == 2);
c6191fde 222#ifdef USE_ENDOMORPHISM
92e53fc4 223 secp256k1_ge_storage_cmov(&correction_lam_stor, &a2_stor, skew_lam == 2);
c6191fde 224#endif
92e53fc4
AP
225
226 /* Apply the correction */
227 secp256k1_ge_from_storage(&correction, &correction_1_stor);
228 secp256k1_ge_neg(&correction, &correction);
229 secp256k1_gej_add_ge(r, r, &correction);
230
c6191fde 231#ifdef USE_ENDOMORPHISM
92e53fc4
AP
232 secp256k1_ge_from_storage(&correction, &correction_lam_stor);
233 secp256k1_ge_neg(&correction, &correction);
234 secp256k1_ge_mul_lambda(&correction, &correction);
235 secp256k1_gej_add_ge(r, r, &correction);
92e53fc4 236#endif
c6191fde 237 }
44015000
AP
238}
239
240#endif
This page took 0.050768 seconds and 4 git commands to generate.