]>
Commit | Line | Data |
---|---|---|
7e7c5e4c AZ |
1 | /* |
2 | * OneNAND flash memories emulation. | |
3 | * | |
4 | * Copyright (C) 2008 Nokia Corporation | |
5 | * Written by Andrzej Zaborowski <[email protected]> | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License as | |
9 | * published by the Free Software Foundation; either version 2 or | |
10 | * (at your option) version 3 of the License. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
fad6cb1a | 17 | * You should have received a copy of the GNU General Public License along |
8167ee88 | 18 | * with this program; if not, see <http://www.gnu.org/licenses/>. |
7e7c5e4c AZ |
19 | */ |
20 | ||
21 | #include "qemu-common.h" | |
34f9f0b5 | 22 | #include "hw.h" |
7e7c5e4c AZ |
23 | #include "flash.h" |
24 | #include "irq.h" | |
666daa68 | 25 | #include "blockdev.h" |
7e7c5e4c AZ |
26 | |
27 | /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ | |
28 | #define PAGE_SHIFT 11 | |
29 | ||
30 | /* Fixed */ | |
31 | #define BLOCK_SHIFT (PAGE_SHIFT + 6) | |
32 | ||
bc24a225 | 33 | typedef struct { |
5923ba42 JR |
34 | struct { |
35 | uint16_t man; | |
36 | uint16_t dev; | |
37 | uint16_t ver; | |
38 | } id; | |
7e7c5e4c | 39 | int shift; |
c227f099 | 40 | target_phys_addr_t base; |
7e7c5e4c AZ |
41 | qemu_irq intr; |
42 | qemu_irq rdy; | |
43 | BlockDriverState *bdrv; | |
44 | BlockDriverState *bdrv_cur; | |
45 | uint8_t *image; | |
46 | uint8_t *otp; | |
47 | uint8_t *current; | |
c227f099 | 48 | ram_addr_t ram; |
7e7c5e4c AZ |
49 | uint8_t *boot[2]; |
50 | uint8_t *data[2][2]; | |
51 | int iomemtype; | |
52 | int cycle; | |
53 | int otpmode; | |
54 | ||
55 | uint16_t addr[8]; | |
56 | uint16_t unladdr[8]; | |
57 | int bufaddr; | |
58 | int count; | |
59 | uint16_t command; | |
60 | uint16_t config[2]; | |
61 | uint16_t status; | |
62 | uint16_t intstatus; | |
63 | uint16_t wpstatus; | |
64 | ||
bc24a225 | 65 | ECCState ecc; |
7e7c5e4c AZ |
66 | |
67 | int density_mask; | |
68 | int secs; | |
69 | int secs_cur; | |
70 | int blocks; | |
71 | uint8_t *blockwp; | |
bc24a225 | 72 | } OneNANDState; |
7e7c5e4c AZ |
73 | |
74 | enum { | |
75 | ONEN_BUF_BLOCK = 0, | |
76 | ONEN_BUF_BLOCK2 = 1, | |
77 | ONEN_BUF_DEST_BLOCK = 2, | |
78 | ONEN_BUF_DEST_PAGE = 3, | |
79 | ONEN_BUF_PAGE = 7, | |
80 | }; | |
81 | ||
82 | enum { | |
83 | ONEN_ERR_CMD = 1 << 10, | |
84 | ONEN_ERR_ERASE = 1 << 11, | |
85 | ONEN_ERR_PROG = 1 << 12, | |
86 | ONEN_ERR_LOAD = 1 << 13, | |
87 | }; | |
88 | ||
89 | enum { | |
90 | ONEN_INT_RESET = 1 << 4, | |
91 | ONEN_INT_ERASE = 1 << 5, | |
92 | ONEN_INT_PROG = 1 << 6, | |
93 | ONEN_INT_LOAD = 1 << 7, | |
94 | ONEN_INT = 1 << 15, | |
95 | }; | |
96 | ||
97 | enum { | |
98 | ONEN_LOCK_LOCKTIGHTEN = 1 << 0, | |
99 | ONEN_LOCK_LOCKED = 1 << 1, | |
100 | ONEN_LOCK_UNLOCKED = 1 << 2, | |
101 | }; | |
102 | ||
c227f099 | 103 | void onenand_base_update(void *opaque, target_phys_addr_t new) |
7e7c5e4c | 104 | { |
bc24a225 | 105 | OneNANDState *s = (OneNANDState *) opaque; |
7e7c5e4c AZ |
106 | |
107 | s->base = new; | |
108 | ||
109 | /* XXX: We should use IO_MEM_ROMD but we broke it earlier... | |
110 | * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to | |
111 | * write boot commands. Also take note of the BWPS bit. */ | |
112 | cpu_register_physical_memory(s->base + (0x0000 << s->shift), | |
113 | 0x0200 << s->shift, s->iomemtype); | |
114 | cpu_register_physical_memory(s->base + (0x0200 << s->shift), | |
115 | 0xbe00 << s->shift, | |
116 | (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM); | |
117 | if (s->iomemtype) | |
8da3ff18 PB |
118 | cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift), |
119 | 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift)); | |
7e7c5e4c AZ |
120 | } |
121 | ||
122 | void onenand_base_unmap(void *opaque) | |
123 | { | |
bc24a225 | 124 | OneNANDState *s = (OneNANDState *) opaque; |
7e7c5e4c AZ |
125 | |
126 | cpu_register_physical_memory(s->base, | |
127 | 0x10000 << s->shift, IO_MEM_UNASSIGNED); | |
128 | } | |
129 | ||
bc24a225 | 130 | static void onenand_intr_update(OneNANDState *s) |
7e7c5e4c AZ |
131 | { |
132 | qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); | |
133 | } | |
134 | ||
135 | /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ | |
bc24a225 | 136 | static void onenand_reset(OneNANDState *s, int cold) |
7e7c5e4c AZ |
137 | { |
138 | memset(&s->addr, 0, sizeof(s->addr)); | |
139 | s->command = 0; | |
140 | s->count = 1; | |
141 | s->bufaddr = 0; | |
142 | s->config[0] = 0x40c0; | |
143 | s->config[1] = 0x0000; | |
144 | onenand_intr_update(s); | |
145 | qemu_irq_raise(s->rdy); | |
146 | s->status = 0x0000; | |
147 | s->intstatus = cold ? 0x8080 : 0x8010; | |
148 | s->unladdr[0] = 0; | |
149 | s->unladdr[1] = 0; | |
150 | s->wpstatus = 0x0002; | |
151 | s->cycle = 0; | |
152 | s->otpmode = 0; | |
153 | s->bdrv_cur = s->bdrv; | |
154 | s->current = s->image; | |
155 | s->secs_cur = s->secs; | |
156 | ||
157 | if (cold) { | |
158 | /* Lock the whole flash */ | |
159 | memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); | |
160 | ||
161 | if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0) | |
2ac71179 | 162 | hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__); |
7e7c5e4c AZ |
163 | } |
164 | } | |
165 | ||
bc24a225 | 166 | static inline int onenand_load_main(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
167 | void *dest) |
168 | { | |
169 | if (s->bdrv_cur) | |
170 | return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0; | |
171 | else if (sec + secn > s->secs_cur) | |
172 | return 1; | |
173 | ||
174 | memcpy(dest, s->current + (sec << 9), secn << 9); | |
175 | ||
176 | return 0; | |
177 | } | |
178 | ||
bc24a225 | 179 | static inline int onenand_prog_main(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
180 | void *src) |
181 | { | |
f1588dd2 JR |
182 | int result = 0; |
183 | ||
184 | if (secn > 0) { | |
185 | uint32_t size = (uint32_t) secn * 512; | |
186 | const uint8_t *sp = (const uint8_t *) src; | |
187 | uint8_t *dp = 0; | |
188 | if (s->bdrv_cur) { | |
189 | dp = qemu_malloc(size); | |
190 | if (!dp || bdrv_read(s->bdrv_cur, sec, dp, secn) < 0) { | |
191 | result = 1; | |
192 | } | |
193 | } else { | |
194 | if (sec + secn > s->secs_cur) { | |
195 | result = 1; | |
196 | } else { | |
197 | dp = (uint8_t *) s->current + (sec << 9); | |
198 | } | |
199 | } | |
200 | if (!result) { | |
201 | uint32_t i; | |
202 | for (i = 0; i < size; i++) { | |
203 | dp[i] &= sp[i]; | |
204 | } | |
205 | if (s->bdrv_cur) { | |
206 | result = bdrv_write(s->bdrv_cur, sec, dp, secn) < 0; | |
207 | } | |
208 | } | |
209 | if (dp && s->bdrv_cur) { | |
210 | qemu_free(dp); | |
211 | } | |
212 | } | |
7e7c5e4c | 213 | |
f1588dd2 | 214 | return result; |
7e7c5e4c AZ |
215 | } |
216 | ||
bc24a225 | 217 | static inline int onenand_load_spare(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
218 | void *dest) |
219 | { | |
220 | uint8_t buf[512]; | |
221 | ||
222 | if (s->bdrv_cur) { | |
223 | if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) | |
224 | return 1; | |
225 | memcpy(dest, buf + ((sec & 31) << 4), secn << 4); | |
226 | } else if (sec + secn > s->secs_cur) | |
227 | return 1; | |
228 | else | |
229 | memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); | |
230 | ||
231 | return 0; | |
232 | } | |
233 | ||
bc24a225 | 234 | static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn, |
7e7c5e4c AZ |
235 | void *src) |
236 | { | |
f1588dd2 JR |
237 | int result = 0; |
238 | if (secn > 0) { | |
239 | const uint8_t *sp = (const uint8_t *) src; | |
240 | uint8_t *dp = 0, *dpp = 0; | |
241 | if (s->bdrv_cur) { | |
242 | dp = qemu_malloc(512); | |
243 | if (!dp || bdrv_read(s->bdrv_cur, | |
244 | s->secs_cur + (sec >> 5), | |
245 | dp, 1) < 0) { | |
246 | result = 1; | |
247 | } else { | |
248 | dpp = dp + ((sec & 31) << 4); | |
249 | } | |
250 | } else { | |
251 | if (sec + secn > s->secs_cur) { | |
252 | result = 1; | |
253 | } else { | |
254 | dpp = s->current + (s->secs_cur << 9) + (sec << 4); | |
255 | } | |
256 | } | |
257 | if (!result) { | |
258 | uint32_t i; | |
259 | for (i = 0; i < (secn << 4); i++) { | |
260 | dpp[i] &= sp[i]; | |
261 | } | |
262 | if (s->bdrv_cur) { | |
263 | result = bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), | |
264 | dp, 1) < 0; | |
265 | } | |
266 | } | |
267 | if (dp) { | |
268 | qemu_free(dp); | |
269 | } | |
270 | } | |
271 | return result; | |
7e7c5e4c AZ |
272 | } |
273 | ||
bc24a225 | 274 | static inline int onenand_erase(OneNANDState *s, int sec, int num) |
7e7c5e4c | 275 | { |
f1588dd2 JR |
276 | uint8_t *blankbuf, *tmpbuf; |
277 | blankbuf = qemu_malloc(512); | |
278 | if (!blankbuf) { | |
279 | return 1; | |
280 | } | |
281 | tmpbuf = qemu_malloc(512); | |
282 | if (!tmpbuf) { | |
283 | qemu_free(blankbuf); | |
284 | return 1; | |
285 | } | |
286 | memset(blankbuf, 0xff, 512); | |
287 | for (; num > 0; num--, sec++) { | |
288 | if (s->bdrv_cur) { | |
289 | int erasesec = s->secs_cur + (sec >> 5); | |
290 | if (bdrv_write(s->bdrv_cur, sec, blankbuf, 1)) { | |
291 | goto fail; | |
292 | } | |
293 | if (bdrv_read(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) { | |
294 | goto fail; | |
295 | } | |
296 | memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4); | |
297 | if (bdrv_write(s->bdrv_cur, erasesec, tmpbuf, 1) < 0) { | |
298 | goto fail; | |
299 | } | |
300 | } else { | |
301 | if (sec + 1 > s->secs_cur) { | |
302 | goto fail; | |
303 | } | |
304 | memcpy(s->current + (sec << 9), blankbuf, 512); | |
305 | memcpy(s->current + (s->secs_cur << 9) + (sec << 4), | |
306 | blankbuf, 1 << 4); | |
307 | } | |
7e7c5e4c AZ |
308 | } |
309 | ||
f1588dd2 JR |
310 | qemu_free(tmpbuf); |
311 | qemu_free(blankbuf); | |
7e7c5e4c | 312 | return 0; |
f1588dd2 JR |
313 | |
314 | fail: | |
315 | qemu_free(tmpbuf); | |
316 | qemu_free(blankbuf); | |
317 | return 1; | |
7e7c5e4c AZ |
318 | } |
319 | ||
bc24a225 | 320 | static void onenand_command(OneNANDState *s, int cmd) |
7e7c5e4c AZ |
321 | { |
322 | int b; | |
323 | int sec; | |
324 | void *buf; | |
325 | #define SETADDR(block, page) \ | |
326 | sec = (s->addr[page] & 3) + \ | |
327 | ((((s->addr[page] >> 2) & 0x3f) + \ | |
328 | (((s->addr[block] & 0xfff) | \ | |
329 | (s->addr[block] >> 15 ? \ | |
330 | s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); | |
331 | #define SETBUF_M() \ | |
332 | buf = (s->bufaddr & 8) ? \ | |
333 | s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ | |
334 | buf += (s->bufaddr & 3) << 9; | |
335 | #define SETBUF_S() \ | |
336 | buf = (s->bufaddr & 8) ? \ | |
337 | s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ | |
338 | buf += (s->bufaddr & 3) << 4; | |
339 | ||
340 | switch (cmd) { | |
341 | case 0x00: /* Load single/multiple sector data unit into buffer */ | |
342 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
343 | ||
344 | SETBUF_M() | |
345 | if (onenand_load_main(s, sec, s->count, buf)) | |
346 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
347 | ||
348 | #if 0 | |
349 | SETBUF_S() | |
350 | if (onenand_load_spare(s, sec, s->count, buf)) | |
351 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
352 | #endif | |
353 | ||
354 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
355 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
356 | * then we need two split the read/write into two chunks. | |
357 | */ | |
358 | s->intstatus |= ONEN_INT | ONEN_INT_LOAD; | |
359 | break; | |
360 | case 0x13: /* Load single/multiple spare sector into buffer */ | |
361 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
362 | ||
363 | SETBUF_S() | |
364 | if (onenand_load_spare(s, sec, s->count, buf)) | |
365 | s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; | |
366 | ||
367 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
368 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
369 | * then we need two split the read/write into two chunks. | |
370 | */ | |
371 | s->intstatus |= ONEN_INT | ONEN_INT_LOAD; | |
372 | break; | |
373 | case 0x80: /* Program single/multiple sector data unit from buffer */ | |
374 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
375 | ||
376 | SETBUF_M() | |
377 | if (onenand_prog_main(s, sec, s->count, buf)) | |
378 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
379 | ||
380 | #if 0 | |
381 | SETBUF_S() | |
382 | if (onenand_prog_spare(s, sec, s->count, buf)) | |
383 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
384 | #endif | |
385 | ||
386 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
387 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
388 | * then we need two split the read/write into two chunks. | |
389 | */ | |
390 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
391 | break; | |
392 | case 0x1a: /* Program single/multiple spare area sector from buffer */ | |
393 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
394 | ||
395 | SETBUF_S() | |
396 | if (onenand_prog_spare(s, sec, s->count, buf)) | |
397 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
398 | ||
399 | /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) | |
400 | * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) | |
401 | * then we need two split the read/write into two chunks. | |
402 | */ | |
403 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
404 | break; | |
405 | case 0x1b: /* Copy-back program */ | |
406 | SETBUF_S() | |
407 | ||
408 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
409 | if (onenand_load_main(s, sec, s->count, buf)) | |
410 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
411 | ||
412 | SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) | |
413 | if (onenand_prog_main(s, sec, s->count, buf)) | |
414 | s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; | |
415 | ||
416 | /* TODO: spare areas */ | |
417 | ||
418 | s->intstatus |= ONEN_INT | ONEN_INT_PROG; | |
419 | break; | |
420 | ||
421 | case 0x23: /* Unlock NAND array block(s) */ | |
422 | s->intstatus |= ONEN_INT; | |
423 | ||
424 | /* XXX the previous (?) area should be locked automatically */ | |
425 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
426 | if (b >= s->blocks) { | |
427 | s->status |= ONEN_ERR_CMD; | |
428 | break; | |
429 | } | |
430 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
431 | break; | |
432 | ||
433 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; | |
434 | } | |
435 | break; | |
89588a4b AZ |
436 | case 0x27: /* Unlock All NAND array blocks */ |
437 | s->intstatus |= ONEN_INT; | |
438 | ||
439 | for (b = 0; b < s->blocks; b ++) { | |
440 | if (b >= s->blocks) { | |
441 | s->status |= ONEN_ERR_CMD; | |
442 | break; | |
443 | } | |
444 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
445 | break; | |
446 | ||
447 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; | |
448 | } | |
449 | break; | |
450 | ||
7e7c5e4c AZ |
451 | case 0x2a: /* Lock NAND array block(s) */ |
452 | s->intstatus |= ONEN_INT; | |
453 | ||
454 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
455 | if (b >= s->blocks) { | |
456 | s->status |= ONEN_ERR_CMD; | |
457 | break; | |
458 | } | |
459 | if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) | |
460 | break; | |
461 | ||
462 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; | |
463 | } | |
464 | break; | |
465 | case 0x2c: /* Lock-tight NAND array block(s) */ | |
466 | s->intstatus |= ONEN_INT; | |
467 | ||
468 | for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { | |
469 | if (b >= s->blocks) { | |
470 | s->status |= ONEN_ERR_CMD; | |
471 | break; | |
472 | } | |
473 | if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) | |
474 | continue; | |
475 | ||
476 | s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; | |
477 | } | |
478 | break; | |
479 | ||
480 | case 0x71: /* Erase-Verify-Read */ | |
481 | s->intstatus |= ONEN_INT; | |
482 | break; | |
483 | case 0x95: /* Multi-block erase */ | |
484 | qemu_irq_pulse(s->intr); | |
485 | /* Fall through. */ | |
486 | case 0x94: /* Block erase */ | |
487 | sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | | |
488 | (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) | |
489 | << (BLOCK_SHIFT - 9); | |
490 | if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) | |
491 | s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; | |
492 | ||
493 | s->intstatus |= ONEN_INT | ONEN_INT_ERASE; | |
494 | break; | |
495 | case 0xb0: /* Erase suspend */ | |
496 | break; | |
497 | case 0x30: /* Erase resume */ | |
498 | s->intstatus |= ONEN_INT | ONEN_INT_ERASE; | |
499 | break; | |
500 | ||
501 | case 0xf0: /* Reset NAND Flash core */ | |
502 | onenand_reset(s, 0); | |
503 | break; | |
504 | case 0xf3: /* Reset OneNAND */ | |
505 | onenand_reset(s, 0); | |
506 | break; | |
507 | ||
508 | case 0x65: /* OTP Access */ | |
509 | s->intstatus |= ONEN_INT; | |
b9d38e95 | 510 | s->bdrv_cur = NULL; |
7e7c5e4c AZ |
511 | s->current = s->otp; |
512 | s->secs_cur = 1 << (BLOCK_SHIFT - 9); | |
513 | s->addr[ONEN_BUF_BLOCK] = 0; | |
514 | s->otpmode = 1; | |
515 | break; | |
516 | ||
517 | default: | |
518 | s->status |= ONEN_ERR_CMD; | |
519 | s->intstatus |= ONEN_INT; | |
520 | fprintf(stderr, "%s: unknown OneNAND command %x\n", | |
521 | __FUNCTION__, cmd); | |
522 | } | |
523 | ||
524 | onenand_intr_update(s); | |
525 | } | |
526 | ||
c227f099 | 527 | static uint32_t onenand_read(void *opaque, target_phys_addr_t addr) |
7e7c5e4c | 528 | { |
bc24a225 | 529 | OneNANDState *s = (OneNANDState *) opaque; |
8da3ff18 | 530 | int offset = addr >> s->shift; |
7e7c5e4c AZ |
531 | |
532 | switch (offset) { | |
533 | case 0x0000 ... 0xc000: | |
8da3ff18 | 534 | return lduw_le_p(s->boot[0] + addr); |
7e7c5e4c AZ |
535 | |
536 | case 0xf000: /* Manufacturer ID */ | |
5923ba42 | 537 | return s->id.man; |
7e7c5e4c | 538 | case 0xf001: /* Device ID */ |
5923ba42 | 539 | return s->id.dev; |
7e7c5e4c | 540 | case 0xf002: /* Version ID */ |
5923ba42 JR |
541 | return s->id.ver; |
542 | /* TODO: get the following values from a real chip! */ | |
7e7c5e4c AZ |
543 | case 0xf003: /* Data Buffer size */ |
544 | return 1 << PAGE_SHIFT; | |
545 | case 0xf004: /* Boot Buffer size */ | |
546 | return 0x200; | |
547 | case 0xf005: /* Amount of buffers */ | |
548 | return 1 | (2 << 8); | |
549 | case 0xf006: /* Technology */ | |
550 | return 0; | |
551 | ||
552 | case 0xf100 ... 0xf107: /* Start addresses */ | |
553 | return s->addr[offset - 0xf100]; | |
554 | ||
555 | case 0xf200: /* Start buffer */ | |
556 | return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); | |
557 | ||
558 | case 0xf220: /* Command */ | |
559 | return s->command; | |
560 | case 0xf221: /* System Configuration 1 */ | |
561 | return s->config[0] & 0xffe0; | |
562 | case 0xf222: /* System Configuration 2 */ | |
563 | return s->config[1]; | |
564 | ||
565 | case 0xf240: /* Controller Status */ | |
566 | return s->status; | |
567 | case 0xf241: /* Interrupt */ | |
568 | return s->intstatus; | |
569 | case 0xf24c: /* Unlock Start Block Address */ | |
570 | return s->unladdr[0]; | |
571 | case 0xf24d: /* Unlock End Block Address */ | |
572 | return s->unladdr[1]; | |
573 | case 0xf24e: /* Write Protection Status */ | |
574 | return s->wpstatus; | |
575 | ||
576 | case 0xff00: /* ECC Status */ | |
577 | return 0x00; | |
578 | case 0xff01: /* ECC Result of main area data */ | |
579 | case 0xff02: /* ECC Result of spare area data */ | |
580 | case 0xff03: /* ECC Result of main area data */ | |
581 | case 0xff04: /* ECC Result of spare area data */ | |
2ac71179 | 582 | hw_error("%s: imeplement ECC\n", __FUNCTION__); |
7e7c5e4c AZ |
583 | return 0x0000; |
584 | } | |
585 | ||
586 | fprintf(stderr, "%s: unknown OneNAND register %x\n", | |
587 | __FUNCTION__, offset); | |
588 | return 0; | |
589 | } | |
590 | ||
c227f099 | 591 | static void onenand_write(void *opaque, target_phys_addr_t addr, |
7e7c5e4c AZ |
592 | uint32_t value) |
593 | { | |
bc24a225 | 594 | OneNANDState *s = (OneNANDState *) opaque; |
8da3ff18 | 595 | int offset = addr >> s->shift; |
7e7c5e4c AZ |
596 | int sec; |
597 | ||
598 | switch (offset) { | |
599 | case 0x0000 ... 0x01ff: | |
600 | case 0x8000 ... 0x800f: | |
601 | if (s->cycle) { | |
602 | s->cycle = 0; | |
603 | ||
604 | if (value == 0x0000) { | |
605 | SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) | |
606 | onenand_load_main(s, sec, | |
607 | 1 << (PAGE_SHIFT - 9), s->data[0][0]); | |
608 | s->addr[ONEN_BUF_PAGE] += 4; | |
609 | s->addr[ONEN_BUF_PAGE] &= 0xff; | |
610 | } | |
611 | break; | |
612 | } | |
613 | ||
614 | switch (value) { | |
615 | case 0x00f0: /* Reset OneNAND */ | |
616 | onenand_reset(s, 0); | |
617 | break; | |
618 | ||
619 | case 0x00e0: /* Load Data into Buffer */ | |
620 | s->cycle = 1; | |
621 | break; | |
622 | ||
623 | case 0x0090: /* Read Identification Data */ | |
624 | memset(s->boot[0], 0, 3 << s->shift); | |
5923ba42 JR |
625 | s->boot[0][0 << s->shift] = s->id.man & 0xff; |
626 | s->boot[0][1 << s->shift] = s->id.dev & 0xff; | |
7e7c5e4c AZ |
627 | s->boot[0][2 << s->shift] = s->wpstatus & 0xff; |
628 | break; | |
629 | ||
630 | default: | |
631 | fprintf(stderr, "%s: unknown OneNAND boot command %x\n", | |
632 | __FUNCTION__, value); | |
633 | } | |
634 | break; | |
635 | ||
636 | case 0xf100 ... 0xf107: /* Start addresses */ | |
637 | s->addr[offset - 0xf100] = value; | |
638 | break; | |
639 | ||
640 | case 0xf200: /* Start buffer */ | |
641 | s->bufaddr = (value >> 8) & 0xf; | |
642 | if (PAGE_SHIFT == 11) | |
643 | s->count = (value & 3) ?: 4; | |
644 | else if (PAGE_SHIFT == 10) | |
645 | s->count = (value & 1) ?: 2; | |
646 | break; | |
647 | ||
648 | case 0xf220: /* Command */ | |
649 | if (s->intstatus & (1 << 15)) | |
650 | break; | |
651 | s->command = value; | |
652 | onenand_command(s, s->command); | |
653 | break; | |
654 | case 0xf221: /* System Configuration 1 */ | |
655 | s->config[0] = value; | |
656 | onenand_intr_update(s); | |
657 | qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); | |
658 | break; | |
659 | case 0xf222: /* System Configuration 2 */ | |
660 | s->config[1] = value; | |
661 | break; | |
662 | ||
663 | case 0xf241: /* Interrupt */ | |
664 | s->intstatus &= value; | |
665 | if ((1 << 15) & ~s->intstatus) | |
666 | s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | | |
667 | ONEN_ERR_PROG | ONEN_ERR_LOAD); | |
668 | onenand_intr_update(s); | |
669 | break; | |
670 | case 0xf24c: /* Unlock Start Block Address */ | |
671 | s->unladdr[0] = value & (s->blocks - 1); | |
672 | /* For some reason we have to set the end address to by default | |
673 | * be same as start because the software forgets to write anything | |
674 | * in there. */ | |
675 | s->unladdr[1] = value & (s->blocks - 1); | |
676 | break; | |
677 | case 0xf24d: /* Unlock End Block Address */ | |
678 | s->unladdr[1] = value & (s->blocks - 1); | |
679 | break; | |
680 | ||
681 | default: | |
682 | fprintf(stderr, "%s: unknown OneNAND register %x\n", | |
683 | __FUNCTION__, offset); | |
684 | } | |
685 | } | |
686 | ||
d60efc6b | 687 | static CPUReadMemoryFunc * const onenand_readfn[] = { |
7e7c5e4c AZ |
688 | onenand_read, /* TODO */ |
689 | onenand_read, | |
690 | onenand_read, | |
691 | }; | |
692 | ||
d60efc6b | 693 | static CPUWriteMemoryFunc * const onenand_writefn[] = { |
7e7c5e4c AZ |
694 | onenand_write, /* TODO */ |
695 | onenand_write, | |
696 | onenand_write, | |
697 | }; | |
698 | ||
5923ba42 JR |
699 | void *onenand_init(BlockDriverState *bdrv, |
700 | uint16_t man_id, uint16_t dev_id, uint16_t ver_id, | |
af5a75f4 | 701 | int regshift, qemu_irq irq) |
7e7c5e4c | 702 | { |
bc24a225 | 703 | OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s)); |
5923ba42 | 704 | uint32_t size = 1 << (24 + ((dev_id >> 4) & 7)); |
7e7c5e4c AZ |
705 | void *ram; |
706 | ||
707 | s->shift = regshift; | |
708 | s->intr = irq; | |
b9d38e95 | 709 | s->rdy = NULL; |
5923ba42 JR |
710 | s->id.man = man_id; |
711 | s->id.dev = dev_id; | |
712 | s->id.ver = ver_id; | |
7e7c5e4c AZ |
713 | s->blocks = size >> BLOCK_SHIFT; |
714 | s->secs = size >> 9; | |
715 | s->blockwp = qemu_malloc(s->blocks); | |
5923ba42 | 716 | s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0; |
1eed09cb | 717 | s->iomemtype = cpu_register_io_memory(onenand_readfn, |
2507c12a | 718 | onenand_writefn, s, DEVICE_NATIVE_ENDIAN); |
af5a75f4 PM |
719 | s->bdrv = bdrv; |
720 | if (!s->bdrv) { | |
7e7c5e4c AZ |
721 | s->image = memset(qemu_malloc(size + (size >> 5)), |
722 | 0xff, size + (size >> 5)); | |
63efb1d9 | 723 | } |
7e7c5e4c AZ |
724 | s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT), |
725 | 0xff, (64 + 2) << PAGE_SHIFT); | |
1724f049 | 726 | s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift); |
5c130f65 | 727 | ram = qemu_get_ram_ptr(s->ram); |
7e7c5e4c AZ |
728 | s->boot[0] = ram + (0x0000 << s->shift); |
729 | s->boot[1] = ram + (0x8000 << s->shift); | |
730 | s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); | |
731 | s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); | |
732 | s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); | |
733 | s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); | |
734 | ||
735 | onenand_reset(s, 1); | |
736 | ||
737 | return s; | |
738 | } | |
c580d92b AZ |
739 | |
740 | void *onenand_raw_otp(void *opaque) | |
741 | { | |
bc24a225 | 742 | OneNANDState *s = (OneNANDState *) opaque; |
c580d92b AZ |
743 | |
744 | return s->otp; | |
745 | } |