4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "target/arm/idau.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "qapi/visitor.h"
27 #include "internals.h"
28 #include "qemu-common.h"
29 #include "exec/exec-all.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/loader.h"
34 #include "hw/arm/arm.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hw_accel.h"
38 #include "disas/capstone.h"
39 #include "fpu/softfloat.h"
41 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
43 ARMCPU *cpu = ARM_CPU(cs);
44 CPUARMState *env = &cpu->env;
50 env->regs[15] = value & ~1;
51 env->thumb = value & 1;
55 static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
57 ARMCPU *cpu = ARM_CPU(cs);
58 CPUARMState *env = &cpu->env;
61 * It's OK to look at env for the current mode here, because it's
62 * never possible for an AArch64 TB to chain to an AArch32 TB.
67 env->regs[15] = tb->pc;
71 static bool arm_cpu_has_work(CPUState *cs)
73 ARMCPU *cpu = ARM_CPU(cs);
75 return (cpu->power_state != PSCI_OFF)
76 && cs->interrupt_request &
77 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
78 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
79 | CPU_INTERRUPT_EXITTB);
82 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
85 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
88 entry->opaque = opaque;
90 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
93 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
99 entry->opaque = opaque;
101 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
104 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
106 /* Reset a single ARMCPRegInfo register */
107 ARMCPRegInfo *ri = value;
108 ARMCPU *cpu = opaque;
110 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
115 ri->resetfn(&cpu->env, ri);
119 /* A zero offset is never possible as it would be regs[0]
120 * so we use it to indicate that reset is being handled elsewhere.
121 * This is basically only used for fields in non-core coprocessors
122 * (like the pxa2xx ones).
124 if (!ri->fieldoffset) {
128 if (cpreg_field_is_64bit(ri)) {
129 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
131 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
135 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
137 /* Purely an assertion check: we've already done reset once,
138 * so now check that running the reset for the cpreg doesn't
139 * change its value. This traps bugs where two different cpregs
140 * both try to reset the same state field but to different values.
142 ARMCPRegInfo *ri = value;
143 ARMCPU *cpu = opaque;
144 uint64_t oldvalue, newvalue;
146 if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
150 oldvalue = read_raw_cp_reg(&cpu->env, ri);
151 cp_reg_reset(key, value, opaque);
152 newvalue = read_raw_cp_reg(&cpu->env, ri);
153 assert(oldvalue == newvalue);
156 /* CPUClass::reset() */
157 static void arm_cpu_reset(CPUState *s)
159 ARMCPU *cpu = ARM_CPU(s);
160 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
161 CPUARMState *env = &cpu->env;
163 acc->parent_reset(s);
165 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
167 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
168 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
170 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
171 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
172 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
173 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
175 cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
176 s->halted = cpu->start_powered_off;
178 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
179 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
182 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
183 /* 64 bit CPUs always start in 64 bit mode */
185 #if defined(CONFIG_USER_ONLY)
186 env->pstate = PSTATE_MODE_EL0t;
187 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
188 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
189 /* Enable all PAC keys. */
190 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
191 SCTLR_EnDA | SCTLR_EnDB);
192 /* Enable all PAC instructions */
193 env->cp15.hcr_el2 |= HCR_API;
194 env->cp15.scr_el3 |= SCR_API;
195 /* and to the FP/Neon instructions */
196 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
197 /* and to the SVE instructions */
198 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
199 env->cp15.cptr_el[3] |= CPTR_EZ;
200 /* with maximum vector length */
201 env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
202 env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
203 env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
205 * Enable TBI0 and TBI1. While the real kernel only enables TBI0,
206 * turning on both here will produce smaller code and otherwise
207 * make no difference to the user-level emulation.
209 env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
211 /* Reset into the highest available EL */
212 if (arm_feature(env, ARM_FEATURE_EL3)) {
213 env->pstate = PSTATE_MODE_EL3h;
214 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
215 env->pstate = PSTATE_MODE_EL2h;
217 env->pstate = PSTATE_MODE_EL1h;
219 env->pc = cpu->rvbar;
222 #if defined(CONFIG_USER_ONLY)
223 /* Userspace expects access to cp10 and cp11 for FP/Neon */
224 env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
228 #if defined(CONFIG_USER_ONLY)
229 env->uncached_cpsr = ARM_CPU_MODE_USR;
230 /* For user mode we must enable access to coprocessors */
231 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
232 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
233 env->cp15.c15_cpar = 3;
234 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
235 env->cp15.c15_cpar = 1;
240 * If the highest available EL is EL2, AArch32 will start in Hyp
241 * mode; otherwise it starts in SVC. Note that if we start in
242 * AArch64 then these values in the uncached_cpsr will be ignored.
244 if (arm_feature(env, ARM_FEATURE_EL2) &&
245 !arm_feature(env, ARM_FEATURE_EL3)) {
246 env->uncached_cpsr = ARM_CPU_MODE_HYP;
248 env->uncached_cpsr = ARM_CPU_MODE_SVC;
250 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
252 if (arm_feature(env, ARM_FEATURE_M)) {
253 uint32_t initial_msp; /* Loaded from 0x0 */
254 uint32_t initial_pc; /* Loaded from 0x4 */
258 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
259 env->v7m.secure = true;
261 /* This bit resets to 0 if security is supported, but 1 if
262 * it is not. The bit is not present in v7M, but we set it
263 * here so we can avoid having to make checks on it conditional
264 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
266 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
269 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
270 * that it resets to 1, so QEMU always does that rather than making
271 * it dependent on CPU model. In v8M it is RES1.
273 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
274 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
275 if (arm_feature(env, ARM_FEATURE_V8)) {
276 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
277 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
278 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
280 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
281 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
282 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
285 /* Unlike A/R profile, M profile defines the reset LR value */
286 env->regs[14] = 0xffffffff;
288 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
290 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
291 vecbase = env->v7m.vecbase[env->v7m.secure];
292 rom = rom_ptr(vecbase, 8);
294 /* Address zero is covered by ROM which hasn't yet been
295 * copied into physical memory.
297 initial_msp = ldl_p(rom);
298 initial_pc = ldl_p(rom + 4);
300 /* Address zero not covered by a ROM blob, or the ROM blob
301 * is in non-modifiable memory and this is a second reset after
302 * it got copied into memory. In the latter case, rom_ptr
303 * will return a NULL pointer and we should use ldl_phys instead.
305 initial_msp = ldl_phys(s->as, vecbase);
306 initial_pc = ldl_phys(s->as, vecbase + 4);
309 env->regs[13] = initial_msp & 0xFFFFFFFC;
310 env->regs[15] = initial_pc & ~1;
311 env->thumb = initial_pc & 1;
314 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
315 * executing as AArch32 then check if highvecs are enabled and
316 * adjust the PC accordingly.
318 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
319 env->regs[15] = 0xFFFF0000;
322 /* M profile requires that reset clears the exclusive monitor;
323 * A profile does not, but clearing it makes more sense than having it
324 * set with an exclusive access on address zero.
326 arm_clear_exclusive(env);
328 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
331 if (arm_feature(env, ARM_FEATURE_PMSA)) {
332 if (cpu->pmsav7_dregion > 0) {
333 if (arm_feature(env, ARM_FEATURE_V8)) {
334 memset(env->pmsav8.rbar[M_REG_NS], 0,
335 sizeof(*env->pmsav8.rbar[M_REG_NS])
336 * cpu->pmsav7_dregion);
337 memset(env->pmsav8.rlar[M_REG_NS], 0,
338 sizeof(*env->pmsav8.rlar[M_REG_NS])
339 * cpu->pmsav7_dregion);
340 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
341 memset(env->pmsav8.rbar[M_REG_S], 0,
342 sizeof(*env->pmsav8.rbar[M_REG_S])
343 * cpu->pmsav7_dregion);
344 memset(env->pmsav8.rlar[M_REG_S], 0,
345 sizeof(*env->pmsav8.rlar[M_REG_S])
346 * cpu->pmsav7_dregion);
348 } else if (arm_feature(env, ARM_FEATURE_V7)) {
349 memset(env->pmsav7.drbar, 0,
350 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
351 memset(env->pmsav7.drsr, 0,
352 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
353 memset(env->pmsav7.dracr, 0,
354 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
357 env->pmsav7.rnr[M_REG_NS] = 0;
358 env->pmsav7.rnr[M_REG_S] = 0;
359 env->pmsav8.mair0[M_REG_NS] = 0;
360 env->pmsav8.mair0[M_REG_S] = 0;
361 env->pmsav8.mair1[M_REG_NS] = 0;
362 env->pmsav8.mair1[M_REG_S] = 0;
365 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
366 if (cpu->sau_sregion > 0) {
367 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
368 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
371 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
372 * the Cortex-M33 does.
377 set_flush_to_zero(1, &env->vfp.standard_fp_status);
378 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
379 set_default_nan_mode(1, &env->vfp.standard_fp_status);
380 set_float_detect_tininess(float_tininess_before_rounding,
381 &env->vfp.fp_status);
382 set_float_detect_tininess(float_tininess_before_rounding,
383 &env->vfp.standard_fp_status);
384 set_float_detect_tininess(float_tininess_before_rounding,
385 &env->vfp.fp_status_f16);
386 #ifndef CONFIG_USER_ONLY
388 kvm_arm_reset_vcpu(cpu);
392 hw_breakpoint_update_all(cpu);
393 hw_watchpoint_update_all(cpu);
396 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
398 CPUClass *cc = CPU_GET_CLASS(cs);
399 CPUARMState *env = cs->env_ptr;
400 uint32_t cur_el = arm_current_el(env);
401 bool secure = arm_is_secure(env);
406 if (interrupt_request & CPU_INTERRUPT_FIQ) {
408 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
409 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
410 cs->exception_index = excp_idx;
411 env->exception.target_el = target_el;
412 cc->do_interrupt(cs);
416 if (interrupt_request & CPU_INTERRUPT_HARD) {
418 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
419 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
420 cs->exception_index = excp_idx;
421 env->exception.target_el = target_el;
422 cc->do_interrupt(cs);
426 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
427 excp_idx = EXCP_VIRQ;
429 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
430 cs->exception_index = excp_idx;
431 env->exception.target_el = target_el;
432 cc->do_interrupt(cs);
436 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
437 excp_idx = EXCP_VFIQ;
439 if (arm_excp_unmasked(cs, excp_idx, target_el)) {
440 cs->exception_index = excp_idx;
441 env->exception.target_el = target_el;
442 cc->do_interrupt(cs);
450 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
451 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
453 CPUClass *cc = CPU_GET_CLASS(cs);
454 ARMCPU *cpu = ARM_CPU(cs);
455 CPUARMState *env = &cpu->env;
458 /* ARMv7-M interrupt masking works differently than -A or -R.
459 * There is no FIQ/IRQ distinction. Instead of I and F bits
460 * masking FIQ and IRQ interrupts, an exception is taken only
461 * if it is higher priority than the current execution priority
462 * (which depends on state like BASEPRI, FAULTMASK and the
463 * currently active exception).
465 if (interrupt_request & CPU_INTERRUPT_HARD
466 && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
467 cs->exception_index = EXCP_IRQ;
468 cc->do_interrupt(cs);
475 void arm_cpu_update_virq(ARMCPU *cpu)
478 * Update the interrupt level for VIRQ, which is the logical OR of
479 * the HCR_EL2.VI bit and the input line level from the GIC.
481 CPUARMState *env = &cpu->env;
482 CPUState *cs = CPU(cpu);
484 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
485 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
487 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
489 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
491 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
496 void arm_cpu_update_vfiq(ARMCPU *cpu)
499 * Update the interrupt level for VFIQ, which is the logical OR of
500 * the HCR_EL2.VF bit and the input line level from the GIC.
502 CPUARMState *env = &cpu->env;
503 CPUState *cs = CPU(cpu);
505 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
506 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
508 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
510 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
512 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
517 #ifndef CONFIG_USER_ONLY
518 static void arm_cpu_set_irq(void *opaque, int irq, int level)
520 ARMCPU *cpu = opaque;
521 CPUARMState *env = &cpu->env;
522 CPUState *cs = CPU(cpu);
523 static const int mask[] = {
524 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
525 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
526 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
527 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
531 env->irq_line_state |= mask[irq];
533 env->irq_line_state &= ~mask[irq];
538 assert(arm_feature(env, ARM_FEATURE_EL2));
539 arm_cpu_update_virq(cpu);
542 assert(arm_feature(env, ARM_FEATURE_EL2));
543 arm_cpu_update_vfiq(cpu);
548 cpu_interrupt(cs, mask[irq]);
550 cpu_reset_interrupt(cs, mask[irq]);
554 g_assert_not_reached();
558 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
561 ARMCPU *cpu = opaque;
562 CPUARMState *env = &cpu->env;
563 CPUState *cs = CPU(cpu);
564 int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
565 uint32_t linestate_bit;
569 kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
570 linestate_bit = CPU_INTERRUPT_HARD;
573 kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
574 linestate_bit = CPU_INTERRUPT_FIQ;
577 g_assert_not_reached();
581 env->irq_line_state |= linestate_bit;
583 env->irq_line_state &= ~linestate_bit;
586 kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
587 kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
591 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
593 ARMCPU *cpu = ARM_CPU(cs);
594 CPUARMState *env = &cpu->env;
596 cpu_synchronize_state(cs);
597 return arm_cpu_data_is_big_endian(env);
602 static inline void set_feature(CPUARMState *env, int feature)
604 env->features |= 1ULL << feature;
607 static inline void unset_feature(CPUARMState *env, int feature)
609 env->features &= ~(1ULL << feature);
613 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
615 return print_insn_arm(pc | 1, info);
618 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
620 ARMCPU *ac = ARM_CPU(cpu);
621 CPUARMState *env = &ac->env;
625 /* We might not be compiled with the A64 disassembler
626 * because it needs a C++ compiler. Leave print_insn
627 * unset in this case to use the caller default behaviour.
629 #if defined(CONFIG_ARM_A64_DIS)
630 info->print_insn = print_insn_arm_a64;
632 info->cap_arch = CS_ARCH_ARM64;
633 info->cap_insn_unit = 4;
634 info->cap_insn_split = 4;
638 info->print_insn = print_insn_thumb1;
639 info->cap_insn_unit = 2;
640 info->cap_insn_split = 4;
641 cap_mode = CS_MODE_THUMB;
643 info->print_insn = print_insn_arm;
644 info->cap_insn_unit = 4;
645 info->cap_insn_split = 4;
646 cap_mode = CS_MODE_ARM;
648 if (arm_feature(env, ARM_FEATURE_V8)) {
649 cap_mode |= CS_MODE_V8;
651 if (arm_feature(env, ARM_FEATURE_M)) {
652 cap_mode |= CS_MODE_MCLASS;
654 info->cap_arch = CS_ARCH_ARM;
655 info->cap_mode = cap_mode;
658 sctlr_b = arm_sctlr_b(env);
659 if (bswap_code(sctlr_b)) {
660 #ifdef TARGET_WORDS_BIGENDIAN
661 info->endian = BFD_ENDIAN_LITTLE;
663 info->endian = BFD_ENDIAN_BIG;
666 info->flags &= ~INSN_ARM_BE32;
667 #ifndef CONFIG_USER_ONLY
669 info->flags |= INSN_ARM_BE32;
674 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
676 uint32_t Aff1 = idx / clustersz;
677 uint32_t Aff0 = idx % clustersz;
678 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
681 static void cpreg_hashtable_data_destroy(gpointer data)
684 * Destroy function for cpu->cp_regs hashtable data entries.
685 * We must free the name string because it was g_strdup()ed in
686 * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
687 * from r->name because we know we definitely allocated it.
689 ARMCPRegInfo *r = data;
691 g_free((void *)r->name);
695 static void arm_cpu_initfn(Object *obj)
697 CPUState *cs = CPU(obj);
698 ARMCPU *cpu = ARM_CPU(obj);
700 cs->env_ptr = &cpu->env;
701 cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
702 g_free, cpreg_hashtable_data_destroy);
704 QLIST_INIT(&cpu->pre_el_change_hooks);
705 QLIST_INIT(&cpu->el_change_hooks);
707 #ifndef CONFIG_USER_ONLY
708 /* Our inbound IRQ and FIQ lines */
710 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
711 * the same interface as non-KVM CPUs.
713 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
715 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
718 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
719 ARRAY_SIZE(cpu->gt_timer_outputs));
721 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
722 "gicv3-maintenance-interrupt", 1);
723 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
727 /* DTB consumers generally don't in fact care what the 'compatible'
728 * string is, so always provide some string and trust that a hypothetical
729 * picky DTB consumer will also provide a helpful error message.
731 cpu->dtb_compatible = "qemu,unknown";
732 cpu->psci_version = 1; /* By default assume PSCI v0.1 */
733 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
736 cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
740 static Property arm_cpu_reset_cbar_property =
741 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
743 static Property arm_cpu_reset_hivecs_property =
744 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
746 static Property arm_cpu_rvbar_property =
747 DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
749 static Property arm_cpu_has_el2_property =
750 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
752 static Property arm_cpu_has_el3_property =
753 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
755 static Property arm_cpu_cfgend_property =
756 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
758 /* use property name "pmu" to match other archs and virt tools */
759 static Property arm_cpu_has_pmu_property =
760 DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
762 static Property arm_cpu_has_mpu_property =
763 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
765 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
766 * because the CPU initfn will have already set cpu->pmsav7_dregion to
767 * the right value for that particular CPU type, and we don't want
768 * to override that with an incorrect constant value.
770 static Property arm_cpu_pmsav7_dregion_property =
771 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
773 qdev_prop_uint32, uint32_t);
775 static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
776 void *opaque, Error **errp)
778 ARMCPU *cpu = ARM_CPU(obj);
780 visit_type_uint32(v, name, &cpu->init_svtor, errp);
783 static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
784 void *opaque, Error **errp)
786 ARMCPU *cpu = ARM_CPU(obj);
788 visit_type_uint32(v, name, &cpu->init_svtor, errp);
791 void arm_cpu_post_init(Object *obj)
793 ARMCPU *cpu = ARM_CPU(obj);
795 /* M profile implies PMSA. We have to do this here rather than
796 * in realize with the other feature-implication checks because
797 * we look at the PMSA bit to see if we should add some properties.
799 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
800 set_feature(&cpu->env, ARM_FEATURE_PMSA);
803 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
804 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
805 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
809 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
810 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
814 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
815 qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
819 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
820 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
821 * prevent "has_el3" from existing on CPUs which cannot support EL3.
823 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
826 #ifndef CONFIG_USER_ONLY
827 object_property_add_link(obj, "secure-memory",
829 (Object **)&cpu->secure_memory,
830 qdev_prop_allow_set_link_before_realize,
831 OBJ_PROP_LINK_STRONG,
836 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
837 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
841 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
842 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
846 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
847 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
849 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
850 qdev_property_add_static(DEVICE(obj),
851 &arm_cpu_pmsav7_dregion_property,
856 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
857 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
858 qdev_prop_allow_set_link_before_realize,
859 OBJ_PROP_LINK_STRONG,
862 * M profile: initial value of the Secure VTOR. We can't just use
863 * a simple DEFINE_PROP_UINT32 for this because we want to permit
864 * the property to be set after realize.
866 object_property_add(obj, "init-svtor", "uint32",
867 arm_get_init_svtor, arm_set_init_svtor,
868 NULL, NULL, &error_abort);
871 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
875 static void arm_cpu_finalizefn(Object *obj)
877 ARMCPU *cpu = ARM_CPU(obj);
878 ARMELChangeHook *hook, *next;
880 g_hash_table_destroy(cpu->cp_regs);
882 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
883 QLIST_REMOVE(hook, node);
886 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
887 QLIST_REMOVE(hook, node);
890 #ifndef CONFIG_USER_ONLY
891 if (cpu->pmu_timer) {
892 timer_del(cpu->pmu_timer);
893 timer_deinit(cpu->pmu_timer);
894 timer_free(cpu->pmu_timer);
899 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
901 CPUState *cs = CPU(dev);
902 ARMCPU *cpu = ARM_CPU(dev);
903 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
904 CPUARMState *env = &cpu->env;
906 Error *local_err = NULL;
907 bool no_aa32 = false;
909 /* If we needed to query the host kernel for the CPU features
910 * then it's possible that might have failed in the initfn, but
911 * this is the first point where we can report it.
913 if (cpu->host_cpu_probe_failed) {
914 if (!kvm_enabled()) {
915 error_setg(errp, "The 'host' CPU type can only be used with KVM");
917 error_setg(errp, "Failed to retrieve host CPU features");
922 #ifndef CONFIG_USER_ONLY
923 /* The NVIC and M-profile CPU are two halves of a single piece of
924 * hardware; trying to use one without the other is a command line
925 * error and will result in segfaults if not caught here.
927 if (arm_feature(env, ARM_FEATURE_M)) {
929 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
934 error_setg(errp, "This board can only be used with Cortex-M CPUs");
939 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
940 arm_gt_ptimer_cb, cpu);
941 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
942 arm_gt_vtimer_cb, cpu);
943 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
944 arm_gt_htimer_cb, cpu);
945 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
946 arm_gt_stimer_cb, cpu);
949 cpu_exec_realizefn(cs, &local_err);
950 if (local_err != NULL) {
951 error_propagate(errp, local_err);
955 /* Some features automatically imply others: */
956 if (arm_feature(env, ARM_FEATURE_V8)) {
957 if (arm_feature(env, ARM_FEATURE_M)) {
958 set_feature(env, ARM_FEATURE_V7);
960 set_feature(env, ARM_FEATURE_V7VE);
965 * There exist AArch64 cpus without AArch32 support. When KVM
966 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
967 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
969 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
970 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
973 if (arm_feature(env, ARM_FEATURE_V7VE)) {
974 /* v7 Virtualization Extensions. In real hardware this implies
975 * EL2 and also the presence of the Security Extensions.
976 * For QEMU, for backwards-compatibility we implement some
977 * CPUs or CPU configs which have no actual EL2 or EL3 but do
978 * include the various other features that V7VE implies.
979 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
980 * Security Extensions is ARM_FEATURE_EL3.
982 assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
983 set_feature(env, ARM_FEATURE_LPAE);
984 set_feature(env, ARM_FEATURE_V7);
986 if (arm_feature(env, ARM_FEATURE_V7)) {
987 set_feature(env, ARM_FEATURE_VAPA);
988 set_feature(env, ARM_FEATURE_THUMB2);
989 set_feature(env, ARM_FEATURE_MPIDR);
990 if (!arm_feature(env, ARM_FEATURE_M)) {
991 set_feature(env, ARM_FEATURE_V6K);
993 set_feature(env, ARM_FEATURE_V6);
996 /* Always define VBAR for V7 CPUs even if it doesn't exist in
997 * non-EL3 configs. This is needed by some legacy boards.
999 set_feature(env, ARM_FEATURE_VBAR);
1001 if (arm_feature(env, ARM_FEATURE_V6K)) {
1002 set_feature(env, ARM_FEATURE_V6);
1003 set_feature(env, ARM_FEATURE_MVFR);
1005 if (arm_feature(env, ARM_FEATURE_V6)) {
1006 set_feature(env, ARM_FEATURE_V5);
1007 if (!arm_feature(env, ARM_FEATURE_M)) {
1008 assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1009 set_feature(env, ARM_FEATURE_AUXCR);
1012 if (arm_feature(env, ARM_FEATURE_V5)) {
1013 set_feature(env, ARM_FEATURE_V4T);
1015 if (arm_feature(env, ARM_FEATURE_VFP4)) {
1016 set_feature(env, ARM_FEATURE_VFP3);
1018 if (arm_feature(env, ARM_FEATURE_VFP3)) {
1019 set_feature(env, ARM_FEATURE_VFP);
1021 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1022 set_feature(env, ARM_FEATURE_V7MP);
1023 set_feature(env, ARM_FEATURE_PXN);
1025 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1026 set_feature(env, ARM_FEATURE_CBAR);
1028 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1029 !arm_feature(env, ARM_FEATURE_M)) {
1030 set_feature(env, ARM_FEATURE_THUMB_DSP);
1033 if (arm_feature(env, ARM_FEATURE_V7) &&
1034 !arm_feature(env, ARM_FEATURE_M) &&
1035 !arm_feature(env, ARM_FEATURE_PMSA)) {
1036 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1041 /* For CPUs which might have tiny 1K pages, or which have an
1042 * MPU and might have small region sizes, stick with 1K pages.
1046 if (!set_preferred_target_page_bits(pagebits)) {
1047 /* This can only ever happen for hotplugging a CPU, or if
1048 * the board code incorrectly creates a CPU which it has
1049 * promised via minimum_page_size that it will not.
1051 error_setg(errp, "This CPU requires a smaller page size than the "
1056 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1057 * We don't support setting cluster ID ([16..23]) (known as Aff2
1058 * in later ARM ARM versions), or any of the higher affinity level fields,
1059 * so these bits always RAZ.
1061 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1062 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1063 ARM_DEFAULT_CPUS_PER_CLUSTER);
1066 if (cpu->reset_hivecs) {
1067 cpu->reset_sctlr |= (1 << 13);
1071 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1072 cpu->reset_sctlr |= SCTLR_EE;
1074 cpu->reset_sctlr |= SCTLR_B;
1078 if (!cpu->has_el3) {
1079 /* If the has_el3 CPU property is disabled then we need to disable the
1082 unset_feature(env, ARM_FEATURE_EL3);
1084 /* Disable the security extension feature bits in the processor feature
1085 * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1087 cpu->id_pfr1 &= ~0xf0;
1088 cpu->isar.id_aa64pfr0 &= ~0xf000;
1091 if (!cpu->has_el2) {
1092 unset_feature(env, ARM_FEATURE_EL2);
1095 if (!cpu->has_pmu) {
1096 unset_feature(env, ARM_FEATURE_PMU);
1098 if (arm_feature(env, ARM_FEATURE_PMU)) {
1101 if (!kvm_enabled()) {
1102 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1103 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1106 #ifndef CONFIG_USER_ONLY
1107 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1111 cpu->id_aa64dfr0 &= ~0xf00;
1112 cpu->id_dfr0 &= ~(0xf << 24);
1117 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1118 /* Disable the hypervisor feature bits in the processor feature
1119 * registers if we don't have EL2. These are id_pfr1[15:12] and
1120 * id_aa64pfr0_el1[11:8].
1122 cpu->isar.id_aa64pfr0 &= ~0xf00;
1123 cpu->id_pfr1 &= ~0xf000;
1126 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1127 * to false or by setting pmsav7-dregion to 0.
1129 if (!cpu->has_mpu) {
1130 cpu->pmsav7_dregion = 0;
1132 if (cpu->pmsav7_dregion == 0) {
1133 cpu->has_mpu = false;
1136 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1137 arm_feature(env, ARM_FEATURE_V7)) {
1138 uint32_t nr = cpu->pmsav7_dregion;
1141 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1146 if (arm_feature(env, ARM_FEATURE_V8)) {
1148 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1149 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1150 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1151 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1152 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1155 env->pmsav7.drbar = g_new0(uint32_t, nr);
1156 env->pmsav7.drsr = g_new0(uint32_t, nr);
1157 env->pmsav7.dracr = g_new0(uint32_t, nr);
1162 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1163 uint32_t nr = cpu->sau_sregion;
1166 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1171 env->sau.rbar = g_new0(uint32_t, nr);
1172 env->sau.rlar = g_new0(uint32_t, nr);
1176 if (arm_feature(env, ARM_FEATURE_EL3)) {
1177 set_feature(env, ARM_FEATURE_VBAR);
1180 register_cp_regs_for_features(cpu);
1181 arm_cpu_register_gdb_regs_for_features(cpu);
1183 init_cpreg_list(cpu);
1185 #ifndef CONFIG_USER_ONLY
1186 if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1189 if (!cpu->secure_memory) {
1190 cpu->secure_memory = cs->memory;
1192 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1193 cpu->secure_memory);
1197 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1199 /* No core_count specified, default to smp_cpus. */
1200 if (cpu->core_count == -1) {
1201 cpu->core_count = smp_cpus;
1208 acc->parent_realize(dev, errp);
1211 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1216 const char *cpunamestr;
1218 cpuname = g_strsplit(cpu_model, ",", 1);
1219 cpunamestr = cpuname[0];
1220 #ifdef CONFIG_USER_ONLY
1221 /* For backwards compatibility usermode emulation allows "-cpu any",
1222 * which has the same semantics as "-cpu max".
1224 if (!strcmp(cpunamestr, "any")) {
1228 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1229 oc = object_class_by_name(typename);
1230 g_strfreev(cpuname);
1232 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1233 object_class_is_abstract(oc)) {
1239 /* CPU models. These are not needed for the AArch64 linux-user build. */
1240 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1242 static void arm926_initfn(Object *obj)
1244 ARMCPU *cpu = ARM_CPU(obj);
1246 cpu->dtb_compatible = "arm,arm926";
1247 set_feature(&cpu->env, ARM_FEATURE_V5);
1248 set_feature(&cpu->env, ARM_FEATURE_VFP);
1249 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1250 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1251 cpu->midr = 0x41069265;
1252 cpu->reset_fpsid = 0x41011090;
1253 cpu->ctr = 0x1dd20d2;
1254 cpu->reset_sctlr = 0x00090078;
1257 * ARMv5 does not have the ID_ISAR registers, but we can still
1258 * set the field to indicate Jazelle support within QEMU.
1260 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1263 static void arm946_initfn(Object *obj)
1265 ARMCPU *cpu = ARM_CPU(obj);
1267 cpu->dtb_compatible = "arm,arm946";
1268 set_feature(&cpu->env, ARM_FEATURE_V5);
1269 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1270 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1271 cpu->midr = 0x41059461;
1272 cpu->ctr = 0x0f004006;
1273 cpu->reset_sctlr = 0x00000078;
1276 static void arm1026_initfn(Object *obj)
1278 ARMCPU *cpu = ARM_CPU(obj);
1280 cpu->dtb_compatible = "arm,arm1026";
1281 set_feature(&cpu->env, ARM_FEATURE_V5);
1282 set_feature(&cpu->env, ARM_FEATURE_VFP);
1283 set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1284 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1285 set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1286 cpu->midr = 0x4106a262;
1287 cpu->reset_fpsid = 0x410110a0;
1288 cpu->ctr = 0x1dd20d2;
1289 cpu->reset_sctlr = 0x00090078;
1290 cpu->reset_auxcr = 1;
1293 * ARMv5 does not have the ID_ISAR registers, but we can still
1294 * set the field to indicate Jazelle support within QEMU.
1296 cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1299 /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1300 ARMCPRegInfo ifar = {
1301 .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1303 .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1306 define_one_arm_cp_reg(cpu, &ifar);
1310 static void arm1136_r2_initfn(Object *obj)
1312 ARMCPU *cpu = ARM_CPU(obj);
1313 /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1314 * older core than plain "arm1136". In particular this does not
1315 * have the v6K features.
1316 * These ID register values are correct for 1136 but may be wrong
1317 * for 1136_r2 (in particular r0p2 does not actually implement most
1318 * of the ID registers).
1321 cpu->dtb_compatible = "arm,arm1136";
1322 set_feature(&cpu->env, ARM_FEATURE_V6);
1323 set_feature(&cpu->env, ARM_FEATURE_VFP);
1324 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1325 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1326 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1327 cpu->midr = 0x4107b362;
1328 cpu->reset_fpsid = 0x410120b4;
1329 cpu->isar.mvfr0 = 0x11111111;
1330 cpu->isar.mvfr1 = 0x00000000;
1331 cpu->ctr = 0x1dd20d2;
1332 cpu->reset_sctlr = 0x00050078;
1333 cpu->id_pfr0 = 0x111;
1337 cpu->id_mmfr0 = 0x01130003;
1338 cpu->id_mmfr1 = 0x10030302;
1339 cpu->id_mmfr2 = 0x01222110;
1340 cpu->isar.id_isar0 = 0x00140011;
1341 cpu->isar.id_isar1 = 0x12002111;
1342 cpu->isar.id_isar2 = 0x11231111;
1343 cpu->isar.id_isar3 = 0x01102131;
1344 cpu->isar.id_isar4 = 0x141;
1345 cpu->reset_auxcr = 7;
1348 static void arm1136_initfn(Object *obj)
1350 ARMCPU *cpu = ARM_CPU(obj);
1352 cpu->dtb_compatible = "arm,arm1136";
1353 set_feature(&cpu->env, ARM_FEATURE_V6K);
1354 set_feature(&cpu->env, ARM_FEATURE_V6);
1355 set_feature(&cpu->env, ARM_FEATURE_VFP);
1356 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1357 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1358 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1359 cpu->midr = 0x4117b363;
1360 cpu->reset_fpsid = 0x410120b4;
1361 cpu->isar.mvfr0 = 0x11111111;
1362 cpu->isar.mvfr1 = 0x00000000;
1363 cpu->ctr = 0x1dd20d2;
1364 cpu->reset_sctlr = 0x00050078;
1365 cpu->id_pfr0 = 0x111;
1369 cpu->id_mmfr0 = 0x01130003;
1370 cpu->id_mmfr1 = 0x10030302;
1371 cpu->id_mmfr2 = 0x01222110;
1372 cpu->isar.id_isar0 = 0x00140011;
1373 cpu->isar.id_isar1 = 0x12002111;
1374 cpu->isar.id_isar2 = 0x11231111;
1375 cpu->isar.id_isar3 = 0x01102131;
1376 cpu->isar.id_isar4 = 0x141;
1377 cpu->reset_auxcr = 7;
1380 static void arm1176_initfn(Object *obj)
1382 ARMCPU *cpu = ARM_CPU(obj);
1384 cpu->dtb_compatible = "arm,arm1176";
1385 set_feature(&cpu->env, ARM_FEATURE_V6K);
1386 set_feature(&cpu->env, ARM_FEATURE_VFP);
1387 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1388 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1389 set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1390 set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1391 set_feature(&cpu->env, ARM_FEATURE_EL3);
1392 cpu->midr = 0x410fb767;
1393 cpu->reset_fpsid = 0x410120b5;
1394 cpu->isar.mvfr0 = 0x11111111;
1395 cpu->isar.mvfr1 = 0x00000000;
1396 cpu->ctr = 0x1dd20d2;
1397 cpu->reset_sctlr = 0x00050078;
1398 cpu->id_pfr0 = 0x111;
1399 cpu->id_pfr1 = 0x11;
1400 cpu->id_dfr0 = 0x33;
1402 cpu->id_mmfr0 = 0x01130003;
1403 cpu->id_mmfr1 = 0x10030302;
1404 cpu->id_mmfr2 = 0x01222100;
1405 cpu->isar.id_isar0 = 0x0140011;
1406 cpu->isar.id_isar1 = 0x12002111;
1407 cpu->isar.id_isar2 = 0x11231121;
1408 cpu->isar.id_isar3 = 0x01102131;
1409 cpu->isar.id_isar4 = 0x01141;
1410 cpu->reset_auxcr = 7;
1413 static void arm11mpcore_initfn(Object *obj)
1415 ARMCPU *cpu = ARM_CPU(obj);
1417 cpu->dtb_compatible = "arm,arm11mpcore";
1418 set_feature(&cpu->env, ARM_FEATURE_V6K);
1419 set_feature(&cpu->env, ARM_FEATURE_VFP);
1420 set_feature(&cpu->env, ARM_FEATURE_VAPA);
1421 set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1422 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1423 cpu->midr = 0x410fb022;
1424 cpu->reset_fpsid = 0x410120b4;
1425 cpu->isar.mvfr0 = 0x11111111;
1426 cpu->isar.mvfr1 = 0x00000000;
1427 cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1428 cpu->id_pfr0 = 0x111;
1432 cpu->id_mmfr0 = 0x01100103;
1433 cpu->id_mmfr1 = 0x10020302;
1434 cpu->id_mmfr2 = 0x01222000;
1435 cpu->isar.id_isar0 = 0x00100011;
1436 cpu->isar.id_isar1 = 0x12002111;
1437 cpu->isar.id_isar2 = 0x11221011;
1438 cpu->isar.id_isar3 = 0x01102131;
1439 cpu->isar.id_isar4 = 0x141;
1440 cpu->reset_auxcr = 1;
1443 static void cortex_m0_initfn(Object *obj)
1445 ARMCPU *cpu = ARM_CPU(obj);
1446 set_feature(&cpu->env, ARM_FEATURE_V6);
1447 set_feature(&cpu->env, ARM_FEATURE_M);
1449 cpu->midr = 0x410cc200;
1452 static void cortex_m3_initfn(Object *obj)
1454 ARMCPU *cpu = ARM_CPU(obj);
1455 set_feature(&cpu->env, ARM_FEATURE_V7);
1456 set_feature(&cpu->env, ARM_FEATURE_M);
1457 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1458 cpu->midr = 0x410fc231;
1459 cpu->pmsav7_dregion = 8;
1460 cpu->id_pfr0 = 0x00000030;
1461 cpu->id_pfr1 = 0x00000200;
1462 cpu->id_dfr0 = 0x00100000;
1463 cpu->id_afr0 = 0x00000000;
1464 cpu->id_mmfr0 = 0x00000030;
1465 cpu->id_mmfr1 = 0x00000000;
1466 cpu->id_mmfr2 = 0x00000000;
1467 cpu->id_mmfr3 = 0x00000000;
1468 cpu->isar.id_isar0 = 0x01141110;
1469 cpu->isar.id_isar1 = 0x02111000;
1470 cpu->isar.id_isar2 = 0x21112231;
1471 cpu->isar.id_isar3 = 0x01111110;
1472 cpu->isar.id_isar4 = 0x01310102;
1473 cpu->isar.id_isar5 = 0x00000000;
1474 cpu->isar.id_isar6 = 0x00000000;
1477 static void cortex_m4_initfn(Object *obj)
1479 ARMCPU *cpu = ARM_CPU(obj);
1481 set_feature(&cpu->env, ARM_FEATURE_V7);
1482 set_feature(&cpu->env, ARM_FEATURE_M);
1483 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1484 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1485 cpu->midr = 0x410fc240; /* r0p0 */
1486 cpu->pmsav7_dregion = 8;
1487 cpu->id_pfr0 = 0x00000030;
1488 cpu->id_pfr1 = 0x00000200;
1489 cpu->id_dfr0 = 0x00100000;
1490 cpu->id_afr0 = 0x00000000;
1491 cpu->id_mmfr0 = 0x00000030;
1492 cpu->id_mmfr1 = 0x00000000;
1493 cpu->id_mmfr2 = 0x00000000;
1494 cpu->id_mmfr3 = 0x00000000;
1495 cpu->isar.id_isar0 = 0x01141110;
1496 cpu->isar.id_isar1 = 0x02111000;
1497 cpu->isar.id_isar2 = 0x21112231;
1498 cpu->isar.id_isar3 = 0x01111110;
1499 cpu->isar.id_isar4 = 0x01310102;
1500 cpu->isar.id_isar5 = 0x00000000;
1501 cpu->isar.id_isar6 = 0x00000000;
1504 static void cortex_m33_initfn(Object *obj)
1506 ARMCPU *cpu = ARM_CPU(obj);
1508 set_feature(&cpu->env, ARM_FEATURE_V8);
1509 set_feature(&cpu->env, ARM_FEATURE_M);
1510 set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1511 set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1512 set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1513 cpu->midr = 0x410fd213; /* r0p3 */
1514 cpu->pmsav7_dregion = 16;
1515 cpu->sau_sregion = 8;
1516 cpu->id_pfr0 = 0x00000030;
1517 cpu->id_pfr1 = 0x00000210;
1518 cpu->id_dfr0 = 0x00200000;
1519 cpu->id_afr0 = 0x00000000;
1520 cpu->id_mmfr0 = 0x00101F40;
1521 cpu->id_mmfr1 = 0x00000000;
1522 cpu->id_mmfr2 = 0x01000000;
1523 cpu->id_mmfr3 = 0x00000000;
1524 cpu->isar.id_isar0 = 0x01101110;
1525 cpu->isar.id_isar1 = 0x02212000;
1526 cpu->isar.id_isar2 = 0x20232232;
1527 cpu->isar.id_isar3 = 0x01111131;
1528 cpu->isar.id_isar4 = 0x01310132;
1529 cpu->isar.id_isar5 = 0x00000000;
1530 cpu->isar.id_isar6 = 0x00000000;
1531 cpu->clidr = 0x00000000;
1532 cpu->ctr = 0x8000c000;
1535 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1537 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1538 CPUClass *cc = CPU_CLASS(oc);
1541 #ifndef CONFIG_USER_ONLY
1542 cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1545 cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1548 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1549 /* Dummy the TCM region regs for the moment */
1550 { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1551 .access = PL1_RW, .type = ARM_CP_CONST },
1552 { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1553 .access = PL1_RW, .type = ARM_CP_CONST },
1554 { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1555 .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1559 static void cortex_r5_initfn(Object *obj)
1561 ARMCPU *cpu = ARM_CPU(obj);
1563 set_feature(&cpu->env, ARM_FEATURE_V7);
1564 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1565 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1566 cpu->midr = 0x411fc153; /* r1p3 */
1567 cpu->id_pfr0 = 0x0131;
1568 cpu->id_pfr1 = 0x001;
1569 cpu->id_dfr0 = 0x010400;
1571 cpu->id_mmfr0 = 0x0210030;
1572 cpu->id_mmfr1 = 0x00000000;
1573 cpu->id_mmfr2 = 0x01200000;
1574 cpu->id_mmfr3 = 0x0211;
1575 cpu->isar.id_isar0 = 0x02101111;
1576 cpu->isar.id_isar1 = 0x13112111;
1577 cpu->isar.id_isar2 = 0x21232141;
1578 cpu->isar.id_isar3 = 0x01112131;
1579 cpu->isar.id_isar4 = 0x0010142;
1580 cpu->isar.id_isar5 = 0x0;
1581 cpu->isar.id_isar6 = 0x0;
1582 cpu->mp_is_up = true;
1583 cpu->pmsav7_dregion = 16;
1584 define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1587 static void cortex_r5f_initfn(Object *obj)
1589 ARMCPU *cpu = ARM_CPU(obj);
1591 cortex_r5_initfn(obj);
1592 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1595 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1596 { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1597 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1598 { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1599 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1603 static void cortex_a8_initfn(Object *obj)
1605 ARMCPU *cpu = ARM_CPU(obj);
1607 cpu->dtb_compatible = "arm,cortex-a8";
1608 set_feature(&cpu->env, ARM_FEATURE_V7);
1609 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1610 set_feature(&cpu->env, ARM_FEATURE_NEON);
1611 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1612 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1613 set_feature(&cpu->env, ARM_FEATURE_EL3);
1614 cpu->midr = 0x410fc080;
1615 cpu->reset_fpsid = 0x410330c0;
1616 cpu->isar.mvfr0 = 0x11110222;
1617 cpu->isar.mvfr1 = 0x00011111;
1618 cpu->ctr = 0x82048004;
1619 cpu->reset_sctlr = 0x00c50078;
1620 cpu->id_pfr0 = 0x1031;
1621 cpu->id_pfr1 = 0x11;
1622 cpu->id_dfr0 = 0x400;
1624 cpu->id_mmfr0 = 0x31100003;
1625 cpu->id_mmfr1 = 0x20000000;
1626 cpu->id_mmfr2 = 0x01202000;
1627 cpu->id_mmfr3 = 0x11;
1628 cpu->isar.id_isar0 = 0x00101111;
1629 cpu->isar.id_isar1 = 0x12112111;
1630 cpu->isar.id_isar2 = 0x21232031;
1631 cpu->isar.id_isar3 = 0x11112131;
1632 cpu->isar.id_isar4 = 0x00111142;
1633 cpu->dbgdidr = 0x15141000;
1634 cpu->clidr = (1 << 27) | (2 << 24) | 3;
1635 cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1636 cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1637 cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1638 cpu->reset_auxcr = 2;
1639 define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1642 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1643 /* power_control should be set to maximum latency. Again,
1644 * default to 0 and set by private hook
1646 { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1647 .access = PL1_RW, .resetvalue = 0,
1648 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1649 { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1650 .access = PL1_RW, .resetvalue = 0,
1651 .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1652 { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1653 .access = PL1_RW, .resetvalue = 0,
1654 .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1655 { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1656 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1657 /* TLB lockdown control */
1658 { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1659 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1660 { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1661 .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1662 { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1663 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1664 { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1665 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1666 { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1667 .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1671 static void cortex_a9_initfn(Object *obj)
1673 ARMCPU *cpu = ARM_CPU(obj);
1675 cpu->dtb_compatible = "arm,cortex-a9";
1676 set_feature(&cpu->env, ARM_FEATURE_V7);
1677 set_feature(&cpu->env, ARM_FEATURE_VFP3);
1678 set_feature(&cpu->env, ARM_FEATURE_NEON);
1679 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1680 set_feature(&cpu->env, ARM_FEATURE_EL3);
1681 /* Note that A9 supports the MP extensions even for
1682 * A9UP and single-core A9MP (which are both different
1683 * and valid configurations; we don't model A9UP).
1685 set_feature(&cpu->env, ARM_FEATURE_V7MP);
1686 set_feature(&cpu->env, ARM_FEATURE_CBAR);
1687 cpu->midr = 0x410fc090;
1688 cpu->reset_fpsid = 0x41033090;
1689 cpu->isar.mvfr0 = 0x11110222;
1690 cpu->isar.mvfr1 = 0x01111111;
1691 cpu->ctr = 0x80038003;
1692 cpu->reset_sctlr = 0x00c50078;
1693 cpu->id_pfr0 = 0x1031;
1694 cpu->id_pfr1 = 0x11;
1695 cpu->id_dfr0 = 0x000;
1697 cpu->id_mmfr0 = 0x00100103;
1698 cpu->id_mmfr1 = 0x20000000;
1699 cpu->id_mmfr2 = 0x01230000;
1700 cpu->id_mmfr3 = 0x00002111;
1701 cpu->isar.id_isar0 = 0x00101111;
1702 cpu->isar.id_isar1 = 0x13112111;
1703 cpu->isar.id_isar2 = 0x21232041;
1704 cpu->isar.id_isar3 = 0x11112131;
1705 cpu->isar.id_isar4 = 0x00111142;
1706 cpu->dbgdidr = 0x35141000;
1707 cpu->clidr = (1 << 27) | (1 << 24) | 3;
1708 cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1709 cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1710 define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1713 #ifndef CONFIG_USER_ONLY
1714 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 /* Linux wants the number of processors from here.
1717 * Might as well set the interrupt-controller bit too.
1719 return ((smp_cpus - 1) << 24) | (1 << 23);
1723 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1724 #ifndef CONFIG_USER_ONLY
1725 { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1726 .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1727 .writefn = arm_cp_write_ignore, },
1729 { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1730 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1734 static void cortex_a7_initfn(Object *obj)
1736 ARMCPU *cpu = ARM_CPU(obj);
1738 cpu->dtb_compatible = "arm,cortex-a7";
1739 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1740 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1741 set_feature(&cpu->env, ARM_FEATURE_NEON);
1742 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1743 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1744 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1745 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1746 set_feature(&cpu->env, ARM_FEATURE_EL2);
1747 set_feature(&cpu->env, ARM_FEATURE_EL3);
1748 set_feature(&cpu->env, ARM_FEATURE_PMU);
1749 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1750 cpu->midr = 0x410fc075;
1751 cpu->reset_fpsid = 0x41023075;
1752 cpu->isar.mvfr0 = 0x10110222;
1753 cpu->isar.mvfr1 = 0x11111111;
1754 cpu->ctr = 0x84448003;
1755 cpu->reset_sctlr = 0x00c50078;
1756 cpu->id_pfr0 = 0x00001131;
1757 cpu->id_pfr1 = 0x00011011;
1758 cpu->id_dfr0 = 0x02010555;
1759 cpu->id_afr0 = 0x00000000;
1760 cpu->id_mmfr0 = 0x10101105;
1761 cpu->id_mmfr1 = 0x40000000;
1762 cpu->id_mmfr2 = 0x01240000;
1763 cpu->id_mmfr3 = 0x02102211;
1764 /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1765 * table 4-41 gives 0x02101110, which includes the arm div insns.
1767 cpu->isar.id_isar0 = 0x02101110;
1768 cpu->isar.id_isar1 = 0x13112111;
1769 cpu->isar.id_isar2 = 0x21232041;
1770 cpu->isar.id_isar3 = 0x11112131;
1771 cpu->isar.id_isar4 = 0x10011142;
1772 cpu->dbgdidr = 0x3515f005;
1773 cpu->clidr = 0x0a200023;
1774 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1775 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1776 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1777 define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1780 static void cortex_a15_initfn(Object *obj)
1782 ARMCPU *cpu = ARM_CPU(obj);
1784 cpu->dtb_compatible = "arm,cortex-a15";
1785 set_feature(&cpu->env, ARM_FEATURE_V7VE);
1786 set_feature(&cpu->env, ARM_FEATURE_VFP4);
1787 set_feature(&cpu->env, ARM_FEATURE_NEON);
1788 set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1789 set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1790 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1791 set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1792 set_feature(&cpu->env, ARM_FEATURE_EL2);
1793 set_feature(&cpu->env, ARM_FEATURE_EL3);
1794 set_feature(&cpu->env, ARM_FEATURE_PMU);
1795 cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1796 cpu->midr = 0x412fc0f1;
1797 cpu->reset_fpsid = 0x410430f0;
1798 cpu->isar.mvfr0 = 0x10110222;
1799 cpu->isar.mvfr1 = 0x11111111;
1800 cpu->ctr = 0x8444c004;
1801 cpu->reset_sctlr = 0x00c50078;
1802 cpu->id_pfr0 = 0x00001131;
1803 cpu->id_pfr1 = 0x00011011;
1804 cpu->id_dfr0 = 0x02010555;
1805 cpu->id_afr0 = 0x00000000;
1806 cpu->id_mmfr0 = 0x10201105;
1807 cpu->id_mmfr1 = 0x20000000;
1808 cpu->id_mmfr2 = 0x01240000;
1809 cpu->id_mmfr3 = 0x02102211;
1810 cpu->isar.id_isar0 = 0x02101110;
1811 cpu->isar.id_isar1 = 0x13112111;
1812 cpu->isar.id_isar2 = 0x21232041;
1813 cpu->isar.id_isar3 = 0x11112131;
1814 cpu->isar.id_isar4 = 0x10011142;
1815 cpu->dbgdidr = 0x3515f021;
1816 cpu->clidr = 0x0a200023;
1817 cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1818 cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1819 cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1820 define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1823 static void ti925t_initfn(Object *obj)
1825 ARMCPU *cpu = ARM_CPU(obj);
1826 set_feature(&cpu->env, ARM_FEATURE_V4T);
1827 set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1828 cpu->midr = ARM_CPUID_TI925T;
1829 cpu->ctr = 0x5109149;
1830 cpu->reset_sctlr = 0x00000070;
1833 static void sa1100_initfn(Object *obj)
1835 ARMCPU *cpu = ARM_CPU(obj);
1837 cpu->dtb_compatible = "intel,sa1100";
1838 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1839 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1840 cpu->midr = 0x4401A11B;
1841 cpu->reset_sctlr = 0x00000070;
1844 static void sa1110_initfn(Object *obj)
1846 ARMCPU *cpu = ARM_CPU(obj);
1847 set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1848 set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1849 cpu->midr = 0x6901B119;
1850 cpu->reset_sctlr = 0x00000070;
1853 static void pxa250_initfn(Object *obj)
1855 ARMCPU *cpu = ARM_CPU(obj);
1857 cpu->dtb_compatible = "marvell,xscale";
1858 set_feature(&cpu->env, ARM_FEATURE_V5);
1859 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1860 cpu->midr = 0x69052100;
1861 cpu->ctr = 0xd172172;
1862 cpu->reset_sctlr = 0x00000078;
1865 static void pxa255_initfn(Object *obj)
1867 ARMCPU *cpu = ARM_CPU(obj);
1869 cpu->dtb_compatible = "marvell,xscale";
1870 set_feature(&cpu->env, ARM_FEATURE_V5);
1871 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1872 cpu->midr = 0x69052d00;
1873 cpu->ctr = 0xd172172;
1874 cpu->reset_sctlr = 0x00000078;
1877 static void pxa260_initfn(Object *obj)
1879 ARMCPU *cpu = ARM_CPU(obj);
1881 cpu->dtb_compatible = "marvell,xscale";
1882 set_feature(&cpu->env, ARM_FEATURE_V5);
1883 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1884 cpu->midr = 0x69052903;
1885 cpu->ctr = 0xd172172;
1886 cpu->reset_sctlr = 0x00000078;
1889 static void pxa261_initfn(Object *obj)
1891 ARMCPU *cpu = ARM_CPU(obj);
1893 cpu->dtb_compatible = "marvell,xscale";
1894 set_feature(&cpu->env, ARM_FEATURE_V5);
1895 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1896 cpu->midr = 0x69052d05;
1897 cpu->ctr = 0xd172172;
1898 cpu->reset_sctlr = 0x00000078;
1901 static void pxa262_initfn(Object *obj)
1903 ARMCPU *cpu = ARM_CPU(obj);
1905 cpu->dtb_compatible = "marvell,xscale";
1906 set_feature(&cpu->env, ARM_FEATURE_V5);
1907 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1908 cpu->midr = 0x69052d06;
1909 cpu->ctr = 0xd172172;
1910 cpu->reset_sctlr = 0x00000078;
1913 static void pxa270a0_initfn(Object *obj)
1915 ARMCPU *cpu = ARM_CPU(obj);
1917 cpu->dtb_compatible = "marvell,xscale";
1918 set_feature(&cpu->env, ARM_FEATURE_V5);
1919 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1920 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1921 cpu->midr = 0x69054110;
1922 cpu->ctr = 0xd172172;
1923 cpu->reset_sctlr = 0x00000078;
1926 static void pxa270a1_initfn(Object *obj)
1928 ARMCPU *cpu = ARM_CPU(obj);
1930 cpu->dtb_compatible = "marvell,xscale";
1931 set_feature(&cpu->env, ARM_FEATURE_V5);
1932 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1933 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1934 cpu->midr = 0x69054111;
1935 cpu->ctr = 0xd172172;
1936 cpu->reset_sctlr = 0x00000078;
1939 static void pxa270b0_initfn(Object *obj)
1941 ARMCPU *cpu = ARM_CPU(obj);
1943 cpu->dtb_compatible = "marvell,xscale";
1944 set_feature(&cpu->env, ARM_FEATURE_V5);
1945 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1946 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1947 cpu->midr = 0x69054112;
1948 cpu->ctr = 0xd172172;
1949 cpu->reset_sctlr = 0x00000078;
1952 static void pxa270b1_initfn(Object *obj)
1954 ARMCPU *cpu = ARM_CPU(obj);
1956 cpu->dtb_compatible = "marvell,xscale";
1957 set_feature(&cpu->env, ARM_FEATURE_V5);
1958 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1959 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1960 cpu->midr = 0x69054113;
1961 cpu->ctr = 0xd172172;
1962 cpu->reset_sctlr = 0x00000078;
1965 static void pxa270c0_initfn(Object *obj)
1967 ARMCPU *cpu = ARM_CPU(obj);
1969 cpu->dtb_compatible = "marvell,xscale";
1970 set_feature(&cpu->env, ARM_FEATURE_V5);
1971 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1972 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1973 cpu->midr = 0x69054114;
1974 cpu->ctr = 0xd172172;
1975 cpu->reset_sctlr = 0x00000078;
1978 static void pxa270c5_initfn(Object *obj)
1980 ARMCPU *cpu = ARM_CPU(obj);
1982 cpu->dtb_compatible = "marvell,xscale";
1983 set_feature(&cpu->env, ARM_FEATURE_V5);
1984 set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1985 set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1986 cpu->midr = 0x69054117;
1987 cpu->ctr = 0xd172172;
1988 cpu->reset_sctlr = 0x00000078;
1991 #ifndef TARGET_AARCH64
1992 /* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1993 * otherwise, a CPU with as many features enabled as our emulation supports.
1994 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1995 * this only needs to handle 32 bits.
1997 static void arm_max_initfn(Object *obj)
1999 ARMCPU *cpu = ARM_CPU(obj);
2001 if (kvm_enabled()) {
2002 kvm_arm_set_cpu_features_from_host(cpu);
2004 cortex_a15_initfn(obj);
2005 #ifdef CONFIG_USER_ONLY
2006 /* We don't set these in system emulation mode for the moment,
2007 * since we don't correctly set (all of) the ID registers to
2010 set_feature(&cpu->env, ARM_FEATURE_V8);
2014 t = cpu->isar.id_isar5;
2015 t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2016 t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2017 t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2018 t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2019 t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2020 t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2021 cpu->isar.id_isar5 = t;
2023 t = cpu->isar.id_isar6;
2024 t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2025 t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2026 t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2027 t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2028 t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2029 cpu->isar.id_isar6 = t;
2031 t = cpu->isar.mvfr2;
2032 t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2033 t = FIELD_DP32(t, MVFR2, FPMISC, 4); /* FP MaxNum */
2034 cpu->isar.mvfr2 = t;
2037 t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2045 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2049 void (*initfn)(Object *obj);
2050 void (*class_init)(ObjectClass *oc, void *data);
2053 static const ARMCPUInfo arm_cpus[] = {
2054 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2055 { .name = "arm926", .initfn = arm926_initfn },
2056 { .name = "arm946", .initfn = arm946_initfn },
2057 { .name = "arm1026", .initfn = arm1026_initfn },
2058 /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2059 * older core than plain "arm1136". In particular this does not
2060 * have the v6K features.
2062 { .name = "arm1136-r2", .initfn = arm1136_r2_initfn },
2063 { .name = "arm1136", .initfn = arm1136_initfn },
2064 { .name = "arm1176", .initfn = arm1176_initfn },
2065 { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2066 { .name = "cortex-m0", .initfn = cortex_m0_initfn,
2067 .class_init = arm_v7m_class_init },
2068 { .name = "cortex-m3", .initfn = cortex_m3_initfn,
2069 .class_init = arm_v7m_class_init },
2070 { .name = "cortex-m4", .initfn = cortex_m4_initfn,
2071 .class_init = arm_v7m_class_init },
2072 { .name = "cortex-m33", .initfn = cortex_m33_initfn,
2073 .class_init = arm_v7m_class_init },
2074 { .name = "cortex-r5", .initfn = cortex_r5_initfn },
2075 { .name = "cortex-r5f", .initfn = cortex_r5f_initfn },
2076 { .name = "cortex-a7", .initfn = cortex_a7_initfn },
2077 { .name = "cortex-a8", .initfn = cortex_a8_initfn },
2078 { .name = "cortex-a9", .initfn = cortex_a9_initfn },
2079 { .name = "cortex-a15", .initfn = cortex_a15_initfn },
2080 { .name = "ti925t", .initfn = ti925t_initfn },
2081 { .name = "sa1100", .initfn = sa1100_initfn },
2082 { .name = "sa1110", .initfn = sa1110_initfn },
2083 { .name = "pxa250", .initfn = pxa250_initfn },
2084 { .name = "pxa255", .initfn = pxa255_initfn },
2085 { .name = "pxa260", .initfn = pxa260_initfn },
2086 { .name = "pxa261", .initfn = pxa261_initfn },
2087 { .name = "pxa262", .initfn = pxa262_initfn },
2088 /* "pxa270" is an alias for "pxa270-a0" */
2089 { .name = "pxa270", .initfn = pxa270a0_initfn },
2090 { .name = "pxa270-a0", .initfn = pxa270a0_initfn },
2091 { .name = "pxa270-a1", .initfn = pxa270a1_initfn },
2092 { .name = "pxa270-b0", .initfn = pxa270b0_initfn },
2093 { .name = "pxa270-b1", .initfn = pxa270b1_initfn },
2094 { .name = "pxa270-c0", .initfn = pxa270c0_initfn },
2095 { .name = "pxa270-c5", .initfn = pxa270c5_initfn },
2096 #ifndef TARGET_AARCH64
2097 { .name = "max", .initfn = arm_max_initfn },
2099 #ifdef CONFIG_USER_ONLY
2100 { .name = "any", .initfn = arm_max_initfn },
2106 static Property arm_cpu_properties[] = {
2107 DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2108 DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2109 DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2110 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2111 mp_affinity, ARM64_AFFINITY_INVALID),
2112 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2113 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2114 DEFINE_PROP_END_OF_LIST()
2117 #ifdef CONFIG_USER_ONLY
2118 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2119 int rw, int mmu_idx)
2121 ARMCPU *cpu = ARM_CPU(cs);
2122 CPUARMState *env = &cpu->env;
2124 env->exception.vaddress = address;
2126 cs->exception_index = EXCP_PREFETCH_ABORT;
2128 cs->exception_index = EXCP_DATA_ABORT;
2134 static gchar *arm_gdb_arch_name(CPUState *cs)
2136 ARMCPU *cpu = ARM_CPU(cs);
2137 CPUARMState *env = &cpu->env;
2139 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2140 return g_strdup("iwmmxt");
2142 return g_strdup("arm");
2145 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2147 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2148 CPUClass *cc = CPU_CLASS(acc);
2149 DeviceClass *dc = DEVICE_CLASS(oc);
2151 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2152 &acc->parent_realize);
2153 dc->props = arm_cpu_properties;
2155 acc->parent_reset = cc->reset;
2156 cc->reset = arm_cpu_reset;
2158 cc->class_by_name = arm_cpu_class_by_name;
2159 cc->has_work = arm_cpu_has_work;
2160 cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2161 cc->dump_state = arm_cpu_dump_state;
2162 cc->set_pc = arm_cpu_set_pc;
2163 cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2164 cc->gdb_read_register = arm_cpu_gdb_read_register;
2165 cc->gdb_write_register = arm_cpu_gdb_write_register;
2166 #ifdef CONFIG_USER_ONLY
2167 cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2169 cc->do_interrupt = arm_cpu_do_interrupt;
2170 cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2171 cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2172 cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2173 cc->asidx_from_attrs = arm_asidx_from_attrs;
2174 cc->vmsd = &vmstate_arm_cpu;
2175 cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2176 cc->write_elf64_note = arm_cpu_write_elf64_note;
2177 cc->write_elf32_note = arm_cpu_write_elf32_note;
2179 cc->gdb_num_core_regs = 26;
2180 cc->gdb_core_xml_file = "arm-core.xml";
2181 cc->gdb_arch_name = arm_gdb_arch_name;
2182 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2183 cc->gdb_stop_before_watchpoint = true;
2184 cc->debug_excp_handler = arm_debug_excp_handler;
2185 cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2186 #if !defined(CONFIG_USER_ONLY)
2187 cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2190 cc->disas_set_info = arm_disas_set_info;
2192 cc->tcg_initialize = arm_translate_init;
2197 static void arm_host_initfn(Object *obj)
2199 ARMCPU *cpu = ARM_CPU(obj);
2201 kvm_arm_set_cpu_features_from_host(cpu);
2202 arm_cpu_post_init(obj);
2205 static const TypeInfo host_arm_cpu_type_info = {
2206 .name = TYPE_ARM_HOST_CPU,
2207 #ifdef TARGET_AARCH64
2208 .parent = TYPE_AARCH64_CPU,
2210 .parent = TYPE_ARM_CPU,
2212 .instance_init = arm_host_initfn,
2217 static void arm_cpu_instance_init(Object *obj)
2219 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2221 acc->info->initfn(obj);
2222 arm_cpu_post_init(obj);
2225 static void cpu_register_class_init(ObjectClass *oc, void *data)
2227 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2232 static void cpu_register(const ARMCPUInfo *info)
2234 TypeInfo type_info = {
2235 .parent = TYPE_ARM_CPU,
2236 .instance_size = sizeof(ARMCPU),
2237 .instance_init = arm_cpu_instance_init,
2238 .class_size = sizeof(ARMCPUClass),
2239 .class_init = info->class_init ?: cpu_register_class_init,
2240 .class_data = (void *)info,
2243 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2244 type_register(&type_info);
2245 g_free((void *)type_info.name);
2248 static const TypeInfo arm_cpu_type_info = {
2249 .name = TYPE_ARM_CPU,
2251 .instance_size = sizeof(ARMCPU),
2252 .instance_init = arm_cpu_initfn,
2253 .instance_finalize = arm_cpu_finalizefn,
2255 .class_size = sizeof(ARMCPUClass),
2256 .class_init = arm_cpu_class_init,
2259 static const TypeInfo idau_interface_type_info = {
2260 .name = TYPE_IDAU_INTERFACE,
2261 .parent = TYPE_INTERFACE,
2262 .class_size = sizeof(IDAUInterfaceClass),
2265 static void arm_cpu_register_types(void)
2267 const ARMCPUInfo *info = arm_cpus;
2269 type_register_static(&arm_cpu_type_info);
2270 type_register_static(&idau_interface_type_info);
2272 while (info->name) {
2278 type_register_static(&host_arm_cpu_type_info);
2282 type_init(arm_cpu_register_types)