4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/main-loop.h"
35 #include "qemu/config-file.h"
36 #include "qemu/error-report.h"
37 #include "hw/i386/pc.h"
38 #include "hw/i386/apic.h"
39 #include "hw/i386/apic_internal.h"
40 #include "hw/i386/apic-msidef.h"
41 #include "hw/i386/intel_iommu.h"
42 #include "hw/i386/x86-iommu.h"
44 #include "hw/pci/pci.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci/msix.h"
47 #include "migration/blocker.h"
48 #include "exec/memattrs.h"
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define MSR_KVM_WALL_CLOCK 0x11
62 #define MSR_KVM_SYSTEM_TIME 0x12
64 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
65 * 255 kvm_msr_entry structs */
66 #define MSR_BUF_SIZE 4096
68 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
69 KVM_CAP_INFO(SET_TSS_ADDR),
70 KVM_CAP_INFO(EXT_CPUID),
71 KVM_CAP_INFO(MP_STATE),
75 static bool has_msr_star;
76 static bool has_msr_hsave_pa;
77 static bool has_msr_tsc_aux;
78 static bool has_msr_tsc_adjust;
79 static bool has_msr_tsc_deadline;
80 static bool has_msr_feature_control;
81 static bool has_msr_misc_enable;
82 static bool has_msr_smbase;
83 static bool has_msr_bndcfgs;
84 static int lm_capable_kernel;
85 static bool has_msr_hv_hypercall;
86 static bool has_msr_hv_crash;
87 static bool has_msr_hv_reset;
88 static bool has_msr_hv_vpindex;
89 static bool hv_vpindex_settable;
90 static bool has_msr_hv_runtime;
91 static bool has_msr_hv_synic;
92 static bool has_msr_hv_stimer;
93 static bool has_msr_hv_frequencies;
94 static bool has_msr_hv_reenlightenment;
95 static bool has_msr_xss;
96 static bool has_msr_spec_ctrl;
97 static bool has_msr_virt_ssbd;
98 static bool has_msr_smi_count;
99 static bool has_msr_arch_capabs;
100 static bool has_msr_core_capabs;
102 static uint32_t has_architectural_pmu_version;
103 static uint32_t num_architectural_pmu_gp_counters;
104 static uint32_t num_architectural_pmu_fixed_counters;
106 static int has_xsave;
108 static int has_pit_state2;
109 static int has_exception_payload;
111 static bool has_msr_mcg_ext_ctl;
113 static struct kvm_cpuid2 *cpuid_cache;
114 static struct kvm_msr_list *kvm_feature_msrs;
116 int kvm_has_pit_state2(void)
118 return has_pit_state2;
121 bool kvm_has_smm(void)
123 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
126 bool kvm_has_adjust_clock_stable(void)
128 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
130 return (ret == KVM_CLOCK_TSC_STABLE);
133 bool kvm_has_exception_payload(void)
135 return has_exception_payload;
138 bool kvm_allows_irq0_override(void)
140 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
143 static bool kvm_x2apic_api_set_flags(uint64_t flags)
145 KVMState *s = KVM_STATE(current_machine->accelerator);
147 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
150 #define MEMORIZE(fn, _result) \
152 static bool _memorized; \
161 static bool has_x2apic_api;
163 bool kvm_has_x2apic_api(void)
165 return has_x2apic_api;
168 bool kvm_enable_x2apic(void)
171 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
172 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
176 bool kvm_hv_vpindex_settable(void)
178 return hv_vpindex_settable;
181 static int kvm_get_tsc(CPUState *cs)
183 X86CPU *cpu = X86_CPU(cs);
184 CPUX86State *env = &cpu->env;
186 struct kvm_msrs info;
187 struct kvm_msr_entry entries[1];
191 if (env->tsc_valid) {
195 msr_data.info.nmsrs = 1;
196 msr_data.entries[0].index = MSR_IA32_TSC;
197 env->tsc_valid = !runstate_is_running();
199 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
205 env->tsc = msr_data.entries[0].data;
209 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
214 void kvm_synchronize_all_tsc(void)
220 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
225 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
227 struct kvm_cpuid2 *cpuid;
230 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
231 cpuid = g_malloc0(size);
233 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
234 if (r == 0 && cpuid->nent >= max) {
242 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
250 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
253 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
255 struct kvm_cpuid2 *cpuid;
258 if (cpuid_cache != NULL) {
261 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
268 static const struct kvm_para_features {
271 } para_features[] = {
272 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
273 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
274 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
275 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
278 static int get_para_features(KVMState *s)
282 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
283 if (kvm_check_extension(s, para_features[i].cap)) {
284 features |= (1 << para_features[i].feature);
291 static bool host_tsx_blacklisted(void)
293 int family, model, stepping;\
294 char vendor[CPUID_VENDOR_SZ + 1];
296 host_vendor_fms(vendor, &family, &model, &stepping);
298 /* Check if we are running on a Haswell host known to have broken TSX */
299 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
301 ((model == 63 && stepping < 4) ||
302 model == 60 || model == 69 || model == 70);
305 /* Returns the value for a specific register on the cpuid entry
307 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
327 /* Find matching entry for function/index on kvm_cpuid2 struct
329 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
334 for (i = 0; i < cpuid->nent; ++i) {
335 if (cpuid->entries[i].function == function &&
336 cpuid->entries[i].index == index) {
337 return &cpuid->entries[i];
344 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
345 uint32_t index, int reg)
347 struct kvm_cpuid2 *cpuid;
349 uint32_t cpuid_1_edx;
352 cpuid = get_supported_cpuid(s);
354 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
357 ret = cpuid_entry_get_reg(entry, reg);
360 /* Fixups for the data returned by KVM, below */
362 if (function == 1 && reg == R_EDX) {
363 /* KVM before 2.6.30 misreports the following features */
364 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
365 } else if (function == 1 && reg == R_ECX) {
366 /* We can set the hypervisor flag, even if KVM does not return it on
367 * GET_SUPPORTED_CPUID
369 ret |= CPUID_EXT_HYPERVISOR;
370 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
371 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
372 * and the irqchip is in the kernel.
374 if (kvm_irqchip_in_kernel() &&
375 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
376 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
379 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
380 * without the in-kernel irqchip
382 if (!kvm_irqchip_in_kernel()) {
383 ret &= ~CPUID_EXT_X2APIC;
387 int disable_exits = kvm_check_extension(s,
388 KVM_CAP_X86_DISABLE_EXITS);
390 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
391 ret |= CPUID_EXT_MONITOR;
394 } else if (function == 6 && reg == R_EAX) {
395 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
396 } else if (function == 7 && index == 0 && reg == R_EBX) {
397 if (host_tsx_blacklisted()) {
398 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
400 } else if (function == 7 && index == 0 && reg == R_EDX) {
402 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
403 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
404 * returned by KVM_GET_MSR_INDEX_LIST.
406 if (!has_msr_arch_capabs) {
407 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
409 } else if (function == 0x80000001 && reg == R_ECX) {
411 * It's safe to enable TOPOEXT even if it's not returned by
412 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
413 * us to keep CPU models including TOPOEXT runnable on older kernels.
415 ret |= CPUID_EXT3_TOPOEXT;
416 } else if (function == 0x80000001 && reg == R_EDX) {
417 /* On Intel, kvm returns cpuid according to the Intel spec,
418 * so add missing bits according to the AMD spec:
420 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
421 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
422 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
423 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
424 * be enabled without the in-kernel irqchip
426 if (!kvm_irqchip_in_kernel()) {
427 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
429 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
430 ret |= 1U << KVM_HINTS_REALTIME;
434 /* fallback for older kernels */
435 if ((function == KVM_CPUID_FEATURES) && !found) {
436 ret = get_para_features(s);
442 uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
445 struct kvm_msrs info;
446 struct kvm_msr_entry entries[1];
450 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
454 /* Check if requested MSR is supported feature MSR */
456 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
457 if (kvm_feature_msrs->indices[i] == index) {
460 if (i == kvm_feature_msrs->nmsrs) {
461 return 0; /* if the feature MSR is not supported, simply return 0 */
464 msr_data.info.nmsrs = 1;
465 msr_data.entries[0].index = index;
467 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
469 error_report("KVM get MSR (index=0x%x) feature failed, %s",
470 index, strerror(-ret));
474 return msr_data.entries[0].data;
478 typedef struct HWPoisonPage {
480 QLIST_ENTRY(HWPoisonPage) list;
483 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
484 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
486 static void kvm_unpoison_all(void *param)
488 HWPoisonPage *page, *next_page;
490 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
491 QLIST_REMOVE(page, list);
492 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
497 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
501 QLIST_FOREACH(page, &hwpoison_page_list, list) {
502 if (page->ram_addr == ram_addr) {
506 page = g_new(HWPoisonPage, 1);
507 page->ram_addr = ram_addr;
508 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
511 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
516 r = kvm_check_extension(s, KVM_CAP_MCE);
519 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
524 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
526 CPUState *cs = CPU(cpu);
527 CPUX86State *env = &cpu->env;
528 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
529 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
530 uint64_t mcg_status = MCG_STATUS_MCIP;
533 if (code == BUS_MCEERR_AR) {
534 status |= MCI_STATUS_AR | 0x134;
535 mcg_status |= MCG_STATUS_EIPV;
538 mcg_status |= MCG_STATUS_RIPV;
541 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
542 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
543 * guest kernel back into env->mcg_ext_ctl.
545 cpu_synchronize_state(cs);
546 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
547 mcg_status |= MCG_STATUS_LMCE;
551 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
552 (MCM_ADDR_PHYS << 6) | 0xc, flags);
555 static void hardware_memory_error(void)
557 fprintf(stderr, "Hardware memory error!\n");
561 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
563 X86CPU *cpu = X86_CPU(c);
564 CPUX86State *env = &cpu->env;
568 /* If we get an action required MCE, it has been injected by KVM
569 * while the VM was running. An action optional MCE instead should
570 * be coming from the main thread, which qemu_init_sigbus identifies
571 * as the "early kill" thread.
573 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
575 if ((env->mcg_cap & MCG_SER_P) && addr) {
576 ram_addr = qemu_ram_addr_from_host(addr);
577 if (ram_addr != RAM_ADDR_INVALID &&
578 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
579 kvm_hwpoison_page_add(ram_addr);
580 kvm_mce_inject(cpu, paddr, code);
584 fprintf(stderr, "Hardware memory error for memory used by "
585 "QEMU itself instead of guest system!\n");
588 if (code == BUS_MCEERR_AR) {
589 hardware_memory_error();
592 /* Hope we are lucky for AO MCE */
595 static void kvm_reset_exception(CPUX86State *env)
597 env->exception_nr = -1;
598 env->exception_pending = 0;
599 env->exception_injected = 0;
600 env->exception_has_payload = false;
601 env->exception_payload = 0;
604 static void kvm_queue_exception(CPUX86State *env,
605 int32_t exception_nr,
606 uint8_t exception_has_payload,
607 uint64_t exception_payload)
609 assert(env->exception_nr == -1);
610 assert(!env->exception_pending);
611 assert(!env->exception_injected);
612 assert(!env->exception_has_payload);
614 env->exception_nr = exception_nr;
616 if (has_exception_payload) {
617 env->exception_pending = 1;
619 env->exception_has_payload = exception_has_payload;
620 env->exception_payload = exception_payload;
622 env->exception_injected = 1;
624 if (exception_nr == EXCP01_DB) {
625 assert(exception_has_payload);
626 env->dr[6] = exception_payload;
627 } else if (exception_nr == EXCP0E_PAGE) {
628 assert(exception_has_payload);
629 env->cr[2] = exception_payload;
631 assert(!exception_has_payload);
636 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
638 CPUX86State *env = &cpu->env;
640 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
641 unsigned int bank, bank_num = env->mcg_cap & 0xff;
642 struct kvm_x86_mce mce;
644 kvm_reset_exception(env);
647 * There must be at least one bank in use if an MCE is pending.
648 * Find it and use its values for the event injection.
650 for (bank = 0; bank < bank_num; bank++) {
651 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
655 assert(bank < bank_num);
658 mce.status = env->mce_banks[bank * 4 + 1];
659 mce.mcg_status = env->mcg_status;
660 mce.addr = env->mce_banks[bank * 4 + 2];
661 mce.misc = env->mce_banks[bank * 4 + 3];
663 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
668 static void cpu_update_state(void *opaque, int running, RunState state)
670 CPUX86State *env = opaque;
673 env->tsc_valid = false;
677 unsigned long kvm_arch_vcpu_id(CPUState *cs)
679 X86CPU *cpu = X86_CPU(cs);
683 #ifndef KVM_CPUID_SIGNATURE_NEXT
684 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
687 static bool hyperv_enabled(X86CPU *cpu)
689 CPUState *cs = CPU(cpu);
690 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
691 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
692 cpu->hyperv_features || cpu->hyperv_passthrough);
695 static int kvm_arch_set_tsc_khz(CPUState *cs)
697 X86CPU *cpu = X86_CPU(cs);
698 CPUX86State *env = &cpu->env;
705 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
706 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
709 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
710 * TSC frequency doesn't match the one we want.
712 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
713 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
715 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
716 warn_report("TSC frequency mismatch between "
717 "VM (%" PRId64 " kHz) and host (%d kHz), "
718 "and TSC scaling unavailable",
719 env->tsc_khz, cur_freq);
727 static bool tsc_is_stable_and_known(CPUX86State *env)
732 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
733 || env->user_tsc_khz;
742 uint64_t dependencies;
743 } kvm_hyperv_properties[] = {
744 [HYPERV_FEAT_RELAXED] = {
745 .desc = "relaxed timing (hv-relaxed)",
747 {.fw = FEAT_HYPERV_EAX,
748 .bits = HV_HYPERCALL_AVAILABLE},
749 {.fw = FEAT_HV_RECOMM_EAX,
750 .bits = HV_RELAXED_TIMING_RECOMMENDED}
753 [HYPERV_FEAT_VAPIC] = {
754 .desc = "virtual APIC (hv-vapic)",
756 {.fw = FEAT_HYPERV_EAX,
757 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
758 {.fw = FEAT_HV_RECOMM_EAX,
759 .bits = HV_APIC_ACCESS_RECOMMENDED}
762 [HYPERV_FEAT_TIME] = {
763 .desc = "clocksources (hv-time)",
765 {.fw = FEAT_HYPERV_EAX,
766 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
767 HV_REFERENCE_TSC_AVAILABLE}
770 [HYPERV_FEAT_CRASH] = {
771 .desc = "crash MSRs (hv-crash)",
773 {.fw = FEAT_HYPERV_EDX,
774 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
777 [HYPERV_FEAT_RESET] = {
778 .desc = "reset MSR (hv-reset)",
780 {.fw = FEAT_HYPERV_EAX,
781 .bits = HV_RESET_AVAILABLE}
784 [HYPERV_FEAT_VPINDEX] = {
785 .desc = "VP_INDEX MSR (hv-vpindex)",
787 {.fw = FEAT_HYPERV_EAX,
788 .bits = HV_VP_INDEX_AVAILABLE}
791 [HYPERV_FEAT_RUNTIME] = {
792 .desc = "VP_RUNTIME MSR (hv-runtime)",
794 {.fw = FEAT_HYPERV_EAX,
795 .bits = HV_VP_RUNTIME_AVAILABLE}
798 [HYPERV_FEAT_SYNIC] = {
799 .desc = "synthetic interrupt controller (hv-synic)",
801 {.fw = FEAT_HYPERV_EAX,
802 .bits = HV_SYNIC_AVAILABLE}
805 [HYPERV_FEAT_STIMER] = {
806 .desc = "synthetic timers (hv-stimer)",
808 {.fw = FEAT_HYPERV_EAX,
809 .bits = HV_SYNTIMERS_AVAILABLE}
811 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
813 [HYPERV_FEAT_FREQUENCIES] = {
814 .desc = "frequency MSRs (hv-frequencies)",
816 {.fw = FEAT_HYPERV_EAX,
817 .bits = HV_ACCESS_FREQUENCY_MSRS},
818 {.fw = FEAT_HYPERV_EDX,
819 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
822 [HYPERV_FEAT_REENLIGHTENMENT] = {
823 .desc = "reenlightenment MSRs (hv-reenlightenment)",
825 {.fw = FEAT_HYPERV_EAX,
826 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
829 [HYPERV_FEAT_TLBFLUSH] = {
830 .desc = "paravirtualized TLB flush (hv-tlbflush)",
832 {.fw = FEAT_HV_RECOMM_EAX,
833 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
834 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
836 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
838 [HYPERV_FEAT_EVMCS] = {
839 .desc = "enlightened VMCS (hv-evmcs)",
841 {.fw = FEAT_HV_RECOMM_EAX,
842 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
844 .dependencies = BIT(HYPERV_FEAT_VAPIC)
846 [HYPERV_FEAT_IPI] = {
847 .desc = "paravirtualized IPI (hv-ipi)",
849 {.fw = FEAT_HV_RECOMM_EAX,
850 .bits = HV_CLUSTER_IPI_RECOMMENDED |
851 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
853 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
855 [HYPERV_FEAT_STIMER_DIRECT] = {
856 .desc = "direct mode synthetic timers (hv-stimer-direct)",
858 {.fw = FEAT_HYPERV_EDX,
859 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
861 .dependencies = BIT(HYPERV_FEAT_STIMER)
865 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
867 struct kvm_cpuid2 *cpuid;
870 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
871 cpuid = g_malloc0(size);
874 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
875 if (r == 0 && cpuid->nent >= max) {
883 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
892 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
895 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
897 struct kvm_cpuid2 *cpuid;
898 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
901 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
902 * -E2BIG, however, it doesn't report back the right size. Keep increasing
903 * it and re-trying until we succeed.
905 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
912 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
913 * leaves from KVM_CAP_HYPERV* and present MSRs data.
915 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
917 X86CPU *cpu = X86_CPU(cs);
918 struct kvm_cpuid2 *cpuid;
919 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
921 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
922 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
925 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
926 entry_feat = &cpuid->entries[0];
927 entry_feat->function = HV_CPUID_FEATURES;
929 entry_recomm = &cpuid->entries[1];
930 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
931 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
933 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
934 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
935 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
936 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
937 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
938 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
941 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
942 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
943 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
946 if (has_msr_hv_frequencies) {
947 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
948 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
951 if (has_msr_hv_crash) {
952 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
955 if (has_msr_hv_reenlightenment) {
956 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
959 if (has_msr_hv_reset) {
960 entry_feat->eax |= HV_RESET_AVAILABLE;
963 if (has_msr_hv_vpindex) {
964 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
967 if (has_msr_hv_runtime) {
968 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
971 if (has_msr_hv_synic) {
972 unsigned int cap = cpu->hyperv_synic_kvm_only ?
973 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
975 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
976 entry_feat->eax |= HV_SYNIC_AVAILABLE;
980 if (has_msr_hv_stimer) {
981 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
984 if (kvm_check_extension(cs->kvm_state,
985 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
986 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
987 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
990 if (kvm_check_extension(cs->kvm_state,
991 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
992 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
995 if (kvm_check_extension(cs->kvm_state,
996 KVM_CAP_HYPERV_SEND_IPI) > 0) {
997 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
998 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1004 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1006 struct kvm_cpuid_entry2 *entry;
1011 case FEAT_HYPERV_EAX:
1013 func = HV_CPUID_FEATURES;
1015 case FEAT_HYPERV_EDX:
1017 func = HV_CPUID_FEATURES;
1019 case FEAT_HV_RECOMM_EAX:
1021 func = HV_CPUID_ENLIGHTMENT_INFO;
1027 entry = cpuid_find_entry(cpuid, func, 0);
1046 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1049 X86CPU *cpu = X86_CPU(cs);
1050 CPUX86State *env = &cpu->env;
1051 uint32_t r, fw, bits;
1055 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1059 deps = kvm_hyperv_properties[feature].dependencies;
1061 dep_feat = ctz64(deps);
1062 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1064 "Hyper-V %s requires Hyper-V %s\n",
1065 kvm_hyperv_properties[feature].desc,
1066 kvm_hyperv_properties[dep_feat].desc);
1069 deps &= ~(1ull << dep_feat);
1072 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1073 fw = kvm_hyperv_properties[feature].flags[i].fw;
1074 bits = kvm_hyperv_properties[feature].flags[i].bits;
1080 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1081 if (hyperv_feat_enabled(cpu, feature)) {
1083 "Hyper-V %s is not supported by kernel\n",
1084 kvm_hyperv_properties[feature].desc);
1091 env->features[fw] |= bits;
1094 if (cpu->hyperv_passthrough) {
1095 cpu->hyperv_features |= BIT(feature);
1102 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1103 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1104 * extentions are enabled.
1106 static int hyperv_handle_properties(CPUState *cs,
1107 struct kvm_cpuid_entry2 *cpuid_ent)
1109 X86CPU *cpu = X86_CPU(cs);
1110 CPUX86State *env = &cpu->env;
1111 struct kvm_cpuid2 *cpuid;
1112 struct kvm_cpuid_entry2 *c;
1113 uint32_t signature[3];
1114 uint32_t cpuid_i = 0;
1117 if (!hyperv_enabled(cpu))
1120 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1121 cpu->hyperv_passthrough) {
1122 uint16_t evmcs_version;
1124 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1125 (uintptr_t)&evmcs_version);
1127 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1128 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1129 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1134 env->features[FEAT_HV_RECOMM_EAX] |=
1135 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1136 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1140 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1141 cpuid = get_supported_hv_cpuid(cs);
1143 cpuid = get_supported_hv_cpuid_legacy(cs);
1146 if (cpu->hyperv_passthrough) {
1147 memcpy(cpuid_ent, &cpuid->entries[0],
1148 cpuid->nent * sizeof(cpuid->entries[0]));
1150 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1152 env->features[FEAT_HYPERV_EAX] = c->eax;
1153 env->features[FEAT_HYPERV_EBX] = c->ebx;
1154 env->features[FEAT_HYPERV_EDX] = c->eax;
1156 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1158 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1160 /* hv-spinlocks may have been overriden */
1161 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1162 c->ebx = cpu->hyperv_spinlock_attempts;
1165 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1167 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1172 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1173 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1174 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1175 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1176 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1177 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1178 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1179 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1180 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1181 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1182 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1183 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1184 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1185 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1186 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1188 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1189 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1190 !cpu->hyperv_synic_kvm_only &&
1191 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1192 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1193 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1194 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1198 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1199 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1206 if (cpu->hyperv_passthrough) {
1207 /* We already copied all feature words from KVM as is */
1212 c = &cpuid_ent[cpuid_i++];
1213 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1214 if (!cpu->hyperv_vendor_id) {
1215 memcpy(signature, "Microsoft Hv", 12);
1217 size_t len = strlen(cpu->hyperv_vendor_id);
1220 error_report("hv-vendor-id truncated to 12 characters");
1223 memset(signature, 0, 12);
1224 memcpy(signature, cpu->hyperv_vendor_id, len);
1226 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1227 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1228 c->ebx = signature[0];
1229 c->ecx = signature[1];
1230 c->edx = signature[2];
1232 c = &cpuid_ent[cpuid_i++];
1233 c->function = HV_CPUID_INTERFACE;
1234 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1235 c->eax = signature[0];
1240 c = &cpuid_ent[cpuid_i++];
1241 c->function = HV_CPUID_VERSION;
1242 c->eax = 0x00001bbc;
1243 c->ebx = 0x00060001;
1245 c = &cpuid_ent[cpuid_i++];
1246 c->function = HV_CPUID_FEATURES;
1247 c->eax = env->features[FEAT_HYPERV_EAX];
1248 c->ebx = env->features[FEAT_HYPERV_EBX];
1249 c->edx = env->features[FEAT_HYPERV_EDX];
1251 c = &cpuid_ent[cpuid_i++];
1252 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1253 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1254 c->ebx = cpu->hyperv_spinlock_attempts;
1256 c = &cpuid_ent[cpuid_i++];
1257 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1258 c->eax = cpu->hv_max_vps;
1261 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1264 /* Create zeroed 0x40000006..0x40000009 leaves */
1265 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1266 function < HV_CPUID_NESTED_FEATURES; function++) {
1267 c = &cpuid_ent[cpuid_i++];
1268 c->function = function;
1271 c = &cpuid_ent[cpuid_i++];
1272 c->function = HV_CPUID_NESTED_FEATURES;
1273 c->eax = env->features[FEAT_HV_NESTED_EAX];
1283 static Error *hv_passthrough_mig_blocker;
1285 static int hyperv_init_vcpu(X86CPU *cpu)
1287 CPUState *cs = CPU(cpu);
1288 Error *local_err = NULL;
1291 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1292 error_setg(&hv_passthrough_mig_blocker,
1293 "'hv-passthrough' CPU flag prevents migration, use explicit"
1294 " set of hv-* flags instead");
1295 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1297 error_report_err(local_err);
1298 error_free(hv_passthrough_mig_blocker);
1303 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1305 * the kernel doesn't support setting vp_index; assert that its value
1309 struct kvm_msrs info;
1310 struct kvm_msr_entry entries[1];
1313 .entries[0].index = HV_X64_MSR_VP_INDEX,
1316 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1322 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1323 error_report("kernel's vp_index != QEMU's vp_index");
1328 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1329 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1330 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1331 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1333 error_report("failed to turn on HyperV SynIC in KVM: %s",
1338 if (!cpu->hyperv_synic_kvm_only) {
1339 ret = hyperv_x86_synic_add(cpu);
1341 error_report("failed to create HyperV SynIC: %s",
1351 static Error *invtsc_mig_blocker;
1353 #define KVM_MAX_CPUID_ENTRIES 100
1355 int kvm_arch_init_vcpu(CPUState *cs)
1358 struct kvm_cpuid2 cpuid;
1359 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1362 * The kernel defines these structs with padding fields so there
1363 * should be no extra padding in our cpuid_data struct.
1365 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1366 sizeof(struct kvm_cpuid2) +
1367 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1369 X86CPU *cpu = X86_CPU(cs);
1370 CPUX86State *env = &cpu->env;
1371 uint32_t limit, i, j, cpuid_i;
1373 struct kvm_cpuid_entry2 *c;
1374 uint32_t signature[3];
1375 int kvm_base = KVM_CPUID_SIGNATURE;
1376 int max_nested_state_len;
1378 Error *local_err = NULL;
1380 memset(&cpuid_data, 0, sizeof(cpuid_data));
1384 r = kvm_arch_set_tsc_khz(cs);
1389 /* vcpu's TSC frequency is either specified by user, or following
1390 * the value used by KVM if the former is not present. In the
1391 * latter case, we query it from KVM and record in env->tsc_khz,
1392 * so that vcpu's TSC frequency can be migrated later via this field.
1394 if (!env->tsc_khz) {
1395 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1396 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1403 /* Paravirtualization CPUIDs */
1404 r = hyperv_handle_properties(cs, cpuid_data.entries);
1409 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1410 has_msr_hv_hypercall = true;
1413 if (cpu->expose_kvm) {
1414 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1415 c = &cpuid_data.entries[cpuid_i++];
1416 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1417 c->eax = KVM_CPUID_FEATURES | kvm_base;
1418 c->ebx = signature[0];
1419 c->ecx = signature[1];
1420 c->edx = signature[2];
1422 c = &cpuid_data.entries[cpuid_i++];
1423 c->function = KVM_CPUID_FEATURES | kvm_base;
1424 c->eax = env->features[FEAT_KVM];
1425 c->edx = env->features[FEAT_KVM_HINTS];
1428 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1430 for (i = 0; i <= limit; i++) {
1431 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1432 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1435 c = &cpuid_data.entries[cpuid_i++];
1439 /* Keep reading function 2 till all the input is received */
1443 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1444 KVM_CPUID_FLAG_STATE_READ_NEXT;
1445 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1446 times = c->eax & 0xff;
1448 for (j = 1; j < times; ++j) {
1449 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1450 fprintf(stderr, "cpuid_data is full, no space for "
1451 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1454 c = &cpuid_data.entries[cpuid_i++];
1456 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1457 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1462 if (env->nr_dies < 2) {
1468 for (j = 0; ; j++) {
1469 if (i == 0xd && j == 64) {
1473 if (i == 0x1f && j == 64) {
1478 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1480 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1482 if (i == 4 && c->eax == 0) {
1485 if (i == 0xb && !(c->ecx & 0xff00)) {
1488 if (i == 0x1f && !(c->ecx & 0xff00)) {
1491 if (i == 0xd && c->eax == 0) {
1494 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1495 fprintf(stderr, "cpuid_data is full, no space for "
1496 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1499 c = &cpuid_data.entries[cpuid_i++];
1507 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1508 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1511 for (j = 1; j <= times; ++j) {
1512 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1513 fprintf(stderr, "cpuid_data is full, no space for "
1514 "cpuid(eax:0x14,ecx:0x%x)\n", j);
1517 c = &cpuid_data.entries[cpuid_i++];
1520 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1521 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1528 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1533 if (limit >= 0x0a) {
1536 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1538 has_architectural_pmu_version = eax & 0xff;
1539 if (has_architectural_pmu_version > 0) {
1540 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1542 /* Shouldn't be more than 32, since that's the number of bits
1543 * available in EBX to tell us _which_ counters are available.
1546 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1547 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1550 if (has_architectural_pmu_version > 1) {
1551 num_architectural_pmu_fixed_counters = edx & 0x1f;
1553 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1554 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1560 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1562 for (i = 0x80000000; i <= limit; i++) {
1563 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1564 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1567 c = &cpuid_data.entries[cpuid_i++];
1571 /* Query for all AMD cache information leaves */
1572 for (j = 0; ; j++) {
1574 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1576 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1581 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1582 fprintf(stderr, "cpuid_data is full, no space for "
1583 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1586 c = &cpuid_data.entries[cpuid_i++];
1592 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1597 /* Call Centaur's CPUID instructions they are supported. */
1598 if (env->cpuid_xlevel2 > 0) {
1599 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1601 for (i = 0xC0000000; i <= limit; i++) {
1602 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1603 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1606 c = &cpuid_data.entries[cpuid_i++];
1610 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1614 cpuid_data.cpuid.nent = cpuid_i;
1616 if (((env->cpuid_version >> 8)&0xF) >= 6
1617 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1618 (CPUID_MCE | CPUID_MCA)
1619 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1620 uint64_t mcg_cap, unsupported_caps;
1624 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1626 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1630 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1631 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1632 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1636 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1637 if (unsupported_caps) {
1638 if (unsupported_caps & MCG_LMCE_P) {
1639 error_report("kvm: LMCE not supported");
1642 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1646 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1647 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1649 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1654 qemu_add_vm_change_state_handler(cpu_update_state, env);
1656 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1658 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1659 !!(c->ecx & CPUID_EXT_SMX);
1662 if (env->mcg_cap & MCG_LMCE_P) {
1663 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1666 if (!env->user_tsc_khz) {
1667 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1668 invtsc_mig_blocker == NULL) {
1669 error_setg(&invtsc_mig_blocker,
1670 "State blocked by non-migratable CPU device"
1672 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1674 error_report_err(local_err);
1675 error_free(invtsc_mig_blocker);
1681 if (cpu->vmware_cpuid_freq
1682 /* Guests depend on 0x40000000 to detect this feature, so only expose
1683 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1685 && kvm_base == KVM_CPUID_SIGNATURE
1686 /* TSC clock must be stable and known for this feature. */
1687 && tsc_is_stable_and_known(env)) {
1689 c = &cpuid_data.entries[cpuid_i++];
1690 c->function = KVM_CPUID_SIGNATURE | 0x10;
1691 c->eax = env->tsc_khz;
1692 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1693 * APIC_BUS_CYCLE_NS */
1695 c->ecx = c->edx = 0;
1697 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1698 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1701 cpuid_data.cpuid.nent = cpuid_i;
1703 cpuid_data.cpuid.padding = 0;
1704 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1710 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1713 max_nested_state_len = kvm_max_nested_state_length();
1714 if (max_nested_state_len > 0) {
1715 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1717 if (cpu_has_vmx(env)) {
1718 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1720 env->nested_state = g_malloc0(max_nested_state_len);
1721 env->nested_state->size = max_nested_state_len;
1722 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1724 vmx_hdr = &env->nested_state->hdr.vmx;
1725 vmx_hdr->vmxon_pa = -1ull;
1726 vmx_hdr->vmcs12_pa = -1ull;
1730 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1732 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1733 has_msr_tsc_aux = false;
1736 r = hyperv_init_vcpu(cpu);
1744 migrate_del_blocker(invtsc_mig_blocker);
1749 int kvm_arch_destroy_vcpu(CPUState *cs)
1751 X86CPU *cpu = X86_CPU(cs);
1752 CPUX86State *env = &cpu->env;
1754 if (cpu->kvm_msr_buf) {
1755 g_free(cpu->kvm_msr_buf);
1756 cpu->kvm_msr_buf = NULL;
1759 if (env->nested_state) {
1760 g_free(env->nested_state);
1761 env->nested_state = NULL;
1767 void kvm_arch_reset_vcpu(X86CPU *cpu)
1769 CPUX86State *env = &cpu->env;
1772 if (kvm_irqchip_in_kernel()) {
1773 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1774 KVM_MP_STATE_UNINITIALIZED;
1776 env->mp_state = KVM_MP_STATE_RUNNABLE;
1779 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1781 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1782 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1785 hyperv_x86_synic_reset(cpu);
1789 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1791 CPUX86State *env = &cpu->env;
1793 /* APs get directly into wait-for-SIPI state. */
1794 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1795 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1799 static int kvm_get_supported_feature_msrs(KVMState *s)
1803 if (kvm_feature_msrs != NULL) {
1807 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1811 struct kvm_msr_list msr_list;
1814 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1815 if (ret < 0 && ret != -E2BIG) {
1816 error_report("Fetch KVM feature MSR list failed: %s",
1821 assert(msr_list.nmsrs > 0);
1822 kvm_feature_msrs = (struct kvm_msr_list *) \
1823 g_malloc0(sizeof(msr_list) +
1824 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1826 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1827 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1830 error_report("Fetch KVM feature MSR list failed: %s",
1832 g_free(kvm_feature_msrs);
1833 kvm_feature_msrs = NULL;
1840 static int kvm_get_supported_msrs(KVMState *s)
1842 static int kvm_supported_msrs;
1846 if (kvm_supported_msrs == 0) {
1847 struct kvm_msr_list msr_list, *kvm_msr_list;
1849 kvm_supported_msrs = -1;
1851 /* Obtain MSR list from KVM. These are the MSRs that we must
1854 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1855 if (ret < 0 && ret != -E2BIG) {
1858 /* Old kernel modules had a bug and could write beyond the provided
1859 memory. Allocate at least a safe amount of 1K. */
1860 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1862 sizeof(msr_list.indices[0])));
1864 kvm_msr_list->nmsrs = msr_list.nmsrs;
1865 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1869 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1870 switch (kvm_msr_list->indices[i]) {
1872 has_msr_star = true;
1874 case MSR_VM_HSAVE_PA:
1875 has_msr_hsave_pa = true;
1878 has_msr_tsc_aux = true;
1880 case MSR_TSC_ADJUST:
1881 has_msr_tsc_adjust = true;
1883 case MSR_IA32_TSCDEADLINE:
1884 has_msr_tsc_deadline = true;
1886 case MSR_IA32_SMBASE:
1887 has_msr_smbase = true;
1890 has_msr_smi_count = true;
1892 case MSR_IA32_MISC_ENABLE:
1893 has_msr_misc_enable = true;
1895 case MSR_IA32_BNDCFGS:
1896 has_msr_bndcfgs = true;
1901 case HV_X64_MSR_CRASH_CTL:
1902 has_msr_hv_crash = true;
1904 case HV_X64_MSR_RESET:
1905 has_msr_hv_reset = true;
1907 case HV_X64_MSR_VP_INDEX:
1908 has_msr_hv_vpindex = true;
1910 case HV_X64_MSR_VP_RUNTIME:
1911 has_msr_hv_runtime = true;
1913 case HV_X64_MSR_SCONTROL:
1914 has_msr_hv_synic = true;
1916 case HV_X64_MSR_STIMER0_CONFIG:
1917 has_msr_hv_stimer = true;
1919 case HV_X64_MSR_TSC_FREQUENCY:
1920 has_msr_hv_frequencies = true;
1922 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1923 has_msr_hv_reenlightenment = true;
1925 case MSR_IA32_SPEC_CTRL:
1926 has_msr_spec_ctrl = true;
1929 has_msr_virt_ssbd = true;
1931 case MSR_IA32_ARCH_CAPABILITIES:
1932 has_msr_arch_capabs = true;
1934 case MSR_IA32_CORE_CAPABILITY:
1935 has_msr_core_capabs = true;
1941 g_free(kvm_msr_list);
1947 static Notifier smram_machine_done;
1948 static KVMMemoryListener smram_listener;
1949 static AddressSpace smram_address_space;
1950 static MemoryRegion smram_as_root;
1951 static MemoryRegion smram_as_mem;
1953 static void register_smram_listener(Notifier *n, void *unused)
1955 MemoryRegion *smram =
1956 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1958 /* Outer container... */
1959 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1960 memory_region_set_enabled(&smram_as_root, true);
1962 /* ... with two regions inside: normal system memory with low
1965 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1966 get_system_memory(), 0, ~0ull);
1967 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1968 memory_region_set_enabled(&smram_as_mem, true);
1971 /* ... SMRAM with higher priority */
1972 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1973 memory_region_set_enabled(smram, true);
1976 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1977 kvm_memory_listener_register(kvm_state, &smram_listener,
1978 &smram_address_space, 1);
1981 int kvm_arch_init(MachineState *ms, KVMState *s)
1983 uint64_t identity_base = 0xfffbc000;
1984 uint64_t shadow_mem;
1986 struct utsname utsname;
1988 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1989 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1990 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1992 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1994 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
1995 if (has_exception_payload) {
1996 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
1998 error_report("kvm: Failed to enable exception payload cap: %s",
2004 ret = kvm_get_supported_msrs(s);
2009 kvm_get_supported_feature_msrs(s);
2012 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2015 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2016 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2017 * Since these must be part of guest physical memory, we need to allocate
2018 * them, both by setting their start addresses in the kernel and by
2019 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2021 * Older KVM versions may not support setting the identity map base. In
2022 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2025 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2026 /* Allows up to 16M BIOSes. */
2027 identity_base = 0xfeffc000;
2029 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2035 /* Set TSS base one page after EPT identity map. */
2036 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2041 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2042 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2044 fprintf(stderr, "e820_add_entry() table is full\n");
2047 qemu_register_reset(kvm_unpoison_all, NULL);
2049 shadow_mem = machine_kvm_shadow_mem(ms);
2050 if (shadow_mem != -1) {
2052 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2058 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2059 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2060 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
2061 smram_machine_done.notify = register_smram_listener;
2062 qemu_add_machine_init_done_notifier(&smram_machine_done);
2065 if (enable_cpu_pm) {
2066 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2069 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2070 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2071 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2073 if (disable_exits) {
2074 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2075 KVM_X86_DISABLE_EXITS_HLT |
2076 KVM_X86_DISABLE_EXITS_PAUSE);
2079 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2082 error_report("kvm: guest stopping CPU not supported: %s",
2090 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2092 lhs->selector = rhs->selector;
2093 lhs->base = rhs->base;
2094 lhs->limit = rhs->limit;
2106 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2108 unsigned flags = rhs->flags;
2109 lhs->selector = rhs->selector;
2110 lhs->base = rhs->base;
2111 lhs->limit = rhs->limit;
2112 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2113 lhs->present = (flags & DESC_P_MASK) != 0;
2114 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2115 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2116 lhs->s = (flags & DESC_S_MASK) != 0;
2117 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2118 lhs->g = (flags & DESC_G_MASK) != 0;
2119 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2120 lhs->unusable = !lhs->present;
2124 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2126 lhs->selector = rhs->selector;
2127 lhs->base = rhs->base;
2128 lhs->limit = rhs->limit;
2129 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2130 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2131 (rhs->dpl << DESC_DPL_SHIFT) |
2132 (rhs->db << DESC_B_SHIFT) |
2133 (rhs->s * DESC_S_MASK) |
2134 (rhs->l << DESC_L_SHIFT) |
2135 (rhs->g * DESC_G_MASK) |
2136 (rhs->avl * DESC_AVL_MASK);
2139 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2142 *kvm_reg = *qemu_reg;
2144 *qemu_reg = *kvm_reg;
2148 static int kvm_getput_regs(X86CPU *cpu, int set)
2150 CPUX86State *env = &cpu->env;
2151 struct kvm_regs regs;
2155 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s);
2161 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
2162 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
2163 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
2164 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
2165 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
2166 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
2167 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
2168 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
2169 #ifdef TARGET_X86_64
2170 kvm_getput_reg(®s.r8, &env->regs[8], set);
2171 kvm_getput_reg(®s.r9, &env->regs[9], set);
2172 kvm_getput_reg(®s.r10, &env->regs[10], set);
2173 kvm_getput_reg(®s.r11, &env->regs[11], set);
2174 kvm_getput_reg(®s.r12, &env->regs[12], set);
2175 kvm_getput_reg(®s.r13, &env->regs[13], set);
2176 kvm_getput_reg(®s.r14, &env->regs[14], set);
2177 kvm_getput_reg(®s.r15, &env->regs[15], set);
2180 kvm_getput_reg(®s.rflags, &env->eflags, set);
2181 kvm_getput_reg(®s.rip, &env->eip, set);
2184 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s);
2190 static int kvm_put_fpu(X86CPU *cpu)
2192 CPUX86State *env = &cpu->env;
2196 memset(&fpu, 0, sizeof fpu);
2197 fpu.fsw = env->fpus & ~(7 << 11);
2198 fpu.fsw |= (env->fpstt & 7) << 11;
2199 fpu.fcw = env->fpuc;
2200 fpu.last_opcode = env->fpop;
2201 fpu.last_ip = env->fpip;
2202 fpu.last_dp = env->fpdp;
2203 for (i = 0; i < 8; ++i) {
2204 fpu.ftwx |= (!env->fptags[i]) << i;
2206 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2207 for (i = 0; i < CPU_NB_REGS; i++) {
2208 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2209 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2211 fpu.mxcsr = env->mxcsr;
2213 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2216 #define XSAVE_FCW_FSW 0
2217 #define XSAVE_FTW_FOP 1
2218 #define XSAVE_CWD_RIP 2
2219 #define XSAVE_CWD_RDP 4
2220 #define XSAVE_MXCSR 6
2221 #define XSAVE_ST_SPACE 8
2222 #define XSAVE_XMM_SPACE 40
2223 #define XSAVE_XSTATE_BV 128
2224 #define XSAVE_YMMH_SPACE 144
2225 #define XSAVE_BNDREGS 240
2226 #define XSAVE_BNDCSR 256
2227 #define XSAVE_OPMASK 272
2228 #define XSAVE_ZMM_Hi256 288
2229 #define XSAVE_Hi16_ZMM 416
2230 #define XSAVE_PKRU 672
2232 #define XSAVE_BYTE_OFFSET(word_offset) \
2233 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2235 #define ASSERT_OFFSET(word_offset, field) \
2236 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2237 offsetof(X86XSaveArea, field))
2239 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2240 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2241 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2242 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2243 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2244 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2245 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2246 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2247 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2248 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2249 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2250 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2251 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2252 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2253 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2255 static int kvm_put_xsave(X86CPU *cpu)
2257 CPUX86State *env = &cpu->env;
2258 X86XSaveArea *xsave = env->xsave_buf;
2261 return kvm_put_fpu(cpu);
2263 x86_cpu_xsave_all_areas(cpu, xsave);
2265 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2268 static int kvm_put_xcrs(X86CPU *cpu)
2270 CPUX86State *env = &cpu->env;
2271 struct kvm_xcrs xcrs = {};
2279 xcrs.xcrs[0].xcr = 0;
2280 xcrs.xcrs[0].value = env->xcr0;
2281 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2284 static int kvm_put_sregs(X86CPU *cpu)
2286 CPUX86State *env = &cpu->env;
2287 struct kvm_sregs sregs;
2289 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2290 if (env->interrupt_injected >= 0) {
2291 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2292 (uint64_t)1 << (env->interrupt_injected % 64);
2295 if ((env->eflags & VM_MASK)) {
2296 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2297 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2298 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2299 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2300 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2301 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2303 set_seg(&sregs.cs, &env->segs[R_CS]);
2304 set_seg(&sregs.ds, &env->segs[R_DS]);
2305 set_seg(&sregs.es, &env->segs[R_ES]);
2306 set_seg(&sregs.fs, &env->segs[R_FS]);
2307 set_seg(&sregs.gs, &env->segs[R_GS]);
2308 set_seg(&sregs.ss, &env->segs[R_SS]);
2311 set_seg(&sregs.tr, &env->tr);
2312 set_seg(&sregs.ldt, &env->ldt);
2314 sregs.idt.limit = env->idt.limit;
2315 sregs.idt.base = env->idt.base;
2316 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2317 sregs.gdt.limit = env->gdt.limit;
2318 sregs.gdt.base = env->gdt.base;
2319 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2321 sregs.cr0 = env->cr[0];
2322 sregs.cr2 = env->cr[2];
2323 sregs.cr3 = env->cr[3];
2324 sregs.cr4 = env->cr[4];
2326 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2327 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2329 sregs.efer = env->efer;
2331 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2334 static void kvm_msr_buf_reset(X86CPU *cpu)
2336 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2339 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2341 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2342 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2343 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2345 assert((void *)(entry + 1) <= limit);
2347 entry->index = index;
2348 entry->reserved = 0;
2349 entry->data = value;
2353 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2355 kvm_msr_buf_reset(cpu);
2356 kvm_msr_entry_add(cpu, index, value);
2358 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2361 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2365 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2369 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2371 CPUX86State *env = &cpu->env;
2374 if (!has_msr_tsc_deadline) {
2378 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2388 * Provide a separate write service for the feature control MSR in order to
2389 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2390 * before writing any other state because forcibly leaving nested mode
2391 * invalidates the VCPU state.
2393 static int kvm_put_msr_feature_control(X86CPU *cpu)
2397 if (!has_msr_feature_control) {
2401 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2402 cpu->env.msr_ia32_feature_control);
2411 static int kvm_put_msrs(X86CPU *cpu, int level)
2413 CPUX86State *env = &cpu->env;
2417 kvm_msr_buf_reset(cpu);
2419 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2420 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2421 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2422 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2424 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2426 if (has_msr_hsave_pa) {
2427 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2429 if (has_msr_tsc_aux) {
2430 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2432 if (has_msr_tsc_adjust) {
2433 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2435 if (has_msr_misc_enable) {
2436 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2437 env->msr_ia32_misc_enable);
2439 if (has_msr_smbase) {
2440 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2442 if (has_msr_smi_count) {
2443 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2445 if (has_msr_bndcfgs) {
2446 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2449 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2451 if (has_msr_spec_ctrl) {
2452 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2454 if (has_msr_virt_ssbd) {
2455 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2458 #ifdef TARGET_X86_64
2459 if (lm_capable_kernel) {
2460 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2461 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2462 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2463 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2467 /* If host supports feature MSR, write down. */
2468 if (has_msr_arch_capabs) {
2469 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2470 env->features[FEAT_ARCH_CAPABILITIES]);
2473 if (has_msr_core_capabs) {
2474 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2475 env->features[FEAT_CORE_CAPABILITY]);
2479 * The following MSRs have side effects on the guest or are too heavy
2480 * for normal writeback. Limit them to reset or full state updates.
2482 if (level >= KVM_PUT_RESET_STATE) {
2483 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2484 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2485 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2486 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2487 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2489 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2490 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2492 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2493 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2495 if (has_architectural_pmu_version > 0) {
2496 if (has_architectural_pmu_version > 1) {
2497 /* Stop the counter. */
2498 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2499 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2502 /* Set the counter values. */
2503 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2504 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2505 env->msr_fixed_counters[i]);
2507 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2508 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2509 env->msr_gp_counters[i]);
2510 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2511 env->msr_gp_evtsel[i]);
2513 if (has_architectural_pmu_version > 1) {
2514 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2515 env->msr_global_status);
2516 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2517 env->msr_global_ovf_ctrl);
2519 /* Now start the PMU. */
2520 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2521 env->msr_fixed_ctr_ctrl);
2522 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2523 env->msr_global_ctrl);
2527 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2528 * only sync them to KVM on the first cpu
2530 if (current_cpu == first_cpu) {
2531 if (has_msr_hv_hypercall) {
2532 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2533 env->msr_hv_guest_os_id);
2534 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2535 env->msr_hv_hypercall);
2537 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2538 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2541 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2542 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2543 env->msr_hv_reenlightenment_control);
2544 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2545 env->msr_hv_tsc_emulation_control);
2546 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2547 env->msr_hv_tsc_emulation_status);
2550 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2551 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2554 if (has_msr_hv_crash) {
2557 for (j = 0; j < HV_CRASH_PARAMS; j++)
2558 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2559 env->msr_hv_crash_params[j]);
2561 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2563 if (has_msr_hv_runtime) {
2564 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2566 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2567 && hv_vpindex_settable) {
2568 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2569 hyperv_vp_index(CPU(cpu)));
2571 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2574 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2576 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2577 env->msr_hv_synic_control);
2578 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2579 env->msr_hv_synic_evt_page);
2580 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2581 env->msr_hv_synic_msg_page);
2583 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2584 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2585 env->msr_hv_synic_sint[j]);
2588 if (has_msr_hv_stimer) {
2591 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2592 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2593 env->msr_hv_stimer_config[j]);
2596 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2597 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2598 env->msr_hv_stimer_count[j]);
2601 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2602 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2604 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2605 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2606 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2607 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2608 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2609 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2610 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2611 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2612 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2613 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2614 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2615 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2616 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2617 /* The CPU GPs if we write to a bit above the physical limit of
2618 * the host CPU (and KVM emulates that)
2620 uint64_t mask = env->mtrr_var[i].mask;
2623 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2624 env->mtrr_var[i].base);
2625 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2628 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2629 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2630 0x14, 1, R_EAX) & 0x7;
2632 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2633 env->msr_rtit_ctrl);
2634 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2635 env->msr_rtit_status);
2636 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2637 env->msr_rtit_output_base);
2638 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2639 env->msr_rtit_output_mask);
2640 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2641 env->msr_rtit_cr3_match);
2642 for (i = 0; i < addr_num; i++) {
2643 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2644 env->msr_rtit_addrs[i]);
2648 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2649 * kvm_put_msr_feature_control. */
2654 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2655 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2656 if (has_msr_mcg_ext_ctl) {
2657 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2659 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2660 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2664 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2669 if (ret < cpu->kvm_msr_buf->nmsrs) {
2670 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2671 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2672 (uint32_t)e->index, (uint64_t)e->data);
2675 assert(ret == cpu->kvm_msr_buf->nmsrs);
2680 static int kvm_get_fpu(X86CPU *cpu)
2682 CPUX86State *env = &cpu->env;
2686 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2691 env->fpstt = (fpu.fsw >> 11) & 7;
2692 env->fpus = fpu.fsw;
2693 env->fpuc = fpu.fcw;
2694 env->fpop = fpu.last_opcode;
2695 env->fpip = fpu.last_ip;
2696 env->fpdp = fpu.last_dp;
2697 for (i = 0; i < 8; ++i) {
2698 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2700 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2701 for (i = 0; i < CPU_NB_REGS; i++) {
2702 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2703 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2705 env->mxcsr = fpu.mxcsr;
2710 static int kvm_get_xsave(X86CPU *cpu)
2712 CPUX86State *env = &cpu->env;
2713 X86XSaveArea *xsave = env->xsave_buf;
2717 return kvm_get_fpu(cpu);
2720 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2724 x86_cpu_xrstor_all_areas(cpu, xsave);
2729 static int kvm_get_xcrs(X86CPU *cpu)
2731 CPUX86State *env = &cpu->env;
2733 struct kvm_xcrs xcrs;
2739 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2744 for (i = 0; i < xcrs.nr_xcrs; i++) {
2745 /* Only support xcr0 now */
2746 if (xcrs.xcrs[i].xcr == 0) {
2747 env->xcr0 = xcrs.xcrs[i].value;
2754 static int kvm_get_sregs(X86CPU *cpu)
2756 CPUX86State *env = &cpu->env;
2757 struct kvm_sregs sregs;
2760 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2765 /* There can only be one pending IRQ set in the bitmap at a time, so try
2766 to find it and save its number instead (-1 for none). */
2767 env->interrupt_injected = -1;
2768 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2769 if (sregs.interrupt_bitmap[i]) {
2770 bit = ctz64(sregs.interrupt_bitmap[i]);
2771 env->interrupt_injected = i * 64 + bit;
2776 get_seg(&env->segs[R_CS], &sregs.cs);
2777 get_seg(&env->segs[R_DS], &sregs.ds);
2778 get_seg(&env->segs[R_ES], &sregs.es);
2779 get_seg(&env->segs[R_FS], &sregs.fs);
2780 get_seg(&env->segs[R_GS], &sregs.gs);
2781 get_seg(&env->segs[R_SS], &sregs.ss);
2783 get_seg(&env->tr, &sregs.tr);
2784 get_seg(&env->ldt, &sregs.ldt);
2786 env->idt.limit = sregs.idt.limit;
2787 env->idt.base = sregs.idt.base;
2788 env->gdt.limit = sregs.gdt.limit;
2789 env->gdt.base = sregs.gdt.base;
2791 env->cr[0] = sregs.cr0;
2792 env->cr[2] = sregs.cr2;
2793 env->cr[3] = sregs.cr3;
2794 env->cr[4] = sregs.cr4;
2796 env->efer = sregs.efer;
2798 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2799 x86_update_hflags(env);
2804 static int kvm_get_msrs(X86CPU *cpu)
2806 CPUX86State *env = &cpu->env;
2807 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2809 uint64_t mtrr_top_bits;
2811 kvm_msr_buf_reset(cpu);
2813 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2814 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2815 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2816 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2818 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2820 if (has_msr_hsave_pa) {
2821 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2823 if (has_msr_tsc_aux) {
2824 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2826 if (has_msr_tsc_adjust) {
2827 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2829 if (has_msr_tsc_deadline) {
2830 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2832 if (has_msr_misc_enable) {
2833 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2835 if (has_msr_smbase) {
2836 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2838 if (has_msr_smi_count) {
2839 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2841 if (has_msr_feature_control) {
2842 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2844 if (has_msr_bndcfgs) {
2845 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2848 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2850 if (has_msr_spec_ctrl) {
2851 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2853 if (has_msr_virt_ssbd) {
2854 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2856 if (!env->tsc_valid) {
2857 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2858 env->tsc_valid = !runstate_is_running();
2861 #ifdef TARGET_X86_64
2862 if (lm_capable_kernel) {
2863 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2864 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2865 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2866 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2869 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2870 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2871 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2872 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2874 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2875 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2877 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2878 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2880 if (has_architectural_pmu_version > 0) {
2881 if (has_architectural_pmu_version > 1) {
2882 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2883 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2884 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2885 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2887 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2888 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2890 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2891 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2892 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2897 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2898 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2899 if (has_msr_mcg_ext_ctl) {
2900 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2902 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2903 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2907 if (has_msr_hv_hypercall) {
2908 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2909 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2911 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2912 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2914 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2915 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2917 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2918 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2919 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2920 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2922 if (has_msr_hv_crash) {
2925 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2926 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2929 if (has_msr_hv_runtime) {
2930 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2932 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2935 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2936 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2937 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2938 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2939 kvm_msr_entry_add(cpu, msr, 0);
2942 if (has_msr_hv_stimer) {
2945 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2947 kvm_msr_entry_add(cpu, msr, 0);
2950 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2951 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2952 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2953 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2954 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2955 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2956 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2957 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2958 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2959 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2960 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2961 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2962 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2963 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2964 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2965 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2969 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2971 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2973 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2974 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2975 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2976 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2977 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2978 for (i = 0; i < addr_num; i++) {
2979 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2983 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2988 if (ret < cpu->kvm_msr_buf->nmsrs) {
2989 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2990 error_report("error: failed to get MSR 0x%" PRIx32,
2991 (uint32_t)e->index);
2994 assert(ret == cpu->kvm_msr_buf->nmsrs);
2996 * MTRR masks: Each mask consists of 5 parts
2997 * a 10..0: must be zero
2999 * c n-1.12: actual mask bits
3000 * d 51..n: reserved must be zero
3001 * e 63.52: reserved must be zero
3003 * 'n' is the number of physical bits supported by the CPU and is
3004 * apparently always <= 52. We know our 'n' but don't know what
3005 * the destinations 'n' is; it might be smaller, in which case
3006 * it masks (c) on loading. It might be larger, in which case
3007 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3008 * we're migrating to.
3011 if (cpu->fill_mtrr_mask) {
3012 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3013 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3014 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3019 for (i = 0; i < ret; i++) {
3020 uint32_t index = msrs[i].index;
3022 case MSR_IA32_SYSENTER_CS:
3023 env->sysenter_cs = msrs[i].data;
3025 case MSR_IA32_SYSENTER_ESP:
3026 env->sysenter_esp = msrs[i].data;
3028 case MSR_IA32_SYSENTER_EIP:
3029 env->sysenter_eip = msrs[i].data;
3032 env->pat = msrs[i].data;
3035 env->star = msrs[i].data;
3037 #ifdef TARGET_X86_64
3039 env->cstar = msrs[i].data;
3041 case MSR_KERNELGSBASE:
3042 env->kernelgsbase = msrs[i].data;
3045 env->fmask = msrs[i].data;
3048 env->lstar = msrs[i].data;
3052 env->tsc = msrs[i].data;
3055 env->tsc_aux = msrs[i].data;
3057 case MSR_TSC_ADJUST:
3058 env->tsc_adjust = msrs[i].data;
3060 case MSR_IA32_TSCDEADLINE:
3061 env->tsc_deadline = msrs[i].data;
3063 case MSR_VM_HSAVE_PA:
3064 env->vm_hsave = msrs[i].data;
3066 case MSR_KVM_SYSTEM_TIME:
3067 env->system_time_msr = msrs[i].data;
3069 case MSR_KVM_WALL_CLOCK:
3070 env->wall_clock_msr = msrs[i].data;
3072 case MSR_MCG_STATUS:
3073 env->mcg_status = msrs[i].data;
3076 env->mcg_ctl = msrs[i].data;
3078 case MSR_MCG_EXT_CTL:
3079 env->mcg_ext_ctl = msrs[i].data;
3081 case MSR_IA32_MISC_ENABLE:
3082 env->msr_ia32_misc_enable = msrs[i].data;
3084 case MSR_IA32_SMBASE:
3085 env->smbase = msrs[i].data;
3088 env->msr_smi_count = msrs[i].data;
3090 case MSR_IA32_FEATURE_CONTROL:
3091 env->msr_ia32_feature_control = msrs[i].data;
3093 case MSR_IA32_BNDCFGS:
3094 env->msr_bndcfgs = msrs[i].data;
3097 env->xss = msrs[i].data;
3100 if (msrs[i].index >= MSR_MC0_CTL &&
3101 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3102 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3105 case MSR_KVM_ASYNC_PF_EN:
3106 env->async_pf_en_msr = msrs[i].data;
3108 case MSR_KVM_PV_EOI_EN:
3109 env->pv_eoi_en_msr = msrs[i].data;
3111 case MSR_KVM_STEAL_TIME:
3112 env->steal_time_msr = msrs[i].data;
3114 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3115 env->msr_fixed_ctr_ctrl = msrs[i].data;
3117 case MSR_CORE_PERF_GLOBAL_CTRL:
3118 env->msr_global_ctrl = msrs[i].data;
3120 case MSR_CORE_PERF_GLOBAL_STATUS:
3121 env->msr_global_status = msrs[i].data;
3123 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3124 env->msr_global_ovf_ctrl = msrs[i].data;
3126 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3127 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3129 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3130 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3132 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3133 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3135 case HV_X64_MSR_HYPERCALL:
3136 env->msr_hv_hypercall = msrs[i].data;
3138 case HV_X64_MSR_GUEST_OS_ID:
3139 env->msr_hv_guest_os_id = msrs[i].data;
3141 case HV_X64_MSR_APIC_ASSIST_PAGE:
3142 env->msr_hv_vapic = msrs[i].data;
3144 case HV_X64_MSR_REFERENCE_TSC:
3145 env->msr_hv_tsc = msrs[i].data;
3147 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3148 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3150 case HV_X64_MSR_VP_RUNTIME:
3151 env->msr_hv_runtime = msrs[i].data;
3153 case HV_X64_MSR_SCONTROL:
3154 env->msr_hv_synic_control = msrs[i].data;
3156 case HV_X64_MSR_SIEFP:
3157 env->msr_hv_synic_evt_page = msrs[i].data;
3159 case HV_X64_MSR_SIMP:
3160 env->msr_hv_synic_msg_page = msrs[i].data;
3162 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3163 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3165 case HV_X64_MSR_STIMER0_CONFIG:
3166 case HV_X64_MSR_STIMER1_CONFIG:
3167 case HV_X64_MSR_STIMER2_CONFIG:
3168 case HV_X64_MSR_STIMER3_CONFIG:
3169 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3172 case HV_X64_MSR_STIMER0_COUNT:
3173 case HV_X64_MSR_STIMER1_COUNT:
3174 case HV_X64_MSR_STIMER2_COUNT:
3175 case HV_X64_MSR_STIMER3_COUNT:
3176 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3179 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3180 env->msr_hv_reenlightenment_control = msrs[i].data;
3182 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3183 env->msr_hv_tsc_emulation_control = msrs[i].data;
3185 case HV_X64_MSR_TSC_EMULATION_STATUS:
3186 env->msr_hv_tsc_emulation_status = msrs[i].data;
3188 case MSR_MTRRdefType:
3189 env->mtrr_deftype = msrs[i].data;
3191 case MSR_MTRRfix64K_00000:
3192 env->mtrr_fixed[0] = msrs[i].data;
3194 case MSR_MTRRfix16K_80000:
3195 env->mtrr_fixed[1] = msrs[i].data;
3197 case MSR_MTRRfix16K_A0000:
3198 env->mtrr_fixed[2] = msrs[i].data;
3200 case MSR_MTRRfix4K_C0000:
3201 env->mtrr_fixed[3] = msrs[i].data;
3203 case MSR_MTRRfix4K_C8000:
3204 env->mtrr_fixed[4] = msrs[i].data;
3206 case MSR_MTRRfix4K_D0000:
3207 env->mtrr_fixed[5] = msrs[i].data;
3209 case MSR_MTRRfix4K_D8000:
3210 env->mtrr_fixed[6] = msrs[i].data;
3212 case MSR_MTRRfix4K_E0000:
3213 env->mtrr_fixed[7] = msrs[i].data;
3215 case MSR_MTRRfix4K_E8000:
3216 env->mtrr_fixed[8] = msrs[i].data;
3218 case MSR_MTRRfix4K_F0000:
3219 env->mtrr_fixed[9] = msrs[i].data;
3221 case MSR_MTRRfix4K_F8000:
3222 env->mtrr_fixed[10] = msrs[i].data;
3224 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3226 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3229 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3232 case MSR_IA32_SPEC_CTRL:
3233 env->spec_ctrl = msrs[i].data;
3236 env->virt_ssbd = msrs[i].data;
3238 case MSR_IA32_RTIT_CTL:
3239 env->msr_rtit_ctrl = msrs[i].data;
3241 case MSR_IA32_RTIT_STATUS:
3242 env->msr_rtit_status = msrs[i].data;
3244 case MSR_IA32_RTIT_OUTPUT_BASE:
3245 env->msr_rtit_output_base = msrs[i].data;
3247 case MSR_IA32_RTIT_OUTPUT_MASK:
3248 env->msr_rtit_output_mask = msrs[i].data;
3250 case MSR_IA32_RTIT_CR3_MATCH:
3251 env->msr_rtit_cr3_match = msrs[i].data;
3253 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3254 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3262 static int kvm_put_mp_state(X86CPU *cpu)
3264 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3266 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3269 static int kvm_get_mp_state(X86CPU *cpu)
3271 CPUState *cs = CPU(cpu);
3272 CPUX86State *env = &cpu->env;
3273 struct kvm_mp_state mp_state;
3276 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3280 env->mp_state = mp_state.mp_state;
3281 if (kvm_irqchip_in_kernel()) {
3282 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3287 static int kvm_get_apic(X86CPU *cpu)
3289 DeviceState *apic = cpu->apic_state;
3290 struct kvm_lapic_state kapic;
3293 if (apic && kvm_irqchip_in_kernel()) {
3294 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3299 kvm_get_apic_state(apic, &kapic);
3304 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3306 CPUState *cs = CPU(cpu);
3307 CPUX86State *env = &cpu->env;
3308 struct kvm_vcpu_events events = {};
3310 if (!kvm_has_vcpu_events()) {
3316 if (has_exception_payload) {
3317 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3318 events.exception.pending = env->exception_pending;
3319 events.exception_has_payload = env->exception_has_payload;
3320 events.exception_payload = env->exception_payload;
3322 events.exception.nr = env->exception_nr;
3323 events.exception.injected = env->exception_injected;
3324 events.exception.has_error_code = env->has_error_code;
3325 events.exception.error_code = env->error_code;
3327 events.interrupt.injected = (env->interrupt_injected >= 0);
3328 events.interrupt.nr = env->interrupt_injected;
3329 events.interrupt.soft = env->soft_interrupt;
3331 events.nmi.injected = env->nmi_injected;
3332 events.nmi.pending = env->nmi_pending;
3333 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3335 events.sipi_vector = env->sipi_vector;
3337 if (has_msr_smbase) {
3338 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3339 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3340 if (kvm_irqchip_in_kernel()) {
3341 /* As soon as these are moved to the kernel, remove them
3342 * from cs->interrupt_request.
3344 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3345 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3346 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3348 /* Keep these in cs->interrupt_request. */
3349 events.smi.pending = 0;
3350 events.smi.latched_init = 0;
3352 /* Stop SMI delivery on old machine types to avoid a reboot
3353 * on an inward migration of an old VM.
3355 if (!cpu->kvm_no_smi_migration) {
3356 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3360 if (level >= KVM_PUT_RESET_STATE) {
3361 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3362 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3363 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3367 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3370 static int kvm_get_vcpu_events(X86CPU *cpu)
3372 CPUX86State *env = &cpu->env;
3373 struct kvm_vcpu_events events;
3376 if (!kvm_has_vcpu_events()) {
3380 memset(&events, 0, sizeof(events));
3381 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3386 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3387 env->exception_pending = events.exception.pending;
3388 env->exception_has_payload = events.exception_has_payload;
3389 env->exception_payload = events.exception_payload;
3391 env->exception_pending = 0;
3392 env->exception_has_payload = false;
3394 env->exception_injected = events.exception.injected;
3396 (env->exception_pending || env->exception_injected) ?
3397 events.exception.nr : -1;
3398 env->has_error_code = events.exception.has_error_code;
3399 env->error_code = events.exception.error_code;
3401 env->interrupt_injected =
3402 events.interrupt.injected ? events.interrupt.nr : -1;
3403 env->soft_interrupt = events.interrupt.soft;
3405 env->nmi_injected = events.nmi.injected;
3406 env->nmi_pending = events.nmi.pending;
3407 if (events.nmi.masked) {
3408 env->hflags2 |= HF2_NMI_MASK;
3410 env->hflags2 &= ~HF2_NMI_MASK;
3413 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3414 if (events.smi.smm) {
3415 env->hflags |= HF_SMM_MASK;
3417 env->hflags &= ~HF_SMM_MASK;
3419 if (events.smi.pending) {
3420 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3422 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3424 if (events.smi.smm_inside_nmi) {
3425 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3427 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3429 if (events.smi.latched_init) {
3430 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3432 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3436 env->sipi_vector = events.sipi_vector;
3441 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3443 CPUState *cs = CPU(cpu);
3444 CPUX86State *env = &cpu->env;
3446 unsigned long reinject_trap = 0;
3448 if (!kvm_has_vcpu_events()) {
3449 if (env->exception_nr == EXCP01_DB) {
3450 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3451 } else if (env->exception_injected == EXCP03_INT3) {
3452 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3454 kvm_reset_exception(env);
3458 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3459 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3460 * by updating the debug state once again if single-stepping is on.
3461 * Another reason to call kvm_update_guest_debug here is a pending debug
3462 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3463 * reinject them via SET_GUEST_DEBUG.
3465 if (reinject_trap ||
3466 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3467 ret = kvm_update_guest_debug(cs, reinject_trap);
3472 static int kvm_put_debugregs(X86CPU *cpu)
3474 CPUX86State *env = &cpu->env;
3475 struct kvm_debugregs dbgregs;
3478 if (!kvm_has_debugregs()) {
3482 for (i = 0; i < 4; i++) {
3483 dbgregs.db[i] = env->dr[i];
3485 dbgregs.dr6 = env->dr[6];
3486 dbgregs.dr7 = env->dr[7];
3489 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3492 static int kvm_get_debugregs(X86CPU *cpu)
3494 CPUX86State *env = &cpu->env;
3495 struct kvm_debugregs dbgregs;
3498 if (!kvm_has_debugregs()) {
3502 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3506 for (i = 0; i < 4; i++) {
3507 env->dr[i] = dbgregs.db[i];
3509 env->dr[4] = env->dr[6] = dbgregs.dr6;
3510 env->dr[5] = env->dr[7] = dbgregs.dr7;
3515 static int kvm_put_nested_state(X86CPU *cpu)
3517 CPUX86State *env = &cpu->env;
3518 int max_nested_state_len = kvm_max_nested_state_length();
3520 if (!env->nested_state) {
3524 assert(env->nested_state->size <= max_nested_state_len);
3525 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3528 static int kvm_get_nested_state(X86CPU *cpu)
3530 CPUX86State *env = &cpu->env;
3531 int max_nested_state_len = kvm_max_nested_state_length();
3534 if (!env->nested_state) {
3539 * It is possible that migration restored a smaller size into
3540 * nested_state->hdr.size than what our kernel support.
3541 * We preserve migration origin nested_state->hdr.size for
3542 * call to KVM_SET_NESTED_STATE but wish that our next call
3543 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3545 env->nested_state->size = max_nested_state_len;
3547 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3552 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3553 env->hflags |= HF_GUEST_MASK;
3555 env->hflags &= ~HF_GUEST_MASK;
3561 int kvm_arch_put_registers(CPUState *cpu, int level)
3563 X86CPU *x86_cpu = X86_CPU(cpu);
3566 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3568 if (level >= KVM_PUT_RESET_STATE) {
3569 ret = kvm_put_nested_state(x86_cpu);
3574 ret = kvm_put_msr_feature_control(x86_cpu);
3580 if (level == KVM_PUT_FULL_STATE) {
3581 /* We don't check for kvm_arch_set_tsc_khz() errors here,
3582 * because TSC frequency mismatch shouldn't abort migration,
3583 * unless the user explicitly asked for a more strict TSC
3584 * setting (e.g. using an explicit "tsc-freq" option).
3586 kvm_arch_set_tsc_khz(cpu);
3589 ret = kvm_getput_regs(x86_cpu, 1);
3593 ret = kvm_put_xsave(x86_cpu);
3597 ret = kvm_put_xcrs(x86_cpu);
3601 ret = kvm_put_sregs(x86_cpu);
3605 /* must be before kvm_put_msrs */
3606 ret = kvm_inject_mce_oldstyle(x86_cpu);
3610 ret = kvm_put_msrs(x86_cpu, level);
3614 ret = kvm_put_vcpu_events(x86_cpu, level);
3618 if (level >= KVM_PUT_RESET_STATE) {
3619 ret = kvm_put_mp_state(x86_cpu);
3625 ret = kvm_put_tscdeadline_msr(x86_cpu);
3629 ret = kvm_put_debugregs(x86_cpu);
3634 ret = kvm_guest_debug_workarounds(x86_cpu);
3641 int kvm_arch_get_registers(CPUState *cs)
3643 X86CPU *cpu = X86_CPU(cs);
3646 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3648 ret = kvm_get_vcpu_events(cpu);
3653 * KVM_GET_MPSTATE can modify CS and RIP, call it before
3654 * KVM_GET_REGS and KVM_GET_SREGS.
3656 ret = kvm_get_mp_state(cpu);
3660 ret = kvm_getput_regs(cpu, 0);
3664 ret = kvm_get_xsave(cpu);
3668 ret = kvm_get_xcrs(cpu);
3672 ret = kvm_get_sregs(cpu);
3676 ret = kvm_get_msrs(cpu);
3680 ret = kvm_get_apic(cpu);
3684 ret = kvm_get_debugregs(cpu);
3688 ret = kvm_get_nested_state(cpu);
3694 cpu_sync_bndcs_hflags(&cpu->env);
3698 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3700 X86CPU *x86_cpu = X86_CPU(cpu);
3701 CPUX86State *env = &x86_cpu->env;
3705 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3706 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3707 qemu_mutex_lock_iothread();
3708 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3709 qemu_mutex_unlock_iothread();
3710 DPRINTF("injected NMI\n");
3711 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3713 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3717 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3718 qemu_mutex_lock_iothread();
3719 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3720 qemu_mutex_unlock_iothread();
3721 DPRINTF("injected SMI\n");
3722 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3724 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3730 if (!kvm_pic_in_kernel()) {
3731 qemu_mutex_lock_iothread();
3734 /* Force the VCPU out of its inner loop to process any INIT requests
3735 * or (for userspace APIC, but it is cheap to combine the checks here)
3736 * pending TPR access reports.
3738 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3739 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3740 !(env->hflags & HF_SMM_MASK)) {
3741 cpu->exit_request = 1;
3743 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3744 cpu->exit_request = 1;
3748 if (!kvm_pic_in_kernel()) {
3749 /* Try to inject an interrupt if the guest can accept it */
3750 if (run->ready_for_interrupt_injection &&
3751 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3752 (env->eflags & IF_MASK)) {
3755 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3756 irq = cpu_get_pic_interrupt(env);
3758 struct kvm_interrupt intr;
3761 DPRINTF("injected interrupt %d\n", irq);
3762 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3765 "KVM: injection failed, interrupt lost (%s)\n",
3771 /* If we have an interrupt but the guest is not ready to receive an
3772 * interrupt, request an interrupt window exit. This will
3773 * cause a return to userspace as soon as the guest is ready to
3774 * receive interrupts. */
3775 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3776 run->request_interrupt_window = 1;
3778 run->request_interrupt_window = 0;
3781 DPRINTF("setting tpr\n");
3782 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3784 qemu_mutex_unlock_iothread();
3788 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3790 X86CPU *x86_cpu = X86_CPU(cpu);
3791 CPUX86State *env = &x86_cpu->env;
3793 if (run->flags & KVM_RUN_X86_SMM) {
3794 env->hflags |= HF_SMM_MASK;
3796 env->hflags &= ~HF_SMM_MASK;
3799 env->eflags |= IF_MASK;
3801 env->eflags &= ~IF_MASK;
3804 /* We need to protect the apic state against concurrent accesses from
3805 * different threads in case the userspace irqchip is used. */
3806 if (!kvm_irqchip_in_kernel()) {
3807 qemu_mutex_lock_iothread();
3809 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3810 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3811 if (!kvm_irqchip_in_kernel()) {
3812 qemu_mutex_unlock_iothread();
3814 return cpu_get_mem_attrs(env);
3817 int kvm_arch_process_async_events(CPUState *cs)
3819 X86CPU *cpu = X86_CPU(cs);
3820 CPUX86State *env = &cpu->env;
3822 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3823 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3824 assert(env->mcg_cap);
3826 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3828 kvm_cpu_synchronize_state(cs);
3830 if (env->exception_nr == EXCP08_DBLE) {
3831 /* this means triple fault */
3832 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3833 cs->exit_request = 1;
3836 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
3837 env->has_error_code = 0;
3840 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3841 env->mp_state = KVM_MP_STATE_RUNNABLE;
3845 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3846 !(env->hflags & HF_SMM_MASK)) {
3847 kvm_cpu_synchronize_state(cs);
3851 if (kvm_irqchip_in_kernel()) {
3855 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3856 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3857 apic_poll_irq(cpu->apic_state);
3859 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3860 (env->eflags & IF_MASK)) ||
3861 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3864 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3865 kvm_cpu_synchronize_state(cs);
3868 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3869 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3870 kvm_cpu_synchronize_state(cs);
3871 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3872 env->tpr_access_type);
3878 static int kvm_handle_halt(X86CPU *cpu)
3880 CPUState *cs = CPU(cpu);
3881 CPUX86State *env = &cpu->env;
3883 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3884 (env->eflags & IF_MASK)) &&
3885 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3893 static int kvm_handle_tpr_access(X86CPU *cpu)
3895 CPUState *cs = CPU(cpu);
3896 struct kvm_run *run = cs->kvm_run;
3898 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3899 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3904 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3906 static const uint8_t int3 = 0xcc;
3908 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3909 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3915 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3919 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3920 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3932 static int nb_hw_breakpoint;
3934 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3938 for (n = 0; n < nb_hw_breakpoint; n++) {
3939 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3940 (hw_breakpoint[n].len == len || len == -1)) {
3947 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3948 target_ulong len, int type)
3951 case GDB_BREAKPOINT_HW:
3954 case GDB_WATCHPOINT_WRITE:
3955 case GDB_WATCHPOINT_ACCESS:
3962 if (addr & (len - 1)) {
3974 if (nb_hw_breakpoint == 4) {
3977 if (find_hw_breakpoint(addr, len, type) >= 0) {
3980 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3981 hw_breakpoint[nb_hw_breakpoint].len = len;
3982 hw_breakpoint[nb_hw_breakpoint].type = type;
3988 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3989 target_ulong len, int type)
3993 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3998 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4003 void kvm_arch_remove_all_hw_breakpoints(void)
4005 nb_hw_breakpoint = 0;
4008 static CPUWatchpoint hw_watchpoint;
4010 static int kvm_handle_debug(X86CPU *cpu,
4011 struct kvm_debug_exit_arch *arch_info)
4013 CPUState *cs = CPU(cpu);
4014 CPUX86State *env = &cpu->env;
4018 if (arch_info->exception == EXCP01_DB) {
4019 if (arch_info->dr6 & DR6_BS) {
4020 if (cs->singlestep_enabled) {
4024 for (n = 0; n < 4; n++) {
4025 if (arch_info->dr6 & (1 << n)) {
4026 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4032 cs->watchpoint_hit = &hw_watchpoint;
4033 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4034 hw_watchpoint.flags = BP_MEM_WRITE;
4038 cs->watchpoint_hit = &hw_watchpoint;
4039 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4040 hw_watchpoint.flags = BP_MEM_ACCESS;
4046 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4050 cpu_synchronize_state(cs);
4051 assert(env->exception_nr == -1);
4054 kvm_queue_exception(env, arch_info->exception,
4055 arch_info->exception == EXCP01_DB,
4057 env->has_error_code = 0;
4063 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4065 const uint8_t type_code[] = {
4066 [GDB_BREAKPOINT_HW] = 0x0,
4067 [GDB_WATCHPOINT_WRITE] = 0x1,
4068 [GDB_WATCHPOINT_ACCESS] = 0x3
4070 const uint8_t len_code[] = {
4071 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4075 if (kvm_sw_breakpoints_active(cpu)) {
4076 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4078 if (nb_hw_breakpoint > 0) {
4079 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4080 dbg->arch.debugreg[7] = 0x0600;
4081 for (n = 0; n < nb_hw_breakpoint; n++) {
4082 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4083 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4084 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4085 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4090 static bool host_supports_vmx(void)
4092 uint32_t ecx, unused;
4094 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4095 return ecx & CPUID_EXT_VMX;
4098 #define VMX_INVALID_GUEST_STATE 0x80000021
4100 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4102 X86CPU *cpu = X86_CPU(cs);
4106 switch (run->exit_reason) {
4108 DPRINTF("handle_hlt\n");
4109 qemu_mutex_lock_iothread();
4110 ret = kvm_handle_halt(cpu);
4111 qemu_mutex_unlock_iothread();
4113 case KVM_EXIT_SET_TPR:
4116 case KVM_EXIT_TPR_ACCESS:
4117 qemu_mutex_lock_iothread();
4118 ret = kvm_handle_tpr_access(cpu);
4119 qemu_mutex_unlock_iothread();
4121 case KVM_EXIT_FAIL_ENTRY:
4122 code = run->fail_entry.hardware_entry_failure_reason;
4123 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4125 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4127 "\nIf you're running a guest on an Intel machine without "
4128 "unrestricted mode\n"
4129 "support, the failure can be most likely due to the guest "
4130 "entering an invalid\n"
4131 "state for Intel VT. For example, the guest maybe running "
4132 "in big real mode\n"
4133 "which is not supported on less recent Intel processors."
4138 case KVM_EXIT_EXCEPTION:
4139 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4140 run->ex.exception, run->ex.error_code);
4143 case KVM_EXIT_DEBUG:
4144 DPRINTF("kvm_exit_debug\n");
4145 qemu_mutex_lock_iothread();
4146 ret = kvm_handle_debug(cpu, &run->debug.arch);
4147 qemu_mutex_unlock_iothread();
4149 case KVM_EXIT_HYPERV:
4150 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4152 case KVM_EXIT_IOAPIC_EOI:
4153 ioapic_eoi_broadcast(run->eoi.vector);
4157 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4165 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4167 X86CPU *cpu = X86_CPU(cs);
4168 CPUX86State *env = &cpu->env;
4170 kvm_cpu_synchronize_state(cs);
4171 return !(env->cr[0] & CR0_PE_MASK) ||
4172 ((env->segs[R_CS].selector & 3) != 3);
4175 void kvm_arch_init_irq_routing(KVMState *s)
4177 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4178 /* If kernel can't do irq routing, interrupt source
4179 * override 0->2 cannot be set up as required by HPET.
4180 * So we have to disable it.
4184 /* We know at this point that we're using the in-kernel
4185 * irqchip, so we can use irqfds, and on x86 we know
4186 * we can use msi via irqfd and GSI routing.
4188 kvm_msi_via_irqfd_allowed = true;
4189 kvm_gsi_routing_allowed = true;
4191 if (kvm_irqchip_is_split()) {
4194 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4195 MSI routes for signaling interrupts to the local apics. */
4196 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4197 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4198 error_report("Could not enable split IRQ mode.");
4205 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4208 if (machine_kernel_irqchip_split(ms)) {
4209 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4211 error_report("Could not enable split irqchip mode: %s",
4215 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4216 kvm_split_irqchip = true;
4224 /* Classic KVM device assignment interface. Will remain x86 only. */
4225 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4226 uint32_t flags, uint32_t *dev_id)
4228 struct kvm_assigned_pci_dev dev_data = {
4229 .segnr = dev_addr->domain,
4230 .busnr = dev_addr->bus,
4231 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4236 dev_data.assigned_dev_id =
4237 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4239 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4244 *dev_id = dev_data.assigned_dev_id;
4249 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4251 struct kvm_assigned_pci_dev dev_data = {
4252 .assigned_dev_id = dev_id,
4255 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4258 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4259 uint32_t irq_type, uint32_t guest_irq)
4261 struct kvm_assigned_irq assigned_irq = {
4262 .assigned_dev_id = dev_id,
4263 .guest_irq = guest_irq,
4267 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4268 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4270 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4274 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4277 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4278 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4280 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4283 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4285 struct kvm_assigned_pci_dev dev_data = {
4286 .assigned_dev_id = dev_id,
4287 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4290 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4293 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4296 struct kvm_assigned_irq assigned_irq = {
4297 .assigned_dev_id = dev_id,
4301 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4304 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4306 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4307 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4310 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4312 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4313 KVM_DEV_IRQ_GUEST_MSI, virq);
4316 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4318 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4319 KVM_DEV_IRQ_HOST_MSI);
4322 bool kvm_device_msix_supported(KVMState *s)
4324 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4325 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4326 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4329 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4330 uint32_t nr_vectors)
4332 struct kvm_assigned_msix_nr msix_nr = {
4333 .assigned_dev_id = dev_id,
4334 .entry_nr = nr_vectors,
4337 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4340 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4343 struct kvm_assigned_msix_entry msix_entry = {
4344 .assigned_dev_id = dev_id,
4349 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4352 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4354 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4355 KVM_DEV_IRQ_GUEST_MSIX, 0);
4358 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4360 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4361 KVM_DEV_IRQ_HOST_MSIX);
4364 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4365 uint64_t address, uint32_t data, PCIDevice *dev)
4367 X86IOMMUState *iommu = x86_iommu_get_default();
4371 MSIMessage src, dst;
4372 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4374 if (!class->int_remap) {
4378 src.address = route->u.msi.address_hi;
4379 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4380 src.address |= route->u.msi.address_lo;
4381 src.data = route->u.msi.data;
4383 ret = class->int_remap(iommu, &src, &dst, dev ? \
4384 pci_requester_id(dev) : \
4385 X86_IOMMU_SID_INVALID);
4387 trace_kvm_x86_fixup_msi_error(route->gsi);
4391 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4392 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4393 route->u.msi.data = dst.data;
4399 typedef struct MSIRouteEntry MSIRouteEntry;
4401 struct MSIRouteEntry {
4402 PCIDevice *dev; /* Device pointer */
4403 int vector; /* MSI/MSIX vector index */
4404 int virq; /* Virtual IRQ index */
4405 QLIST_ENTRY(MSIRouteEntry) list;
4408 /* List of used GSI routes */
4409 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4410 QLIST_HEAD_INITIALIZER(msi_route_list);
4412 static void kvm_update_msi_routes_all(void *private, bool global,
4413 uint32_t index, uint32_t mask)
4415 int cnt = 0, vector;
4416 MSIRouteEntry *entry;
4420 /* TODO: explicit route update */
4421 QLIST_FOREACH(entry, &msi_route_list, list) {
4423 vector = entry->vector;
4425 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4426 msg = msix_get_message(dev, vector);
4427 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4428 msg = msi_get_message(dev, vector);
4431 * Either MSI/MSIX is disabled for the device, or the
4432 * specific message was masked out. Skip this one.
4436 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4438 kvm_irqchip_commit_routes(kvm_state);
4439 trace_kvm_x86_update_msi_routes(cnt);
4442 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4443 int vector, PCIDevice *dev)
4445 static bool notify_list_inited = false;
4446 MSIRouteEntry *entry;
4449 /* These are (possibly) IOAPIC routes only used for split
4450 * kernel irqchip mode, while what we are housekeeping are
4451 * PCI devices only. */
4455 entry = g_new0(MSIRouteEntry, 1);
4457 entry->vector = vector;
4458 entry->virq = route->gsi;
4459 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4461 trace_kvm_x86_add_msi_route(route->gsi);
4463 if (!notify_list_inited) {
4464 /* For the first time we do add route, add ourselves into
4465 * IOMMU's IEC notify list if needed. */
4466 X86IOMMUState *iommu = x86_iommu_get_default();
4468 x86_iommu_iec_register_notifier(iommu,
4469 kvm_update_msi_routes_all,
4472 notify_list_inited = true;
4477 int kvm_arch_release_virq_post(int virq)
4479 MSIRouteEntry *entry, *next;
4480 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4481 if (entry->virq == virq) {
4482 trace_kvm_x86_remove_msi_route(virq);
4483 QLIST_REMOVE(entry, list);
4491 int kvm_arch_msi_data_to_gsi(uint32_t data)