2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
27 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
31 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
40 target_phys_addr_t base;
43 BlockDriverState *bdrv;
44 BlockDriverState *bdrv_cur;
77 ONEN_BUF_DEST_BLOCK = 2,
78 ONEN_BUF_DEST_PAGE = 3,
83 ONEN_ERR_CMD = 1 << 10,
84 ONEN_ERR_ERASE = 1 << 11,
85 ONEN_ERR_PROG = 1 << 12,
86 ONEN_ERR_LOAD = 1 << 13,
90 ONEN_INT_RESET = 1 << 4,
91 ONEN_INT_ERASE = 1 << 5,
92 ONEN_INT_PROG = 1 << 6,
93 ONEN_INT_LOAD = 1 << 7,
98 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
99 ONEN_LOCK_LOCKED = 1 << 1,
100 ONEN_LOCK_UNLOCKED = 1 << 2,
103 void onenand_base_update(void *opaque, target_phys_addr_t new)
105 OneNANDState *s = (OneNANDState *) opaque;
109 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
110 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
111 * write boot commands. Also take note of the BWPS bit. */
112 cpu_register_physical_memory(s->base + (0x0000 << s->shift),
113 0x0200 << s->shift, s->iomemtype);
114 cpu_register_physical_memory(s->base + (0x0200 << s->shift),
116 (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
118 cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
119 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
122 void onenand_base_unmap(void *opaque)
124 OneNANDState *s = (OneNANDState *) opaque;
126 cpu_register_physical_memory(s->base,
127 0x10000 << s->shift, IO_MEM_UNASSIGNED);
130 static void onenand_intr_update(OneNANDState *s)
132 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
135 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
136 static void onenand_reset(OneNANDState *s, int cold)
138 memset(&s->addr, 0, sizeof(s->addr));
142 s->config[0] = 0x40c0;
143 s->config[1] = 0x0000;
144 onenand_intr_update(s);
145 qemu_irq_raise(s->rdy);
147 s->intstatus = cold ? 0x8080 : 0x8010;
150 s->wpstatus = 0x0002;
153 s->bdrv_cur = s->bdrv;
154 s->current = s->image;
155 s->secs_cur = s->secs;
158 /* Lock the whole flash */
159 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
161 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
162 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
166 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
170 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
171 else if (sec + secn > s->secs_cur)
174 memcpy(dest, s->current + (sec << 9), secn << 9);
179 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
185 uint32_t size = (uint32_t) secn * 512;
186 const uint8_t *sp = (const uint8_t *) src;
189 dp = qemu_malloc(size);
190 if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) {
194 if (sec + secn > s->secs_cur) {
197 dp = (uint8_t *) s->current + (sec << 9);
202 for (i = 0; i < size; i++) {
206 result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0;
209 if (dp && s->bdrv_cur) {
217 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
223 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
225 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
226 } else if (sec + secn > s->secs_cur)
229 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
234 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
239 const uint8_t *sp = (const uint8_t *) src;
240 uint8_t *dp = 0, *dpp = 0;
242 dp = qemu_malloc(512);
243 if (!dp || bdrv_read(s->bdrv_cur,
244 s->secs_cur + (sec >> 5),
248 dpp = dp + ((sec & 31) << 4);
251 if (sec + secn > s->secs_cur) {
254 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
259 for (i = 0; i < (secn << 4); i++) {
263 result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5),
274 static inline int onenand_erase(OneNANDState *s, int sec, int num)
276 uint8_t *blankbuf, *tmpbuf;
277 blankbuf = qemu_malloc(512);
281 tmpbuf = qemu_malloc(512);
286 memset(blankbuf, 0xff, 512);
287 for (; num > 0; num--, sec++) {
289 int erasesec = s->secs_cur + (sec >> 5);
290 if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) {
293 if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
296 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
297 if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) {
301 if (sec + 1 > s->secs_cur) {
304 memcpy(s->current + (sec << 9), blankbuf, 512);
305 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
320 static void onenand_command(OneNANDState *s, int cmd)
325 #define SETADDR(block, page) \
326 sec = (s->addr[page] & 3) + \
327 ((((s->addr[page] >> 2) & 0x3f) + \
328 (((s->addr[block] & 0xfff) | \
329 (s->addr[block] >> 15 ? \
330 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
332 buf = (s->bufaddr & 8) ? \
333 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
334 buf += (s->bufaddr & 3) << 9;
336 buf = (s->bufaddr & 8) ? \
337 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
338 buf += (s->bufaddr & 3) << 4;
341 case 0x00: /* Load single/multiple sector data unit into buffer */
342 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
345 if (onenand_load_main(s, sec, s->count, buf))
346 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
350 if (onenand_load_spare(s, sec, s->count, buf))
351 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
354 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
355 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
356 * then we need two split the read/write into two chunks.
358 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
360 case 0x13: /* Load single/multiple spare sector into buffer */
361 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
364 if (onenand_load_spare(s, sec, s->count, buf))
365 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
367 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
368 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
369 * then we need two split the read/write into two chunks.
371 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
373 case 0x80: /* Program single/multiple sector data unit from buffer */
374 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
377 if (onenand_prog_main(s, sec, s->count, buf))
378 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
382 if (onenand_prog_spare(s, sec, s->count, buf))
383 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
386 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
387 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
388 * then we need two split the read/write into two chunks.
390 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
392 case 0x1a: /* Program single/multiple spare area sector from buffer */
393 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
396 if (onenand_prog_spare(s, sec, s->count, buf))
397 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
399 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
400 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
401 * then we need two split the read/write into two chunks.
403 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
405 case 0x1b: /* Copy-back program */
408 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
409 if (onenand_load_main(s, sec, s->count, buf))
410 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
412 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
413 if (onenand_prog_main(s, sec, s->count, buf))
414 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
416 /* TODO: spare areas */
418 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
421 case 0x23: /* Unlock NAND array block(s) */
422 s->intstatus |= ONEN_INT;
424 /* XXX the previous (?) area should be locked automatically */
425 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
426 if (b >= s->blocks) {
427 s->status |= ONEN_ERR_CMD;
430 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
433 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
436 case 0x27: /* Unlock All NAND array blocks */
437 s->intstatus |= ONEN_INT;
439 for (b = 0; b < s->blocks; b ++) {
440 if (b >= s->blocks) {
441 s->status |= ONEN_ERR_CMD;
444 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
447 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
451 case 0x2a: /* Lock NAND array block(s) */
452 s->intstatus |= ONEN_INT;
454 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
455 if (b >= s->blocks) {
456 s->status |= ONEN_ERR_CMD;
459 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
462 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
465 case 0x2c: /* Lock-tight NAND array block(s) */
466 s->intstatus |= ONEN_INT;
468 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
469 if (b >= s->blocks) {
470 s->status |= ONEN_ERR_CMD;
473 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
476 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
480 case 0x71: /* Erase-Verify-Read */
481 s->intstatus |= ONEN_INT;
483 case 0x95: /* Multi-block erase */
484 qemu_irq_pulse(s->intr);
486 case 0x94: /* Block erase */
487 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
488 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
489 << (BLOCK_SHIFT - 9);
490 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
491 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
493 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
495 case 0xb0: /* Erase suspend */
497 case 0x30: /* Erase resume */
498 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
501 case 0xf0: /* Reset NAND Flash core */
504 case 0xf3: /* Reset OneNAND */
508 case 0x65: /* OTP Access */
509 s->intstatus |= ONEN_INT;
512 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
513 s->addr[ONEN_BUF_BLOCK] = 0;
518 s->status |= ONEN_ERR_CMD;
519 s->intstatus |= ONEN_INT;
520 fprintf(stderr, "%s: unknown OneNAND command %x\n",
524 onenand_intr_update(s);
527 static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
529 OneNANDState *s = (OneNANDState *) opaque;
530 int offset = addr >> s->shift;
533 case 0x0000 ... 0xc000:
534 return lduw_le_p(s->boot[0] + addr);
536 case 0xf000: /* Manufacturer ID */
538 case 0xf001: /* Device ID */
540 case 0xf002: /* Version ID */
542 /* TODO: get the following values from a real chip! */
543 case 0xf003: /* Data Buffer size */
544 return 1 << PAGE_SHIFT;
545 case 0xf004: /* Boot Buffer size */
547 case 0xf005: /* Amount of buffers */
549 case 0xf006: /* Technology */
552 case 0xf100 ... 0xf107: /* Start addresses */
553 return s->addr[offset - 0xf100];
555 case 0xf200: /* Start buffer */
556 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
558 case 0xf220: /* Command */
560 case 0xf221: /* System Configuration 1 */
561 return s->config[0] & 0xffe0;
562 case 0xf222: /* System Configuration 2 */
565 case 0xf240: /* Controller Status */
567 case 0xf241: /* Interrupt */
569 case 0xf24c: /* Unlock Start Block Address */
570 return s->unladdr[0];
571 case 0xf24d: /* Unlock End Block Address */
572 return s->unladdr[1];
573 case 0xf24e: /* Write Protection Status */
576 case 0xff00: /* ECC Status */
578 case 0xff01: /* ECC Result of main area data */
579 case 0xff02: /* ECC Result of spare area data */
580 case 0xff03: /* ECC Result of main area data */
581 case 0xff04: /* ECC Result of spare area data */
582 hw_error("%s: imeplement ECC\n", __FUNCTION__);
586 fprintf(stderr, "%s: unknown OneNAND register %x\n",
587 __FUNCTION__, offset);
591 static void onenand_write(void *opaque, target_phys_addr_t addr,
594 OneNANDState *s = (OneNANDState *) opaque;
595 int offset = addr >> s->shift;
599 case 0x0000 ... 0x01ff:
600 case 0x8000 ... 0x800f:
604 if (value == 0x0000) {
605 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
606 onenand_load_main(s, sec,
607 1 << (PAGE_SHIFT - 9), s->data[0][0]);
608 s->addr[ONEN_BUF_PAGE] += 4;
609 s->addr[ONEN_BUF_PAGE] &= 0xff;
615 case 0x00f0: /* Reset OneNAND */
619 case 0x00e0: /* Load Data into Buffer */
623 case 0x0090: /* Read Identification Data */
624 memset(s->boot[0], 0, 3 << s->shift);
625 s->boot[0][0 << s->shift] = s->id.man & 0xff;
626 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
627 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
631 fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
632 __FUNCTION__, value);
636 case 0xf100 ... 0xf107: /* Start addresses */
637 s->addr[offset - 0xf100] = value;
640 case 0xf200: /* Start buffer */
641 s->bufaddr = (value >> 8) & 0xf;
642 if (PAGE_SHIFT == 11)
643 s->count = (value & 3) ?: 4;
644 else if (PAGE_SHIFT == 10)
645 s->count = (value & 1) ?: 2;
648 case 0xf220: /* Command */
649 if (s->intstatus & (1 << 15))
652 onenand_command(s, s->command);
654 case 0xf221: /* System Configuration 1 */
655 s->config[0] = value;
656 onenand_intr_update(s);
657 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
659 case 0xf222: /* System Configuration 2 */
660 s->config[1] = value;
663 case 0xf241: /* Interrupt */
664 s->intstatus &= value;
665 if ((1 << 15) & ~s->intstatus)
666 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
667 ONEN_ERR_PROG | ONEN_ERR_LOAD);
668 onenand_intr_update(s);
670 case 0xf24c: /* Unlock Start Block Address */
671 s->unladdr[0] = value & (s->blocks - 1);
672 /* For some reason we have to set the end address to by default
673 * be same as start because the software forgets to write anything
675 s->unladdr[1] = value & (s->blocks - 1);
677 case 0xf24d: /* Unlock End Block Address */
678 s->unladdr[1] = value & (s->blocks - 1);
682 fprintf(stderr, "%s: unknown OneNAND register %x\n",
683 __FUNCTION__, offset);
687 static CPUReadMemoryFunc * const onenand_readfn[] = {
688 onenand_read, /* TODO */
693 static CPUWriteMemoryFunc * const onenand_writefn[] = {
694 onenand_write, /* TODO */
699 void *onenand_init(BlockDriverState *bdrv,
700 uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
701 int regshift, qemu_irq irq)
703 OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
704 uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
713 s->blocks = size >> BLOCK_SHIFT;
715 s->blockwp = qemu_malloc(s->blocks);
716 s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
717 s->iomemtype = cpu_register_io_memory(onenand_readfn,
718 onenand_writefn, s, DEVICE_NATIVE_ENDIAN);
721 s->image = memset(qemu_malloc(size + (size >> 5)),
722 0xff, size + (size >> 5));
724 s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
725 0xff, (64 + 2) << PAGE_SHIFT);
726 s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift);
727 ram = qemu_get_ram_ptr(s->ram);
728 s->boot[0] = ram + (0x0000 << s->shift);
729 s->boot[1] = ram + (0x8000 << s->shift);
730 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
731 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
732 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
733 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
740 void *onenand_raw_otp(void *opaque)
742 OneNANDState *s = (OneNANDState *) opaque;