4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
31 #include "hw/core/tcg-cpu-ops.h"
32 #endif /* CONFIG_TCG */
33 #include "internals.h"
34 #include "exec/exec-all.h"
35 #include "hw/qdev-properties.h"
36 #if !defined(CONFIG_USER_ONLY)
37 #include "hw/loader.h"
38 #include "hw/boards.h"
40 #include "sysemu/tcg.h"
41 #include "sysemu/qtest.h"
42 #include "sysemu/hw_accel.h"
44 #include "disas/capstone.h"
45 #include "fpu/softfloat.h"
48 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
50 ARMCPU *cpu = ARM_CPU(cs);
51 CPUARMState *env = &cpu->env;
57 env->regs[15] = value & ~1;
58 env->thumb = value & 1;
62 static vaddr arm_cpu_get_pc(CPUState *cs)
64 ARMCPU *cpu = ARM_CPU(cs);
65 CPUARMState *env = &cpu->env;
75 void arm_cpu_synchronize_from_tb(CPUState *cs,
76 const TranslationBlock *tb)
78 /* The program counter is always up to date with TARGET_TB_PCREL. */
79 if (!TARGET_TB_PCREL) {
80 CPUARMState *env = cs->env_ptr;
82 * It's OK to look at env for the current mode here, because it's
83 * never possible for an AArch64 TB to chain to an AArch32 TB.
88 env->regs[15] = tb_pc(tb);
93 void arm_restore_state_to_opc(CPUState *cs,
94 const TranslationBlock *tb,
97 CPUARMState *env = cs->env_ptr;
100 if (TARGET_TB_PCREL) {
101 env->pc = (env->pc & TARGET_PAGE_MASK) | data[0];
105 env->condexec_bits = 0;
106 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
108 if (TARGET_TB_PCREL) {
109 env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0];
111 env->regs[15] = data[0];
113 env->condexec_bits = data[1];
114 env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT;
117 #endif /* CONFIG_TCG */
119 static bool arm_cpu_has_work(CPUState *cs)
121 ARMCPU *cpu = ARM_CPU(cs);
123 return (cpu->power_state != PSCI_OFF)
124 && cs->interrupt_request &
125 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
126 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
127 | CPU_INTERRUPT_EXITTB);
130 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
133 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
136 entry->opaque = opaque;
138 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
141 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
144 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
147 entry->opaque = opaque;
149 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
152 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
154 /* Reset a single ARMCPRegInfo register */
155 ARMCPRegInfo *ri = value;
156 ARMCPU *cpu = opaque;
158 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
163 ri->resetfn(&cpu->env, ri);
167 /* A zero offset is never possible as it would be regs[0]
168 * so we use it to indicate that reset is being handled elsewhere.
169 * This is basically only used for fields in non-core coprocessors
170 * (like the pxa2xx ones).
172 if (!ri->fieldoffset) {
176 if (cpreg_field_is_64bit(ri)) {
177 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
179 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
183 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
185 /* Purely an assertion check: we've already done reset once,
186 * so now check that running the reset for the cpreg doesn't
187 * change its value. This traps bugs where two different cpregs
188 * both try to reset the same state field but to different values.
190 ARMCPRegInfo *ri = value;
191 ARMCPU *cpu = opaque;
192 uint64_t oldvalue, newvalue;
194 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
198 oldvalue = read_raw_cp_reg(&cpu->env, ri);
199 cp_reg_reset(key, value, opaque);
200 newvalue = read_raw_cp_reg(&cpu->env, ri);
201 assert(oldvalue == newvalue);
204 static void arm_cpu_reset_hold(Object *obj)
206 CPUState *s = CPU(obj);
207 ARMCPU *cpu = ARM_CPU(s);
208 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
209 CPUARMState *env = &cpu->env;
211 if (acc->parent_phases.hold) {
212 acc->parent_phases.hold(obj);
215 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
217 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
218 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
220 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
221 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
222 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
223 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
225 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
227 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
228 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
231 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
232 /* 64 bit CPUs always start in 64 bit mode */
234 #if defined(CONFIG_USER_ONLY)
235 env->pstate = PSTATE_MODE_EL0t;
236 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
237 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
238 /* Enable all PAC keys. */
239 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
240 SCTLR_EnDA | SCTLR_EnDB);
241 /* Trap on btype=3 for PACIxSP. */
242 env->cp15.sctlr_el[1] |= SCTLR_BT0;
243 /* and to the FP/Neon instructions */
244 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
246 /* and to the SVE instructions, with default vector length */
247 if (cpu_isar_feature(aa64_sve, cpu)) {
248 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
250 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
252 /* and for SME instructions, with default vector length, and TPIDR2 */
253 if (cpu_isar_feature(aa64_sme, cpu)) {
254 env->cp15.sctlr_el[1] |= SCTLR_EnTP2;
255 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
257 env->vfp.smcr_el[1] = cpu->sme_default_vq - 1;
258 if (cpu_isar_feature(aa64_sme_fa64, cpu)) {
259 env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1],
264 * Enable 48-bit address space (TODO: take reserved_va into account).
265 * Enable TBI0 but not TBI1.
266 * Note that this must match useronly_clean_ptr.
268 env->cp15.tcr_el[1] = 5 | (1ULL << 37);
271 if (cpu_isar_feature(aa64_mte, cpu)) {
272 /* Enable tag access, but leave TCF0 as No Effect (0). */
273 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
275 * Exclude all tags, so that tag 0 is always used.
276 * This corresponds to Linux current->thread.gcr_incl = 0.
278 * Set RRND, so that helper_irg() will generate a seed later.
279 * Here in cpu_reset(), the crypto subsystem has not yet been
282 env->cp15.gcr_el1 = 0x1ffff;
285 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
286 * This is not yet exposed from the Linux kernel in any way.
288 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
290 /* Reset into the highest available EL */
291 if (arm_feature(env, ARM_FEATURE_EL3)) {
292 env->pstate = PSTATE_MODE_EL3h;
293 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
294 env->pstate = PSTATE_MODE_EL2h;
296 env->pstate = PSTATE_MODE_EL1h;
299 /* Sample rvbar at reset. */
300 env->cp15.rvbar = cpu->rvbar_prop;
301 env->pc = env->cp15.rvbar;
304 #if defined(CONFIG_USER_ONLY)
305 /* Userspace expects access to cp10 and cp11 for FP/Neon */
306 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
308 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
311 if (arm_feature(env, ARM_FEATURE_V8)) {
312 env->cp15.rvbar = cpu->rvbar_prop;
313 env->regs[15] = cpu->rvbar_prop;
317 #if defined(CONFIG_USER_ONLY)
318 env->uncached_cpsr = ARM_CPU_MODE_USR;
319 /* For user mode we must enable access to coprocessors */
320 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
321 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
322 env->cp15.c15_cpar = 3;
323 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
324 env->cp15.c15_cpar = 1;
329 * If the highest available EL is EL2, AArch32 will start in Hyp
330 * mode; otherwise it starts in SVC. Note that if we start in
331 * AArch64 then these values in the uncached_cpsr will be ignored.
333 if (arm_feature(env, ARM_FEATURE_EL2) &&
334 !arm_feature(env, ARM_FEATURE_EL3)) {
335 env->uncached_cpsr = ARM_CPU_MODE_HYP;
337 env->uncached_cpsr = ARM_CPU_MODE_SVC;
339 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
341 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
342 * executing as AArch32 then check if highvecs are enabled and
343 * adjust the PC accordingly.
345 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
346 env->regs[15] = 0xFFFF0000;
349 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
352 if (arm_feature(env, ARM_FEATURE_M)) {
353 #ifndef CONFIG_USER_ONLY
354 uint32_t initial_msp; /* Loaded from 0x0 */
355 uint32_t initial_pc; /* Loaded from 0x4 */
360 if (cpu_isar_feature(aa32_lob, cpu)) {
362 * LTPSIZE is constant 4 if MVE not implemented, and resets
363 * to an UNKNOWN value if MVE is implemented. We choose to
366 env->v7m.ltpsize = 4;
367 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
368 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
369 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
372 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
373 env->v7m.secure = true;
375 /* This bit resets to 0 if security is supported, but 1 if
376 * it is not. The bit is not present in v7M, but we set it
377 * here so we can avoid having to make checks on it conditional
378 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
380 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
382 * Set NSACR to indicate "NS access permitted to everything";
383 * this avoids having to have all the tests of it being
384 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
385 * v8.1M the guest-visible value of NSACR in a CPU without the
386 * Security Extension is 0xcff.
388 env->v7m.nsacr = 0xcff;
391 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
392 * that it resets to 1, so QEMU always does that rather than making
393 * it dependent on CPU model. In v8M it is RES1.
395 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
396 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
397 if (arm_feature(env, ARM_FEATURE_V8)) {
398 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
399 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
400 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
402 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
403 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
404 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
407 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
408 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
409 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
410 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
413 #ifndef CONFIG_USER_ONLY
414 /* Unlike A/R profile, M profile defines the reset LR value */
415 env->regs[14] = 0xffffffff;
417 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
418 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
420 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
421 vecbase = env->v7m.vecbase[env->v7m.secure];
422 rom = rom_ptr_for_as(s->as, vecbase, 8);
424 /* Address zero is covered by ROM which hasn't yet been
425 * copied into physical memory.
427 initial_msp = ldl_p(rom);
428 initial_pc = ldl_p(rom + 4);
430 /* Address zero not covered by a ROM blob, or the ROM blob
431 * is in non-modifiable memory and this is a second reset after
432 * it got copied into memory. In the latter case, rom_ptr
433 * will return a NULL pointer and we should use ldl_phys instead.
435 initial_msp = ldl_phys(s->as, vecbase);
436 initial_pc = ldl_phys(s->as, vecbase + 4);
439 qemu_log_mask(CPU_LOG_INT,
440 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
441 initial_msp, initial_pc);
443 env->regs[13] = initial_msp & 0xFFFFFFFC;
444 env->regs[15] = initial_pc & ~1;
445 env->thumb = initial_pc & 1;
448 * For user mode we run non-secure and with access to the FPU.
449 * The FPU context is active (ie does not need further setup)
450 * and is owned by non-secure.
452 env->v7m.secure = false;
453 env->v7m.nsacr = 0xcff;
454 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
455 env->v7m.fpccr[M_REG_S] &=
456 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
457 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
461 /* M profile requires that reset clears the exclusive monitor;
462 * A profile does not, but clearing it makes more sense than having it
463 * set with an exclusive access on address zero.
465 arm_clear_exclusive(env);
467 if (arm_feature(env, ARM_FEATURE_PMSA)) {
468 if (cpu->pmsav7_dregion > 0) {
469 if (arm_feature(env, ARM_FEATURE_V8)) {
470 memset(env->pmsav8.rbar[M_REG_NS], 0,
471 sizeof(*env->pmsav8.rbar[M_REG_NS])
472 * cpu->pmsav7_dregion);
473 memset(env->pmsav8.rlar[M_REG_NS], 0,
474 sizeof(*env->pmsav8.rlar[M_REG_NS])
475 * cpu->pmsav7_dregion);
476 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
477 memset(env->pmsav8.rbar[M_REG_S], 0,
478 sizeof(*env->pmsav8.rbar[M_REG_S])
479 * cpu->pmsav7_dregion);
480 memset(env->pmsav8.rlar[M_REG_S], 0,
481 sizeof(*env->pmsav8.rlar[M_REG_S])
482 * cpu->pmsav7_dregion);
484 } else if (arm_feature(env, ARM_FEATURE_V7)) {
485 memset(env->pmsav7.drbar, 0,
486 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
487 memset(env->pmsav7.drsr, 0,
488 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
489 memset(env->pmsav7.dracr, 0,
490 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
494 if (cpu->pmsav8r_hdregion > 0) {
495 memset(env->pmsav8.hprbar, 0,
496 sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion);
497 memset(env->pmsav8.hprlar, 0,
498 sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion);
501 env->pmsav7.rnr[M_REG_NS] = 0;
502 env->pmsav7.rnr[M_REG_S] = 0;
503 env->pmsav8.mair0[M_REG_NS] = 0;
504 env->pmsav8.mair0[M_REG_S] = 0;
505 env->pmsav8.mair1[M_REG_NS] = 0;
506 env->pmsav8.mair1[M_REG_S] = 0;
509 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
510 if (cpu->sau_sregion > 0) {
511 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
512 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
515 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
516 * the Cortex-M33 does.
521 set_flush_to_zero(1, &env->vfp.standard_fp_status);
522 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
523 set_default_nan_mode(1, &env->vfp.standard_fp_status);
524 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
525 set_float_detect_tininess(float_tininess_before_rounding,
526 &env->vfp.fp_status);
527 set_float_detect_tininess(float_tininess_before_rounding,
528 &env->vfp.standard_fp_status);
529 set_float_detect_tininess(float_tininess_before_rounding,
530 &env->vfp.fp_status_f16);
531 set_float_detect_tininess(float_tininess_before_rounding,
532 &env->vfp.standard_fp_status_f16);
533 #ifndef CONFIG_USER_ONLY
535 kvm_arm_reset_vcpu(cpu);
539 hw_breakpoint_update_all(cpu);
540 hw_watchpoint_update_all(cpu);
541 arm_rebuild_hflags(env);
544 #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
546 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
547 unsigned int target_el,
548 unsigned int cur_el, bool secure,
551 CPUARMState *env = cs->env_ptr;
552 bool pstate_unmasked;
553 bool unmasked = false;
556 * Don't take exceptions if they target a lower EL.
557 * This check should catch any exceptions that would not be taken
560 if (cur_el > target_el) {
566 pstate_unmasked = !(env->daif & PSTATE_F);
570 pstate_unmasked = !(env->daif & PSTATE_I);
574 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
575 /* VFIQs are only taken when hypervized. */
578 return !(env->daif & PSTATE_F);
580 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
581 /* VIRQs are only taken when hypervized. */
584 return !(env->daif & PSTATE_I);
586 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
587 /* VIRQs are only taken when hypervized. */
590 return !(env->daif & PSTATE_A);
592 g_assert_not_reached();
596 * Use the target EL, current execution state and SCR/HCR settings to
597 * determine whether the corresponding CPSR bit is used to mask the
600 if ((target_el > cur_el) && (target_el != 1)) {
601 /* Exceptions targeting a higher EL may not be maskable */
602 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
606 * According to ARM DDI 0487H.a, an interrupt can be masked
607 * when HCR_E2H and HCR_TGE are both set regardless of the
608 * current Security state. Note that we need to revisit this
609 * part again once we need to support NMI.
611 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
616 /* Interrupt cannot be masked when the target EL is 3 */
620 g_assert_not_reached();
624 * The old 32-bit-only environment has a more complicated
625 * masking setup. HCR and SCR bits not only affect interrupt
626 * routing but also change the behaviour of masking.
633 * If FIQs are routed to EL3 or EL2 then there are cases where
634 * we override the CPSR.F in determining if the exception is
635 * masked or not. If neither of these are set then we fall back
636 * to the CPSR.F setting otherwise we further assess the state
639 hcr = hcr_el2 & HCR_FMO;
640 scr = (env->cp15.scr_el3 & SCR_FIQ);
643 * When EL3 is 32-bit, the SCR.FW bit controls whether the
644 * CPSR.F bit masks FIQ interrupts when taken in non-secure
645 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
646 * when non-secure but only when FIQs are only routed to EL3.
648 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
652 * When EL3 execution state is 32-bit, if HCR.IMO is set then
653 * we may override the CPSR.I masking when in non-secure state.
654 * The SCR.IRQ setting has already been taken into consideration
655 * when setting the target EL, so it does not have a further
658 hcr = hcr_el2 & HCR_IMO;
662 g_assert_not_reached();
665 if ((scr || hcr) && !secure) {
672 * The PSTATE bits only mask the interrupt if we have not overriden the
675 return unmasked || pstate_unmasked;
678 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
680 CPUClass *cc = CPU_GET_CLASS(cs);
681 CPUARMState *env = cs->env_ptr;
682 uint32_t cur_el = arm_current_el(env);
683 bool secure = arm_is_secure(env);
684 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
688 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
690 if (interrupt_request & CPU_INTERRUPT_FIQ) {
692 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
693 if (arm_excp_unmasked(cs, excp_idx, target_el,
694 cur_el, secure, hcr_el2)) {
698 if (interrupt_request & CPU_INTERRUPT_HARD) {
700 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
701 if (arm_excp_unmasked(cs, excp_idx, target_el,
702 cur_el, secure, hcr_el2)) {
706 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
707 excp_idx = EXCP_VIRQ;
709 if (arm_excp_unmasked(cs, excp_idx, target_el,
710 cur_el, secure, hcr_el2)) {
714 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
715 excp_idx = EXCP_VFIQ;
717 if (arm_excp_unmasked(cs, excp_idx, target_el,
718 cur_el, secure, hcr_el2)) {
722 if (interrupt_request & CPU_INTERRUPT_VSERR) {
723 excp_idx = EXCP_VSERR;
725 if (arm_excp_unmasked(cs, excp_idx, target_el,
726 cur_el, secure, hcr_el2)) {
727 /* Taking a virtual abort clears HCR_EL2.VSE */
728 env->cp15.hcr_el2 &= ~HCR_VSE;
729 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
736 cs->exception_index = excp_idx;
737 env->exception.target_el = target_el;
738 cc->tcg_ops->do_interrupt(cs);
742 #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */
744 void arm_cpu_update_virq(ARMCPU *cpu)
747 * Update the interrupt level for VIRQ, which is the logical OR of
748 * the HCR_EL2.VI bit and the input line level from the GIC.
750 CPUARMState *env = &cpu->env;
751 CPUState *cs = CPU(cpu);
753 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
754 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
756 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
758 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
760 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
765 void arm_cpu_update_vfiq(ARMCPU *cpu)
768 * Update the interrupt level for VFIQ, which is the logical OR of
769 * the HCR_EL2.VF bit and the input line level from the GIC.
771 CPUARMState *env = &cpu->env;
772 CPUState *cs = CPU(cpu);
774 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
775 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
777 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
779 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
781 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
786 void arm_cpu_update_vserr(ARMCPU *cpu)
789 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
791 CPUARMState *env = &cpu->env;
792 CPUState *cs = CPU(cpu);
794 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
796 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
798 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
800 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
805 #ifndef CONFIG_USER_ONLY
806 static void arm_cpu_set_irq(void *opaque, int irq, int level)
808 ARMCPU *cpu = opaque;
809 CPUARMState *env = &cpu->env;
810 CPUState *cs = CPU(cpu);
811 static const int mask[] = {
812 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
813 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
814 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
815 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
818 if (!arm_feature(env, ARM_FEATURE_EL2) &&
819 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
821 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
822 * have EL2 support we don't care. (Unless the guest is doing something
823 * silly this will only be calls saying "level is still 0".)
829 env->irq_line_state |= mask[irq];
831 env->irq_line_state &= ~mask[irq];
836 arm_cpu_update_virq(cpu);
839 arm_cpu_update_vfiq(cpu);
844 cpu_interrupt(cs, mask[irq]);
846 cpu_reset_interrupt(cs, mask[irq]);
850 g_assert_not_reached();
854 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
857 ARMCPU *cpu = opaque;
858 CPUARMState *env = &cpu->env;
859 CPUState *cs = CPU(cpu);
860 uint32_t linestate_bit;
865 irq_id = KVM_ARM_IRQ_CPU_IRQ;
866 linestate_bit = CPU_INTERRUPT_HARD;
869 irq_id = KVM_ARM_IRQ_CPU_FIQ;
870 linestate_bit = CPU_INTERRUPT_FIQ;
873 g_assert_not_reached();
877 env->irq_line_state |= linestate_bit;
879 env->irq_line_state &= ~linestate_bit;
881 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
885 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
887 ARMCPU *cpu = ARM_CPU(cs);
888 CPUARMState *env = &cpu->env;
890 cpu_synchronize_state(cs);
891 return arm_cpu_data_is_big_endian(env);
896 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
898 ARMCPU *ac = ARM_CPU(cpu);
899 CPUARMState *env = &ac->env;
903 info->cap_arch = CS_ARCH_ARM64;
904 info->cap_insn_unit = 4;
905 info->cap_insn_split = 4;
909 info->cap_insn_unit = 2;
910 info->cap_insn_split = 4;
911 cap_mode = CS_MODE_THUMB;
913 info->cap_insn_unit = 4;
914 info->cap_insn_split = 4;
915 cap_mode = CS_MODE_ARM;
917 if (arm_feature(env, ARM_FEATURE_V8)) {
918 cap_mode |= CS_MODE_V8;
920 if (arm_feature(env, ARM_FEATURE_M)) {
921 cap_mode |= CS_MODE_MCLASS;
923 info->cap_arch = CS_ARCH_ARM;
924 info->cap_mode = cap_mode;
927 sctlr_b = arm_sctlr_b(env);
928 if (bswap_code(sctlr_b)) {
929 #if TARGET_BIG_ENDIAN
930 info->endian = BFD_ENDIAN_LITTLE;
932 info->endian = BFD_ENDIAN_BIG;
935 info->flags &= ~INSN_ARM_BE32;
936 #ifndef CONFIG_USER_ONLY
938 info->flags |= INSN_ARM_BE32;
943 #ifdef TARGET_AARCH64
945 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
947 ARMCPU *cpu = ARM_CPU(cs);
948 CPUARMState *env = &cpu->env;
949 uint32_t psr = pstate_read(env);
951 int el = arm_current_el(env);
952 const char *ns_status;
955 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
956 for (i = 0; i < 32; i++) {
958 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
960 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
961 (i + 2) % 3 ? " " : "\n");
965 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
966 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
970 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
972 psr & PSTATE_N ? 'N' : '-',
973 psr & PSTATE_Z ? 'Z' : '-',
974 psr & PSTATE_C ? 'C' : '-',
975 psr & PSTATE_V ? 'V' : '-',
978 psr & PSTATE_SP ? 'h' : 't');
980 if (cpu_isar_feature(aa64_sme, cpu)) {
981 qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c",
983 (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'),
984 (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-'));
986 if (cpu_isar_feature(aa64_bti, cpu)) {
987 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
989 if (!(flags & CPU_DUMP_FPU)) {
990 qemu_fprintf(f, "\n");
993 if (fp_exception_el(env, el) != 0) {
994 qemu_fprintf(f, " FPU disabled\n");
997 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
998 vfp_get_fpcr(env), vfp_get_fpsr(env));
1000 if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) {
1001 sve = sme_exception_el(env, el) == 0;
1002 } else if (cpu_isar_feature(aa64_sve, cpu)) {
1003 sve = sve_exception_el(env, el) == 0;
1009 int j, zcr_len = sve_vqm1_for_el(env, el);
1011 for (i = 0; i <= FFR_PRED_NUM; i++) {
1013 if (i == FFR_PRED_NUM) {
1014 qemu_fprintf(f, "FFR=");
1015 /* It's last, so end the line. */
1018 qemu_fprintf(f, "P%02d=", i);
1031 /* More than one quadword per predicate. */
1036 for (j = zcr_len / 4; j >= 0; j--) {
1038 if (j * 4 + 4 <= zcr_len + 1) {
1041 digits = (zcr_len % 4 + 1) * 4;
1043 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
1044 env->vfp.pregs[i].p[j],
1045 j ? ":" : eol ? "\n" : " ");
1049 for (i = 0; i < 32; i++) {
1051 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1052 i, env->vfp.zregs[i].d[1],
1053 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
1054 } else if (zcr_len == 1) {
1055 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
1056 ":%016" PRIx64 ":%016" PRIx64 "\n",
1057 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
1058 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
1060 for (j = zcr_len; j >= 0; j--) {
1061 bool odd = (zcr_len - j) % 2 != 0;
1063 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
1066 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
1068 qemu_fprintf(f, " [%x]=", j);
1071 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
1072 env->vfp.zregs[i].d[j * 2 + 1],
1073 env->vfp.zregs[i].d[j * 2],
1074 odd || j == 0 ? "\n" : ":");
1079 for (i = 0; i < 32; i++) {
1080 uint64_t *q = aa64_vfp_qreg(env, i);
1081 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
1082 i, q[1], q[0], (i & 1 ? "\n" : " "));
1089 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1091 g_assert_not_reached();
1096 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1098 ARMCPU *cpu = ARM_CPU(cs);
1099 CPUARMState *env = &cpu->env;
1103 aarch64_cpu_dump_state(cs, f, flags);
1107 for (i = 0; i < 16; i++) {
1108 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1110 qemu_fprintf(f, "\n");
1112 qemu_fprintf(f, " ");
1116 if (arm_feature(env, ARM_FEATURE_M)) {
1117 uint32_t xpsr = xpsr_read(env);
1119 const char *ns_status = "";
1121 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1122 ns_status = env->v7m.secure ? "S " : "NS ";
1125 if (xpsr & XPSR_EXCP) {
1128 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1129 mode = "unpriv-thread";
1131 mode = "priv-thread";
1135 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1137 xpsr & XPSR_N ? 'N' : '-',
1138 xpsr & XPSR_Z ? 'Z' : '-',
1139 xpsr & XPSR_C ? 'C' : '-',
1140 xpsr & XPSR_V ? 'V' : '-',
1141 xpsr & XPSR_T ? 'T' : 'A',
1145 uint32_t psr = cpsr_read(env);
1146 const char *ns_status = "";
1148 if (arm_feature(env, ARM_FEATURE_EL3) &&
1149 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1150 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1153 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1155 psr & CPSR_N ? 'N' : '-',
1156 psr & CPSR_Z ? 'Z' : '-',
1157 psr & CPSR_C ? 'C' : '-',
1158 psr & CPSR_V ? 'V' : '-',
1159 psr & CPSR_T ? 'T' : 'A',
1161 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1164 if (flags & CPU_DUMP_FPU) {
1166 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1168 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1171 for (i = 0; i < numvfpregs; i++) {
1172 uint64_t v = *aa32_vfp_dreg(env, i);
1173 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1175 i * 2 + 1, (uint32_t)(v >> 32),
1178 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1179 if (cpu_isar_feature(aa32_mve, cpu)) {
1180 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1185 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1187 uint32_t Aff1 = idx / clustersz;
1188 uint32_t Aff0 = idx % clustersz;
1189 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1192 static void arm_cpu_initfn(Object *obj)
1194 ARMCPU *cpu = ARM_CPU(obj);
1196 cpu_set_cpustate_pointers(cpu);
1197 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1200 QLIST_INIT(&cpu->pre_el_change_hooks);
1201 QLIST_INIT(&cpu->el_change_hooks);
1203 #ifdef CONFIG_USER_ONLY
1204 # ifdef TARGET_AARCH64
1206 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1207 * These values were chosen to fit within the default signal frame.
1208 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1209 * and our corresponding cpu property.
1211 cpu->sve_default_vq = 4;
1212 cpu->sme_default_vq = 2;
1215 /* Our inbound IRQ and FIQ lines */
1216 if (kvm_enabled()) {
1217 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1218 * the same interface as non-KVM CPUs.
1220 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1222 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1225 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1226 ARRAY_SIZE(cpu->gt_timer_outputs));
1228 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1229 "gicv3-maintenance-interrupt", 1);
1230 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1231 "pmu-interrupt", 1);
1234 /* DTB consumers generally don't in fact care what the 'compatible'
1235 * string is, so always provide some string and trust that a hypothetical
1236 * picky DTB consumer will also provide a helpful error message.
1238 cpu->dtb_compatible = "qemu,unknown";
1239 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1240 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1242 if (tcg_enabled() || hvf_enabled()) {
1243 /* TCG and HVF implement PSCI 1.1 */
1244 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1248 static Property arm_cpu_gt_cntfrq_property =
1249 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1250 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1252 static Property arm_cpu_reset_cbar_property =
1253 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1255 static Property arm_cpu_reset_hivecs_property =
1256 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1258 #ifndef CONFIG_USER_ONLY
1259 static Property arm_cpu_has_el2_property =
1260 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1262 static Property arm_cpu_has_el3_property =
1263 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1266 static Property arm_cpu_cfgend_property =
1267 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1269 static Property arm_cpu_has_vfp_property =
1270 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1272 static Property arm_cpu_has_neon_property =
1273 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1275 static Property arm_cpu_has_dsp_property =
1276 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1278 static Property arm_cpu_has_mpu_property =
1279 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1281 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1282 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1283 * the right value for that particular CPU type, and we don't want
1284 * to override that with an incorrect constant value.
1286 static Property arm_cpu_pmsav7_dregion_property =
1287 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1289 qdev_prop_uint32, uint32_t);
1291 static bool arm_get_pmu(Object *obj, Error **errp)
1293 ARMCPU *cpu = ARM_CPU(obj);
1295 return cpu->has_pmu;
1298 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1300 ARMCPU *cpu = ARM_CPU(obj);
1303 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1304 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1307 set_feature(&cpu->env, ARM_FEATURE_PMU);
1309 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1311 cpu->has_pmu = value;
1314 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1317 * The exact approach to calculating guest ticks is:
1319 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1320 * NANOSECONDS_PER_SECOND);
1322 * We don't do that. Rather we intentionally use integer division
1323 * truncation below and in the caller for the conversion of host monotonic
1324 * time to guest ticks to provide the exact inverse for the semantics of
1325 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1326 * it loses precision when representing frequencies where
1327 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1328 * provide an exact inverse leads to scheduling timers with negative
1329 * periods, which in turn leads to sticky behaviour in the guest.
1331 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1332 * cannot become zero.
1334 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1335 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1338 void arm_cpu_post_init(Object *obj)
1340 ARMCPU *cpu = ARM_CPU(obj);
1342 /* M profile implies PMSA. We have to do this here rather than
1343 * in realize with the other feature-implication checks because
1344 * we look at the PMSA bit to see if we should add some properties.
1346 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1347 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1350 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1351 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1352 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1355 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1356 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1359 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1360 object_property_add_uint64_ptr(obj, "rvbar",
1362 OBJ_PROP_FLAG_READWRITE);
1365 #ifndef CONFIG_USER_ONLY
1366 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1367 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1368 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1370 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1372 object_property_add_link(obj, "secure-memory",
1374 (Object **)&cpu->secure_memory,
1375 qdev_prop_allow_set_link_before_realize,
1376 OBJ_PROP_LINK_STRONG);
1379 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1380 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1384 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1385 cpu->has_pmu = true;
1386 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1390 * Allow user to turn off VFP and Neon support, but only for TCG --
1391 * KVM does not currently allow us to lie to the guest about its
1392 * ID/feature registers, so the guest always sees what the host has.
1394 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1395 ? cpu_isar_feature(aa64_fp_simd, cpu)
1396 : cpu_isar_feature(aa32_vfp, cpu)) {
1397 cpu->has_vfp = true;
1398 if (!kvm_enabled()) {
1399 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1403 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1404 cpu->has_neon = true;
1405 if (!kvm_enabled()) {
1406 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1410 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1411 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1412 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1415 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1416 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1417 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1418 qdev_property_add_static(DEVICE(obj),
1419 &arm_cpu_pmsav7_dregion_property);
1423 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1424 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1425 qdev_prop_allow_set_link_before_realize,
1426 OBJ_PROP_LINK_STRONG);
1428 * M profile: initial value of the Secure VTOR. We can't just use
1429 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1430 * the property to be set after realize.
1432 object_property_add_uint32_ptr(obj, "init-svtor",
1434 OBJ_PROP_FLAG_READWRITE);
1436 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1438 * Initial value of the NS VTOR (for cores without the Security
1439 * extension, this is the only VTOR)
1441 object_property_add_uint32_ptr(obj, "init-nsvtor",
1443 OBJ_PROP_FLAG_READWRITE);
1446 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1447 object_property_add_uint32_ptr(obj, "psci-conduit",
1449 OBJ_PROP_FLAG_READWRITE);
1451 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1453 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1454 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1457 if (kvm_enabled()) {
1458 kvm_arm_add_vcpu_properties(obj);
1461 #ifndef CONFIG_USER_ONLY
1462 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1463 cpu_isar_feature(aa64_mte, cpu)) {
1464 object_property_add_link(obj, "tag-memory",
1466 (Object **)&cpu->tag_memory,
1467 qdev_prop_allow_set_link_before_realize,
1468 OBJ_PROP_LINK_STRONG);
1470 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1471 object_property_add_link(obj, "secure-tag-memory",
1473 (Object **)&cpu->secure_tag_memory,
1474 qdev_prop_allow_set_link_before_realize,
1475 OBJ_PROP_LINK_STRONG);
1481 static void arm_cpu_finalizefn(Object *obj)
1483 ARMCPU *cpu = ARM_CPU(obj);
1484 ARMELChangeHook *hook, *next;
1486 g_hash_table_destroy(cpu->cp_regs);
1488 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1489 QLIST_REMOVE(hook, node);
1492 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1493 QLIST_REMOVE(hook, node);
1496 #ifndef CONFIG_USER_ONLY
1497 if (cpu->pmu_timer) {
1498 timer_free(cpu->pmu_timer);
1503 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1505 Error *local_err = NULL;
1507 #ifdef TARGET_AARCH64
1508 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1509 arm_cpu_sve_finalize(cpu, &local_err);
1510 if (local_err != NULL) {
1511 error_propagate(errp, local_err);
1515 arm_cpu_sme_finalize(cpu, &local_err);
1516 if (local_err != NULL) {
1517 error_propagate(errp, local_err);
1521 arm_cpu_pauth_finalize(cpu, &local_err);
1522 if (local_err != NULL) {
1523 error_propagate(errp, local_err);
1527 arm_cpu_lpa2_finalize(cpu, &local_err);
1528 if (local_err != NULL) {
1529 error_propagate(errp, local_err);
1535 if (kvm_enabled()) {
1536 kvm_arm_steal_time_finalize(cpu, &local_err);
1537 if (local_err != NULL) {
1538 error_propagate(errp, local_err);
1544 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1546 CPUState *cs = CPU(dev);
1547 ARMCPU *cpu = ARM_CPU(dev);
1548 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1549 CPUARMState *env = &cpu->env;
1551 Error *local_err = NULL;
1552 bool no_aa32 = false;
1554 /* If we needed to query the host kernel for the CPU features
1555 * then it's possible that might have failed in the initfn, but
1556 * this is the first point where we can report it.
1558 if (cpu->host_cpu_probe_failed) {
1559 if (!kvm_enabled() && !hvf_enabled()) {
1560 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1562 error_setg(errp, "Failed to retrieve host CPU features");
1567 #ifndef CONFIG_USER_ONLY
1568 /* The NVIC and M-profile CPU are two halves of a single piece of
1569 * hardware; trying to use one without the other is a command line
1570 * error and will result in segfaults if not caught here.
1572 if (arm_feature(env, ARM_FEATURE_M)) {
1574 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1579 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1584 if (!tcg_enabled() && !qtest_enabled()) {
1586 * We assume that no accelerator except TCG (and the "not really an
1587 * accelerator" qtest) can handle these features, because Arm hardware
1588 * virtualization can't virtualize them.
1590 * Catch all the cases which might cause us to create more than one
1591 * address space for the CPU (otherwise we will assert() later in
1592 * cpu_address_space_init()).
1594 if (arm_feature(env, ARM_FEATURE_M)) {
1596 "Cannot enable %s when using an M-profile guest CPU",
1597 current_accel_name());
1602 "Cannot enable %s when guest CPU has EL3 enabled",
1603 current_accel_name());
1606 if (cpu->tag_memory) {
1608 "Cannot enable %s when guest CPUs has MTE enabled",
1609 current_accel_name());
1617 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1618 if (!cpu->gt_cntfrq_hz) {
1619 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1623 scale = gt_cntfrq_period_ns(cpu);
1625 scale = GTIMER_SCALE;
1628 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1629 arm_gt_ptimer_cb, cpu);
1630 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1631 arm_gt_vtimer_cb, cpu);
1632 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1633 arm_gt_htimer_cb, cpu);
1634 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1635 arm_gt_stimer_cb, cpu);
1636 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1637 arm_gt_hvtimer_cb, cpu);
1641 cpu_exec_realizefn(cs, &local_err);
1642 if (local_err != NULL) {
1643 error_propagate(errp, local_err);
1647 arm_cpu_finalize_features(cpu, &local_err);
1648 if (local_err != NULL) {
1649 error_propagate(errp, local_err);
1653 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1654 cpu->has_vfp != cpu->has_neon) {
1656 * This is an architectural requirement for AArch64; AArch32 is
1657 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1660 "AArch64 CPUs must have both VFP and Neon or neither");
1664 if (!cpu->has_vfp) {
1668 t = cpu->isar.id_aa64isar1;
1669 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1670 cpu->isar.id_aa64isar1 = t;
1672 t = cpu->isar.id_aa64pfr0;
1673 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1674 cpu->isar.id_aa64pfr0 = t;
1676 u = cpu->isar.id_isar6;
1677 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1678 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1679 cpu->isar.id_isar6 = u;
1681 u = cpu->isar.mvfr0;
1682 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1683 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1684 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1685 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1686 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1687 if (!arm_feature(env, ARM_FEATURE_M)) {
1688 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1689 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1691 cpu->isar.mvfr0 = u;
1693 u = cpu->isar.mvfr1;
1694 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1695 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1696 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1697 if (arm_feature(env, ARM_FEATURE_M)) {
1698 u = FIELD_DP32(u, MVFR1, FP16, 0);
1700 cpu->isar.mvfr1 = u;
1702 u = cpu->isar.mvfr2;
1703 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1704 cpu->isar.mvfr2 = u;
1707 if (!cpu->has_neon) {
1711 unset_feature(env, ARM_FEATURE_NEON);
1713 t = cpu->isar.id_aa64isar0;
1714 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1715 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1716 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1717 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1718 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1719 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1720 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1721 cpu->isar.id_aa64isar0 = t;
1723 t = cpu->isar.id_aa64isar1;
1724 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1725 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1726 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1727 cpu->isar.id_aa64isar1 = t;
1729 t = cpu->isar.id_aa64pfr0;
1730 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1731 cpu->isar.id_aa64pfr0 = t;
1733 u = cpu->isar.id_isar5;
1734 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1735 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1736 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1737 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1738 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1739 cpu->isar.id_isar5 = u;
1741 u = cpu->isar.id_isar6;
1742 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1743 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1744 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1745 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1746 cpu->isar.id_isar6 = u;
1748 if (!arm_feature(env, ARM_FEATURE_M)) {
1749 u = cpu->isar.mvfr1;
1750 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1751 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1752 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1753 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1754 cpu->isar.mvfr1 = u;
1756 u = cpu->isar.mvfr2;
1757 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1758 cpu->isar.mvfr2 = u;
1762 if (!cpu->has_neon && !cpu->has_vfp) {
1766 t = cpu->isar.id_aa64isar0;
1767 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1768 cpu->isar.id_aa64isar0 = t;
1770 t = cpu->isar.id_aa64isar1;
1771 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1772 cpu->isar.id_aa64isar1 = t;
1774 u = cpu->isar.mvfr0;
1775 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1776 cpu->isar.mvfr0 = u;
1778 /* Despite the name, this field covers both VFP and Neon */
1779 u = cpu->isar.mvfr1;
1780 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1781 cpu->isar.mvfr1 = u;
1784 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1787 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1789 u = cpu->isar.id_isar1;
1790 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1791 cpu->isar.id_isar1 = u;
1793 u = cpu->isar.id_isar2;
1794 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1795 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1796 cpu->isar.id_isar2 = u;
1798 u = cpu->isar.id_isar3;
1799 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1800 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1801 cpu->isar.id_isar3 = u;
1804 /* Some features automatically imply others: */
1805 if (arm_feature(env, ARM_FEATURE_V8)) {
1806 if (arm_feature(env, ARM_FEATURE_M)) {
1807 set_feature(env, ARM_FEATURE_V7);
1809 set_feature(env, ARM_FEATURE_V7VE);
1814 * There exist AArch64 cpus without AArch32 support. When KVM
1815 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1816 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1817 * As a general principle, we also do not make ID register
1818 * consistency checks anywhere unless using TCG, because only
1819 * for TCG would a consistency-check failure be a QEMU bug.
1821 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1822 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1825 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1826 /* v7 Virtualization Extensions. In real hardware this implies
1827 * EL2 and also the presence of the Security Extensions.
1828 * For QEMU, for backwards-compatibility we implement some
1829 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1830 * include the various other features that V7VE implies.
1831 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1832 * Security Extensions is ARM_FEATURE_EL3.
1834 assert(!tcg_enabled() || no_aa32 ||
1835 cpu_isar_feature(aa32_arm_div, cpu));
1836 set_feature(env, ARM_FEATURE_LPAE);
1837 set_feature(env, ARM_FEATURE_V7);
1839 if (arm_feature(env, ARM_FEATURE_V7)) {
1840 set_feature(env, ARM_FEATURE_VAPA);
1841 set_feature(env, ARM_FEATURE_THUMB2);
1842 set_feature(env, ARM_FEATURE_MPIDR);
1843 if (!arm_feature(env, ARM_FEATURE_M)) {
1844 set_feature(env, ARM_FEATURE_V6K);
1846 set_feature(env, ARM_FEATURE_V6);
1849 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1850 * non-EL3 configs. This is needed by some legacy boards.
1852 set_feature(env, ARM_FEATURE_VBAR);
1854 if (arm_feature(env, ARM_FEATURE_V6K)) {
1855 set_feature(env, ARM_FEATURE_V6);
1856 set_feature(env, ARM_FEATURE_MVFR);
1858 if (arm_feature(env, ARM_FEATURE_V6)) {
1859 set_feature(env, ARM_FEATURE_V5);
1860 if (!arm_feature(env, ARM_FEATURE_M)) {
1861 assert(!tcg_enabled() || no_aa32 ||
1862 cpu_isar_feature(aa32_jazelle, cpu));
1863 set_feature(env, ARM_FEATURE_AUXCR);
1866 if (arm_feature(env, ARM_FEATURE_V5)) {
1867 set_feature(env, ARM_FEATURE_V4T);
1869 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1870 set_feature(env, ARM_FEATURE_V7MP);
1872 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1873 set_feature(env, ARM_FEATURE_CBAR);
1875 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1876 !arm_feature(env, ARM_FEATURE_M)) {
1877 set_feature(env, ARM_FEATURE_THUMB_DSP);
1881 * We rely on no XScale CPU having VFP so we can use the same bits in the
1882 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1884 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1885 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1886 !arm_feature(env, ARM_FEATURE_XSCALE));
1888 if (arm_feature(env, ARM_FEATURE_V7) &&
1889 !arm_feature(env, ARM_FEATURE_M) &&
1890 !arm_feature(env, ARM_FEATURE_PMSA)) {
1891 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1896 /* For CPUs which might have tiny 1K pages, or which have an
1897 * MPU and might have small region sizes, stick with 1K pages.
1901 if (!set_preferred_target_page_bits(pagebits)) {
1902 /* This can only ever happen for hotplugging a CPU, or if
1903 * the board code incorrectly creates a CPU which it has
1904 * promised via minimum_page_size that it will not.
1906 error_setg(errp, "This CPU requires a smaller page size than the "
1911 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1912 * We don't support setting cluster ID ([16..23]) (known as Aff2
1913 * in later ARM ARM versions), or any of the higher affinity level fields,
1914 * so these bits always RAZ.
1916 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1917 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1918 ARM_DEFAULT_CPUS_PER_CLUSTER);
1921 if (cpu->reset_hivecs) {
1922 cpu->reset_sctlr |= (1 << 13);
1926 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1927 cpu->reset_sctlr |= SCTLR_EE;
1929 cpu->reset_sctlr |= SCTLR_B;
1933 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1934 /* If the has_el3 CPU property is disabled then we need to disable the
1937 unset_feature(env, ARM_FEATURE_EL3);
1940 * Disable the security extension feature bits in the processor
1941 * feature registers as well.
1943 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1944 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1945 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1946 ID_AA64PFR0, EL3, 0);
1949 if (!cpu->has_el2) {
1950 unset_feature(env, ARM_FEATURE_EL2);
1953 if (!cpu->has_pmu) {
1954 unset_feature(env, ARM_FEATURE_PMU);
1956 if (arm_feature(env, ARM_FEATURE_PMU)) {
1959 if (!kvm_enabled()) {
1960 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1961 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1964 #ifndef CONFIG_USER_ONLY
1965 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1969 cpu->isar.id_aa64dfr0 =
1970 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1971 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1976 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1978 * Disable the hypervisor feature bits in the processor feature
1979 * registers if we don't have EL2.
1981 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1982 ID_AA64PFR0, EL2, 0);
1983 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1984 ID_PFR1, VIRTUALIZATION, 0);
1987 #ifndef CONFIG_USER_ONLY
1988 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1990 * Disable the MTE feature bits if we do not have tag-memory
1991 * provided by the machine.
1993 cpu->isar.id_aa64pfr1 =
1994 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1998 if (tcg_enabled()) {
2000 * Don't report the Statistical Profiling Extension in the ID
2001 * registers, because TCG doesn't implement it yet (not even a
2002 * minimal stub version) and guests will fall over when they
2003 * try to access the non-existent system registers for it.
2005 cpu->isar.id_aa64dfr0 =
2006 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0);
2009 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
2010 * to false or by setting pmsav7-dregion to 0.
2012 if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) {
2013 cpu->has_mpu = false;
2014 cpu->pmsav7_dregion = 0;
2015 cpu->pmsav8r_hdregion = 0;
2018 if (arm_feature(env, ARM_FEATURE_PMSA) &&
2019 arm_feature(env, ARM_FEATURE_V7)) {
2020 uint32_t nr = cpu->pmsav7_dregion;
2023 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
2028 if (arm_feature(env, ARM_FEATURE_V8)) {
2030 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
2031 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
2032 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2033 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
2034 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
2037 env->pmsav7.drbar = g_new0(uint32_t, nr);
2038 env->pmsav7.drsr = g_new0(uint32_t, nr);
2039 env->pmsav7.dracr = g_new0(uint32_t, nr);
2043 if (cpu->pmsav8r_hdregion > 0xff) {
2044 error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32,
2045 cpu->pmsav8r_hdregion);
2049 if (cpu->pmsav8r_hdregion) {
2050 env->pmsav8.hprbar = g_new0(uint32_t,
2051 cpu->pmsav8r_hdregion);
2052 env->pmsav8.hprlar = g_new0(uint32_t,
2053 cpu->pmsav8r_hdregion);
2057 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2058 uint32_t nr = cpu->sau_sregion;
2061 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
2066 env->sau.rbar = g_new0(uint32_t, nr);
2067 env->sau.rlar = g_new0(uint32_t, nr);
2071 if (arm_feature(env, ARM_FEATURE_EL3)) {
2072 set_feature(env, ARM_FEATURE_VBAR);
2075 register_cp_regs_for_features(cpu);
2076 arm_cpu_register_gdb_regs_for_features(cpu);
2078 init_cpreg_list(cpu);
2080 #ifndef CONFIG_USER_ONLY
2081 MachineState *ms = MACHINE(qdev_get_machine());
2082 unsigned int smp_cpus = ms->smp.cpus;
2083 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
2086 * We must set cs->num_ases to the final value before
2087 * the first call to cpu_address_space_init.
2089 if (cpu->tag_memory != NULL) {
2090 cs->num_ases = 3 + has_secure;
2092 cs->num_ases = 1 + has_secure;
2096 if (!cpu->secure_memory) {
2097 cpu->secure_memory = cs->memory;
2099 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
2100 cpu->secure_memory);
2103 if (cpu->tag_memory != NULL) {
2104 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
2107 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
2108 cpu->secure_tag_memory);
2112 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2114 /* No core_count specified, default to smp_cpus. */
2115 if (cpu->core_count == -1) {
2116 cpu->core_count = smp_cpus;
2120 if (tcg_enabled()) {
2121 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2124 * We only support DCZ blocklen that fits on one page.
2126 * Architectually this is always true. However TARGET_PAGE_SIZE
2127 * is variable and, for compatibility with -machine virt-2.7,
2128 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2129 * But even then, while the largest architectural DCZ blocklen
2130 * is 2KiB, no cpu actually uses such a large blocklen.
2132 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2135 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2136 * both nibbles of each byte storing tag data may be written at once.
2137 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2139 if (cpu_isar_feature(aa64_mte, cpu)) {
2140 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2147 acc->parent_realize(dev, errp);
2150 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2155 const char *cpunamestr;
2157 cpuname = g_strsplit(cpu_model, ",", 1);
2158 cpunamestr = cpuname[0];
2159 #ifdef CONFIG_USER_ONLY
2160 /* For backwards compatibility usermode emulation allows "-cpu any",
2161 * which has the same semantics as "-cpu max".
2163 if (!strcmp(cpunamestr, "any")) {
2167 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2168 oc = object_class_by_name(typename);
2169 g_strfreev(cpuname);
2171 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2172 object_class_is_abstract(oc)) {
2178 static Property arm_cpu_properties[] = {
2179 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2180 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2181 mp_affinity, ARM64_AFFINITY_INVALID),
2182 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2183 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2184 DEFINE_PROP_END_OF_LIST()
2187 static gchar *arm_gdb_arch_name(CPUState *cs)
2189 ARMCPU *cpu = ARM_CPU(cs);
2190 CPUARMState *env = &cpu->env;
2192 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2193 return g_strdup("iwmmxt");
2195 return g_strdup("arm");
2198 #ifndef CONFIG_USER_ONLY
2199 #include "hw/core/sysemu-cpu-ops.h"
2201 static const struct SysemuCPUOps arm_sysemu_ops = {
2202 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2203 .asidx_from_attrs = arm_asidx_from_attrs,
2204 .write_elf32_note = arm_cpu_write_elf32_note,
2205 .write_elf64_note = arm_cpu_write_elf64_note,
2206 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2207 .legacy_vmsd = &vmstate_arm_cpu,
2212 static const struct TCGCPUOps arm_tcg_ops = {
2213 .initialize = arm_translate_init,
2214 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2215 .debug_excp_handler = arm_debug_excp_handler,
2216 .restore_state_to_opc = arm_restore_state_to_opc,
2218 #ifdef CONFIG_USER_ONLY
2219 .record_sigsegv = arm_cpu_record_sigsegv,
2220 .record_sigbus = arm_cpu_record_sigbus,
2222 .tlb_fill = arm_cpu_tlb_fill,
2223 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2224 .do_interrupt = arm_cpu_do_interrupt,
2225 .do_transaction_failed = arm_cpu_do_transaction_failed,
2226 .do_unaligned_access = arm_cpu_do_unaligned_access,
2227 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2228 .debug_check_watchpoint = arm_debug_check_watchpoint,
2229 .debug_check_breakpoint = arm_debug_check_breakpoint,
2230 #endif /* !CONFIG_USER_ONLY */
2232 #endif /* CONFIG_TCG */
2234 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2236 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2237 CPUClass *cc = CPU_CLASS(acc);
2238 DeviceClass *dc = DEVICE_CLASS(oc);
2239 ResettableClass *rc = RESETTABLE_CLASS(oc);
2241 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2242 &acc->parent_realize);
2244 device_class_set_props(dc, arm_cpu_properties);
2246 resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL,
2247 &acc->parent_phases);
2249 cc->class_by_name = arm_cpu_class_by_name;
2250 cc->has_work = arm_cpu_has_work;
2251 cc->dump_state = arm_cpu_dump_state;
2252 cc->set_pc = arm_cpu_set_pc;
2253 cc->get_pc = arm_cpu_get_pc;
2254 cc->gdb_read_register = arm_cpu_gdb_read_register;
2255 cc->gdb_write_register = arm_cpu_gdb_write_register;
2256 #ifndef CONFIG_USER_ONLY
2257 cc->sysemu_ops = &arm_sysemu_ops;
2259 cc->gdb_num_core_regs = 26;
2260 cc->gdb_core_xml_file = "arm-core.xml";
2261 cc->gdb_arch_name = arm_gdb_arch_name;
2262 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2263 cc->gdb_stop_before_watchpoint = true;
2264 cc->disas_set_info = arm_disas_set_info;
2267 cc->tcg_ops = &arm_tcg_ops;
2268 #endif /* CONFIG_TCG */
2271 static void arm_cpu_instance_init(Object *obj)
2273 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2275 acc->info->initfn(obj);
2276 arm_cpu_post_init(obj);
2279 static void cpu_register_class_init(ObjectClass *oc, void *data)
2281 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2286 void arm_cpu_register(const ARMCPUInfo *info)
2288 TypeInfo type_info = {
2289 .parent = TYPE_ARM_CPU,
2290 .instance_size = sizeof(ARMCPU),
2291 .instance_align = __alignof__(ARMCPU),
2292 .instance_init = arm_cpu_instance_init,
2293 .class_size = sizeof(ARMCPUClass),
2294 .class_init = info->class_init ?: cpu_register_class_init,
2295 .class_data = (void *)info,
2298 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2299 type_register(&type_info);
2300 g_free((void *)type_info.name);
2303 static const TypeInfo arm_cpu_type_info = {
2304 .name = TYPE_ARM_CPU,
2306 .instance_size = sizeof(ARMCPU),
2307 .instance_align = __alignof__(ARMCPU),
2308 .instance_init = arm_cpu_initfn,
2309 .instance_finalize = arm_cpu_finalizefn,
2311 .class_size = sizeof(ARMCPUClass),
2312 .class_init = arm_cpu_class_init,
2315 static void arm_cpu_register_types(void)
2317 type_register_static(&arm_cpu_type_info);
2320 type_init(arm_cpu_register_types)