4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
29 #include "host-utils.h"
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #define DPRINTF(fmt, ...) \
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
50 #define BUS_MCEERR_AR 4
53 #define BUS_MCEERR_AO 5
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
71 bool kvm_allows_irq0_override(void)
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
78 struct kvm_cpuid2 *cpuid;
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
101 struct kvm_para_features {
104 } para_features[] = {
105 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
106 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
107 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
108 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
112 static int get_para_features(KVMState *s)
116 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
117 if (kvm_check_extension(s, para_features[i].cap)) {
118 features |= (1 << para_features[i].feature);
126 /* Returns the value for a specific register on the cpuid entry
128 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
148 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
149 uint32_t index, int reg)
151 struct kvm_cpuid2 *cpuid;
154 uint32_t cpuid_1_edx;
158 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
162 for (i = 0; i < cpuid->nent; ++i) {
163 if (cpuid->entries[i].function == function &&
164 cpuid->entries[i].index == index) {
165 struct kvm_cpuid_entry2 *entry = &cpuid->entries[i];
167 ret = cpuid_entry_get_reg(entry, reg);
171 /* Fixups for the data returned by KVM, below */
176 /* KVM before 2.6.30 misreports the following features */
177 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
180 /* On Intel, kvm returns cpuid according to the Intel spec,
181 * so add missing bits according to the AMD spec:
183 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
184 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
191 /* fallback for older kernels */
192 if ((function == KVM_CPUID_FEATURES) && !found) {
193 ret = get_para_features(s);
199 typedef struct HWPoisonPage {
201 QLIST_ENTRY(HWPoisonPage) list;
204 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
205 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
207 static void kvm_unpoison_all(void *param)
209 HWPoisonPage *page, *next_page;
211 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
212 QLIST_REMOVE(page, list);
213 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
218 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
222 QLIST_FOREACH(page, &hwpoison_page_list, list) {
223 if (page->ram_addr == ram_addr) {
227 page = g_malloc(sizeof(HWPoisonPage));
228 page->ram_addr = ram_addr;
229 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
232 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
237 r = kvm_check_extension(s, KVM_CAP_MCE);
240 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
245 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
247 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
248 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
249 uint64_t mcg_status = MCG_STATUS_MCIP;
251 if (code == BUS_MCEERR_AR) {
252 status |= MCI_STATUS_AR | 0x134;
253 mcg_status |= MCG_STATUS_EIPV;
256 mcg_status |= MCG_STATUS_RIPV;
258 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
259 (MCM_ADDR_PHYS << 6) | 0xc,
260 cpu_x86_support_mca_broadcast(env) ?
261 MCE_INJECT_BROADCAST : 0);
264 static void hardware_memory_error(void)
266 fprintf(stderr, "Hardware memory error!\n");
270 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
275 if ((env->mcg_cap & MCG_SER_P) && addr
276 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
277 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
278 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
279 fprintf(stderr, "Hardware memory error for memory used by "
280 "QEMU itself instead of guest system!\n");
281 /* Hope we are lucky for AO MCE */
282 if (code == BUS_MCEERR_AO) {
285 hardware_memory_error();
288 kvm_hwpoison_page_add(ram_addr);
289 kvm_mce_inject(env, paddr, code);
291 if (code == BUS_MCEERR_AO) {
293 } else if (code == BUS_MCEERR_AR) {
294 hardware_memory_error();
302 int kvm_arch_on_sigbus(int code, void *addr)
304 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
308 /* Hope we are lucky for AO MCE */
309 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
310 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
312 fprintf(stderr, "Hardware memory error for memory used by "
313 "QEMU itself instead of guest system!: %p\n", addr);
316 kvm_hwpoison_page_add(ram_addr);
317 kvm_mce_inject(first_cpu, paddr, code);
319 if (code == BUS_MCEERR_AO) {
321 } else if (code == BUS_MCEERR_AR) {
322 hardware_memory_error();
330 static int kvm_inject_mce_oldstyle(CPUX86State *env)
332 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
333 unsigned int bank, bank_num = env->mcg_cap & 0xff;
334 struct kvm_x86_mce mce;
336 env->exception_injected = -1;
339 * There must be at least one bank in use if an MCE is pending.
340 * Find it and use its values for the event injection.
342 for (bank = 0; bank < bank_num; bank++) {
343 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
347 assert(bank < bank_num);
350 mce.status = env->mce_banks[bank * 4 + 1];
351 mce.mcg_status = env->mcg_status;
352 mce.addr = env->mce_banks[bank * 4 + 2];
353 mce.misc = env->mce_banks[bank * 4 + 3];
355 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
360 static void cpu_update_state(void *opaque, int running, RunState state)
362 CPUX86State *env = opaque;
365 env->tsc_valid = false;
369 int kvm_arch_init_vcpu(CPUX86State *env)
372 struct kvm_cpuid2 cpuid;
373 struct kvm_cpuid_entry2 entries[100];
374 } QEMU_PACKED cpuid_data;
375 KVMState *s = env->kvm_state;
376 uint32_t limit, i, j, cpuid_i;
378 struct kvm_cpuid_entry2 *c;
379 uint32_t signature[3];
382 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
384 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
385 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
386 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
387 env->cpuid_ext_features |= i;
388 if (j && kvm_irqchip_in_kernel() &&
389 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
390 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
393 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
395 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
397 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
402 /* Paravirtualization CPUIDs */
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_SIGNATURE;
406 if (!hyperv_enabled()) {
407 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
410 memcpy(signature, "Microsoft Hv", 12);
411 c->eax = HYPERV_CPUID_MIN;
413 c->ebx = signature[0];
414 c->ecx = signature[1];
415 c->edx = signature[2];
417 c = &cpuid_data.entries[cpuid_i++];
418 memset(c, 0, sizeof(*c));
419 c->function = KVM_CPUID_FEATURES;
420 c->eax = env->cpuid_kvm_features &
421 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
423 if (hyperv_enabled()) {
424 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
425 c->eax = signature[0];
427 c = &cpuid_data.entries[cpuid_i++];
428 memset(c, 0, sizeof(*c));
429 c->function = HYPERV_CPUID_VERSION;
433 c = &cpuid_data.entries[cpuid_i++];
434 memset(c, 0, sizeof(*c));
435 c->function = HYPERV_CPUID_FEATURES;
436 if (hyperv_relaxed_timing_enabled()) {
437 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
439 if (hyperv_vapic_recommended()) {
440 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
441 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
444 c = &cpuid_data.entries[cpuid_i++];
445 memset(c, 0, sizeof(*c));
446 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
447 if (hyperv_relaxed_timing_enabled()) {
448 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
450 if (hyperv_vapic_recommended()) {
451 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
453 c->ebx = hyperv_get_spinlock_retries();
455 c = &cpuid_data.entries[cpuid_i++];
456 memset(c, 0, sizeof(*c));
457 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
461 c = &cpuid_data.entries[cpuid_i++];
462 memset(c, 0, sizeof(*c));
463 c->function = KVM_CPUID_SIGNATURE_NEXT;
464 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
466 c->ebx = signature[0];
467 c->ecx = signature[1];
468 c->edx = signature[2];
471 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
473 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
475 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
477 for (i = 0; i <= limit; i++) {
478 c = &cpuid_data.entries[cpuid_i++];
482 /* Keep reading function 2 till all the input is received */
486 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
487 KVM_CPUID_FLAG_STATE_READ_NEXT;
488 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
489 times = c->eax & 0xff;
491 for (j = 1; j < times; ++j) {
492 c = &cpuid_data.entries[cpuid_i++];
494 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
495 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
503 if (i == 0xd && j == 64) {
507 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
509 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
511 if (i == 4 && c->eax == 0) {
514 if (i == 0xb && !(c->ecx & 0xff00)) {
517 if (i == 0xd && c->eax == 0) {
520 c = &cpuid_data.entries[cpuid_i++];
526 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
530 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
532 for (i = 0x80000000; i <= limit; i++) {
533 c = &cpuid_data.entries[cpuid_i++];
537 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
540 /* Call Centaur's CPUID instructions they are supported. */
541 if (env->cpuid_xlevel2 > 0) {
542 env->cpuid_ext4_features &=
543 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
544 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
546 for (i = 0xC0000000; i <= limit; i++) {
547 c = &cpuid_data.entries[cpuid_i++];
551 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
555 cpuid_data.cpuid.nent = cpuid_i;
557 if (((env->cpuid_version >> 8)&0xF) >= 6
558 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
559 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
564 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
566 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
570 if (banks > MCE_BANKS_DEF) {
571 banks = MCE_BANKS_DEF;
573 mcg_cap &= MCE_CAP_DEF;
575 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
577 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
581 env->mcg_cap = mcg_cap;
584 qemu_add_vm_change_state_handler(cpu_update_state, env);
586 cpuid_data.cpuid.padding = 0;
587 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
592 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
593 if (r && env->tsc_khz) {
594 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
596 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
601 if (kvm_has_xsave()) {
602 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
608 void kvm_arch_reset_vcpu(CPUX86State *env)
610 X86CPU *cpu = x86_env_get_cpu(env);
612 env->exception_injected = -1;
613 env->interrupt_injected = -1;
615 if (kvm_irqchip_in_kernel()) {
616 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
617 KVM_MP_STATE_UNINITIALIZED;
619 env->mp_state = KVM_MP_STATE_RUNNABLE;
623 static int kvm_get_supported_msrs(KVMState *s)
625 static int kvm_supported_msrs;
629 if (kvm_supported_msrs == 0) {
630 struct kvm_msr_list msr_list, *kvm_msr_list;
632 kvm_supported_msrs = -1;
634 /* Obtain MSR list from KVM. These are the MSRs that we must
637 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
638 if (ret < 0 && ret != -E2BIG) {
641 /* Old kernel modules had a bug and could write beyond the provided
642 memory. Allocate at least a safe amount of 1K. */
643 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
645 sizeof(msr_list.indices[0])));
647 kvm_msr_list->nmsrs = msr_list.nmsrs;
648 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
652 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
653 if (kvm_msr_list->indices[i] == MSR_STAR) {
657 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
658 has_msr_hsave_pa = true;
661 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
662 has_msr_tsc_deadline = true;
665 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
666 has_msr_misc_enable = true;
672 g_free(kvm_msr_list);
678 int kvm_arch_init(KVMState *s)
680 QemuOptsList *list = qemu_find_opts("machine");
681 uint64_t identity_base = 0xfffbc000;
684 struct utsname utsname;
686 ret = kvm_get_supported_msrs(s);
692 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
695 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
696 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
697 * Since these must be part of guest physical memory, we need to allocate
698 * them, both by setting their start addresses in the kernel and by
699 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
701 * Older KVM versions may not support setting the identity map base. In
702 * that case we need to stick with the default, i.e. a 256K maximum BIOS
705 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
706 /* Allows up to 16M BIOSes. */
707 identity_base = 0xfeffc000;
709 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
715 /* Set TSS base one page after EPT identity map. */
716 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
721 /* Tell fw_cfg to notify the BIOS to reserve the range. */
722 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
724 fprintf(stderr, "e820_add_entry() table is full\n");
727 qemu_register_reset(kvm_unpoison_all, NULL);
729 if (!QTAILQ_EMPTY(&list->head)) {
730 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
731 "kvm_shadow_mem", -1);
732 if (shadow_mem != -1) {
734 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
743 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
745 lhs->selector = rhs->selector;
746 lhs->base = rhs->base;
747 lhs->limit = rhs->limit;
759 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
761 unsigned flags = rhs->flags;
762 lhs->selector = rhs->selector;
763 lhs->base = rhs->base;
764 lhs->limit = rhs->limit;
765 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
766 lhs->present = (flags & DESC_P_MASK) != 0;
767 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
768 lhs->db = (flags >> DESC_B_SHIFT) & 1;
769 lhs->s = (flags & DESC_S_MASK) != 0;
770 lhs->l = (flags >> DESC_L_SHIFT) & 1;
771 lhs->g = (flags & DESC_G_MASK) != 0;
772 lhs->avl = (flags & DESC_AVL_MASK) != 0;
777 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
779 lhs->selector = rhs->selector;
780 lhs->base = rhs->base;
781 lhs->limit = rhs->limit;
782 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
783 (rhs->present * DESC_P_MASK) |
784 (rhs->dpl << DESC_DPL_SHIFT) |
785 (rhs->db << DESC_B_SHIFT) |
786 (rhs->s * DESC_S_MASK) |
787 (rhs->l << DESC_L_SHIFT) |
788 (rhs->g * DESC_G_MASK) |
789 (rhs->avl * DESC_AVL_MASK);
792 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
795 *kvm_reg = *qemu_reg;
797 *qemu_reg = *kvm_reg;
801 static int kvm_getput_regs(CPUX86State *env, int set)
803 struct kvm_regs regs;
807 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
813 kvm_getput_reg(®s.rax, &env->regs[R_EAX], set);
814 kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set);
815 kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set);
816 kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set);
817 kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set);
818 kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set);
819 kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set);
820 kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set);
822 kvm_getput_reg(®s.r8, &env->regs[8], set);
823 kvm_getput_reg(®s.r9, &env->regs[9], set);
824 kvm_getput_reg(®s.r10, &env->regs[10], set);
825 kvm_getput_reg(®s.r11, &env->regs[11], set);
826 kvm_getput_reg(®s.r12, &env->regs[12], set);
827 kvm_getput_reg(®s.r13, &env->regs[13], set);
828 kvm_getput_reg(®s.r14, &env->regs[14], set);
829 kvm_getput_reg(®s.r15, &env->regs[15], set);
832 kvm_getput_reg(®s.rflags, &env->eflags, set);
833 kvm_getput_reg(®s.rip, &env->eip, set);
836 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
842 static int kvm_put_fpu(CPUX86State *env)
847 memset(&fpu, 0, sizeof fpu);
848 fpu.fsw = env->fpus & ~(7 << 11);
849 fpu.fsw |= (env->fpstt & 7) << 11;
851 fpu.last_opcode = env->fpop;
852 fpu.last_ip = env->fpip;
853 fpu.last_dp = env->fpdp;
854 for (i = 0; i < 8; ++i) {
855 fpu.ftwx |= (!env->fptags[i]) << i;
857 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
858 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
859 fpu.mxcsr = env->mxcsr;
861 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
864 #define XSAVE_FCW_FSW 0
865 #define XSAVE_FTW_FOP 1
866 #define XSAVE_CWD_RIP 2
867 #define XSAVE_CWD_RDP 4
868 #define XSAVE_MXCSR 6
869 #define XSAVE_ST_SPACE 8
870 #define XSAVE_XMM_SPACE 40
871 #define XSAVE_XSTATE_BV 128
872 #define XSAVE_YMMH_SPACE 144
874 static int kvm_put_xsave(CPUX86State *env)
876 struct kvm_xsave* xsave = env->kvm_xsave_buf;
877 uint16_t cwd, swd, twd;
880 if (!kvm_has_xsave()) {
881 return kvm_put_fpu(env);
884 memset(xsave, 0, sizeof(struct kvm_xsave));
886 swd = env->fpus & ~(7 << 11);
887 swd |= (env->fpstt & 7) << 11;
889 for (i = 0; i < 8; ++i) {
890 twd |= (!env->fptags[i]) << i;
892 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
893 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
894 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
895 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
896 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
898 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
899 sizeof env->xmm_regs);
900 xsave->region[XSAVE_MXCSR] = env->mxcsr;
901 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
902 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
903 sizeof env->ymmh_regs);
904 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
908 static int kvm_put_xcrs(CPUX86State *env)
910 struct kvm_xcrs xcrs;
912 if (!kvm_has_xcrs()) {
918 xcrs.xcrs[0].xcr = 0;
919 xcrs.xcrs[0].value = env->xcr0;
920 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
923 static int kvm_put_sregs(CPUX86State *env)
925 struct kvm_sregs sregs;
927 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
928 if (env->interrupt_injected >= 0) {
929 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
930 (uint64_t)1 << (env->interrupt_injected % 64);
933 if ((env->eflags & VM_MASK)) {
934 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
935 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
936 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
937 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
938 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
939 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
941 set_seg(&sregs.cs, &env->segs[R_CS]);
942 set_seg(&sregs.ds, &env->segs[R_DS]);
943 set_seg(&sregs.es, &env->segs[R_ES]);
944 set_seg(&sregs.fs, &env->segs[R_FS]);
945 set_seg(&sregs.gs, &env->segs[R_GS]);
946 set_seg(&sregs.ss, &env->segs[R_SS]);
949 set_seg(&sregs.tr, &env->tr);
950 set_seg(&sregs.ldt, &env->ldt);
952 sregs.idt.limit = env->idt.limit;
953 sregs.idt.base = env->idt.base;
954 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
955 sregs.gdt.limit = env->gdt.limit;
956 sregs.gdt.base = env->gdt.base;
957 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
959 sregs.cr0 = env->cr[0];
960 sregs.cr2 = env->cr[2];
961 sregs.cr3 = env->cr[3];
962 sregs.cr4 = env->cr[4];
964 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
965 sregs.apic_base = cpu_get_apic_base(env->apic_state);
967 sregs.efer = env->efer;
969 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
972 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
973 uint32_t index, uint64_t value)
975 entry->index = index;
979 static int kvm_put_msrs(CPUX86State *env, int level)
982 struct kvm_msrs info;
983 struct kvm_msr_entry entries[100];
985 struct kvm_msr_entry *msrs = msr_data.entries;
988 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
989 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
990 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
991 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
993 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
995 if (has_msr_hsave_pa) {
996 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
998 if (has_msr_tsc_deadline) {
999 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1001 if (has_msr_misc_enable) {
1002 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1003 env->msr_ia32_misc_enable);
1005 #ifdef TARGET_X86_64
1006 if (lm_capable_kernel) {
1007 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1008 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1009 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1010 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1013 if (level == KVM_PUT_FULL_STATE) {
1015 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1016 * writeback. Until this is fixed, we only write the offset to SMP
1017 * guests after migration, desynchronizing the VCPUs, but avoiding
1018 * huge jump-backs that would occur without any writeback at all.
1020 if (smp_cpus == 1 || env->tsc != 0) {
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1025 * The following paravirtual MSRs have side effects on the guest or are
1026 * too heavy for normal writeback. Limit them to reset or full state
1029 if (level >= KVM_PUT_RESET_STATE) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1031 env->system_time_msr);
1032 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1033 if (has_msr_async_pf_en) {
1034 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1035 env->async_pf_en_msr);
1037 if (has_msr_pv_eoi_en) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1039 env->pv_eoi_en_msr);
1041 if (hyperv_hypercall_available()) {
1042 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1043 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1045 if (hyperv_vapic_recommended()) {
1046 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1052 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1053 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1054 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1055 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1059 msr_data.info.nmsrs = n;
1061 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1066 static int kvm_get_fpu(CPUX86State *env)
1071 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1076 env->fpstt = (fpu.fsw >> 11) & 7;
1077 env->fpus = fpu.fsw;
1078 env->fpuc = fpu.fcw;
1079 env->fpop = fpu.last_opcode;
1080 env->fpip = fpu.last_ip;
1081 env->fpdp = fpu.last_dp;
1082 for (i = 0; i < 8; ++i) {
1083 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1085 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1086 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1087 env->mxcsr = fpu.mxcsr;
1092 static int kvm_get_xsave(CPUX86State *env)
1094 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1096 uint16_t cwd, swd, twd;
1098 if (!kvm_has_xsave()) {
1099 return kvm_get_fpu(env);
1102 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1107 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1108 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1109 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1110 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1111 env->fpstt = (swd >> 11) & 7;
1114 for (i = 0; i < 8; ++i) {
1115 env->fptags[i] = !((twd >> i) & 1);
1117 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1118 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1119 env->mxcsr = xsave->region[XSAVE_MXCSR];
1120 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1121 sizeof env->fpregs);
1122 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1123 sizeof env->xmm_regs);
1124 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1125 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1126 sizeof env->ymmh_regs);
1130 static int kvm_get_xcrs(CPUX86State *env)
1133 struct kvm_xcrs xcrs;
1135 if (!kvm_has_xcrs()) {
1139 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1144 for (i = 0; i < xcrs.nr_xcrs; i++) {
1145 /* Only support xcr0 now */
1146 if (xcrs.xcrs[0].xcr == 0) {
1147 env->xcr0 = xcrs.xcrs[0].value;
1154 static int kvm_get_sregs(CPUX86State *env)
1156 struct kvm_sregs sregs;
1160 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1165 /* There can only be one pending IRQ set in the bitmap at a time, so try
1166 to find it and save its number instead (-1 for none). */
1167 env->interrupt_injected = -1;
1168 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1169 if (sregs.interrupt_bitmap[i]) {
1170 bit = ctz64(sregs.interrupt_bitmap[i]);
1171 env->interrupt_injected = i * 64 + bit;
1176 get_seg(&env->segs[R_CS], &sregs.cs);
1177 get_seg(&env->segs[R_DS], &sregs.ds);
1178 get_seg(&env->segs[R_ES], &sregs.es);
1179 get_seg(&env->segs[R_FS], &sregs.fs);
1180 get_seg(&env->segs[R_GS], &sregs.gs);
1181 get_seg(&env->segs[R_SS], &sregs.ss);
1183 get_seg(&env->tr, &sregs.tr);
1184 get_seg(&env->ldt, &sregs.ldt);
1186 env->idt.limit = sregs.idt.limit;
1187 env->idt.base = sregs.idt.base;
1188 env->gdt.limit = sregs.gdt.limit;
1189 env->gdt.base = sregs.gdt.base;
1191 env->cr[0] = sregs.cr0;
1192 env->cr[2] = sregs.cr2;
1193 env->cr[3] = sregs.cr3;
1194 env->cr[4] = sregs.cr4;
1196 env->efer = sregs.efer;
1198 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1200 #define HFLAG_COPY_MASK \
1201 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1202 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1203 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1204 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1206 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1207 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1208 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1209 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1210 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1211 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1212 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1214 if (env->efer & MSR_EFER_LMA) {
1215 hflags |= HF_LMA_MASK;
1218 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1219 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1221 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1222 (DESC_B_SHIFT - HF_CS32_SHIFT);
1223 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1224 (DESC_B_SHIFT - HF_SS32_SHIFT);
1225 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1226 !(hflags & HF_CS32_MASK)) {
1227 hflags |= HF_ADDSEG_MASK;
1229 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1230 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1233 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1238 static int kvm_get_msrs(CPUX86State *env)
1241 struct kvm_msrs info;
1242 struct kvm_msr_entry entries[100];
1244 struct kvm_msr_entry *msrs = msr_data.entries;
1248 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1249 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1250 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1251 msrs[n++].index = MSR_PAT;
1253 msrs[n++].index = MSR_STAR;
1255 if (has_msr_hsave_pa) {
1256 msrs[n++].index = MSR_VM_HSAVE_PA;
1258 if (has_msr_tsc_deadline) {
1259 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1261 if (has_msr_misc_enable) {
1262 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1265 if (!env->tsc_valid) {
1266 msrs[n++].index = MSR_IA32_TSC;
1267 env->tsc_valid = !runstate_is_running();
1270 #ifdef TARGET_X86_64
1271 if (lm_capable_kernel) {
1272 msrs[n++].index = MSR_CSTAR;
1273 msrs[n++].index = MSR_KERNELGSBASE;
1274 msrs[n++].index = MSR_FMASK;
1275 msrs[n++].index = MSR_LSTAR;
1278 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1279 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1280 if (has_msr_async_pf_en) {
1281 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1283 if (has_msr_pv_eoi_en) {
1284 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1288 msrs[n++].index = MSR_MCG_STATUS;
1289 msrs[n++].index = MSR_MCG_CTL;
1290 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1291 msrs[n++].index = MSR_MC0_CTL + i;
1295 msr_data.info.nmsrs = n;
1296 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1301 for (i = 0; i < ret; i++) {
1302 switch (msrs[i].index) {
1303 case MSR_IA32_SYSENTER_CS:
1304 env->sysenter_cs = msrs[i].data;
1306 case MSR_IA32_SYSENTER_ESP:
1307 env->sysenter_esp = msrs[i].data;
1309 case MSR_IA32_SYSENTER_EIP:
1310 env->sysenter_eip = msrs[i].data;
1313 env->pat = msrs[i].data;
1316 env->star = msrs[i].data;
1318 #ifdef TARGET_X86_64
1320 env->cstar = msrs[i].data;
1322 case MSR_KERNELGSBASE:
1323 env->kernelgsbase = msrs[i].data;
1326 env->fmask = msrs[i].data;
1329 env->lstar = msrs[i].data;
1333 env->tsc = msrs[i].data;
1335 case MSR_IA32_TSCDEADLINE:
1336 env->tsc_deadline = msrs[i].data;
1338 case MSR_VM_HSAVE_PA:
1339 env->vm_hsave = msrs[i].data;
1341 case MSR_KVM_SYSTEM_TIME:
1342 env->system_time_msr = msrs[i].data;
1344 case MSR_KVM_WALL_CLOCK:
1345 env->wall_clock_msr = msrs[i].data;
1347 case MSR_MCG_STATUS:
1348 env->mcg_status = msrs[i].data;
1351 env->mcg_ctl = msrs[i].data;
1353 case MSR_IA32_MISC_ENABLE:
1354 env->msr_ia32_misc_enable = msrs[i].data;
1357 if (msrs[i].index >= MSR_MC0_CTL &&
1358 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1359 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1362 case MSR_KVM_ASYNC_PF_EN:
1363 env->async_pf_en_msr = msrs[i].data;
1365 case MSR_KVM_PV_EOI_EN:
1366 env->pv_eoi_en_msr = msrs[i].data;
1374 static int kvm_put_mp_state(CPUX86State *env)
1376 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1378 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1381 static int kvm_get_mp_state(CPUX86State *env)
1383 struct kvm_mp_state mp_state;
1386 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1390 env->mp_state = mp_state.mp_state;
1391 if (kvm_irqchip_in_kernel()) {
1392 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1397 static int kvm_get_apic(CPUX86State *env)
1399 DeviceState *apic = env->apic_state;
1400 struct kvm_lapic_state kapic;
1403 if (apic && kvm_irqchip_in_kernel()) {
1404 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1409 kvm_get_apic_state(apic, &kapic);
1414 static int kvm_put_apic(CPUX86State *env)
1416 DeviceState *apic = env->apic_state;
1417 struct kvm_lapic_state kapic;
1419 if (apic && kvm_irqchip_in_kernel()) {
1420 kvm_put_apic_state(apic, &kapic);
1422 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1427 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1429 struct kvm_vcpu_events events;
1431 if (!kvm_has_vcpu_events()) {
1435 events.exception.injected = (env->exception_injected >= 0);
1436 events.exception.nr = env->exception_injected;
1437 events.exception.has_error_code = env->has_error_code;
1438 events.exception.error_code = env->error_code;
1439 events.exception.pad = 0;
1441 events.interrupt.injected = (env->interrupt_injected >= 0);
1442 events.interrupt.nr = env->interrupt_injected;
1443 events.interrupt.soft = env->soft_interrupt;
1445 events.nmi.injected = env->nmi_injected;
1446 events.nmi.pending = env->nmi_pending;
1447 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1450 events.sipi_vector = env->sipi_vector;
1453 if (level >= KVM_PUT_RESET_STATE) {
1455 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1458 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1461 static int kvm_get_vcpu_events(CPUX86State *env)
1463 struct kvm_vcpu_events events;
1466 if (!kvm_has_vcpu_events()) {
1470 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1474 env->exception_injected =
1475 events.exception.injected ? events.exception.nr : -1;
1476 env->has_error_code = events.exception.has_error_code;
1477 env->error_code = events.exception.error_code;
1479 env->interrupt_injected =
1480 events.interrupt.injected ? events.interrupt.nr : -1;
1481 env->soft_interrupt = events.interrupt.soft;
1483 env->nmi_injected = events.nmi.injected;
1484 env->nmi_pending = events.nmi.pending;
1485 if (events.nmi.masked) {
1486 env->hflags2 |= HF2_NMI_MASK;
1488 env->hflags2 &= ~HF2_NMI_MASK;
1491 env->sipi_vector = events.sipi_vector;
1496 static int kvm_guest_debug_workarounds(CPUX86State *env)
1499 unsigned long reinject_trap = 0;
1501 if (!kvm_has_vcpu_events()) {
1502 if (env->exception_injected == 1) {
1503 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1504 } else if (env->exception_injected == 3) {
1505 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1507 env->exception_injected = -1;
1511 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1512 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1513 * by updating the debug state once again if single-stepping is on.
1514 * Another reason to call kvm_update_guest_debug here is a pending debug
1515 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1516 * reinject them via SET_GUEST_DEBUG.
1518 if (reinject_trap ||
1519 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1520 ret = kvm_update_guest_debug(env, reinject_trap);
1525 static int kvm_put_debugregs(CPUX86State *env)
1527 struct kvm_debugregs dbgregs;
1530 if (!kvm_has_debugregs()) {
1534 for (i = 0; i < 4; i++) {
1535 dbgregs.db[i] = env->dr[i];
1537 dbgregs.dr6 = env->dr[6];
1538 dbgregs.dr7 = env->dr[7];
1541 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1544 static int kvm_get_debugregs(CPUX86State *env)
1546 struct kvm_debugregs dbgregs;
1549 if (!kvm_has_debugregs()) {
1553 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1557 for (i = 0; i < 4; i++) {
1558 env->dr[i] = dbgregs.db[i];
1560 env->dr[4] = env->dr[6] = dbgregs.dr6;
1561 env->dr[5] = env->dr[7] = dbgregs.dr7;
1566 int kvm_arch_put_registers(CPUX86State *env, int level)
1570 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1572 ret = kvm_getput_regs(env, 1);
1576 ret = kvm_put_xsave(env);
1580 ret = kvm_put_xcrs(env);
1584 ret = kvm_put_sregs(env);
1588 /* must be before kvm_put_msrs */
1589 ret = kvm_inject_mce_oldstyle(env);
1593 ret = kvm_put_msrs(env, level);
1597 if (level >= KVM_PUT_RESET_STATE) {
1598 ret = kvm_put_mp_state(env);
1602 ret = kvm_put_apic(env);
1607 ret = kvm_put_vcpu_events(env, level);
1611 ret = kvm_put_debugregs(env);
1616 ret = kvm_guest_debug_workarounds(env);
1623 int kvm_arch_get_registers(CPUX86State *env)
1627 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1629 ret = kvm_getput_regs(env, 0);
1633 ret = kvm_get_xsave(env);
1637 ret = kvm_get_xcrs(env);
1641 ret = kvm_get_sregs(env);
1645 ret = kvm_get_msrs(env);
1649 ret = kvm_get_mp_state(env);
1653 ret = kvm_get_apic(env);
1657 ret = kvm_get_vcpu_events(env);
1661 ret = kvm_get_debugregs(env);
1668 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1673 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1674 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1675 DPRINTF("injected NMI\n");
1676 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1678 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1683 if (!kvm_irqchip_in_kernel()) {
1684 /* Force the VCPU out of its inner loop to process any INIT requests
1685 * or pending TPR access reports. */
1686 if (env->interrupt_request &
1687 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1688 env->exit_request = 1;
1691 /* Try to inject an interrupt if the guest can accept it */
1692 if (run->ready_for_interrupt_injection &&
1693 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1694 (env->eflags & IF_MASK)) {
1697 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1698 irq = cpu_get_pic_interrupt(env);
1700 struct kvm_interrupt intr;
1703 DPRINTF("injected interrupt %d\n", irq);
1704 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1707 "KVM: injection failed, interrupt lost (%s)\n",
1713 /* If we have an interrupt but the guest is not ready to receive an
1714 * interrupt, request an interrupt window exit. This will
1715 * cause a return to userspace as soon as the guest is ready to
1716 * receive interrupts. */
1717 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1718 run->request_interrupt_window = 1;
1720 run->request_interrupt_window = 0;
1723 DPRINTF("setting tpr\n");
1724 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1728 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1731 env->eflags |= IF_MASK;
1733 env->eflags &= ~IF_MASK;
1735 cpu_set_apic_tpr(env->apic_state, run->cr8);
1736 cpu_set_apic_base(env->apic_state, run->apic_base);
1739 int kvm_arch_process_async_events(CPUX86State *env)
1741 X86CPU *cpu = x86_env_get_cpu(env);
1743 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1744 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1745 assert(env->mcg_cap);
1747 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1749 kvm_cpu_synchronize_state(env);
1751 if (env->exception_injected == EXCP08_DBLE) {
1752 /* this means triple fault */
1753 qemu_system_reset_request();
1754 env->exit_request = 1;
1757 env->exception_injected = EXCP12_MCHK;
1758 env->has_error_code = 0;
1761 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1762 env->mp_state = KVM_MP_STATE_RUNNABLE;
1766 if (kvm_irqchip_in_kernel()) {
1770 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1771 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1772 apic_poll_irq(env->apic_state);
1774 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1775 (env->eflags & IF_MASK)) ||
1776 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1779 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1780 kvm_cpu_synchronize_state(env);
1783 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1784 kvm_cpu_synchronize_state(env);
1787 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1788 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1789 kvm_cpu_synchronize_state(env);
1790 apic_handle_tpr_access_report(env->apic_state, env->eip,
1791 env->tpr_access_type);
1797 static int kvm_handle_halt(CPUX86State *env)
1799 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1800 (env->eflags & IF_MASK)) &&
1801 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1809 static int kvm_handle_tpr_access(CPUX86State *env)
1811 struct kvm_run *run = env->kvm_run;
1813 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1814 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1819 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1821 static const uint8_t int3 = 0xcc;
1823 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1824 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1830 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1834 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1835 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1847 static int nb_hw_breakpoint;
1849 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1853 for (n = 0; n < nb_hw_breakpoint; n++) {
1854 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1855 (hw_breakpoint[n].len == len || len == -1)) {
1862 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1863 target_ulong len, int type)
1866 case GDB_BREAKPOINT_HW:
1869 case GDB_WATCHPOINT_WRITE:
1870 case GDB_WATCHPOINT_ACCESS:
1877 if (addr & (len - 1)) {
1889 if (nb_hw_breakpoint == 4) {
1892 if (find_hw_breakpoint(addr, len, type) >= 0) {
1895 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1896 hw_breakpoint[nb_hw_breakpoint].len = len;
1897 hw_breakpoint[nb_hw_breakpoint].type = type;
1903 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1904 target_ulong len, int type)
1908 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1913 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1918 void kvm_arch_remove_all_hw_breakpoints(void)
1920 nb_hw_breakpoint = 0;
1923 static CPUWatchpoint hw_watchpoint;
1925 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1930 if (arch_info->exception == 1) {
1931 if (arch_info->dr6 & (1 << 14)) {
1932 if (cpu_single_env->singlestep_enabled) {
1936 for (n = 0; n < 4; n++) {
1937 if (arch_info->dr6 & (1 << n)) {
1938 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1944 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1945 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1946 hw_watchpoint.flags = BP_MEM_WRITE;
1950 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1951 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1952 hw_watchpoint.flags = BP_MEM_ACCESS;
1958 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1962 cpu_synchronize_state(cpu_single_env);
1963 assert(cpu_single_env->exception_injected == -1);
1966 cpu_single_env->exception_injected = arch_info->exception;
1967 cpu_single_env->has_error_code = 0;
1973 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1975 const uint8_t type_code[] = {
1976 [GDB_BREAKPOINT_HW] = 0x0,
1977 [GDB_WATCHPOINT_WRITE] = 0x1,
1978 [GDB_WATCHPOINT_ACCESS] = 0x3
1980 const uint8_t len_code[] = {
1981 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1985 if (kvm_sw_breakpoints_active(env)) {
1986 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1988 if (nb_hw_breakpoint > 0) {
1989 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1990 dbg->arch.debugreg[7] = 0x0600;
1991 for (n = 0; n < nb_hw_breakpoint; n++) {
1992 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1993 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1994 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1995 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2000 static bool host_supports_vmx(void)
2002 uint32_t ecx, unused;
2004 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2005 return ecx & CPUID_EXT_VMX;
2008 #define VMX_INVALID_GUEST_STATE 0x80000021
2010 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2015 switch (run->exit_reason) {
2017 DPRINTF("handle_hlt\n");
2018 ret = kvm_handle_halt(env);
2020 case KVM_EXIT_SET_TPR:
2023 case KVM_EXIT_TPR_ACCESS:
2024 ret = kvm_handle_tpr_access(env);
2026 case KVM_EXIT_FAIL_ENTRY:
2027 code = run->fail_entry.hardware_entry_failure_reason;
2028 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2030 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2032 "\nIf you're running a guest on an Intel machine without "
2033 "unrestricted mode\n"
2034 "support, the failure can be most likely due to the guest "
2035 "entering an invalid\n"
2036 "state for Intel VT. For example, the guest maybe running "
2037 "in big real mode\n"
2038 "which is not supported on less recent Intel processors."
2043 case KVM_EXIT_EXCEPTION:
2044 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2045 run->ex.exception, run->ex.error_code);
2048 case KVM_EXIT_DEBUG:
2049 DPRINTF("kvm_exit_debug\n");
2050 ret = kvm_handle_debug(&run->debug.arch);
2053 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2061 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2063 kvm_cpu_synchronize_state(env);
2064 return !(env->cr[0] & CR0_PE_MASK) ||
2065 ((env->segs[R_CS].selector & 3) != 3);
2068 void kvm_arch_init_irq_routing(KVMState *s)
2070 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2071 /* If kernel can't do irq routing, interrupt source
2072 * override 0->2 cannot be set up as required by HPET.
2073 * So we have to disable it.
2077 /* We know at this point that we're using the in-kernel
2078 * irqchip, so we can use irqfds, and on x86 we know
2079 * we can use msi via irqfd and GSI routing.
2081 kvm_irqfds_allowed = true;
2082 kvm_msi_via_irqfd_allowed = true;
2083 kvm_gsi_routing_allowed = true;
2086 /* Classic KVM device assignment interface. Will remain x86 only. */
2087 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2088 uint32_t flags, uint32_t *dev_id)
2090 struct kvm_assigned_pci_dev dev_data = {
2091 .segnr = dev_addr->domain,
2092 .busnr = dev_addr->bus,
2093 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2098 dev_data.assigned_dev_id =
2099 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2101 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2106 *dev_id = dev_data.assigned_dev_id;
2111 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2113 struct kvm_assigned_pci_dev dev_data = {
2114 .assigned_dev_id = dev_id,
2117 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2120 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2121 uint32_t irq_type, uint32_t guest_irq)
2123 struct kvm_assigned_irq assigned_irq = {
2124 .assigned_dev_id = dev_id,
2125 .guest_irq = guest_irq,
2129 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2130 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2132 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2136 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2139 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2140 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2142 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2145 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2147 struct kvm_assigned_pci_dev dev_data = {
2148 .assigned_dev_id = dev_id,
2149 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2152 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2155 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2158 struct kvm_assigned_irq assigned_irq = {
2159 .assigned_dev_id = dev_id,
2163 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2166 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2168 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2169 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2172 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2174 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2175 KVM_DEV_IRQ_GUEST_MSI, virq);
2178 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2180 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2181 KVM_DEV_IRQ_HOST_MSI);
2184 bool kvm_device_msix_supported(KVMState *s)
2186 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2187 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2188 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2191 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2192 uint32_t nr_vectors)
2194 struct kvm_assigned_msix_nr msix_nr = {
2195 .assigned_dev_id = dev_id,
2196 .entry_nr = nr_vectors,
2199 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2202 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2205 struct kvm_assigned_msix_entry msix_entry = {
2206 .assigned_dev_id = dev_id,
2211 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2214 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2216 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2217 KVM_DEV_IRQ_GUEST_MSIX, 0);
2220 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2222 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2223 KVM_DEV_IRQ_HOST_MSIX);