4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
26 #include "internals.h"
27 #include "qemu-common.h"
28 #include "exec/exec-all.h"
29 #include "hw/qdev-properties.h"
30 #if !defined(CONFIG_USER_ONLY)
31 #include "hw/loader.h"
33 #include "hw/arm/arm.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/hw_accel.h"
37 #include "disas/capstone.h"
38 #include "fpu/softfloat.h"
40 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
42 ARMCPU *cpu = ARM_CPU(cs);
44 cpu->env.regs[15] = value;
47 static bool arm_cpu_has_work(CPUState *cs)
49 ARMCPU *cpu = ARM_CPU(cs);
51 return (cpu->power_state != PSCI_OFF)
52 && cs->interrupt_request &
53 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
54 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
55 | CPU_INTERRUPT_EXITTB);
58 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
61 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
64 entry->opaque = opaque;
66 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
69 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
72 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
75 entry->opaque = opaque;
77 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
80 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
82 /* Reset a single ARMCPRegInfo register */
83 ARMCPRegInfo *ri = value;
86 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
91 ri->resetfn(&cpu->env, ri);
95 /* A zero offset is never possible as it would be regs[0]
96 * so we use it to indicate that reset is being handled elsewhere.
97 * This is basically only used for fields in non-core coprocessors
98 * (like the pxa2xx ones).
100 if (!ri->fieldoffset) {
104 if (cpreg_field_is_64bit(ri)) {
105 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
107 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
111 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
113 /* Purely an assertion check: we've already done reset once,
114 * so now check that running the reset for the cpreg doesn't
115 * change its value. This traps bugs where two different cpregs
116 * both try to reset the same state field but to different values.
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
120 uint64_t oldvalue, newvalue;
122 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
126 oldvalue = read_raw_cp_reg(&cpu->env, ri);
127 cp_reg_reset(key, value, opaque);
128 newvalue = read_raw_cp_reg(&cpu->env, ri);
129 assert(oldvalue == newvalue);
132 /* CPUClass::reset() */
133 static void arm_cpu_reset(CPUState *s)
135 ARMCPU *cpu = ARM_CPU(s);
136 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
137 CPUARMState *env = &cpu->env;
139 acc->parent_reset(s);
141 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
143 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
144 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
146 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
147 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
148 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
149 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
151 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
152 s->halted = cpu->start_powered_off;
154 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
155 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
158 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
159 /* 64 bit CPUs always start in 64 bit mode */
161 #if defined(CONFIG_USER_ONLY)
162 env->pstate = PSTATE_MODE_EL0t;
163 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
164 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
165 /* and to the FP/Neon instructions */
166 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
167 /* and to the SVE instructions */
168 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
169 env->cp15.cptr_el[3] |= CPTR_EZ;
170 /* with maximum vector length */
171 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
172 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
173 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
175 /* Reset into the highest available EL */
176 if (arm_feature(env, ARM_FEATURE_EL3)) {
177 env->pstate = PSTATE_MODE_EL3h;
178 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
179 env->pstate = PSTATE_MODE_EL2h;
181 env->pstate = PSTATE_MODE_EL1h;
183 env->pc = cpu->rvbar;
186 #if defined(CONFIG_USER_ONLY)
187 /* Userspace expects access to cp10 and cp11 for FP/Neon */
188 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
192 #if defined(CONFIG_USER_ONLY)
193 env->uncached_cpsr = ARM_CPU_MODE_USR;
194 /* For user mode we must enable access to coprocessors */
195 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
196 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
197 env->cp15.c15_cpar = 3;
198 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
199 env->cp15.c15_cpar = 1;
204 * If the highest available EL is EL2, AArch32 will start in Hyp
205 * mode; otherwise it starts in SVC. Note that if we start in
206 * AArch64 then these values in the uncached_cpsr will be ignored.
208 if (arm_feature(env, ARM_FEATURE_EL2) &&
209 !arm_feature(env, ARM_FEATURE_EL3)) {
210 env->uncached_cpsr = ARM_CPU_MODE_HYP;
212 env->uncached_cpsr = ARM_CPU_MODE_SVC;
214 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
216 if (arm_feature(env, ARM_FEATURE_M)) {
217 uint32_t initial_msp; /* Loaded from 0x0 */
218 uint32_t initial_pc; /* Loaded from 0x4 */
222 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
223 env->v7m.secure = true;
225 /* This bit resets to 0 if security is supported, but 1 if
226 * it is not. The bit is not present in v7M, but we set it
227 * here so we can avoid having to make checks on it conditional
228 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
230 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
233 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
234 * that it resets to 1, so QEMU always does that rather than making
235 * it dependent on CPU model. In v8M it is RES1.
237 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
238 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
239 if (arm_feature(env, ARM_FEATURE_V8)) {
240 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
241 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
242 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
244 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
245 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
246 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
249 /* Unlike A/R profile, M profile defines the reset LR value */
250 env->regs[14] = 0xffffffff;
252 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
254 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
255 vecbase = env->v7m.vecbase[env->v7m.secure];
256 rom = rom_ptr(vecbase, 8);
258 /* Address zero is covered by ROM which hasn't yet been
259 * copied into physical memory.
261 initial_msp = ldl_p(rom);
262 initial_pc = ldl_p(rom + 4);
264 /* Address zero not covered by a ROM blob, or the ROM blob
265 * is in non-modifiable memory and this is a second reset after
266 * it got copied into memory. In the latter case, rom_ptr
267 * will return a NULL pointer and we should use ldl_phys instead.
269 initial_msp = ldl_phys(s->as, vecbase);
270 initial_pc = ldl_phys(s->as, vecbase + 4);
273 env->regs[13] = initial_msp & 0xFFFFFFFC;
274 env->regs[15] = initial_pc & ~1;
275 env->thumb = initial_pc & 1;
278 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
279 * executing as AArch32 then check if highvecs are enabled and
280 * adjust the PC accordingly.
282 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
283 env->regs[15] = 0xFFFF0000;
286 /* M profile requires that reset clears the exclusive monitor;
287 * A profile does not, but clearing it makes more sense than having it
288 * set with an exclusive access on address zero.
290 arm_clear_exclusive(env);
292 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
295 if (arm_feature(env, ARM_FEATURE_PMSA)) {
296 if (cpu->pmsav7_dregion > 0) {
297 if (arm_feature(env, ARM_FEATURE_V8)) {
298 memset(env->pmsav8.rbar[M_REG_NS], 0,
299 sizeof(*env->pmsav8.rbar[M_REG_NS])
300 * cpu->pmsav7_dregion);
301 memset(env->pmsav8.rlar[M_REG_NS], 0,
302 sizeof(*env->pmsav8.rlar[M_REG_NS])
303 * cpu->pmsav7_dregion);
304 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
305 memset(env->pmsav8.rbar[M_REG_S], 0,
306 sizeof(*env->pmsav8.rbar[M_REG_S])
307 * cpu->pmsav7_dregion);
308 memset(env->pmsav8.rlar[M_REG_S], 0,
309 sizeof(*env->pmsav8.rlar[M_REG_S])
310 * cpu->pmsav7_dregion);
312 } else if (arm_feature(env, ARM_FEATURE_V7)) {
313 memset(env->pmsav7.drbar, 0,
314 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
315 memset(env->pmsav7.drsr, 0,
316 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
317 memset(env->pmsav7.dracr, 0,
318 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
321 env->pmsav7.rnr[M_REG_NS] = 0;
322 env->pmsav7.rnr[M_REG_S] = 0;
323 env->pmsav8.mair0[M_REG_NS] = 0;
324 env->pmsav8.mair0[M_REG_S] = 0;
325 env->pmsav8.mair1[M_REG_NS] = 0;
326 env->pmsav8.mair1[M_REG_S] = 0;
329 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
330 if (cpu->sau_sregion > 0) {
331 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
332 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
335 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
336 * the Cortex-M33 does.
341 set_flush_to_zero(1, &env->vfp.standard_fp_status);
342 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
343 set_default_nan_mode(1, &env->vfp.standard_fp_status);
344 set_float_detect_tininess(float_tininess_before_rounding,
345 &env->vfp.fp_status);
346 set_float_detect_tininess(float_tininess_before_rounding,
347 &env->vfp.standard_fp_status);
348 set_float_detect_tininess(float_tininess_before_rounding,
349 &env->vfp.fp_status_f16);
350 #ifndef CONFIG_USER_ONLY
352 kvm_arm_reset_vcpu(cpu);
356 hw_breakpoint_update_all(cpu);
357 hw_watchpoint_update_all(cpu);
360 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
362 CPUClass *cc = CPU_GET_CLASS(cs);
363 CPUARMState *env = cs->env_ptr;
364 uint32_t cur_el = arm_current_el(env);
365 bool secure = arm_is_secure(env);
370 if (interrupt_request & CPU_INTERRUPT_FIQ) {
372 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
373 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
374 cs->exception_index = excp_idx;
375 env->exception.target_el = target_el;
376 cc->do_interrupt(cs);
380 if (interrupt_request & CPU_INTERRUPT_HARD) {
382 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
383 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
384 cs->exception_index = excp_idx;
385 env->exception.target_el = target_el;
386 cc->do_interrupt(cs);
390 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
391 excp_idx = EXCP_VIRQ;
393 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
394 cs->exception_index = excp_idx;
395 env->exception.target_el = target_el;
396 cc->do_interrupt(cs);
400 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
401 excp_idx = EXCP_VFIQ;
403 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
404 cs->exception_index = excp_idx;
405 env->exception.target_el = target_el;
406 cc->do_interrupt(cs);
414 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
415 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
417 CPUClass *cc = CPU_GET_CLASS(cs);
418 ARMCPU *cpu = ARM_CPU(cs);
419 CPUARMState *env = &cpu->env;
422 /* ARMv7-M interrupt masking works differently than -A or -R.
423 * There is no FIQ/IRQ distinction. Instead of I and F bits
424 * masking FIQ and IRQ interrupts, an exception is taken only
425 * if it is higher priority than the current execution priority
426 * (which depends on state like BASEPRI, FAULTMASK and the
427 * currently active exception).
429 if (interrupt_request & CPU_INTERRUPT_HARD
430 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
431 cs->exception_index = EXCP_IRQ;
432 cc->do_interrupt(cs);
439 #ifndef CONFIG_USER_ONLY
440 static void arm_cpu_set_irq(void *opaque, int irq, int level)
442 ARMCPU *cpu = opaque;
443 CPUARMState *env = &cpu->env;
444 CPUState *cs = CPU(cpu);
445 static const int mask[] = {
446 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
447 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
448 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
449 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
453 env->irq_line_state |= mask[irq];
455 env->irq_line_state &= ~mask[irq];
461 assert(arm_feature(env, ARM_FEATURE_EL2));
466 cpu_interrupt(cs, mask[irq]);
468 cpu_reset_interrupt(cs, mask[irq]);
472 g_assert_not_reached();
476 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
479 ARMCPU *cpu = opaque;
480 CPUARMState *env = &cpu->env;
481 CPUState *cs = CPU(cpu);
482 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
483 uint32_t linestate_bit;
487 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
488 linestate_bit = CPU_INTERRUPT_HARD;
491 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
492 linestate_bit = CPU_INTERRUPT_FIQ;
495 g_assert_not_reached();
499 env->irq_line_state |= linestate_bit;
501 env->irq_line_state &= ~linestate_bit;
504 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
505 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
509 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
511 ARMCPU *cpu = ARM_CPU(cs);
512 CPUARMState *env = &cpu->env;
514 cpu_synchronize_state(cs);
515 return arm_cpu_data_is_big_endian(env);
520 static inline void set_feature(CPUARMState *env, int feature)
522 env->features |= 1ULL << feature;
525 static inline void unset_feature(CPUARMState *env, int feature)
527 env->features &= ~(1ULL << feature);
531 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
533 return print_insn_arm(pc | 1, info);
536 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
538 ARMCPU *ac = ARM_CPU(cpu);
539 CPUARMState *env = &ac->env;
543 /* We might not be compiled with the A64 disassembler
544 * because it needs a C++ compiler. Leave print_insn
545 * unset in this case to use the caller default behaviour.
547 #if defined(CONFIG_ARM_A64_DIS)
548 info->print_insn = print_insn_arm_a64;
550 info->cap_arch = CS_ARCH_ARM64;
551 info->cap_insn_unit = 4;
552 info->cap_insn_split = 4;
556 info->print_insn = print_insn_thumb1;
557 info->cap_insn_unit = 2;
558 info->cap_insn_split = 4;
559 cap_mode = CS_MODE_THUMB;
561 info->print_insn = print_insn_arm;
562 info->cap_insn_unit = 4;
563 info->cap_insn_split = 4;
564 cap_mode = CS_MODE_ARM;
566 if (arm_feature(env, ARM_FEATURE_V8)) {
567 cap_mode |= CS_MODE_V8;
569 if (arm_feature(env, ARM_FEATURE_M)) {
570 cap_mode |= CS_MODE_MCLASS;
572 info->cap_arch = CS_ARCH_ARM;
573 info->cap_mode = cap_mode;
576 sctlr_b = arm_sctlr_b(env);
577 if (bswap_code(sctlr_b)) {
578 #ifdef TARGET_WORDS_BIGENDIAN
579 info->endian = BFD_ENDIAN_LITTLE;
581 info->endian = BFD_ENDIAN_BIG;
584 info->flags &= ~INSN_ARM_BE32;
585 #ifndef CONFIG_USER_ONLY
587 info->flags |= INSN_ARM_BE32;
592 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
594 uint32_t Aff1 = idx / clustersz;
595 uint32_t Aff0 = idx % clustersz;
596 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
599 static void arm_cpu_initfn(Object *obj)
601 CPUState *cs = CPU(obj);
602 ARMCPU *cpu = ARM_CPU(obj);
604 cs->env_ptr = &cpu->env;
605 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
608 QLIST_INIT(&cpu->pre_el_change_hooks);
609 QLIST_INIT(&cpu->el_change_hooks);
611 #ifndef CONFIG_USER_ONLY
612 /* Our inbound IRQ and FIQ lines */
614 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
615 * the same interface as non-KVM CPUs.
617 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
619 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
622 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
623 arm_gt_ptimer_cb, cpu);
624 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
625 arm_gt_vtimer_cb, cpu);
626 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
627 arm_gt_htimer_cb, cpu);
628 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
629 arm_gt_stimer_cb, cpu);
630 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
631 ARRAY_SIZE(cpu->gt_timer_outputs));
633 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
634 "gicv3-maintenance-interrupt", 1);
635 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
639 /* DTB consumers generally don't in fact care what the 'compatible'
640 * string is, so always provide some string and trust that a hypothetical
641 * picky DTB consumer will also provide a helpful error message.
643 cpu->dtb_compatible = "qemu,unknown";
644 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
645 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
648 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
652 static Property arm_cpu_reset_cbar_property =
653 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
655 static Property arm_cpu_reset_hivecs_property =
656 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
658 static Property arm_cpu_rvbar_property =
659 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
661 static Property arm_cpu_has_el2_property =
662 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
664 static Property arm_cpu_has_el3_property =
665 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
667 static Property arm_cpu_cfgend_property =
668 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
670 /* use property name "pmu" to match other archs and virt tools */
671 static Property arm_cpu_has_pmu_property =
672 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
674 static Property arm_cpu_has_mpu_property =
675 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
677 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
678 * because the CPU initfn will have already set cpu->pmsav7_dregion to
679 * the right value for that particular CPU type, and we don't want
680 * to override that with an incorrect constant value.
682 static Property arm_cpu_pmsav7_dregion_property =
683 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
685 qdev_prop_uint32, uint32_t);
687 /* M profile: initial value of the Secure VTOR */
688 static Property arm_cpu_initsvtor_property =
689 DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
691 static void arm_cpu_post_init(Object *obj)
693 ARMCPU *cpu = ARM_CPU(obj);
695 /* M profile implies PMSA. We have to do this here rather than
696 * in realize with the other feature-implication checks because
697 * we look at the PMSA bit to see if we should add some properties.
699 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
700 set_feature(&cpu->env, ARM_FEATURE_PMSA);
703 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
704 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
705 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
709 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
710 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
714 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
715 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
719 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
720 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
721 * prevent "has_el3" from existing on CPUs which cannot support EL3.
723 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
726 #ifndef CONFIG_USER_ONLY
727 object_property_add_link(obj, "secure-memory",
729 (Object **)&cpu->secure_memory,
730 qdev_prop_allow_set_link_before_realize,
731 OBJ_PROP_LINK_STRONG,
736 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
737 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
741 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
742 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
746 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
747 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
749 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
750 qdev_property_add_static(DEVICE(obj),
751 &arm_cpu_pmsav7_dregion_property,
756 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
757 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
758 qdev_prop_allow_set_link_before_realize,
759 OBJ_PROP_LINK_STRONG,
761 qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
765 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
769 static void arm_cpu_finalizefn(Object *obj)
771 ARMCPU *cpu = ARM_CPU(obj);
772 ARMELChangeHook *hook, *next;
774 g_hash_table_destroy(cpu->cp_regs);
776 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
777 QLIST_REMOVE(hook, node);
780 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
781 QLIST_REMOVE(hook, node);
786 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
788 CPUState *cs = CPU(dev);
789 ARMCPU *cpu = ARM_CPU(dev);
790 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
791 CPUARMState *env = &cpu->env;
793 Error *local_err = NULL;
794 bool no_aa32 = false;
796 /* If we needed to query the host kernel for the CPU features
797 * then it's possible that might have failed in the initfn, but
798 * this is the first point where we can report it.
800 if (cpu->host_cpu_probe_failed) {
801 if (!kvm_enabled()) {
802 error_setg(errp, "The 'host' CPU type can only be used with KVM");
804 error_setg(errp, "Failed to retrieve host CPU features");
809 #ifndef CONFIG_USER_ONLY
810 /* The NVIC and M-profile CPU are two halves of a single piece of
811 * hardware; trying to use one without the other is a command line
812 * error and will result in segfaults if not caught here.
814 if (arm_feature(env, ARM_FEATURE_M)) {
816 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
821 error_setg(errp, "This board can only be used with Cortex-M CPUs");
827 cpu_exec_realizefn(cs, &local_err);
828 if (local_err != NULL) {
829 error_propagate(errp, local_err);
833 /* Some features automatically imply others: */
834 if (arm_feature(env, ARM_FEATURE_V8)) {
835 if (arm_feature(env, ARM_FEATURE_M)) {
836 set_feature(env, ARM_FEATURE_V7);
838 set_feature(env, ARM_FEATURE_V7VE);
843 * There exist AArch64 cpus without AArch32 support. When KVM
844 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
845 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
847 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
848 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
851 if (arm_feature(env, ARM_FEATURE_V7VE)) {
852 /* v7 Virtualization Extensions. In real hardware this implies
853 * EL2 and also the presence of the Security Extensions.
854 * For QEMU, for backwards-compatibility we implement some
855 * CPUs or CPU configs which have no actual EL2 or EL3 but do
856 * include the various other features that V7VE implies.
857 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
858 * Security Extensions is ARM_FEATURE_EL3.
860 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
861 set_feature(env, ARM_FEATURE_LPAE);
862 set_feature(env, ARM_FEATURE_V7);
864 if (arm_feature(env, ARM_FEATURE_V7)) {
865 set_feature(env, ARM_FEATURE_VAPA);
866 set_feature(env, ARM_FEATURE_THUMB2);
867 set_feature(env, ARM_FEATURE_MPIDR);
868 if (!arm_feature(env, ARM_FEATURE_M)) {
869 set_feature(env, ARM_FEATURE_V6K);
871 set_feature(env, ARM_FEATURE_V6);
874 /* Always define VBAR for V7 CPUs even if it doesn't exist in
875 * non-EL3 configs. This is needed by some legacy boards.
877 set_feature(env, ARM_FEATURE_VBAR);
879 if (arm_feature(env, ARM_FEATURE_V6K)) {
880 set_feature(env, ARM_FEATURE_V6);
881 set_feature(env, ARM_FEATURE_MVFR);
883 if (arm_feature(env, ARM_FEATURE_V6)) {
884 set_feature(env, ARM_FEATURE_V5);
885 if (!arm_feature(env, ARM_FEATURE_M)) {
886 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
887 set_feature(env, ARM_FEATURE_AUXCR);
890 if (arm_feature(env, ARM_FEATURE_V5)) {
891 set_feature(env, ARM_FEATURE_V4T);
893 if (arm_feature(env, ARM_FEATURE_VFP4)) {
894 set_feature(env, ARM_FEATURE_VFP3);
895 set_feature(env, ARM_FEATURE_VFP_FP16);
897 if (arm_feature(env, ARM_FEATURE_VFP3)) {
898 set_feature(env, ARM_FEATURE_VFP);
900 if (arm_feature(env, ARM_FEATURE_LPAE)) {
901 set_feature(env, ARM_FEATURE_V7MP);
902 set_feature(env, ARM_FEATURE_PXN);
904 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
905 set_feature(env, ARM_FEATURE_CBAR);
907 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
908 !arm_feature(env, ARM_FEATURE_M)) {
909 set_feature(env, ARM_FEATURE_THUMB_DSP);
912 if (arm_feature(env, ARM_FEATURE_V7) &&
913 !arm_feature(env, ARM_FEATURE_M) &&
914 !arm_feature(env, ARM_FEATURE_PMSA)) {
915 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
920 /* For CPUs which might have tiny 1K pages, or which have an
921 * MPU and might have small region sizes, stick with 1K pages.
925 if (!set_preferred_target_page_bits(pagebits)) {
926 /* This can only ever happen for hotplugging a CPU, or if
927 * the board code incorrectly creates a CPU which it has
928 * promised via minimum_page_size that it will not.
930 error_setg(errp, "This CPU requires a smaller page size than the "
935 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
936 * We don't support setting cluster ID ([16..23]) (known as Aff2
937 * in later ARM ARM versions), or any of the higher affinity level fields,
938 * so these bits always RAZ.
940 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
941 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
942 ARM_DEFAULT_CPUS_PER_CLUSTER);
945 if (cpu->reset_hivecs) {
946 cpu->reset_sctlr |= (1 << 13);
950 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
951 cpu->reset_sctlr |= SCTLR_EE;
953 cpu->reset_sctlr |= SCTLR_B;
958 /* If the has_el3 CPU property is disabled then we need to disable the
961 unset_feature(env, ARM_FEATURE_EL3);
963 /* Disable the security extension feature bits in the processor feature
964 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
966 cpu->id_pfr1 &= ~0xf0;
967 cpu->isar.id_aa64pfr0 &= ~0xf000;
971 unset_feature(env, ARM_FEATURE_EL2);
975 unset_feature(env, ARM_FEATURE_PMU);
976 cpu->id_aa64dfr0 &= ~0xf00;
979 if (!arm_feature(env, ARM_FEATURE_EL2)) {
980 /* Disable the hypervisor feature bits in the processor feature
981 * registers if we don't have EL2. These are id_pfr1[15:12] and
982 * id_aa64pfr0_el1[11:8].
984 cpu->isar.id_aa64pfr0 &= ~0xf00;
985 cpu->id_pfr1 &= ~0xf000;
988 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
989 * to false or by setting pmsav7-dregion to 0.
992 cpu->pmsav7_dregion = 0;
994 if (cpu->pmsav7_dregion == 0) {
995 cpu->has_mpu = false;
998 if (arm_feature(env, ARM_FEATURE_PMSA) &&
999 arm_feature(env, ARM_FEATURE_V7)) {
1000 uint32_t nr = cpu->pmsav7_dregion;
1003 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1008 if (arm_feature(env, ARM_FEATURE_V8)) {
1010 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1011 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1012 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1013 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1014 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1017 env->pmsav7.drbar = g_new0(uint32_t, nr);
1018 env->pmsav7.drsr = g_new0(uint32_t, nr);
1019 env->pmsav7.dracr = g_new0(uint32_t, nr);
1024 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1025 uint32_t nr = cpu->sau_sregion;
1028 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1033 env->sau.rbar = g_new0(uint32_t, nr);
1034 env->sau.rlar = g_new0(uint32_t, nr);
1038 if (arm_feature(env, ARM_FEATURE_EL3)) {
1039 set_feature(env, ARM_FEATURE_VBAR);
1042 register_cp_regs_for_features(cpu);
1043 arm_cpu_register_gdb_regs_for_features(cpu);
1045 init_cpreg_list(cpu);
1047 #ifndef CONFIG_USER_ONLY
1048 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1051 if (!cpu->secure_memory) {
1052 cpu->secure_memory = cs->memory;
1054 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1055 cpu->secure_memory);
1059 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1061 /* No core_count specified, default to smp_cpus. */
1062 if (cpu->core_count == -1) {
1063 cpu->core_count = smp_cpus;
1070 acc->parent_realize(dev, errp);
1073 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1078 const char *cpunamestr;
1080 cpuname = g_strsplit(cpu_model, ",", 1);
1081 cpunamestr = cpuname[0];
1082 #ifdef CONFIG_USER_ONLY
1083 /* For backwards compatibility usermode emulation allows "-cpu any",
1084 * which has the same semantics as "-cpu max".
1086 if (!strcmp(cpunamestr, "any")) {
1090 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1091 oc = object_class_by_name(typename);
1092 g_strfreev(cpuname);
1094 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1095 object_class_is_abstract(oc)) {
1101 /* CPU models. These are not needed for the AArch64 linux-user build. */
1102 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1104 static void arm926_initfn(Object *obj)
1106 ARMCPU *cpu = ARM_CPU(obj);
1108 cpu->dtb_compatible = "arm,arm926";
1109 set_feature(&cpu->env, ARM_FEATURE_V5);
1110 set_feature(&cpu->env, ARM_FEATURE_VFP);
1111 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1112 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1113 cpu->midr = 0x41069265;
1114 cpu->reset_fpsid = 0x41011090;
1115 cpu->ctr = 0x1dd20d2;
1116 cpu->reset_sctlr = 0x00090078;
1119 * ARMv5 does not have the ID_ISAR registers, but we can still
1120 * set the field to indicate Jazelle support within QEMU.
1122 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1125 static void arm946_initfn(Object *obj)
1127 ARMCPU *cpu = ARM_CPU(obj);
1129 cpu->dtb_compatible = "arm,arm946";
1130 set_feature(&cpu->env, ARM_FEATURE_V5);
1131 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1132 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1133 cpu->midr = 0x41059461;
1134 cpu->ctr = 0x0f004006;
1135 cpu->reset_sctlr = 0x00000078;
1138 static void arm1026_initfn(Object *obj)
1140 ARMCPU *cpu = ARM_CPU(obj);
1142 cpu->dtb_compatible = "arm,arm1026";
1143 set_feature(&cpu->env, ARM_FEATURE_V5);
1144 set_feature(&cpu->env, ARM_FEATURE_VFP);
1145 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1146 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1147 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1148 cpu->midr = 0x4106a262;
1149 cpu->reset_fpsid = 0x410110a0;
1150 cpu->ctr = 0x1dd20d2;
1151 cpu->reset_sctlr = 0x00090078;
1152 cpu->reset_auxcr = 1;
1155 * ARMv5 does not have the ID_ISAR registers, but we can still
1156 * set the field to indicate Jazelle support within QEMU.
1158 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1161 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1162 ARMCPRegInfo ifar = {
1163 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1165 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1168 define_one_arm_cp_reg(cpu, &ifar);
1172 static void arm1136_r2_initfn(Object *obj)
1174 ARMCPU *cpu = ARM_CPU(obj);
1175 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1176 * older core than plain "arm1136". In particular this does not
1177 * have the v6K features.
1178 * These ID register values are correct for 1136 but may be wrong
1179 * for 1136_r2 (in particular r0p2 does not actually implement most
1180 * of the ID registers).
1183 cpu->dtb_compatible = "arm,arm1136";
1184 set_feature(&cpu->env, ARM_FEATURE_V6);
1185 set_feature(&cpu->env, ARM_FEATURE_VFP);
1186 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1187 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1188 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1189 cpu->midr = 0x4107b362;
1190 cpu->reset_fpsid = 0x410120b4;
1191 cpu->isar.mvfr0 = 0x11111111;
1192 cpu->isar.mvfr1 = 0x00000000;
1193 cpu->ctr = 0x1dd20d2;
1194 cpu->reset_sctlr = 0x00050078;
1195 cpu->id_pfr0 = 0x111;
1199 cpu->id_mmfr0 = 0x01130003;
1200 cpu->id_mmfr1 = 0x10030302;
1201 cpu->id_mmfr2 = 0x01222110;
1202 cpu->isar.id_isar0 = 0x00140011;
1203 cpu->isar.id_isar1 = 0x12002111;
1204 cpu->isar.id_isar2 = 0x11231111;
1205 cpu->isar.id_isar3 = 0x01102131;
1206 cpu->isar.id_isar4 = 0x141;
1207 cpu->reset_auxcr = 7;
1210 static void arm1136_initfn(Object *obj)
1212 ARMCPU *cpu = ARM_CPU(obj);
1214 cpu->dtb_compatible = "arm,arm1136";
1215 set_feature(&cpu->env, ARM_FEATURE_V6K);
1216 set_feature(&cpu->env, ARM_FEATURE_V6);
1217 set_feature(&cpu->env, ARM_FEATURE_VFP);
1218 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1219 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1220 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1221 cpu->midr = 0x4117b363;
1222 cpu->reset_fpsid = 0x410120b4;
1223 cpu->isar.mvfr0 = 0x11111111;
1224 cpu->isar.mvfr1 = 0x00000000;
1225 cpu->ctr = 0x1dd20d2;
1226 cpu->reset_sctlr = 0x00050078;
1227 cpu->id_pfr0 = 0x111;
1231 cpu->id_mmfr0 = 0x01130003;
1232 cpu->id_mmfr1 = 0x10030302;
1233 cpu->id_mmfr2 = 0x01222110;
1234 cpu->isar.id_isar0 = 0x00140011;
1235 cpu->isar.id_isar1 = 0x12002111;
1236 cpu->isar.id_isar2 = 0x11231111;
1237 cpu->isar.id_isar3 = 0x01102131;
1238 cpu->isar.id_isar4 = 0x141;
1239 cpu->reset_auxcr = 7;
1242 static void arm1176_initfn(Object *obj)
1244 ARMCPU *cpu = ARM_CPU(obj);
1246 cpu->dtb_compatible = "arm,arm1176";
1247 set_feature(&cpu->env, ARM_FEATURE_V6K);
1248 set_feature(&cpu->env, ARM_FEATURE_VFP);
1249 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1250 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1251 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1252 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1253 set_feature(&cpu->env, ARM_FEATURE_EL3);
1254 cpu->midr = 0x410fb767;
1255 cpu->reset_fpsid = 0x410120b5;
1256 cpu->isar.mvfr0 = 0x11111111;
1257 cpu->isar.mvfr1 = 0x00000000;
1258 cpu->ctr = 0x1dd20d2;
1259 cpu->reset_sctlr = 0x00050078;
1260 cpu->id_pfr0 = 0x111;
1261 cpu->id_pfr1 = 0x11;
1262 cpu->id_dfr0 = 0x33;
1264 cpu->id_mmfr0 = 0x01130003;
1265 cpu->id_mmfr1 = 0x10030302;
1266 cpu->id_mmfr2 = 0x01222100;
1267 cpu->isar.id_isar0 = 0x0140011;
1268 cpu->isar.id_isar1 = 0x12002111;
1269 cpu->isar.id_isar2 = 0x11231121;
1270 cpu->isar.id_isar3 = 0x01102131;
1271 cpu->isar.id_isar4 = 0x01141;
1272 cpu->reset_auxcr = 7;
1275 static void arm11mpcore_initfn(Object *obj)
1277 ARMCPU *cpu = ARM_CPU(obj);
1279 cpu->dtb_compatible = "arm,arm11mpcore";
1280 set_feature(&cpu->env, ARM_FEATURE_V6K);
1281 set_feature(&cpu->env, ARM_FEATURE_VFP);
1282 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1283 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1284 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1285 cpu->midr = 0x410fb022;
1286 cpu->reset_fpsid = 0x410120b4;
1287 cpu->isar.mvfr0 = 0x11111111;
1288 cpu->isar.mvfr1 = 0x00000000;
1289 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1290 cpu->id_pfr0 = 0x111;
1294 cpu->id_mmfr0 = 0x01100103;
1295 cpu->id_mmfr1 = 0x10020302;
1296 cpu->id_mmfr2 = 0x01222000;
1297 cpu->isar.id_isar0 = 0x00100011;
1298 cpu->isar.id_isar1 = 0x12002111;
1299 cpu->isar.id_isar2 = 0x11221011;
1300 cpu->isar.id_isar3 = 0x01102131;
1301 cpu->isar.id_isar4 = 0x141;
1302 cpu->reset_auxcr = 1;
1305 static void cortex_m0_initfn(Object *obj)
1307 ARMCPU *cpu = ARM_CPU(obj);
1308 set_feature(&cpu->env, ARM_FEATURE_V6);
1309 set_feature(&cpu->env, ARM_FEATURE_M);
1311 cpu->midr = 0x410cc200;
1314 static void cortex_m3_initfn(Object *obj)
1316 ARMCPU *cpu = ARM_CPU(obj);
1317 set_feature(&cpu->env, ARM_FEATURE_V7);
1318 set_feature(&cpu->env, ARM_FEATURE_M);
1319 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1320 cpu->midr = 0x410fc231;
1321 cpu->pmsav7_dregion = 8;
1322 cpu->id_pfr0 = 0x00000030;
1323 cpu->id_pfr1 = 0x00000200;
1324 cpu->id_dfr0 = 0x00100000;
1325 cpu->id_afr0 = 0x00000000;
1326 cpu->id_mmfr0 = 0x00000030;
1327 cpu->id_mmfr1 = 0x00000000;
1328 cpu->id_mmfr2 = 0x00000000;
1329 cpu->id_mmfr3 = 0x00000000;
1330 cpu->isar.id_isar0 = 0x01141110;
1331 cpu->isar.id_isar1 = 0x02111000;
1332 cpu->isar.id_isar2 = 0x21112231;
1333 cpu->isar.id_isar3 = 0x01111110;
1334 cpu->isar.id_isar4 = 0x01310102;
1335 cpu->isar.id_isar5 = 0x00000000;
1336 cpu->isar.id_isar6 = 0x00000000;
1339 static void cortex_m4_initfn(Object *obj)
1341 ARMCPU *cpu = ARM_CPU(obj);
1343 set_feature(&cpu->env, ARM_FEATURE_V7);
1344 set_feature(&cpu->env, ARM_FEATURE_M);
1345 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1346 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1347 cpu->midr = 0x410fc240; /* r0p0 */
1348 cpu->pmsav7_dregion = 8;
1349 cpu->id_pfr0 = 0x00000030;
1350 cpu->id_pfr1 = 0x00000200;
1351 cpu->id_dfr0 = 0x00100000;
1352 cpu->id_afr0 = 0x00000000;
1353 cpu->id_mmfr0 = 0x00000030;
1354 cpu->id_mmfr1 = 0x00000000;
1355 cpu->id_mmfr2 = 0x00000000;
1356 cpu->id_mmfr3 = 0x00000000;
1357 cpu->isar.id_isar0 = 0x01141110;
1358 cpu->isar.id_isar1 = 0x02111000;
1359 cpu->isar.id_isar2 = 0x21112231;
1360 cpu->isar.id_isar3 = 0x01111110;
1361 cpu->isar.id_isar4 = 0x01310102;
1362 cpu->isar.id_isar5 = 0x00000000;
1363 cpu->isar.id_isar6 = 0x00000000;
1366 static void cortex_m33_initfn(Object *obj)
1368 ARMCPU *cpu = ARM_CPU(obj);
1370 set_feature(&cpu->env, ARM_FEATURE_V8);
1371 set_feature(&cpu->env, ARM_FEATURE_M);
1372 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1373 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1374 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1375 cpu->midr = 0x410fd213; /* r0p3 */
1376 cpu->pmsav7_dregion = 16;
1377 cpu->sau_sregion = 8;
1378 cpu->id_pfr0 = 0x00000030;
1379 cpu->id_pfr1 = 0x00000210;
1380 cpu->id_dfr0 = 0x00200000;
1381 cpu->id_afr0 = 0x00000000;
1382 cpu->id_mmfr0 = 0x00101F40;
1383 cpu->id_mmfr1 = 0x00000000;
1384 cpu->id_mmfr2 = 0x01000000;
1385 cpu->id_mmfr3 = 0x00000000;
1386 cpu->isar.id_isar0 = 0x01101110;
1387 cpu->isar.id_isar1 = 0x02212000;
1388 cpu->isar.id_isar2 = 0x20232232;
1389 cpu->isar.id_isar3 = 0x01111131;
1390 cpu->isar.id_isar4 = 0x01310132;
1391 cpu->isar.id_isar5 = 0x00000000;
1392 cpu->isar.id_isar6 = 0x00000000;
1393 cpu->clidr = 0x00000000;
1394 cpu->ctr = 0x8000c000;
1397 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1399 CPUClass *cc = CPU_CLASS(oc);
1401 #ifndef CONFIG_USER_ONLY
1402 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1405 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1408 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1409 /* Dummy the TCM region regs for the moment */
1410 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1411 .access = PL1_RW, .type = ARM_CP_CONST },
1412 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1413 .access = PL1_RW, .type = ARM_CP_CONST },
1414 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1415 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1419 static void cortex_r5_initfn(Object *obj)
1421 ARMCPU *cpu = ARM_CPU(obj);
1423 set_feature(&cpu->env, ARM_FEATURE_V7);
1424 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1425 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1426 cpu->midr = 0x411fc153; /* r1p3 */
1427 cpu->id_pfr0 = 0x0131;
1428 cpu->id_pfr1 = 0x001;
1429 cpu->id_dfr0 = 0x010400;
1431 cpu->id_mmfr0 = 0x0210030;
1432 cpu->id_mmfr1 = 0x00000000;
1433 cpu->id_mmfr2 = 0x01200000;
1434 cpu->id_mmfr3 = 0x0211;
1435 cpu->isar.id_isar0 = 0x02101111;
1436 cpu->isar.id_isar1 = 0x13112111;
1437 cpu->isar.id_isar2 = 0x21232141;
1438 cpu->isar.id_isar3 = 0x01112131;
1439 cpu->isar.id_isar4 = 0x0010142;
1440 cpu->isar.id_isar5 = 0x0;
1441 cpu->isar.id_isar6 = 0x0;
1442 cpu->mp_is_up = true;
1443 cpu->pmsav7_dregion = 16;
1444 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1447 static void cortex_r5f_initfn(Object *obj)
1449 ARMCPU *cpu = ARM_CPU(obj);
1451 cortex_r5_initfn(obj);
1452 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1455 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1456 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1457 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1458 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1459 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1463 static void cortex_a8_initfn(Object *obj)
1465 ARMCPU *cpu = ARM_CPU(obj);
1467 cpu->dtb_compatible = "arm,cortex-a8";
1468 set_feature(&cpu->env, ARM_FEATURE_V7);
1469 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1470 set_feature(&cpu->env, ARM_FEATURE_NEON);
1471 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1472 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1473 set_feature(&cpu->env, ARM_FEATURE_EL3);
1474 cpu->midr = 0x410fc080;
1475 cpu->reset_fpsid = 0x410330c0;
1476 cpu->isar.mvfr0 = 0x11110222;
1477 cpu->isar.mvfr1 = 0x00011111;
1478 cpu->ctr = 0x82048004;
1479 cpu->reset_sctlr = 0x00c50078;
1480 cpu->id_pfr0 = 0x1031;
1481 cpu->id_pfr1 = 0x11;
1482 cpu->id_dfr0 = 0x400;
1484 cpu->id_mmfr0 = 0x31100003;
1485 cpu->id_mmfr1 = 0x20000000;
1486 cpu->id_mmfr2 = 0x01202000;
1487 cpu->id_mmfr3 = 0x11;
1488 cpu->isar.id_isar0 = 0x00101111;
1489 cpu->isar.id_isar1 = 0x12112111;
1490 cpu->isar.id_isar2 = 0x21232031;
1491 cpu->isar.id_isar3 = 0x11112131;
1492 cpu->isar.id_isar4 = 0x00111142;
1493 cpu->dbgdidr = 0x15141000;
1494 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1495 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1496 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1497 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1498 cpu->reset_auxcr = 2;
1499 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1502 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1503 /* power_control should be set to maximum latency. Again,
1504 * default to 0 and set by private hook
1506 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1507 .access = PL1_RW, .resetvalue = 0,
1508 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1509 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1510 .access = PL1_RW, .resetvalue = 0,
1511 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1512 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1513 .access = PL1_RW, .resetvalue = 0,
1514 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1515 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1516 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1517 /* TLB lockdown control */
1518 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1519 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1520 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1521 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1522 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1523 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1524 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1525 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1526 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1527 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1531 static void cortex_a9_initfn(Object *obj)
1533 ARMCPU *cpu = ARM_CPU(obj);
1535 cpu->dtb_compatible = "arm,cortex-a9";
1536 set_feature(&cpu->env, ARM_FEATURE_V7);
1537 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1538 set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1539 set_feature(&cpu->env, ARM_FEATURE_NEON);
1540 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1541 set_feature(&cpu->env, ARM_FEATURE_EL3);
1542 /* Note that A9 supports the MP extensions even for
1543 * A9UP and single-core A9MP (which are both different
1544 * and valid configurations; we don't model A9UP).
1546 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1547 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1548 cpu->midr = 0x410fc090;
1549 cpu->reset_fpsid = 0x41033090;
1550 cpu->isar.mvfr0 = 0x11110222;
1551 cpu->isar.mvfr1 = 0x01111111;
1552 cpu->ctr = 0x80038003;
1553 cpu->reset_sctlr = 0x00c50078;
1554 cpu->id_pfr0 = 0x1031;
1555 cpu->id_pfr1 = 0x11;
1556 cpu->id_dfr0 = 0x000;
1558 cpu->id_mmfr0 = 0x00100103;
1559 cpu->id_mmfr1 = 0x20000000;
1560 cpu->id_mmfr2 = 0x01230000;
1561 cpu->id_mmfr3 = 0x00002111;
1562 cpu->isar.id_isar0 = 0x00101111;
1563 cpu->isar.id_isar1 = 0x13112111;
1564 cpu->isar.id_isar2 = 0x21232041;
1565 cpu->isar.id_isar3 = 0x11112131;
1566 cpu->isar.id_isar4 = 0x00111142;
1567 cpu->dbgdidr = 0x35141000;
1568 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1569 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1570 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1571 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1574 #ifndef CONFIG_USER_ONLY
1575 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1577 /* Linux wants the number of processors from here.
1578 * Might as well set the interrupt-controller bit too.
1580 return ((smp_cpus - 1) << 24) | (1 << 23);
1584 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1585 #ifndef CONFIG_USER_ONLY
1586 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1587 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1588 .writefn = arm_cp_write_ignore, },
1590 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1591 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1595 static void cortex_a7_initfn(Object *obj)
1597 ARMCPU *cpu = ARM_CPU(obj);
1599 cpu->dtb_compatible = "arm,cortex-a7";
1600 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1601 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1602 set_feature(&cpu->env, ARM_FEATURE_NEON);
1603 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1604 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1605 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1606 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1607 set_feature(&cpu->env, ARM_FEATURE_EL3);
1608 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1609 cpu->midr = 0x410fc075;
1610 cpu->reset_fpsid = 0x41023075;
1611 cpu->isar.mvfr0 = 0x10110222;
1612 cpu->isar.mvfr1 = 0x11111111;
1613 cpu->ctr = 0x84448003;
1614 cpu->reset_sctlr = 0x00c50078;
1615 cpu->id_pfr0 = 0x00001131;
1616 cpu->id_pfr1 = 0x00011011;
1617 cpu->id_dfr0 = 0x02010555;
1618 cpu->pmceid0 = 0x00000000;
1619 cpu->pmceid1 = 0x00000000;
1620 cpu->id_afr0 = 0x00000000;
1621 cpu->id_mmfr0 = 0x10101105;
1622 cpu->id_mmfr1 = 0x40000000;
1623 cpu->id_mmfr2 = 0x01240000;
1624 cpu->id_mmfr3 = 0x02102211;
1625 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1626 * table 4-41 gives 0x02101110, which includes the arm div insns.
1628 cpu->isar.id_isar0 = 0x02101110;
1629 cpu->isar.id_isar1 = 0x13112111;
1630 cpu->isar.id_isar2 = 0x21232041;
1631 cpu->isar.id_isar3 = 0x11112131;
1632 cpu->isar.id_isar4 = 0x10011142;
1633 cpu->dbgdidr = 0x3515f005;
1634 cpu->clidr = 0x0a200023;
1635 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1636 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1637 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1638 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1641 static void cortex_a15_initfn(Object *obj)
1643 ARMCPU *cpu = ARM_CPU(obj);
1645 cpu->dtb_compatible = "arm,cortex-a15";
1646 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1647 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1648 set_feature(&cpu->env, ARM_FEATURE_NEON);
1649 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1650 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1651 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1652 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1653 set_feature(&cpu->env, ARM_FEATURE_EL3);
1654 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1655 cpu->midr = 0x412fc0f1;
1656 cpu->reset_fpsid = 0x410430f0;
1657 cpu->isar.mvfr0 = 0x10110222;
1658 cpu->isar.mvfr1 = 0x11111111;
1659 cpu->ctr = 0x8444c004;
1660 cpu->reset_sctlr = 0x00c50078;
1661 cpu->id_pfr0 = 0x00001131;
1662 cpu->id_pfr1 = 0x00011011;
1663 cpu->id_dfr0 = 0x02010555;
1664 cpu->pmceid0 = 0x0000000;
1665 cpu->pmceid1 = 0x00000000;
1666 cpu->id_afr0 = 0x00000000;
1667 cpu->id_mmfr0 = 0x10201105;
1668 cpu->id_mmfr1 = 0x20000000;
1669 cpu->id_mmfr2 = 0x01240000;
1670 cpu->id_mmfr3 = 0x02102211;
1671 cpu->isar.id_isar0 = 0x02101110;
1672 cpu->isar.id_isar1 = 0x13112111;
1673 cpu->isar.id_isar2 = 0x21232041;
1674 cpu->isar.id_isar3 = 0x11112131;
1675 cpu->isar.id_isar4 = 0x10011142;
1676 cpu->dbgdidr = 0x3515f021;
1677 cpu->clidr = 0x0a200023;
1678 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1679 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1680 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1681 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1684 static void ti925t_initfn(Object *obj)
1686 ARMCPU *cpu = ARM_CPU(obj);
1687 set_feature(&cpu->env, ARM_FEATURE_V4T);
1688 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1689 cpu->midr = ARM_CPUID_TI925T;
1690 cpu->ctr = 0x5109149;
1691 cpu->reset_sctlr = 0x00000070;
1694 static void sa1100_initfn(Object *obj)
1696 ARMCPU *cpu = ARM_CPU(obj);
1698 cpu->dtb_compatible = "intel,sa1100";
1699 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1700 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1701 cpu->midr = 0x4401A11B;
1702 cpu->reset_sctlr = 0x00000070;
1705 static void sa1110_initfn(Object *obj)
1707 ARMCPU *cpu = ARM_CPU(obj);
1708 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1709 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1710 cpu->midr = 0x6901B119;
1711 cpu->reset_sctlr = 0x00000070;
1714 static void pxa250_initfn(Object *obj)
1716 ARMCPU *cpu = ARM_CPU(obj);
1718 cpu->dtb_compatible = "marvell,xscale";
1719 set_feature(&cpu->env, ARM_FEATURE_V5);
1720 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1721 cpu->midr = 0x69052100;
1722 cpu->ctr = 0xd172172;
1723 cpu->reset_sctlr = 0x00000078;
1726 static void pxa255_initfn(Object *obj)
1728 ARMCPU *cpu = ARM_CPU(obj);
1730 cpu->dtb_compatible = "marvell,xscale";
1731 set_feature(&cpu->env, ARM_FEATURE_V5);
1732 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1733 cpu->midr = 0x69052d00;
1734 cpu->ctr = 0xd172172;
1735 cpu->reset_sctlr = 0x00000078;
1738 static void pxa260_initfn(Object *obj)
1740 ARMCPU *cpu = ARM_CPU(obj);
1742 cpu->dtb_compatible = "marvell,xscale";
1743 set_feature(&cpu->env, ARM_FEATURE_V5);
1744 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1745 cpu->midr = 0x69052903;
1746 cpu->ctr = 0xd172172;
1747 cpu->reset_sctlr = 0x00000078;
1750 static void pxa261_initfn(Object *obj)
1752 ARMCPU *cpu = ARM_CPU(obj);
1754 cpu->dtb_compatible = "marvell,xscale";
1755 set_feature(&cpu->env, ARM_FEATURE_V5);
1756 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1757 cpu->midr = 0x69052d05;
1758 cpu->ctr = 0xd172172;
1759 cpu->reset_sctlr = 0x00000078;
1762 static void pxa262_initfn(Object *obj)
1764 ARMCPU *cpu = ARM_CPU(obj);
1766 cpu->dtb_compatible = "marvell,xscale";
1767 set_feature(&cpu->env, ARM_FEATURE_V5);
1768 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1769 cpu->midr = 0x69052d06;
1770 cpu->ctr = 0xd172172;
1771 cpu->reset_sctlr = 0x00000078;
1774 static void pxa270a0_initfn(Object *obj)
1776 ARMCPU *cpu = ARM_CPU(obj);
1778 cpu->dtb_compatible = "marvell,xscale";
1779 set_feature(&cpu->env, ARM_FEATURE_V5);
1780 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1781 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1782 cpu->midr = 0x69054110;
1783 cpu->ctr = 0xd172172;
1784 cpu->reset_sctlr = 0x00000078;
1787 static void pxa270a1_initfn(Object *obj)
1789 ARMCPU *cpu = ARM_CPU(obj);
1791 cpu->dtb_compatible = "marvell,xscale";
1792 set_feature(&cpu->env, ARM_FEATURE_V5);
1793 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1794 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1795 cpu->midr = 0x69054111;
1796 cpu->ctr = 0xd172172;
1797 cpu->reset_sctlr = 0x00000078;
1800 static void pxa270b0_initfn(Object *obj)
1802 ARMCPU *cpu = ARM_CPU(obj);
1804 cpu->dtb_compatible = "marvell,xscale";
1805 set_feature(&cpu->env, ARM_FEATURE_V5);
1806 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1807 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1808 cpu->midr = 0x69054112;
1809 cpu->ctr = 0xd172172;
1810 cpu->reset_sctlr = 0x00000078;
1813 static void pxa270b1_initfn(Object *obj)
1815 ARMCPU *cpu = ARM_CPU(obj);
1817 cpu->dtb_compatible = "marvell,xscale";
1818 set_feature(&cpu->env, ARM_FEATURE_V5);
1819 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1820 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1821 cpu->midr = 0x69054113;
1822 cpu->ctr = 0xd172172;
1823 cpu->reset_sctlr = 0x00000078;
1826 static void pxa270c0_initfn(Object *obj)
1828 ARMCPU *cpu = ARM_CPU(obj);
1830 cpu->dtb_compatible = "marvell,xscale";
1831 set_feature(&cpu->env, ARM_FEATURE_V5);
1832 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1833 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1834 cpu->midr = 0x69054114;
1835 cpu->ctr = 0xd172172;
1836 cpu->reset_sctlr = 0x00000078;
1839 static void pxa270c5_initfn(Object *obj)
1841 ARMCPU *cpu = ARM_CPU(obj);
1843 cpu->dtb_compatible = "marvell,xscale";
1844 set_feature(&cpu->env, ARM_FEATURE_V5);
1845 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1846 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1847 cpu->midr = 0x69054117;
1848 cpu->ctr = 0xd172172;
1849 cpu->reset_sctlr = 0x00000078;
1852 #ifndef TARGET_AARCH64
1853 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1854 * otherwise, a CPU with as many features enabled as our emulation supports.
1855 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1856 * this only needs to handle 32 bits.
1858 static void arm_max_initfn(Object *obj)
1860 ARMCPU *cpu = ARM_CPU(obj);
1862 if (kvm_enabled()) {
1863 kvm_arm_set_cpu_features_from_host(cpu);
1865 cortex_a15_initfn(obj);
1866 #ifdef CONFIG_USER_ONLY
1867 /* We don't set these in system emulation mode for the moment,
1868 * since we don't correctly set (all of) the ID registers to
1871 set_feature(&cpu->env, ARM_FEATURE_V8);
1875 t = cpu->isar.id_isar5;
1876 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1877 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1878 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1879 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1880 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1881 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1882 cpu->isar.id_isar5 = t;
1884 t = cpu->isar.id_isar6;
1885 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1886 cpu->isar.id_isar6 = t;
1893 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1895 typedef struct ARMCPUInfo {
1897 void (*initfn)(Object *obj);
1898 void (*class_init)(ObjectClass *oc, void *data);
1901 static const ARMCPUInfo arm_cpus[] = {
1902 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1903 { .name = "arm926", .initfn = arm926_initfn },
1904 { .name = "arm946", .initfn = arm946_initfn },
1905 { .name = "arm1026", .initfn = arm1026_initfn },
1906 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1907 * older core than plain "arm1136". In particular this does not
1908 * have the v6K features.
1910 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
1911 { .name = "arm1136", .initfn = arm1136_initfn },
1912 { .name = "arm1176", .initfn = arm1176_initfn },
1913 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1914 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
1915 .class_init = arm_v7m_class_init },
1916 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
1917 .class_init = arm_v7m_class_init },
1918 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
1919 .class_init = arm_v7m_class_init },
1920 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
1921 .class_init = arm_v7m_class_init },
1922 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
1923 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
1924 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
1925 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
1926 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
1927 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
1928 { .name = "ti925t", .initfn = ti925t_initfn },
1929 { .name = "sa1100", .initfn = sa1100_initfn },
1930 { .name = "sa1110", .initfn = sa1110_initfn },
1931 { .name = "pxa250", .initfn = pxa250_initfn },
1932 { .name = "pxa255", .initfn = pxa255_initfn },
1933 { .name = "pxa260", .initfn = pxa260_initfn },
1934 { .name = "pxa261", .initfn = pxa261_initfn },
1935 { .name = "pxa262", .initfn = pxa262_initfn },
1936 /* "pxa270" is an alias for "pxa270-a0" */
1937 { .name = "pxa270", .initfn = pxa270a0_initfn },
1938 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
1939 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
1940 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
1941 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
1942 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
1943 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
1944 #ifndef TARGET_AARCH64
1945 { .name = "max", .initfn = arm_max_initfn },
1947 #ifdef CONFIG_USER_ONLY
1948 { .name = "any", .initfn = arm_max_initfn },
1954 static Property arm_cpu_properties[] = {
1955 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1956 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1957 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1958 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1959 mp_affinity, ARM64_AFFINITY_INVALID),
1960 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1961 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
1962 DEFINE_PROP_END_OF_LIST()
1965 #ifdef CONFIG_USER_ONLY
1966 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
1967 int rw, int mmu_idx)
1969 ARMCPU *cpu = ARM_CPU(cs);
1970 CPUARMState *env = &cpu->env;
1972 env->exception.vaddress = address;
1974 cs->exception_index = EXCP_PREFETCH_ABORT;
1976 cs->exception_index = EXCP_DATA_ABORT;
1982 static gchar *arm_gdb_arch_name(CPUState *cs)
1984 ARMCPU *cpu = ARM_CPU(cs);
1985 CPUARMState *env = &cpu->env;
1987 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1988 return g_strdup("iwmmxt");
1990 return g_strdup("arm");
1993 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1995 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1996 CPUClass *cc = CPU_CLASS(acc);
1997 DeviceClass *dc = DEVICE_CLASS(oc);
1999 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2000 &acc->parent_realize);
2001 dc->props = arm_cpu_properties;
2003 acc->parent_reset = cc->reset;
2004 cc->reset = arm_cpu_reset;
2006 cc->class_by_name = arm_cpu_class_by_name;
2007 cc->has_work = arm_cpu_has_work;
2008 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2009 cc->dump_state = arm_cpu_dump_state;
2010 cc->set_pc = arm_cpu_set_pc;
2011 cc->gdb_read_register = arm_cpu_gdb_read_register;
2012 cc->gdb_write_register = arm_cpu_gdb_write_register;
2013 #ifdef CONFIG_USER_ONLY
2014 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2016 cc->do_interrupt = arm_cpu_do_interrupt;
2017 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2018 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2019 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2020 cc->asidx_from_attrs = arm_asidx_from_attrs;
2021 cc->vmsd = &vmstate_arm_cpu;
2022 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2023 cc->write_elf64_note = arm_cpu_write_elf64_note;
2024 cc->write_elf32_note = arm_cpu_write_elf32_note;
2026 cc->gdb_num_core_regs = 26;
2027 cc->gdb_core_xml_file = "arm-core.xml";
2028 cc->gdb_arch_name = arm_gdb_arch_name;
2029 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2030 cc->gdb_stop_before_watchpoint = true;
2031 cc->debug_excp_handler = arm_debug_excp_handler;
2032 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2033 #if !defined(CONFIG_USER_ONLY)
2034 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2037 cc->disas_set_info = arm_disas_set_info;
2039 cc->tcg_initialize = arm_translate_init;
2044 static void arm_host_initfn(Object *obj)
2046 ARMCPU *cpu = ARM_CPU(obj);
2048 kvm_arm_set_cpu_features_from_host(cpu);
2051 static const TypeInfo host_arm_cpu_type_info = {
2052 .name = TYPE_ARM_HOST_CPU,
2053 #ifdef TARGET_AARCH64
2054 .parent = TYPE_AARCH64_CPU,
2056 .parent = TYPE_ARM_CPU,
2058 .instance_init = arm_host_initfn,
2063 static void cpu_register(const ARMCPUInfo *info)
2065 TypeInfo type_info = {
2066 .parent = TYPE_ARM_CPU,
2067 .instance_size = sizeof(ARMCPU),
2068 .instance_init = info->initfn,
2069 .class_size = sizeof(ARMCPUClass),
2070 .class_init = info->class_init,
2073 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2074 type_register(&type_info);
2075 g_free((void *)type_info.name);
2078 static const TypeInfo arm_cpu_type_info = {
2079 .name = TYPE_ARM_CPU,
2081 .instance_size = sizeof(ARMCPU),
2082 .instance_init = arm_cpu_initfn,
2083 .instance_post_init = arm_cpu_post_init,
2084 .instance_finalize = arm_cpu_finalizefn,
2086 .class_size = sizeof(ARMCPUClass),
2087 .class_init = arm_cpu_class_init,
2090 static const TypeInfo idau_interface_type_info = {
2091 .name = TYPE_IDAU_INTERFACE,
2092 .parent = TYPE_INTERFACE,
2093 .class_size = sizeof(IDAUInterfaceClass),
2096 static void arm_cpu_register_types(void)
2098 const ARMCPUInfo *info = arm_cpus;
2100 type_register_static(&arm_cpu_type_info);
2101 type_register_static(&idau_interface_type_info);
2103 while (info->name) {
2109 type_register_static(&host_arm_cpu_type_info);
2113 type_init(arm_cpu_register_types)