2 * QEMU ETRAX Ethernet Controller.
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "etraxfs_dma.h"
34 * The MDIO extensions in the TDK PHY model were reversed engineered from the
35 * linux driver (PHYID and Diagnostics reg).
36 * TODO: Add friendly names for the register nums.
42 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
43 void (*write)(struct qemu_phy *phy, unsigned int req,
47 static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
57 /* Speeds and modes. */
58 r |= (1 << 13) | (1 << 14);
59 r |= (1 << 11) | (1 << 12);
60 r |= (1 << 5); /* Autoneg complete. */
61 r |= (1 << 3); /* Autoneg able. */
62 r |= (1 << 2); /* Link. */
65 /* Link partner ability.
66 We are kind; always agree with whatever best mode
67 the guest advertises. */
68 r = 1 << 14; /* Success. */
69 /* Copy advertised modes. */
70 r |= phy->regs[4] & (15 << 5);
71 /* Autoneg support. */
76 /* Diagnostics reg. */
80 /* Are we advertising 100 half or 100 duplex ? */
81 speed_100 = !!(phy->regs[4] & 0x180);
82 /* Are we advertising 10 duplex or 100 duplex ? */
83 duplex = !!(phy->regs[4] & 0x180);
84 r = (speed_100 << 10) | (duplex << 11);
89 r = phy->regs[regnum];
92 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
97 tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
102 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
105 phy->regs[regnum] = data;
111 tdk_init(struct qemu_phy *phy)
113 phy->regs[0] = 0x3100;
115 phy->regs[2] = 0x0300;
116 phy->regs[3] = 0xe400;
117 /* Autonegotiation advertisement reg. */
118 phy->regs[4] = 0x01E1;
120 phy->read = tdk_read;
121 phy->write = tdk_write;
148 struct qemu_phy *devs[32];
152 mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
154 bus->devs[addr & 0x1f] = phy;
158 mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
160 bus->devs[addr & 0x1f] = NULL;
163 static void mdio_read_req(struct qemu_mdio *bus)
165 struct qemu_phy *phy;
167 phy = bus->devs[bus->addr];
168 if (phy && phy->read)
169 bus->data = phy->read(phy, bus->req);
174 static void mdio_write_req(struct qemu_mdio *bus)
176 struct qemu_phy *phy;
178 phy = bus->devs[bus->addr];
179 if (phy && phy->write)
180 phy->write(phy, bus->req, bus->data);
183 static void mdio_cycle(struct qemu_mdio *bus)
187 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
188 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
191 printf("%d", bus->mdio);
197 if (bus->cnt >= (32 * 2) && !bus->mdio) {
207 printf("WARNING: no SOF\n");
208 if (bus->cnt == 1*2) {
218 bus->opc |= bus->mdio & 1;
219 if (bus->cnt == 2*2) {
229 bus->addr |= bus->mdio & 1;
231 if (bus->cnt == 5*2) {
241 bus->req |= bus->mdio & 1;
242 if (bus->cnt == 5*2) {
244 bus->state = TURNAROUND;
249 if (bus->mdc && bus->cnt == 2*2) {
256 bus->mdio = bus->data & 1;
264 bus->mdio = !!(bus->data & (1 << 15));
270 bus->data |= bus->mdio;
272 if (bus->cnt == 16 * 2) {
274 bus->state = PREAMBLE;
286 /* ETRAX-FS Ethernet MAC block starts here. */
288 #define RW_MA0_LO 0x00
289 #define RW_MA0_HI 0x04
290 #define RW_MA1_LO 0x08
291 #define RW_MA1_HI 0x0c
292 #define RW_GA_LO 0x10
293 #define RW_GA_HI 0x14
294 #define RW_GEN_CTRL 0x18
295 #define RW_REC_CTRL 0x1c
296 #define RW_TR_CTRL 0x20
297 #define RW_CLR_ERR 0x24
298 #define RW_MGM_CTRL 0x28
300 #define FS_ETH_MAX_REGS 0x5c
306 target_phys_addr_t base;
310 /* Two addrs in the filter. */
311 uint8_t macaddr[2][6];
312 uint32_t regs[FS_ETH_MAX_REGS];
314 unsigned char rx_fifo[1536];
318 struct etraxfs_dma_client *dma_out;
319 struct etraxfs_dma_client *dma_in;
322 struct qemu_mdio mdio_bus;
327 static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
329 struct fs_eth *eth = opaque;
330 CPUState *env = eth->env;
331 cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
336 static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
338 struct fs_eth *eth = opaque;
339 D(CPUState *env = eth->env);
342 /* Make addr relative to this instances base. */
346 /* Attach an MDIO/PHY abstraction. */
347 r = eth->mdio_bus.mdio & 1;
351 D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
358 eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
360 struct fs_eth *eth = opaque;
361 CPUState *env = eth->env;
362 cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
366 static void eth_update_ma(struct fs_eth *eth, int ma)
377 eth->macaddr[ma][i++] = eth->regs[reg];
378 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
379 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
380 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
381 eth->macaddr[ma][i++] = eth->regs[reg + 4];
382 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
384 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
385 eth->macaddr[ma][0], eth->macaddr[ma][1],
386 eth->macaddr[ma][2], eth->macaddr[ma][3],
387 eth->macaddr[ma][4], eth->macaddr[ma][5]));
391 eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
393 struct fs_eth *eth = opaque;
395 /* Make addr relative to this instances base. */
400 eth->regs[addr] = value;
401 eth_update_ma(eth, 0);
404 eth->regs[addr] = value;
405 eth_update_ma(eth, 0);
408 eth->regs[addr] = value;
409 eth_update_ma(eth, 1);
412 eth->regs[addr] = value;
413 eth_update_ma(eth, 1);
417 /* Attach an MDIO/PHY abstraction. */
419 eth->mdio_bus.mdio = value & 1;
420 if (eth->mdio_bus.mdc != (value & 4))
421 mdio_cycle(ð->mdio_bus);
422 eth->mdio_bus.mdc = !!(value & 4);
426 eth->regs[addr] = value;
427 D(printf ("%s %x %x\n",
428 __func__, addr, value));
433 /* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
434 filter dropping group addresses we have not joined. The filter has 64
435 bits (m). The has function is a simple nible xor of the group addr. */
436 static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
439 int m_individual = eth->regs[RW_REC_CTRL] & 4;
442 /* First bit on the wire of a MAC address signals multicast or
444 if (!m_individual && !sa[0] & 1)
447 /* Calculate the hash index for the GA registers. */
450 hsh ^= ((*sa) >> 6) & 0x03;
452 hsh ^= ((*sa) << 2) & 0x03c;
453 hsh ^= ((*sa) >> 4) & 0xf;
455 hsh ^= ((*sa) << 4) & 0x30;
456 hsh ^= ((*sa) >> 2) & 0x3f;
459 hsh ^= ((*sa) >> 6) & 0x03;
461 hsh ^= ((*sa) << 2) & 0x03c;
462 hsh ^= ((*sa) >> 4) & 0xf;
464 hsh ^= ((*sa) << 4) & 0x30;
465 hsh ^= ((*sa) >> 2) & 0x3f;
469 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
471 match = eth->regs[RW_GA_LO] & (1 << hsh);
472 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
473 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
477 static int eth_can_receive(void *opaque)
479 struct fs_eth *eth = opaque;
482 r = eth->rx_fifo_len == 0;
484 /* TODO: signal fifo overrun. */
485 printf("PACKET LOSS!\n");
490 static void eth_receive(void *opaque, const uint8_t *buf, int size)
492 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
493 struct fs_eth *eth = opaque;
494 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
495 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
496 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
501 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
502 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
503 use_ma0, use_ma1, r_bcast));
505 /* Does the frame get through the address filters? */
506 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
507 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
508 && (!r_bcast || memcmp(buf, sa_bcast, 6))
509 && !eth_match_groupaddr(eth, buf))
512 if (size > sizeof(eth->rx_fifo)) {
513 /* TODO: signal error. */
514 } else if (eth->rx_fifo_len) {
517 memcpy(eth->rx_fifo, buf, size);
518 /* +4, HW passes the CRC to sw. */
519 eth->rx_fifo_len = size + 4;
520 eth->rx_fifo_pos = 0;
524 static void eth_rx_pull(void *opaque)
526 struct fs_eth *eth = opaque;
528 if (eth->rx_fifo_len) {
529 D(printf("%s %d\n", __func__, eth->rx_fifo_len));
533 for (i = 0; i < 32; i++)
534 printf("%2.2x", eth->rx_fifo[i]);
538 len = etraxfs_dmac_input(eth->dma_in,
539 eth->rx_fifo + eth->rx_fifo_pos,
540 eth->rx_fifo_len, 1);
541 eth->rx_fifo_len -= len;
542 eth->rx_fifo_pos += len;
546 static int eth_tx_push(void *opaque, unsigned char *buf, int len)
548 struct fs_eth *eth = opaque;
550 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
551 qemu_send_packet(eth->vc, buf, len);
555 static CPUReadMemoryFunc *eth_read[] = {
561 static CPUWriteMemoryFunc *eth_write[] = {
567 void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
568 qemu_irq *irq, target_phys_addr_t base)
570 struct etraxfs_dma_client *dma = NULL;
571 struct fs_eth *eth = NULL;
573 dma = qemu_mallocz(sizeof *dma * 2);
577 eth = qemu_mallocz(sizeof *eth);
581 dma[0].client.push = eth_tx_push;
582 dma[0].client.opaque = eth;
583 dma[1].client.opaque = eth;
584 dma[1].client.pull = eth_rx_pull;
590 eth->dma_in = dma + 1;
592 /* Connect the phy. */
594 mdio_attach(ð->mdio_bus, ð->phy, 0x1);
596 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
597 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
599 eth->vc = qemu_new_vlan_client(nd->vlan,
600 eth_receive, eth_can_receive, eth);