]> Git Repo - qemu.git/blob - target/arm/cpu.c
target/arm: Track the state of our irq lines from the GIC explicitly
[qemu.git] / target / arm / cpu.c
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "cpu.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
32 #endif
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
36 #include "kvm_arm.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
39
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
41 {
42     ARMCPU *cpu = ARM_CPU(cs);
43
44     cpu->env.regs[15] = value;
45 }
46
47 static bool arm_cpu_has_work(CPUState *cs)
48 {
49     ARMCPU *cpu = ARM_CPU(cs);
50
51     return (cpu->power_state != PSCI_OFF)
52         && cs->interrupt_request &
53         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55          | CPU_INTERRUPT_EXITTB);
56 }
57
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
59                                  void *opaque)
60 {
61     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
62
63     entry->hook = hook;
64     entry->opaque = opaque;
65
66     QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
67 }
68
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
70                                  void *opaque)
71 {
72     ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
73
74     entry->hook = hook;
75     entry->opaque = opaque;
76
77     QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
78 }
79
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
81 {
82     /* Reset a single ARMCPRegInfo register */
83     ARMCPRegInfo *ri = value;
84     ARMCPU *cpu = opaque;
85
86     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
87         return;
88     }
89
90     if (ri->resetfn) {
91         ri->resetfn(&cpu->env, ri);
92         return;
93     }
94
95     /* A zero offset is never possible as it would be regs[0]
96      * so we use it to indicate that reset is being handled elsewhere.
97      * This is basically only used for fields in non-core coprocessors
98      * (like the pxa2xx ones).
99      */
100     if (!ri->fieldoffset) {
101         return;
102     }
103
104     if (cpreg_field_is_64bit(ri)) {
105         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
106     } else {
107         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
108     }
109 }
110
111 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
112 {
113     /* Purely an assertion check: we've already done reset once,
114      * so now check that running the reset for the cpreg doesn't
115      * change its value. This traps bugs where two different cpregs
116      * both try to reset the same state field but to different values.
117      */
118     ARMCPRegInfo *ri = value;
119     ARMCPU *cpu = opaque;
120     uint64_t oldvalue, newvalue;
121
122     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
123         return;
124     }
125
126     oldvalue = read_raw_cp_reg(&cpu->env, ri);
127     cp_reg_reset(key, value, opaque);
128     newvalue = read_raw_cp_reg(&cpu->env, ri);
129     assert(oldvalue == newvalue);
130 }
131
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
134 {
135     ARMCPU *cpu = ARM_CPU(s);
136     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137     CPUARMState *env = &cpu->env;
138
139     acc->parent_reset(s);
140
141     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
142
143     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
145
146     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
150
151     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152     s->halted = cpu->start_powered_off;
153
154     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
156     }
157
158     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159         /* 64 bit CPUs always start in 64 bit mode */
160         env->aarch64 = 1;
161 #if defined(CONFIG_USER_ONLY)
162         env->pstate = PSTATE_MODE_EL0t;
163         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165         /* and to the FP/Neon instructions */
166         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167         /* and to the SVE instructions */
168         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169         env->cp15.cptr_el[3] |= CPTR_EZ;
170         /* with maximum vector length */
171         env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172         env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173         env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
174 #else
175         /* Reset into the highest available EL */
176         if (arm_feature(env, ARM_FEATURE_EL3)) {
177             env->pstate = PSTATE_MODE_EL3h;
178         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179             env->pstate = PSTATE_MODE_EL2h;
180         } else {
181             env->pstate = PSTATE_MODE_EL1h;
182         }
183         env->pc = cpu->rvbar;
184 #endif
185     } else {
186 #if defined(CONFIG_USER_ONLY)
187         /* Userspace expects access to cp10 and cp11 for FP/Neon */
188         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
189 #endif
190     }
191
192 #if defined(CONFIG_USER_ONLY)
193     env->uncached_cpsr = ARM_CPU_MODE_USR;
194     /* For user mode we must enable access to coprocessors */
195     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197         env->cp15.c15_cpar = 3;
198     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199         env->cp15.c15_cpar = 1;
200     }
201 #else
202
203     /*
204      * If the highest available EL is EL2, AArch32 will start in Hyp
205      * mode; otherwise it starts in SVC. Note that if we start in
206      * AArch64 then these values in the uncached_cpsr will be ignored.
207      */
208     if (arm_feature(env, ARM_FEATURE_EL2) &&
209         !arm_feature(env, ARM_FEATURE_EL3)) {
210         env->uncached_cpsr = ARM_CPU_MODE_HYP;
211     } else {
212         env->uncached_cpsr = ARM_CPU_MODE_SVC;
213     }
214     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
215
216     if (arm_feature(env, ARM_FEATURE_M)) {
217         uint32_t initial_msp; /* Loaded from 0x0 */
218         uint32_t initial_pc; /* Loaded from 0x4 */
219         uint8_t *rom;
220         uint32_t vecbase;
221
222         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223             env->v7m.secure = true;
224         } else {
225             /* This bit resets to 0 if security is supported, but 1 if
226              * it is not. The bit is not present in v7M, but we set it
227              * here so we can avoid having to make checks on it conditional
228              * on ARM_FEATURE_V8 (we don't let the guest see the bit).
229              */
230             env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
231         }
232
233         /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234          * that it resets to 1, so QEMU always does that rather than making
235          * it dependent on CPU model. In v8M it is RES1.
236          */
237         env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238         env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239         if (arm_feature(env, ARM_FEATURE_V8)) {
240             /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
243         }
244         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245             env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246             env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
247         }
248
249         /* Unlike A/R profile, M profile defines the reset LR value */
250         env->regs[14] = 0xffffffff;
251
252         env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
253
254         /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255         vecbase = env->v7m.vecbase[env->v7m.secure];
256         rom = rom_ptr(vecbase, 8);
257         if (rom) {
258             /* Address zero is covered by ROM which hasn't yet been
259              * copied into physical memory.
260              */
261             initial_msp = ldl_p(rom);
262             initial_pc = ldl_p(rom + 4);
263         } else {
264             /* Address zero not covered by a ROM blob, or the ROM blob
265              * is in non-modifiable memory and this is a second reset after
266              * it got copied into memory. In the latter case, rom_ptr
267              * will return a NULL pointer and we should use ldl_phys instead.
268              */
269             initial_msp = ldl_phys(s->as, vecbase);
270             initial_pc = ldl_phys(s->as, vecbase + 4);
271         }
272
273         env->regs[13] = initial_msp & 0xFFFFFFFC;
274         env->regs[15] = initial_pc & ~1;
275         env->thumb = initial_pc & 1;
276     }
277
278     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
279      * executing as AArch32 then check if highvecs are enabled and
280      * adjust the PC accordingly.
281      */
282     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283         env->regs[15] = 0xFFFF0000;
284     }
285
286     /* M profile requires that reset clears the exclusive monitor;
287      * A profile does not, but clearing it makes more sense than having it
288      * set with an exclusive access on address zero.
289      */
290     arm_clear_exclusive(env);
291
292     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
293 #endif
294
295     if (arm_feature(env, ARM_FEATURE_PMSA)) {
296         if (cpu->pmsav7_dregion > 0) {
297             if (arm_feature(env, ARM_FEATURE_V8)) {
298                 memset(env->pmsav8.rbar[M_REG_NS], 0,
299                        sizeof(*env->pmsav8.rbar[M_REG_NS])
300                        * cpu->pmsav7_dregion);
301                 memset(env->pmsav8.rlar[M_REG_NS], 0,
302                        sizeof(*env->pmsav8.rlar[M_REG_NS])
303                        * cpu->pmsav7_dregion);
304                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305                     memset(env->pmsav8.rbar[M_REG_S], 0,
306                            sizeof(*env->pmsav8.rbar[M_REG_S])
307                            * cpu->pmsav7_dregion);
308                     memset(env->pmsav8.rlar[M_REG_S], 0,
309                            sizeof(*env->pmsav8.rlar[M_REG_S])
310                            * cpu->pmsav7_dregion);
311                 }
312             } else if (arm_feature(env, ARM_FEATURE_V7)) {
313                 memset(env->pmsav7.drbar, 0,
314                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315                 memset(env->pmsav7.drsr, 0,
316                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317                 memset(env->pmsav7.dracr, 0,
318                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
319             }
320         }
321         env->pmsav7.rnr[M_REG_NS] = 0;
322         env->pmsav7.rnr[M_REG_S] = 0;
323         env->pmsav8.mair0[M_REG_NS] = 0;
324         env->pmsav8.mair0[M_REG_S] = 0;
325         env->pmsav8.mair1[M_REG_NS] = 0;
326         env->pmsav8.mair1[M_REG_S] = 0;
327     }
328
329     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330         if (cpu->sau_sregion > 0) {
331             memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332             memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
333         }
334         env->sau.rnr = 0;
335         /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336          * the Cortex-M33 does.
337          */
338         env->sau.ctrl = 0;
339     }
340
341     set_flush_to_zero(1, &env->vfp.standard_fp_status);
342     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343     set_default_nan_mode(1, &env->vfp.standard_fp_status);
344     set_float_detect_tininess(float_tininess_before_rounding,
345                               &env->vfp.fp_status);
346     set_float_detect_tininess(float_tininess_before_rounding,
347                               &env->vfp.standard_fp_status);
348     set_float_detect_tininess(float_tininess_before_rounding,
349                               &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
351     if (kvm_enabled()) {
352         kvm_arm_reset_vcpu(cpu);
353     }
354 #endif
355
356     hw_breakpoint_update_all(cpu);
357     hw_watchpoint_update_all(cpu);
358 }
359
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
361 {
362     CPUClass *cc = CPU_GET_CLASS(cs);
363     CPUARMState *env = cs->env_ptr;
364     uint32_t cur_el = arm_current_el(env);
365     bool secure = arm_is_secure(env);
366     uint32_t target_el;
367     uint32_t excp_idx;
368     bool ret = false;
369
370     if (interrupt_request & CPU_INTERRUPT_FIQ) {
371         excp_idx = EXCP_FIQ;
372         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374             cs->exception_index = excp_idx;
375             env->exception.target_el = target_el;
376             cc->do_interrupt(cs);
377             ret = true;
378         }
379     }
380     if (interrupt_request & CPU_INTERRUPT_HARD) {
381         excp_idx = EXCP_IRQ;
382         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384             cs->exception_index = excp_idx;
385             env->exception.target_el = target_el;
386             cc->do_interrupt(cs);
387             ret = true;
388         }
389     }
390     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391         excp_idx = EXCP_VIRQ;
392         target_el = 1;
393         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394             cs->exception_index = excp_idx;
395             env->exception.target_el = target_el;
396             cc->do_interrupt(cs);
397             ret = true;
398         }
399     }
400     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401         excp_idx = EXCP_VFIQ;
402         target_el = 1;
403         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404             cs->exception_index = excp_idx;
405             env->exception.target_el = target_el;
406             cc->do_interrupt(cs);
407             ret = true;
408         }
409     }
410
411     return ret;
412 }
413
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
416 {
417     CPUClass *cc = CPU_GET_CLASS(cs);
418     ARMCPU *cpu = ARM_CPU(cs);
419     CPUARMState *env = &cpu->env;
420     bool ret = false;
421
422     /* ARMv7-M interrupt masking works differently than -A or -R.
423      * There is no FIQ/IRQ distinction. Instead of I and F bits
424      * masking FIQ and IRQ interrupts, an exception is taken only
425      * if it is higher priority than the current execution priority
426      * (which depends on state like BASEPRI, FAULTMASK and the
427      * currently active exception).
428      */
429     if (interrupt_request & CPU_INTERRUPT_HARD
430         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431         cs->exception_index = EXCP_IRQ;
432         cc->do_interrupt(cs);
433         ret = true;
434     }
435     return ret;
436 }
437 #endif
438
439 #ifndef CONFIG_USER_ONLY
440 static void arm_cpu_set_irq(void *opaque, int irq, int level)
441 {
442     ARMCPU *cpu = opaque;
443     CPUARMState *env = &cpu->env;
444     CPUState *cs = CPU(cpu);
445     static const int mask[] = {
446         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
447         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
448         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
449         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
450     };
451
452     if (level) {
453         env->irq_line_state |= mask[irq];
454     } else {
455         env->irq_line_state &= ~mask[irq];
456     }
457
458     switch (irq) {
459     case ARM_CPU_VIRQ:
460     case ARM_CPU_VFIQ:
461         assert(arm_feature(env, ARM_FEATURE_EL2));
462         /* fall through */
463     case ARM_CPU_IRQ:
464     case ARM_CPU_FIQ:
465         if (level) {
466             cpu_interrupt(cs, mask[irq]);
467         } else {
468             cpu_reset_interrupt(cs, mask[irq]);
469         }
470         break;
471     default:
472         g_assert_not_reached();
473     }
474 }
475
476 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
477 {
478 #ifdef CONFIG_KVM
479     ARMCPU *cpu = opaque;
480     CPUARMState *env = &cpu->env;
481     CPUState *cs = CPU(cpu);
482     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
483     uint32_t linestate_bit;
484
485     switch (irq) {
486     case ARM_CPU_IRQ:
487         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
488         linestate_bit = CPU_INTERRUPT_HARD;
489         break;
490     case ARM_CPU_FIQ:
491         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
492         linestate_bit = CPU_INTERRUPT_FIQ;
493         break;
494     default:
495         g_assert_not_reached();
496     }
497
498     if (level) {
499         env->irq_line_state |= linestate_bit;
500     } else {
501         env->irq_line_state &= ~linestate_bit;
502     }
503
504     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
505     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
506 #endif
507 }
508
509 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
510 {
511     ARMCPU *cpu = ARM_CPU(cs);
512     CPUARMState *env = &cpu->env;
513
514     cpu_synchronize_state(cs);
515     return arm_cpu_data_is_big_endian(env);
516 }
517
518 #endif
519
520 static inline void set_feature(CPUARMState *env, int feature)
521 {
522     env->features |= 1ULL << feature;
523 }
524
525 static inline void unset_feature(CPUARMState *env, int feature)
526 {
527     env->features &= ~(1ULL << feature);
528 }
529
530 static int
531 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
532 {
533   return print_insn_arm(pc | 1, info);
534 }
535
536 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
537 {
538     ARMCPU *ac = ARM_CPU(cpu);
539     CPUARMState *env = &ac->env;
540     bool sctlr_b;
541
542     if (is_a64(env)) {
543         /* We might not be compiled with the A64 disassembler
544          * because it needs a C++ compiler. Leave print_insn
545          * unset in this case to use the caller default behaviour.
546          */
547 #if defined(CONFIG_ARM_A64_DIS)
548         info->print_insn = print_insn_arm_a64;
549 #endif
550         info->cap_arch = CS_ARCH_ARM64;
551         info->cap_insn_unit = 4;
552         info->cap_insn_split = 4;
553     } else {
554         int cap_mode;
555         if (env->thumb) {
556             info->print_insn = print_insn_thumb1;
557             info->cap_insn_unit = 2;
558             info->cap_insn_split = 4;
559             cap_mode = CS_MODE_THUMB;
560         } else {
561             info->print_insn = print_insn_arm;
562             info->cap_insn_unit = 4;
563             info->cap_insn_split = 4;
564             cap_mode = CS_MODE_ARM;
565         }
566         if (arm_feature(env, ARM_FEATURE_V8)) {
567             cap_mode |= CS_MODE_V8;
568         }
569         if (arm_feature(env, ARM_FEATURE_M)) {
570             cap_mode |= CS_MODE_MCLASS;
571         }
572         info->cap_arch = CS_ARCH_ARM;
573         info->cap_mode = cap_mode;
574     }
575
576     sctlr_b = arm_sctlr_b(env);
577     if (bswap_code(sctlr_b)) {
578 #ifdef TARGET_WORDS_BIGENDIAN
579         info->endian = BFD_ENDIAN_LITTLE;
580 #else
581         info->endian = BFD_ENDIAN_BIG;
582 #endif
583     }
584     info->flags &= ~INSN_ARM_BE32;
585 #ifndef CONFIG_USER_ONLY
586     if (sctlr_b) {
587         info->flags |= INSN_ARM_BE32;
588     }
589 #endif
590 }
591
592 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
593 {
594     uint32_t Aff1 = idx / clustersz;
595     uint32_t Aff0 = idx % clustersz;
596     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
597 }
598
599 static void arm_cpu_initfn(Object *obj)
600 {
601     CPUState *cs = CPU(obj);
602     ARMCPU *cpu = ARM_CPU(obj);
603
604     cs->env_ptr = &cpu->env;
605     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
606                                          g_free, g_free);
607
608     QLIST_INIT(&cpu->pre_el_change_hooks);
609     QLIST_INIT(&cpu->el_change_hooks);
610
611 #ifndef CONFIG_USER_ONLY
612     /* Our inbound IRQ and FIQ lines */
613     if (kvm_enabled()) {
614         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
615          * the same interface as non-KVM CPUs.
616          */
617         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
618     } else {
619         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
620     }
621
622     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
623                                                 arm_gt_ptimer_cb, cpu);
624     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
625                                                 arm_gt_vtimer_cb, cpu);
626     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
627                                                 arm_gt_htimer_cb, cpu);
628     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
629                                                 arm_gt_stimer_cb, cpu);
630     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
631                        ARRAY_SIZE(cpu->gt_timer_outputs));
632
633     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
634                              "gicv3-maintenance-interrupt", 1);
635     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
636                              "pmu-interrupt", 1);
637 #endif
638
639     /* DTB consumers generally don't in fact care what the 'compatible'
640      * string is, so always provide some string and trust that a hypothetical
641      * picky DTB consumer will also provide a helpful error message.
642      */
643     cpu->dtb_compatible = "qemu,unknown";
644     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
645     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
646
647     if (tcg_enabled()) {
648         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
649     }
650 }
651
652 static Property arm_cpu_reset_cbar_property =
653             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
654
655 static Property arm_cpu_reset_hivecs_property =
656             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
657
658 static Property arm_cpu_rvbar_property =
659             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
660
661 static Property arm_cpu_has_el2_property =
662             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
663
664 static Property arm_cpu_has_el3_property =
665             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
666
667 static Property arm_cpu_cfgend_property =
668             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
669
670 /* use property name "pmu" to match other archs and virt tools */
671 static Property arm_cpu_has_pmu_property =
672             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
673
674 static Property arm_cpu_has_mpu_property =
675             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
676
677 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
678  * because the CPU initfn will have already set cpu->pmsav7_dregion to
679  * the right value for that particular CPU type, and we don't want
680  * to override that with an incorrect constant value.
681  */
682 static Property arm_cpu_pmsav7_dregion_property =
683             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
684                                            pmsav7_dregion,
685                                            qdev_prop_uint32, uint32_t);
686
687 /* M profile: initial value of the Secure VTOR */
688 static Property arm_cpu_initsvtor_property =
689             DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
690
691 static void arm_cpu_post_init(Object *obj)
692 {
693     ARMCPU *cpu = ARM_CPU(obj);
694
695     /* M profile implies PMSA. We have to do this here rather than
696      * in realize with the other feature-implication checks because
697      * we look at the PMSA bit to see if we should add some properties.
698      */
699     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
700         set_feature(&cpu->env, ARM_FEATURE_PMSA);
701     }
702
703     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
704         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
705         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
706                                  &error_abort);
707     }
708
709     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
710         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
711                                  &error_abort);
712     }
713
714     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
715         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
716                                  &error_abort);
717     }
718
719     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
720         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
721          * prevent "has_el3" from existing on CPUs which cannot support EL3.
722          */
723         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
724                                  &error_abort);
725
726 #ifndef CONFIG_USER_ONLY
727         object_property_add_link(obj, "secure-memory",
728                                  TYPE_MEMORY_REGION,
729                                  (Object **)&cpu->secure_memory,
730                                  qdev_prop_allow_set_link_before_realize,
731                                  OBJ_PROP_LINK_STRONG,
732                                  &error_abort);
733 #endif
734     }
735
736     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
737         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
738                                  &error_abort);
739     }
740
741     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
742         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
743                                  &error_abort);
744     }
745
746     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
747         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
748                                  &error_abort);
749         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
750             qdev_property_add_static(DEVICE(obj),
751                                      &arm_cpu_pmsav7_dregion_property,
752                                      &error_abort);
753         }
754     }
755
756     if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
757         object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
758                                  qdev_prop_allow_set_link_before_realize,
759                                  OBJ_PROP_LINK_STRONG,
760                                  &error_abort);
761         qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
762                                  &error_abort);
763     }
764
765     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
766                              &error_abort);
767 }
768
769 static void arm_cpu_finalizefn(Object *obj)
770 {
771     ARMCPU *cpu = ARM_CPU(obj);
772     ARMELChangeHook *hook, *next;
773
774     g_hash_table_destroy(cpu->cp_regs);
775
776     QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
777         QLIST_REMOVE(hook, node);
778         g_free(hook);
779     }
780     QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
781         QLIST_REMOVE(hook, node);
782         g_free(hook);
783     }
784 }
785
786 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
787 {
788     CPUState *cs = CPU(dev);
789     ARMCPU *cpu = ARM_CPU(dev);
790     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
791     CPUARMState *env = &cpu->env;
792     int pagebits;
793     Error *local_err = NULL;
794     bool no_aa32 = false;
795
796     /* If we needed to query the host kernel for the CPU features
797      * then it's possible that might have failed in the initfn, but
798      * this is the first point where we can report it.
799      */
800     if (cpu->host_cpu_probe_failed) {
801         if (!kvm_enabled()) {
802             error_setg(errp, "The 'host' CPU type can only be used with KVM");
803         } else {
804             error_setg(errp, "Failed to retrieve host CPU features");
805         }
806         return;
807     }
808
809 #ifndef CONFIG_USER_ONLY
810     /* The NVIC and M-profile CPU are two halves of a single piece of
811      * hardware; trying to use one without the other is a command line
812      * error and will result in segfaults if not caught here.
813      */
814     if (arm_feature(env, ARM_FEATURE_M)) {
815         if (!env->nvic) {
816             error_setg(errp, "This board cannot be used with Cortex-M CPUs");
817             return;
818         }
819     } else {
820         if (env->nvic) {
821             error_setg(errp, "This board can only be used with Cortex-M CPUs");
822             return;
823         }
824     }
825 #endif
826
827     cpu_exec_realizefn(cs, &local_err);
828     if (local_err != NULL) {
829         error_propagate(errp, local_err);
830         return;
831     }
832
833     /* Some features automatically imply others: */
834     if (arm_feature(env, ARM_FEATURE_V8)) {
835         if (arm_feature(env, ARM_FEATURE_M)) {
836             set_feature(env, ARM_FEATURE_V7);
837         } else {
838             set_feature(env, ARM_FEATURE_V7VE);
839         }
840     }
841
842     /*
843      * There exist AArch64 cpus without AArch32 support.  When KVM
844      * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
845      * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
846      */
847     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
848         no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
849     }
850
851     if (arm_feature(env, ARM_FEATURE_V7VE)) {
852         /* v7 Virtualization Extensions. In real hardware this implies
853          * EL2 and also the presence of the Security Extensions.
854          * For QEMU, for backwards-compatibility we implement some
855          * CPUs or CPU configs which have no actual EL2 or EL3 but do
856          * include the various other features that V7VE implies.
857          * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
858          * Security Extensions is ARM_FEATURE_EL3.
859          */
860         assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
861         set_feature(env, ARM_FEATURE_LPAE);
862         set_feature(env, ARM_FEATURE_V7);
863     }
864     if (arm_feature(env, ARM_FEATURE_V7)) {
865         set_feature(env, ARM_FEATURE_VAPA);
866         set_feature(env, ARM_FEATURE_THUMB2);
867         set_feature(env, ARM_FEATURE_MPIDR);
868         if (!arm_feature(env, ARM_FEATURE_M)) {
869             set_feature(env, ARM_FEATURE_V6K);
870         } else {
871             set_feature(env, ARM_FEATURE_V6);
872         }
873
874         /* Always define VBAR for V7 CPUs even if it doesn't exist in
875          * non-EL3 configs. This is needed by some legacy boards.
876          */
877         set_feature(env, ARM_FEATURE_VBAR);
878     }
879     if (arm_feature(env, ARM_FEATURE_V6K)) {
880         set_feature(env, ARM_FEATURE_V6);
881         set_feature(env, ARM_FEATURE_MVFR);
882     }
883     if (arm_feature(env, ARM_FEATURE_V6)) {
884         set_feature(env, ARM_FEATURE_V5);
885         if (!arm_feature(env, ARM_FEATURE_M)) {
886             assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
887             set_feature(env, ARM_FEATURE_AUXCR);
888         }
889     }
890     if (arm_feature(env, ARM_FEATURE_V5)) {
891         set_feature(env, ARM_FEATURE_V4T);
892     }
893     if (arm_feature(env, ARM_FEATURE_VFP4)) {
894         set_feature(env, ARM_FEATURE_VFP3);
895         set_feature(env, ARM_FEATURE_VFP_FP16);
896     }
897     if (arm_feature(env, ARM_FEATURE_VFP3)) {
898         set_feature(env, ARM_FEATURE_VFP);
899     }
900     if (arm_feature(env, ARM_FEATURE_LPAE)) {
901         set_feature(env, ARM_FEATURE_V7MP);
902         set_feature(env, ARM_FEATURE_PXN);
903     }
904     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
905         set_feature(env, ARM_FEATURE_CBAR);
906     }
907     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
908         !arm_feature(env, ARM_FEATURE_M)) {
909         set_feature(env, ARM_FEATURE_THUMB_DSP);
910     }
911
912     if (arm_feature(env, ARM_FEATURE_V7) &&
913         !arm_feature(env, ARM_FEATURE_M) &&
914         !arm_feature(env, ARM_FEATURE_PMSA)) {
915         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
916          * can use 4K pages.
917          */
918         pagebits = 12;
919     } else {
920         /* For CPUs which might have tiny 1K pages, or which have an
921          * MPU and might have small region sizes, stick with 1K pages.
922          */
923         pagebits = 10;
924     }
925     if (!set_preferred_target_page_bits(pagebits)) {
926         /* This can only ever happen for hotplugging a CPU, or if
927          * the board code incorrectly creates a CPU which it has
928          * promised via minimum_page_size that it will not.
929          */
930         error_setg(errp, "This CPU requires a smaller page size than the "
931                    "system is using");
932         return;
933     }
934
935     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
936      * We don't support setting cluster ID ([16..23]) (known as Aff2
937      * in later ARM ARM versions), or any of the higher affinity level fields,
938      * so these bits always RAZ.
939      */
940     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
941         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
942                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
943     }
944
945     if (cpu->reset_hivecs) {
946             cpu->reset_sctlr |= (1 << 13);
947     }
948
949     if (cpu->cfgend) {
950         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
951             cpu->reset_sctlr |= SCTLR_EE;
952         } else {
953             cpu->reset_sctlr |= SCTLR_B;
954         }
955     }
956
957     if (!cpu->has_el3) {
958         /* If the has_el3 CPU property is disabled then we need to disable the
959          * feature.
960          */
961         unset_feature(env, ARM_FEATURE_EL3);
962
963         /* Disable the security extension feature bits in the processor feature
964          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
965          */
966         cpu->id_pfr1 &= ~0xf0;
967         cpu->isar.id_aa64pfr0 &= ~0xf000;
968     }
969
970     if (!cpu->has_el2) {
971         unset_feature(env, ARM_FEATURE_EL2);
972     }
973
974     if (!cpu->has_pmu) {
975         unset_feature(env, ARM_FEATURE_PMU);
976         cpu->id_aa64dfr0 &= ~0xf00;
977     }
978
979     if (!arm_feature(env, ARM_FEATURE_EL2)) {
980         /* Disable the hypervisor feature bits in the processor feature
981          * registers if we don't have EL2. These are id_pfr1[15:12] and
982          * id_aa64pfr0_el1[11:8].
983          */
984         cpu->isar.id_aa64pfr0 &= ~0xf00;
985         cpu->id_pfr1 &= ~0xf000;
986     }
987
988     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
989      * to false or by setting pmsav7-dregion to 0.
990      */
991     if (!cpu->has_mpu) {
992         cpu->pmsav7_dregion = 0;
993     }
994     if (cpu->pmsav7_dregion == 0) {
995         cpu->has_mpu = false;
996     }
997
998     if (arm_feature(env, ARM_FEATURE_PMSA) &&
999         arm_feature(env, ARM_FEATURE_V7)) {
1000         uint32_t nr = cpu->pmsav7_dregion;
1001
1002         if (nr > 0xff) {
1003             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1004             return;
1005         }
1006
1007         if (nr) {
1008             if (arm_feature(env, ARM_FEATURE_V8)) {
1009                 /* PMSAv8 */
1010                 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1011                 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1012                 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1013                     env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1014                     env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1015                 }
1016             } else {
1017                 env->pmsav7.drbar = g_new0(uint32_t, nr);
1018                 env->pmsav7.drsr = g_new0(uint32_t, nr);
1019                 env->pmsav7.dracr = g_new0(uint32_t, nr);
1020             }
1021         }
1022     }
1023
1024     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1025         uint32_t nr = cpu->sau_sregion;
1026
1027         if (nr > 0xff) {
1028             error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1029             return;
1030         }
1031
1032         if (nr) {
1033             env->sau.rbar = g_new0(uint32_t, nr);
1034             env->sau.rlar = g_new0(uint32_t, nr);
1035         }
1036     }
1037
1038     if (arm_feature(env, ARM_FEATURE_EL3)) {
1039         set_feature(env, ARM_FEATURE_VBAR);
1040     }
1041
1042     register_cp_regs_for_features(cpu);
1043     arm_cpu_register_gdb_regs_for_features(cpu);
1044
1045     init_cpreg_list(cpu);
1046
1047 #ifndef CONFIG_USER_ONLY
1048     if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1049         cs->num_ases = 2;
1050
1051         if (!cpu->secure_memory) {
1052             cpu->secure_memory = cs->memory;
1053         }
1054         cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1055                                cpu->secure_memory);
1056     } else {
1057         cs->num_ases = 1;
1058     }
1059     cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1060
1061     /* No core_count specified, default to smp_cpus. */
1062     if (cpu->core_count == -1) {
1063         cpu->core_count = smp_cpus;
1064     }
1065 #endif
1066
1067     qemu_init_vcpu(cs);
1068     cpu_reset(cs);
1069
1070     acc->parent_realize(dev, errp);
1071 }
1072
1073 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1074 {
1075     ObjectClass *oc;
1076     char *typename;
1077     char **cpuname;
1078     const char *cpunamestr;
1079
1080     cpuname = g_strsplit(cpu_model, ",", 1);
1081     cpunamestr = cpuname[0];
1082 #ifdef CONFIG_USER_ONLY
1083     /* For backwards compatibility usermode emulation allows "-cpu any",
1084      * which has the same semantics as "-cpu max".
1085      */
1086     if (!strcmp(cpunamestr, "any")) {
1087         cpunamestr = "max";
1088     }
1089 #endif
1090     typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1091     oc = object_class_by_name(typename);
1092     g_strfreev(cpuname);
1093     g_free(typename);
1094     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1095         object_class_is_abstract(oc)) {
1096         return NULL;
1097     }
1098     return oc;
1099 }
1100
1101 /* CPU models. These are not needed for the AArch64 linux-user build. */
1102 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1103
1104 static void arm926_initfn(Object *obj)
1105 {
1106     ARMCPU *cpu = ARM_CPU(obj);
1107
1108     cpu->dtb_compatible = "arm,arm926";
1109     set_feature(&cpu->env, ARM_FEATURE_V5);
1110     set_feature(&cpu->env, ARM_FEATURE_VFP);
1111     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1112     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1113     cpu->midr = 0x41069265;
1114     cpu->reset_fpsid = 0x41011090;
1115     cpu->ctr = 0x1dd20d2;
1116     cpu->reset_sctlr = 0x00090078;
1117
1118     /*
1119      * ARMv5 does not have the ID_ISAR registers, but we can still
1120      * set the field to indicate Jazelle support within QEMU.
1121      */
1122     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1123 }
1124
1125 static void arm946_initfn(Object *obj)
1126 {
1127     ARMCPU *cpu = ARM_CPU(obj);
1128
1129     cpu->dtb_compatible = "arm,arm946";
1130     set_feature(&cpu->env, ARM_FEATURE_V5);
1131     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1132     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1133     cpu->midr = 0x41059461;
1134     cpu->ctr = 0x0f004006;
1135     cpu->reset_sctlr = 0x00000078;
1136 }
1137
1138 static void arm1026_initfn(Object *obj)
1139 {
1140     ARMCPU *cpu = ARM_CPU(obj);
1141
1142     cpu->dtb_compatible = "arm,arm1026";
1143     set_feature(&cpu->env, ARM_FEATURE_V5);
1144     set_feature(&cpu->env, ARM_FEATURE_VFP);
1145     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1146     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1147     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1148     cpu->midr = 0x4106a262;
1149     cpu->reset_fpsid = 0x410110a0;
1150     cpu->ctr = 0x1dd20d2;
1151     cpu->reset_sctlr = 0x00090078;
1152     cpu->reset_auxcr = 1;
1153
1154     /*
1155      * ARMv5 does not have the ID_ISAR registers, but we can still
1156      * set the field to indicate Jazelle support within QEMU.
1157      */
1158     cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1159
1160     {
1161         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1162         ARMCPRegInfo ifar = {
1163             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1164             .access = PL1_RW,
1165             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1166             .resetvalue = 0
1167         };
1168         define_one_arm_cp_reg(cpu, &ifar);
1169     }
1170 }
1171
1172 static void arm1136_r2_initfn(Object *obj)
1173 {
1174     ARMCPU *cpu = ARM_CPU(obj);
1175     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1176      * older core than plain "arm1136". In particular this does not
1177      * have the v6K features.
1178      * These ID register values are correct for 1136 but may be wrong
1179      * for 1136_r2 (in particular r0p2 does not actually implement most
1180      * of the ID registers).
1181      */
1182
1183     cpu->dtb_compatible = "arm,arm1136";
1184     set_feature(&cpu->env, ARM_FEATURE_V6);
1185     set_feature(&cpu->env, ARM_FEATURE_VFP);
1186     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1187     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1188     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1189     cpu->midr = 0x4107b362;
1190     cpu->reset_fpsid = 0x410120b4;
1191     cpu->isar.mvfr0 = 0x11111111;
1192     cpu->isar.mvfr1 = 0x00000000;
1193     cpu->ctr = 0x1dd20d2;
1194     cpu->reset_sctlr = 0x00050078;
1195     cpu->id_pfr0 = 0x111;
1196     cpu->id_pfr1 = 0x1;
1197     cpu->id_dfr0 = 0x2;
1198     cpu->id_afr0 = 0x3;
1199     cpu->id_mmfr0 = 0x01130003;
1200     cpu->id_mmfr1 = 0x10030302;
1201     cpu->id_mmfr2 = 0x01222110;
1202     cpu->isar.id_isar0 = 0x00140011;
1203     cpu->isar.id_isar1 = 0x12002111;
1204     cpu->isar.id_isar2 = 0x11231111;
1205     cpu->isar.id_isar3 = 0x01102131;
1206     cpu->isar.id_isar4 = 0x141;
1207     cpu->reset_auxcr = 7;
1208 }
1209
1210 static void arm1136_initfn(Object *obj)
1211 {
1212     ARMCPU *cpu = ARM_CPU(obj);
1213
1214     cpu->dtb_compatible = "arm,arm1136";
1215     set_feature(&cpu->env, ARM_FEATURE_V6K);
1216     set_feature(&cpu->env, ARM_FEATURE_V6);
1217     set_feature(&cpu->env, ARM_FEATURE_VFP);
1218     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1219     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1220     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1221     cpu->midr = 0x4117b363;
1222     cpu->reset_fpsid = 0x410120b4;
1223     cpu->isar.mvfr0 = 0x11111111;
1224     cpu->isar.mvfr1 = 0x00000000;
1225     cpu->ctr = 0x1dd20d2;
1226     cpu->reset_sctlr = 0x00050078;
1227     cpu->id_pfr0 = 0x111;
1228     cpu->id_pfr1 = 0x1;
1229     cpu->id_dfr0 = 0x2;
1230     cpu->id_afr0 = 0x3;
1231     cpu->id_mmfr0 = 0x01130003;
1232     cpu->id_mmfr1 = 0x10030302;
1233     cpu->id_mmfr2 = 0x01222110;
1234     cpu->isar.id_isar0 = 0x00140011;
1235     cpu->isar.id_isar1 = 0x12002111;
1236     cpu->isar.id_isar2 = 0x11231111;
1237     cpu->isar.id_isar3 = 0x01102131;
1238     cpu->isar.id_isar4 = 0x141;
1239     cpu->reset_auxcr = 7;
1240 }
1241
1242 static void arm1176_initfn(Object *obj)
1243 {
1244     ARMCPU *cpu = ARM_CPU(obj);
1245
1246     cpu->dtb_compatible = "arm,arm1176";
1247     set_feature(&cpu->env, ARM_FEATURE_V6K);
1248     set_feature(&cpu->env, ARM_FEATURE_VFP);
1249     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1250     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1251     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1252     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1253     set_feature(&cpu->env, ARM_FEATURE_EL3);
1254     cpu->midr = 0x410fb767;
1255     cpu->reset_fpsid = 0x410120b5;
1256     cpu->isar.mvfr0 = 0x11111111;
1257     cpu->isar.mvfr1 = 0x00000000;
1258     cpu->ctr = 0x1dd20d2;
1259     cpu->reset_sctlr = 0x00050078;
1260     cpu->id_pfr0 = 0x111;
1261     cpu->id_pfr1 = 0x11;
1262     cpu->id_dfr0 = 0x33;
1263     cpu->id_afr0 = 0;
1264     cpu->id_mmfr0 = 0x01130003;
1265     cpu->id_mmfr1 = 0x10030302;
1266     cpu->id_mmfr2 = 0x01222100;
1267     cpu->isar.id_isar0 = 0x0140011;
1268     cpu->isar.id_isar1 = 0x12002111;
1269     cpu->isar.id_isar2 = 0x11231121;
1270     cpu->isar.id_isar3 = 0x01102131;
1271     cpu->isar.id_isar4 = 0x01141;
1272     cpu->reset_auxcr = 7;
1273 }
1274
1275 static void arm11mpcore_initfn(Object *obj)
1276 {
1277     ARMCPU *cpu = ARM_CPU(obj);
1278
1279     cpu->dtb_compatible = "arm,arm11mpcore";
1280     set_feature(&cpu->env, ARM_FEATURE_V6K);
1281     set_feature(&cpu->env, ARM_FEATURE_VFP);
1282     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1283     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1284     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1285     cpu->midr = 0x410fb022;
1286     cpu->reset_fpsid = 0x410120b4;
1287     cpu->isar.mvfr0 = 0x11111111;
1288     cpu->isar.mvfr1 = 0x00000000;
1289     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1290     cpu->id_pfr0 = 0x111;
1291     cpu->id_pfr1 = 0x1;
1292     cpu->id_dfr0 = 0;
1293     cpu->id_afr0 = 0x2;
1294     cpu->id_mmfr0 = 0x01100103;
1295     cpu->id_mmfr1 = 0x10020302;
1296     cpu->id_mmfr2 = 0x01222000;
1297     cpu->isar.id_isar0 = 0x00100011;
1298     cpu->isar.id_isar1 = 0x12002111;
1299     cpu->isar.id_isar2 = 0x11221011;
1300     cpu->isar.id_isar3 = 0x01102131;
1301     cpu->isar.id_isar4 = 0x141;
1302     cpu->reset_auxcr = 1;
1303 }
1304
1305 static void cortex_m0_initfn(Object *obj)
1306 {
1307     ARMCPU *cpu = ARM_CPU(obj);
1308     set_feature(&cpu->env, ARM_FEATURE_V6);
1309     set_feature(&cpu->env, ARM_FEATURE_M);
1310
1311     cpu->midr = 0x410cc200;
1312 }
1313
1314 static void cortex_m3_initfn(Object *obj)
1315 {
1316     ARMCPU *cpu = ARM_CPU(obj);
1317     set_feature(&cpu->env, ARM_FEATURE_V7);
1318     set_feature(&cpu->env, ARM_FEATURE_M);
1319     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1320     cpu->midr = 0x410fc231;
1321     cpu->pmsav7_dregion = 8;
1322     cpu->id_pfr0 = 0x00000030;
1323     cpu->id_pfr1 = 0x00000200;
1324     cpu->id_dfr0 = 0x00100000;
1325     cpu->id_afr0 = 0x00000000;
1326     cpu->id_mmfr0 = 0x00000030;
1327     cpu->id_mmfr1 = 0x00000000;
1328     cpu->id_mmfr2 = 0x00000000;
1329     cpu->id_mmfr3 = 0x00000000;
1330     cpu->isar.id_isar0 = 0x01141110;
1331     cpu->isar.id_isar1 = 0x02111000;
1332     cpu->isar.id_isar2 = 0x21112231;
1333     cpu->isar.id_isar3 = 0x01111110;
1334     cpu->isar.id_isar4 = 0x01310102;
1335     cpu->isar.id_isar5 = 0x00000000;
1336     cpu->isar.id_isar6 = 0x00000000;
1337 }
1338
1339 static void cortex_m4_initfn(Object *obj)
1340 {
1341     ARMCPU *cpu = ARM_CPU(obj);
1342
1343     set_feature(&cpu->env, ARM_FEATURE_V7);
1344     set_feature(&cpu->env, ARM_FEATURE_M);
1345     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1346     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1347     cpu->midr = 0x410fc240; /* r0p0 */
1348     cpu->pmsav7_dregion = 8;
1349     cpu->id_pfr0 = 0x00000030;
1350     cpu->id_pfr1 = 0x00000200;
1351     cpu->id_dfr0 = 0x00100000;
1352     cpu->id_afr0 = 0x00000000;
1353     cpu->id_mmfr0 = 0x00000030;
1354     cpu->id_mmfr1 = 0x00000000;
1355     cpu->id_mmfr2 = 0x00000000;
1356     cpu->id_mmfr3 = 0x00000000;
1357     cpu->isar.id_isar0 = 0x01141110;
1358     cpu->isar.id_isar1 = 0x02111000;
1359     cpu->isar.id_isar2 = 0x21112231;
1360     cpu->isar.id_isar3 = 0x01111110;
1361     cpu->isar.id_isar4 = 0x01310102;
1362     cpu->isar.id_isar5 = 0x00000000;
1363     cpu->isar.id_isar6 = 0x00000000;
1364 }
1365
1366 static void cortex_m33_initfn(Object *obj)
1367 {
1368     ARMCPU *cpu = ARM_CPU(obj);
1369
1370     set_feature(&cpu->env, ARM_FEATURE_V8);
1371     set_feature(&cpu->env, ARM_FEATURE_M);
1372     set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1373     set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1374     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1375     cpu->midr = 0x410fd213; /* r0p3 */
1376     cpu->pmsav7_dregion = 16;
1377     cpu->sau_sregion = 8;
1378     cpu->id_pfr0 = 0x00000030;
1379     cpu->id_pfr1 = 0x00000210;
1380     cpu->id_dfr0 = 0x00200000;
1381     cpu->id_afr0 = 0x00000000;
1382     cpu->id_mmfr0 = 0x00101F40;
1383     cpu->id_mmfr1 = 0x00000000;
1384     cpu->id_mmfr2 = 0x01000000;
1385     cpu->id_mmfr3 = 0x00000000;
1386     cpu->isar.id_isar0 = 0x01101110;
1387     cpu->isar.id_isar1 = 0x02212000;
1388     cpu->isar.id_isar2 = 0x20232232;
1389     cpu->isar.id_isar3 = 0x01111131;
1390     cpu->isar.id_isar4 = 0x01310132;
1391     cpu->isar.id_isar5 = 0x00000000;
1392     cpu->isar.id_isar6 = 0x00000000;
1393     cpu->clidr = 0x00000000;
1394     cpu->ctr = 0x8000c000;
1395 }
1396
1397 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1398 {
1399     CPUClass *cc = CPU_CLASS(oc);
1400
1401 #ifndef CONFIG_USER_ONLY
1402     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1403 #endif
1404
1405     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1406 }
1407
1408 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1409     /* Dummy the TCM region regs for the moment */
1410     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1411       .access = PL1_RW, .type = ARM_CP_CONST },
1412     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1413       .access = PL1_RW, .type = ARM_CP_CONST },
1414     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1415       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1416     REGINFO_SENTINEL
1417 };
1418
1419 static void cortex_r5_initfn(Object *obj)
1420 {
1421     ARMCPU *cpu = ARM_CPU(obj);
1422
1423     set_feature(&cpu->env, ARM_FEATURE_V7);
1424     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1425     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1426     cpu->midr = 0x411fc153; /* r1p3 */
1427     cpu->id_pfr0 = 0x0131;
1428     cpu->id_pfr1 = 0x001;
1429     cpu->id_dfr0 = 0x010400;
1430     cpu->id_afr0 = 0x0;
1431     cpu->id_mmfr0 = 0x0210030;
1432     cpu->id_mmfr1 = 0x00000000;
1433     cpu->id_mmfr2 = 0x01200000;
1434     cpu->id_mmfr3 = 0x0211;
1435     cpu->isar.id_isar0 = 0x02101111;
1436     cpu->isar.id_isar1 = 0x13112111;
1437     cpu->isar.id_isar2 = 0x21232141;
1438     cpu->isar.id_isar3 = 0x01112131;
1439     cpu->isar.id_isar4 = 0x0010142;
1440     cpu->isar.id_isar5 = 0x0;
1441     cpu->isar.id_isar6 = 0x0;
1442     cpu->mp_is_up = true;
1443     cpu->pmsav7_dregion = 16;
1444     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1445 }
1446
1447 static void cortex_r5f_initfn(Object *obj)
1448 {
1449     ARMCPU *cpu = ARM_CPU(obj);
1450
1451     cortex_r5_initfn(obj);
1452     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1453 }
1454
1455 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1456     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1457       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1458     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1459       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1460     REGINFO_SENTINEL
1461 };
1462
1463 static void cortex_a8_initfn(Object *obj)
1464 {
1465     ARMCPU *cpu = ARM_CPU(obj);
1466
1467     cpu->dtb_compatible = "arm,cortex-a8";
1468     set_feature(&cpu->env, ARM_FEATURE_V7);
1469     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1470     set_feature(&cpu->env, ARM_FEATURE_NEON);
1471     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1472     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1473     set_feature(&cpu->env, ARM_FEATURE_EL3);
1474     cpu->midr = 0x410fc080;
1475     cpu->reset_fpsid = 0x410330c0;
1476     cpu->isar.mvfr0 = 0x11110222;
1477     cpu->isar.mvfr1 = 0x00011111;
1478     cpu->ctr = 0x82048004;
1479     cpu->reset_sctlr = 0x00c50078;
1480     cpu->id_pfr0 = 0x1031;
1481     cpu->id_pfr1 = 0x11;
1482     cpu->id_dfr0 = 0x400;
1483     cpu->id_afr0 = 0;
1484     cpu->id_mmfr0 = 0x31100003;
1485     cpu->id_mmfr1 = 0x20000000;
1486     cpu->id_mmfr2 = 0x01202000;
1487     cpu->id_mmfr3 = 0x11;
1488     cpu->isar.id_isar0 = 0x00101111;
1489     cpu->isar.id_isar1 = 0x12112111;
1490     cpu->isar.id_isar2 = 0x21232031;
1491     cpu->isar.id_isar3 = 0x11112131;
1492     cpu->isar.id_isar4 = 0x00111142;
1493     cpu->dbgdidr = 0x15141000;
1494     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1495     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1496     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1497     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1498     cpu->reset_auxcr = 2;
1499     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1500 }
1501
1502 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1503     /* power_control should be set to maximum latency. Again,
1504      * default to 0 and set by private hook
1505      */
1506     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1507       .access = PL1_RW, .resetvalue = 0,
1508       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1509     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1510       .access = PL1_RW, .resetvalue = 0,
1511       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1512     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1513       .access = PL1_RW, .resetvalue = 0,
1514       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1515     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1516       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1517     /* TLB lockdown control */
1518     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1519       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1520     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1521       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1522     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1523       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1524     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1525       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1526     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1527       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1528     REGINFO_SENTINEL
1529 };
1530
1531 static void cortex_a9_initfn(Object *obj)
1532 {
1533     ARMCPU *cpu = ARM_CPU(obj);
1534
1535     cpu->dtb_compatible = "arm,cortex-a9";
1536     set_feature(&cpu->env, ARM_FEATURE_V7);
1537     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1538     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1539     set_feature(&cpu->env, ARM_FEATURE_NEON);
1540     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1541     set_feature(&cpu->env, ARM_FEATURE_EL3);
1542     /* Note that A9 supports the MP extensions even for
1543      * A9UP and single-core A9MP (which are both different
1544      * and valid configurations; we don't model A9UP).
1545      */
1546     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1547     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1548     cpu->midr = 0x410fc090;
1549     cpu->reset_fpsid = 0x41033090;
1550     cpu->isar.mvfr0 = 0x11110222;
1551     cpu->isar.mvfr1 = 0x01111111;
1552     cpu->ctr = 0x80038003;
1553     cpu->reset_sctlr = 0x00c50078;
1554     cpu->id_pfr0 = 0x1031;
1555     cpu->id_pfr1 = 0x11;
1556     cpu->id_dfr0 = 0x000;
1557     cpu->id_afr0 = 0;
1558     cpu->id_mmfr0 = 0x00100103;
1559     cpu->id_mmfr1 = 0x20000000;
1560     cpu->id_mmfr2 = 0x01230000;
1561     cpu->id_mmfr3 = 0x00002111;
1562     cpu->isar.id_isar0 = 0x00101111;
1563     cpu->isar.id_isar1 = 0x13112111;
1564     cpu->isar.id_isar2 = 0x21232041;
1565     cpu->isar.id_isar3 = 0x11112131;
1566     cpu->isar.id_isar4 = 0x00111142;
1567     cpu->dbgdidr = 0x35141000;
1568     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1569     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1570     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1571     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1572 }
1573
1574 #ifndef CONFIG_USER_ONLY
1575 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1576 {
1577     /* Linux wants the number of processors from here.
1578      * Might as well set the interrupt-controller bit too.
1579      */
1580     return ((smp_cpus - 1) << 24) | (1 << 23);
1581 }
1582 #endif
1583
1584 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1585 #ifndef CONFIG_USER_ONLY
1586     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1587       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1588       .writefn = arm_cp_write_ignore, },
1589 #endif
1590     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1591       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1592     REGINFO_SENTINEL
1593 };
1594
1595 static void cortex_a7_initfn(Object *obj)
1596 {
1597     ARMCPU *cpu = ARM_CPU(obj);
1598
1599     cpu->dtb_compatible = "arm,cortex-a7";
1600     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1601     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1602     set_feature(&cpu->env, ARM_FEATURE_NEON);
1603     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1604     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1605     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1606     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1607     set_feature(&cpu->env, ARM_FEATURE_EL3);
1608     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1609     cpu->midr = 0x410fc075;
1610     cpu->reset_fpsid = 0x41023075;
1611     cpu->isar.mvfr0 = 0x10110222;
1612     cpu->isar.mvfr1 = 0x11111111;
1613     cpu->ctr = 0x84448003;
1614     cpu->reset_sctlr = 0x00c50078;
1615     cpu->id_pfr0 = 0x00001131;
1616     cpu->id_pfr1 = 0x00011011;
1617     cpu->id_dfr0 = 0x02010555;
1618     cpu->pmceid0 = 0x00000000;
1619     cpu->pmceid1 = 0x00000000;
1620     cpu->id_afr0 = 0x00000000;
1621     cpu->id_mmfr0 = 0x10101105;
1622     cpu->id_mmfr1 = 0x40000000;
1623     cpu->id_mmfr2 = 0x01240000;
1624     cpu->id_mmfr3 = 0x02102211;
1625     /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1626      * table 4-41 gives 0x02101110, which includes the arm div insns.
1627      */
1628     cpu->isar.id_isar0 = 0x02101110;
1629     cpu->isar.id_isar1 = 0x13112111;
1630     cpu->isar.id_isar2 = 0x21232041;
1631     cpu->isar.id_isar3 = 0x11112131;
1632     cpu->isar.id_isar4 = 0x10011142;
1633     cpu->dbgdidr = 0x3515f005;
1634     cpu->clidr = 0x0a200023;
1635     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1636     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1637     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1638     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1639 }
1640
1641 static void cortex_a15_initfn(Object *obj)
1642 {
1643     ARMCPU *cpu = ARM_CPU(obj);
1644
1645     cpu->dtb_compatible = "arm,cortex-a15";
1646     set_feature(&cpu->env, ARM_FEATURE_V7VE);
1647     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1648     set_feature(&cpu->env, ARM_FEATURE_NEON);
1649     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1650     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1651     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1652     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1653     set_feature(&cpu->env, ARM_FEATURE_EL3);
1654     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1655     cpu->midr = 0x412fc0f1;
1656     cpu->reset_fpsid = 0x410430f0;
1657     cpu->isar.mvfr0 = 0x10110222;
1658     cpu->isar.mvfr1 = 0x11111111;
1659     cpu->ctr = 0x8444c004;
1660     cpu->reset_sctlr = 0x00c50078;
1661     cpu->id_pfr0 = 0x00001131;
1662     cpu->id_pfr1 = 0x00011011;
1663     cpu->id_dfr0 = 0x02010555;
1664     cpu->pmceid0 = 0x0000000;
1665     cpu->pmceid1 = 0x00000000;
1666     cpu->id_afr0 = 0x00000000;
1667     cpu->id_mmfr0 = 0x10201105;
1668     cpu->id_mmfr1 = 0x20000000;
1669     cpu->id_mmfr2 = 0x01240000;
1670     cpu->id_mmfr3 = 0x02102211;
1671     cpu->isar.id_isar0 = 0x02101110;
1672     cpu->isar.id_isar1 = 0x13112111;
1673     cpu->isar.id_isar2 = 0x21232041;
1674     cpu->isar.id_isar3 = 0x11112131;
1675     cpu->isar.id_isar4 = 0x10011142;
1676     cpu->dbgdidr = 0x3515f021;
1677     cpu->clidr = 0x0a200023;
1678     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1679     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1680     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1681     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1682 }
1683
1684 static void ti925t_initfn(Object *obj)
1685 {
1686     ARMCPU *cpu = ARM_CPU(obj);
1687     set_feature(&cpu->env, ARM_FEATURE_V4T);
1688     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1689     cpu->midr = ARM_CPUID_TI925T;
1690     cpu->ctr = 0x5109149;
1691     cpu->reset_sctlr = 0x00000070;
1692 }
1693
1694 static void sa1100_initfn(Object *obj)
1695 {
1696     ARMCPU *cpu = ARM_CPU(obj);
1697
1698     cpu->dtb_compatible = "intel,sa1100";
1699     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1700     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1701     cpu->midr = 0x4401A11B;
1702     cpu->reset_sctlr = 0x00000070;
1703 }
1704
1705 static void sa1110_initfn(Object *obj)
1706 {
1707     ARMCPU *cpu = ARM_CPU(obj);
1708     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1709     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1710     cpu->midr = 0x6901B119;
1711     cpu->reset_sctlr = 0x00000070;
1712 }
1713
1714 static void pxa250_initfn(Object *obj)
1715 {
1716     ARMCPU *cpu = ARM_CPU(obj);
1717
1718     cpu->dtb_compatible = "marvell,xscale";
1719     set_feature(&cpu->env, ARM_FEATURE_V5);
1720     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1721     cpu->midr = 0x69052100;
1722     cpu->ctr = 0xd172172;
1723     cpu->reset_sctlr = 0x00000078;
1724 }
1725
1726 static void pxa255_initfn(Object *obj)
1727 {
1728     ARMCPU *cpu = ARM_CPU(obj);
1729
1730     cpu->dtb_compatible = "marvell,xscale";
1731     set_feature(&cpu->env, ARM_FEATURE_V5);
1732     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1733     cpu->midr = 0x69052d00;
1734     cpu->ctr = 0xd172172;
1735     cpu->reset_sctlr = 0x00000078;
1736 }
1737
1738 static void pxa260_initfn(Object *obj)
1739 {
1740     ARMCPU *cpu = ARM_CPU(obj);
1741
1742     cpu->dtb_compatible = "marvell,xscale";
1743     set_feature(&cpu->env, ARM_FEATURE_V5);
1744     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1745     cpu->midr = 0x69052903;
1746     cpu->ctr = 0xd172172;
1747     cpu->reset_sctlr = 0x00000078;
1748 }
1749
1750 static void pxa261_initfn(Object *obj)
1751 {
1752     ARMCPU *cpu = ARM_CPU(obj);
1753
1754     cpu->dtb_compatible = "marvell,xscale";
1755     set_feature(&cpu->env, ARM_FEATURE_V5);
1756     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1757     cpu->midr = 0x69052d05;
1758     cpu->ctr = 0xd172172;
1759     cpu->reset_sctlr = 0x00000078;
1760 }
1761
1762 static void pxa262_initfn(Object *obj)
1763 {
1764     ARMCPU *cpu = ARM_CPU(obj);
1765
1766     cpu->dtb_compatible = "marvell,xscale";
1767     set_feature(&cpu->env, ARM_FEATURE_V5);
1768     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1769     cpu->midr = 0x69052d06;
1770     cpu->ctr = 0xd172172;
1771     cpu->reset_sctlr = 0x00000078;
1772 }
1773
1774 static void pxa270a0_initfn(Object *obj)
1775 {
1776     ARMCPU *cpu = ARM_CPU(obj);
1777
1778     cpu->dtb_compatible = "marvell,xscale";
1779     set_feature(&cpu->env, ARM_FEATURE_V5);
1780     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1781     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1782     cpu->midr = 0x69054110;
1783     cpu->ctr = 0xd172172;
1784     cpu->reset_sctlr = 0x00000078;
1785 }
1786
1787 static void pxa270a1_initfn(Object *obj)
1788 {
1789     ARMCPU *cpu = ARM_CPU(obj);
1790
1791     cpu->dtb_compatible = "marvell,xscale";
1792     set_feature(&cpu->env, ARM_FEATURE_V5);
1793     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1794     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1795     cpu->midr = 0x69054111;
1796     cpu->ctr = 0xd172172;
1797     cpu->reset_sctlr = 0x00000078;
1798 }
1799
1800 static void pxa270b0_initfn(Object *obj)
1801 {
1802     ARMCPU *cpu = ARM_CPU(obj);
1803
1804     cpu->dtb_compatible = "marvell,xscale";
1805     set_feature(&cpu->env, ARM_FEATURE_V5);
1806     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1807     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1808     cpu->midr = 0x69054112;
1809     cpu->ctr = 0xd172172;
1810     cpu->reset_sctlr = 0x00000078;
1811 }
1812
1813 static void pxa270b1_initfn(Object *obj)
1814 {
1815     ARMCPU *cpu = ARM_CPU(obj);
1816
1817     cpu->dtb_compatible = "marvell,xscale";
1818     set_feature(&cpu->env, ARM_FEATURE_V5);
1819     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1820     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1821     cpu->midr = 0x69054113;
1822     cpu->ctr = 0xd172172;
1823     cpu->reset_sctlr = 0x00000078;
1824 }
1825
1826 static void pxa270c0_initfn(Object *obj)
1827 {
1828     ARMCPU *cpu = ARM_CPU(obj);
1829
1830     cpu->dtb_compatible = "marvell,xscale";
1831     set_feature(&cpu->env, ARM_FEATURE_V5);
1832     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1833     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1834     cpu->midr = 0x69054114;
1835     cpu->ctr = 0xd172172;
1836     cpu->reset_sctlr = 0x00000078;
1837 }
1838
1839 static void pxa270c5_initfn(Object *obj)
1840 {
1841     ARMCPU *cpu = ARM_CPU(obj);
1842
1843     cpu->dtb_compatible = "marvell,xscale";
1844     set_feature(&cpu->env, ARM_FEATURE_V5);
1845     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1846     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1847     cpu->midr = 0x69054117;
1848     cpu->ctr = 0xd172172;
1849     cpu->reset_sctlr = 0x00000078;
1850 }
1851
1852 #ifndef TARGET_AARCH64
1853 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1854  * otherwise, a CPU with as many features enabled as our emulation supports.
1855  * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1856  * this only needs to handle 32 bits.
1857  */
1858 static void arm_max_initfn(Object *obj)
1859 {
1860     ARMCPU *cpu = ARM_CPU(obj);
1861
1862     if (kvm_enabled()) {
1863         kvm_arm_set_cpu_features_from_host(cpu);
1864     } else {
1865         cortex_a15_initfn(obj);
1866 #ifdef CONFIG_USER_ONLY
1867         /* We don't set these in system emulation mode for the moment,
1868          * since we don't correctly set (all of) the ID registers to
1869          * advertise them.
1870          */
1871         set_feature(&cpu->env, ARM_FEATURE_V8);
1872         {
1873             uint32_t t;
1874
1875             t = cpu->isar.id_isar5;
1876             t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1877             t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1878             t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1879             t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1880             t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1881             t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1882             cpu->isar.id_isar5 = t;
1883
1884             t = cpu->isar.id_isar6;
1885             t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1886             cpu->isar.id_isar6 = t;
1887         }
1888 #endif
1889     }
1890 }
1891 #endif
1892
1893 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1894
1895 typedef struct ARMCPUInfo {
1896     const char *name;
1897     void (*initfn)(Object *obj);
1898     void (*class_init)(ObjectClass *oc, void *data);
1899 } ARMCPUInfo;
1900
1901 static const ARMCPUInfo arm_cpus[] = {
1902 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1903     { .name = "arm926",      .initfn = arm926_initfn },
1904     { .name = "arm946",      .initfn = arm946_initfn },
1905     { .name = "arm1026",     .initfn = arm1026_initfn },
1906     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1907      * older core than plain "arm1136". In particular this does not
1908      * have the v6K features.
1909      */
1910     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1911     { .name = "arm1136",     .initfn = arm1136_initfn },
1912     { .name = "arm1176",     .initfn = arm1176_initfn },
1913     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1914     { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1915                              .class_init = arm_v7m_class_init },
1916     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1917                              .class_init = arm_v7m_class_init },
1918     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1919                              .class_init = arm_v7m_class_init },
1920     { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1921                              .class_init = arm_v7m_class_init },
1922     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1923     { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1924     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1925     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1926     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1927     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1928     { .name = "ti925t",      .initfn = ti925t_initfn },
1929     { .name = "sa1100",      .initfn = sa1100_initfn },
1930     { .name = "sa1110",      .initfn = sa1110_initfn },
1931     { .name = "pxa250",      .initfn = pxa250_initfn },
1932     { .name = "pxa255",      .initfn = pxa255_initfn },
1933     { .name = "pxa260",      .initfn = pxa260_initfn },
1934     { .name = "pxa261",      .initfn = pxa261_initfn },
1935     { .name = "pxa262",      .initfn = pxa262_initfn },
1936     /* "pxa270" is an alias for "pxa270-a0" */
1937     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1938     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1939     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1940     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1941     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1942     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1943     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1944 #ifndef TARGET_AARCH64
1945     { .name = "max",         .initfn = arm_max_initfn },
1946 #endif
1947 #ifdef CONFIG_USER_ONLY
1948     { .name = "any",         .initfn = arm_max_initfn },
1949 #endif
1950 #endif
1951     { .name = NULL }
1952 };
1953
1954 static Property arm_cpu_properties[] = {
1955     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1956     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1957     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1958     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1959                         mp_affinity, ARM64_AFFINITY_INVALID),
1960     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1961     DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1962     DEFINE_PROP_END_OF_LIST()
1963 };
1964
1965 #ifdef CONFIG_USER_ONLY
1966 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1967                                     int rw, int mmu_idx)
1968 {
1969     ARMCPU *cpu = ARM_CPU(cs);
1970     CPUARMState *env = &cpu->env;
1971
1972     env->exception.vaddress = address;
1973     if (rw == 2) {
1974         cs->exception_index = EXCP_PREFETCH_ABORT;
1975     } else {
1976         cs->exception_index = EXCP_DATA_ABORT;
1977     }
1978     return 1;
1979 }
1980 #endif
1981
1982 static gchar *arm_gdb_arch_name(CPUState *cs)
1983 {
1984     ARMCPU *cpu = ARM_CPU(cs);
1985     CPUARMState *env = &cpu->env;
1986
1987     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1988         return g_strdup("iwmmxt");
1989     }
1990     return g_strdup("arm");
1991 }
1992
1993 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1994 {
1995     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1996     CPUClass *cc = CPU_CLASS(acc);
1997     DeviceClass *dc = DEVICE_CLASS(oc);
1998
1999     device_class_set_parent_realize(dc, arm_cpu_realizefn,
2000                                     &acc->parent_realize);
2001     dc->props = arm_cpu_properties;
2002
2003     acc->parent_reset = cc->reset;
2004     cc->reset = arm_cpu_reset;
2005
2006     cc->class_by_name = arm_cpu_class_by_name;
2007     cc->has_work = arm_cpu_has_work;
2008     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2009     cc->dump_state = arm_cpu_dump_state;
2010     cc->set_pc = arm_cpu_set_pc;
2011     cc->gdb_read_register = arm_cpu_gdb_read_register;
2012     cc->gdb_write_register = arm_cpu_gdb_write_register;
2013 #ifdef CONFIG_USER_ONLY
2014     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2015 #else
2016     cc->do_interrupt = arm_cpu_do_interrupt;
2017     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2018     cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2019     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2020     cc->asidx_from_attrs = arm_asidx_from_attrs;
2021     cc->vmsd = &vmstate_arm_cpu;
2022     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2023     cc->write_elf64_note = arm_cpu_write_elf64_note;
2024     cc->write_elf32_note = arm_cpu_write_elf32_note;
2025 #endif
2026     cc->gdb_num_core_regs = 26;
2027     cc->gdb_core_xml_file = "arm-core.xml";
2028     cc->gdb_arch_name = arm_gdb_arch_name;
2029     cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2030     cc->gdb_stop_before_watchpoint = true;
2031     cc->debug_excp_handler = arm_debug_excp_handler;
2032     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2033 #if !defined(CONFIG_USER_ONLY)
2034     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2035 #endif
2036
2037     cc->disas_set_info = arm_disas_set_info;
2038 #ifdef CONFIG_TCG
2039     cc->tcg_initialize = arm_translate_init;
2040 #endif
2041 }
2042
2043 #ifdef CONFIG_KVM
2044 static void arm_host_initfn(Object *obj)
2045 {
2046     ARMCPU *cpu = ARM_CPU(obj);
2047
2048     kvm_arm_set_cpu_features_from_host(cpu);
2049 }
2050
2051 static const TypeInfo host_arm_cpu_type_info = {
2052     .name = TYPE_ARM_HOST_CPU,
2053 #ifdef TARGET_AARCH64
2054     .parent = TYPE_AARCH64_CPU,
2055 #else
2056     .parent = TYPE_ARM_CPU,
2057 #endif
2058     .instance_init = arm_host_initfn,
2059 };
2060
2061 #endif
2062
2063 static void cpu_register(const ARMCPUInfo *info)
2064 {
2065     TypeInfo type_info = {
2066         .parent = TYPE_ARM_CPU,
2067         .instance_size = sizeof(ARMCPU),
2068         .instance_init = info->initfn,
2069         .class_size = sizeof(ARMCPUClass),
2070         .class_init = info->class_init,
2071     };
2072
2073     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2074     type_register(&type_info);
2075     g_free((void *)type_info.name);
2076 }
2077
2078 static const TypeInfo arm_cpu_type_info = {
2079     .name = TYPE_ARM_CPU,
2080     .parent = TYPE_CPU,
2081     .instance_size = sizeof(ARMCPU),
2082     .instance_init = arm_cpu_initfn,
2083     .instance_post_init = arm_cpu_post_init,
2084     .instance_finalize = arm_cpu_finalizefn,
2085     .abstract = true,
2086     .class_size = sizeof(ARMCPUClass),
2087     .class_init = arm_cpu_class_init,
2088 };
2089
2090 static const TypeInfo idau_interface_type_info = {
2091     .name = TYPE_IDAU_INTERFACE,
2092     .parent = TYPE_INTERFACE,
2093     .class_size = sizeof(IDAUInterfaceClass),
2094 };
2095
2096 static void arm_cpu_register_types(void)
2097 {
2098     const ARMCPUInfo *info = arm_cpus;
2099
2100     type_register_static(&arm_cpu_type_info);
2101     type_register_static(&idau_interface_type_info);
2102
2103     while (info->name) {
2104         cpu_register(info);
2105         info++;
2106     }
2107
2108 #ifdef CONFIG_KVM
2109     type_register_static(&host_arm_cpu_type_info);
2110 #endif
2111 }
2112
2113 type_init(arm_cpu_register_types)
This page took 0.139953 seconds and 4 git commands to generate.