4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 #include "qemu/osdep.h"
25 #include "qemu-common.h"
26 #define NO_CPU_IO_DEFS
29 #include "disas/disas.h"
30 #include "exec/exec-all.h"
32 #if defined(CONFIG_USER_ONLY)
34 #include "exec/exec-all.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
41 #include <machine/profile.h>
50 #include "exec/address-spaces.h"
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
60 /* #define DEBUG_TB_INVALIDATE */
61 /* #define DEBUG_TB_FLUSH */
62 /* #define DEBUG_LOCKING */
63 /* make various TB consistency checks */
64 /* #define DEBUG_TB_CHECK */
66 #if !defined(CONFIG_USER_ONLY)
67 /* TB consistency checks only implemented for usermode emulation. */
71 /* Access to the various translations structures need to be serialised via locks
72 * for consistency. This is automatic for SoftMMU based system
73 * emulation due to its single threaded nature. In user-mode emulation
74 * access to the memory related structures are protected with the
78 #define DEBUG_MEM_LOCKS 1
80 #define DEBUG_MEM_LOCKS 0
84 #define assert_memory_lock() do { /* nothing */ } while (0)
86 #define assert_memory_lock() do { \
87 if (DEBUG_MEM_LOCKS) { \
88 g_assert(have_mmap_lock()); \
93 #define SMC_BITMAP_USE_THRESHOLD 10
95 typedef struct PageDesc {
96 /* list of TBs intersecting this ram page */
97 TranslationBlock *first_tb;
99 /* in order to optimize self modifying code, we count the number
100 of lookups we do to a given page to use a bitmap */
101 unsigned int code_write_count;
102 unsigned long *code_bitmap;
108 /* In system mode we want L1_MAP to be based on ram offsets,
109 while in user mode we want it to be based on virtual addresses. */
110 #if !defined(CONFIG_USER_ONLY)
111 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
112 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
114 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
117 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
120 /* Size of the L2 (and L3, etc) page tables. */
122 #define V_L2_SIZE (1 << V_L2_BITS)
124 uintptr_t qemu_host_page_size;
125 intptr_t qemu_host_page_mask;
128 * L1 Mapping properties
130 static int v_l1_size;
131 static int v_l1_shift;
132 static int v_l2_levels;
134 /* The bottom level has pointers to PageDesc, and is indexed by
135 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
137 #define V_L1_MIN_BITS 4
138 #define V_L1_MAX_BITS (V_L2_BITS + 3)
139 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
141 static void *l1_map[V_L1_MAX_SIZE];
143 /* code generation context */
147 /* translation block context */
148 #ifdef CONFIG_USER_ONLY
149 __thread int have_tb_lock;
152 static void page_table_config_init(void)
156 assert(TARGET_PAGE_BITS);
157 /* The bits remaining after N lower levels of page tables. */
158 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
159 if (v_l1_bits < V_L1_MIN_BITS) {
160 v_l1_bits += V_L2_BITS;
163 v_l1_size = 1 << v_l1_bits;
164 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
165 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
167 assert(v_l1_bits <= V_L1_MAX_BITS);
168 assert(v_l1_shift % V_L2_BITS == 0);
169 assert(v_l2_levels >= 0);
174 #ifdef CONFIG_USER_ONLY
175 assert(!have_tb_lock);
176 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
183 #ifdef CONFIG_USER_ONLY
184 assert(have_tb_lock);
186 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
190 void tb_lock_reset(void)
192 #ifdef CONFIG_USER_ONLY
194 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
201 #define DEBUG_TB_LOCKS 1
203 #define DEBUG_TB_LOCKS 0
206 #ifdef CONFIG_SOFTMMU
207 #define assert_tb_lock() do { /* nothing */ } while (0)
209 #define assert_tb_lock() do { \
210 if (DEBUG_TB_LOCKS) { \
211 g_assert(have_tb_lock); \
217 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
219 void cpu_gen_init(void)
221 tcg_context_init(&tcg_ctx);
224 /* Encode VAL as a signed leb128 sequence at P.
225 Return P incremented past the encoded value. */
226 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
233 more = !((val == 0 && (byte & 0x40) == 0)
234 || (val == -1 && (byte & 0x40) != 0));
244 /* Decode a signed leb128 sequence at *PP; increment *PP past the
245 decoded value. Return the decoded value. */
246 static target_long decode_sleb128(uint8_t **pp)
254 val |= (target_ulong)(byte & 0x7f) << shift;
256 } while (byte & 0x80);
257 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
258 val |= -(target_ulong)1 << shift;
265 /* Encode the data collected about the instructions while compiling TB.
266 Place the data at BLOCK, and return the number of bytes consumed.
268 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
269 which come from the target's insn_start data, followed by a uintptr_t
270 which comes from the host pc of the end of the code implementing the insn.
272 Each line of the table is encoded as sleb128 deltas from the previous
273 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
274 That is, the first column is seeded with the guest pc, the last column
275 with the host pc, and the middle columns with zeros. */
277 static int encode_search(TranslationBlock *tb, uint8_t *block)
279 uint8_t *highwater = tcg_ctx.code_gen_highwater;
283 tb->tc_search = block;
285 for (i = 0, n = tb->icount; i < n; ++i) {
288 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
290 prev = (j == 0 ? tb->pc : 0);
292 prev = tcg_ctx.gen_insn_data[i - 1][j];
294 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
296 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
297 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
299 /* Test for (pending) buffer overflow. The assumption is that any
300 one row beginning below the high water mark cannot overrun
301 the buffer completely. Thus we can test for overflow after
302 encoding a row without having to check during encoding. */
303 if (unlikely(p > highwater)) {
311 /* The cpu state corresponding to 'searched_pc' is restored.
312 * Called with tb_lock held.
314 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
315 uintptr_t searched_pc)
317 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
318 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
319 CPUArchState *env = cpu->env_ptr;
320 uint8_t *p = tb->tc_search;
321 int i, j, num_insns = tb->icount;
322 #ifdef CONFIG_PROFILER
323 int64_t ti = profile_getclock();
326 searched_pc -= GETPC_ADJ;
328 if (searched_pc < host_pc) {
332 /* Reconstruct the stored insn data while looking for the point at
333 which the end of the insn exceeds the searched_pc. */
334 for (i = 0; i < num_insns; ++i) {
335 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
336 data[j] += decode_sleb128(&p);
338 host_pc += decode_sleb128(&p);
339 if (host_pc > searched_pc) {
346 if (tb->cflags & CF_USE_ICOUNT) {
348 /* Reset the cycle counter to the start of the block. */
349 cpu->icount_decr.u16.low += num_insns;
350 /* Clear the IO flag. */
353 cpu->icount_decr.u16.low -= i;
354 restore_state_to_opc(env, tb, data);
356 #ifdef CONFIG_PROFILER
357 tcg_ctx.restore_time += profile_getclock() - ti;
358 tcg_ctx.restore_count++;
363 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
365 TranslationBlock *tb;
369 tb = tb_find_pc(retaddr);
371 cpu_restore_state_from_tb(cpu, tb, retaddr);
372 if (tb->cflags & CF_NOCACHE) {
373 /* one-shot translation, invalidate it immediately */
374 tb_phys_invalidate(tb, -1);
384 void page_size_init(void)
386 /* NOTE: we can always suppose that qemu_host_page_size >=
388 qemu_real_host_page_size = getpagesize();
389 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
390 if (qemu_host_page_size == 0) {
391 qemu_host_page_size = qemu_real_host_page_size;
393 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
394 qemu_host_page_size = TARGET_PAGE_SIZE;
396 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
399 static void page_init(void)
402 page_table_config_init();
404 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
406 #ifdef HAVE_KINFO_GETVMMAP
407 struct kinfo_vmentry *freep;
410 freep = kinfo_getvmmap(getpid(), &cnt);
413 for (i = 0; i < cnt; i++) {
414 unsigned long startaddr, endaddr;
416 startaddr = freep[i].kve_start;
417 endaddr = freep[i].kve_end;
418 if (h2g_valid(startaddr)) {
419 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
421 if (h2g_valid(endaddr)) {
422 endaddr = h2g(endaddr);
423 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
425 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
427 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
438 last_brk = (unsigned long)sbrk(0);
440 f = fopen("/compat/linux/proc/self/maps", "r");
445 unsigned long startaddr, endaddr;
448 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
450 if (n == 2 && h2g_valid(startaddr)) {
451 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
453 if (h2g_valid(endaddr)) {
454 endaddr = h2g(endaddr);
458 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
471 * Called with tb_lock held for system emulation.
472 * Called with mmap_lock held for user-mode emulation.
474 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
481 assert_memory_lock();
484 /* Level 1. Always allocated. */
485 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
488 for (i = v_l2_levels; i > 0; i--) {
489 void **p = atomic_rcu_read(lp);
495 p = g_new0(void *, V_L2_SIZE);
496 atomic_rcu_set(lp, p);
499 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
502 pd = atomic_rcu_read(lp);
507 pd = g_new0(PageDesc, V_L2_SIZE);
508 atomic_rcu_set(lp, pd);
511 return pd + (index & (V_L2_SIZE - 1));
514 static inline PageDesc *page_find(tb_page_addr_t index)
516 return page_find_alloc(index, 0);
519 #if defined(CONFIG_USER_ONLY)
520 /* Currently it is not recommended to allocate big chunks of data in
521 user mode. It will change when a dedicated libc will be used. */
522 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
523 region in which the guest needs to run. Revisit this. */
524 #define USE_STATIC_CODE_GEN_BUFFER
527 /* Minimum size of the code gen buffer. This number is randomly chosen,
528 but not so small that we can't have a fair number of TB's live. */
529 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
531 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
532 indicated, this is constrained by the range of direct branches on the
533 host cpu, as used by the TCG implementation of goto_tb. */
534 #if defined(__x86_64__)
535 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
536 #elif defined(__sparc__)
537 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
538 #elif defined(__powerpc64__)
539 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
540 #elif defined(__powerpc__)
541 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
542 #elif defined(__aarch64__)
543 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
544 #elif defined(__arm__)
545 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
546 #elif defined(__s390x__)
547 /* We have a +- 4GB range on the branches; leave some slop. */
548 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
549 #elif defined(__mips__)
550 /* We have a 256MB branch region, but leave room to make sure the
551 main executable is also within that region. */
552 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
554 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
557 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
559 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
560 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
561 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
563 static inline size_t size_code_gen_buffer(size_t tb_size)
565 /* Size the buffer. */
567 #ifdef USE_STATIC_CODE_GEN_BUFFER
568 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
570 /* ??? Needs adjustments. */
571 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
572 static buffer, we could size this on RESERVED_VA, on the text
573 segment size of the executable, or continue to use the default. */
574 tb_size = (unsigned long)(ram_size / 4);
577 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
578 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
580 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
581 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
587 /* In order to use J and JAL within the code_gen_buffer, we require
588 that the buffer not cross a 256MB boundary. */
589 static inline bool cross_256mb(void *addr, size_t size)
591 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
594 /* We weren't able to allocate a buffer without crossing that boundary,
595 so make do with the larger portion of the buffer that doesn't cross.
596 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
597 static inline void *split_cross_256mb(void *buf1, size_t size1)
599 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
600 size_t size2 = buf1 + size1 - buf2;
608 tcg_ctx.code_gen_buffer_size = size1;
613 #ifdef USE_STATIC_CODE_GEN_BUFFER
614 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
615 __attribute__((aligned(CODE_GEN_ALIGN)));
618 static inline void do_protect(void *addr, long size, int prot)
621 VirtualProtect(addr, size, prot, &old_protect);
624 static inline void map_exec(void *addr, long size)
626 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
629 static inline void map_none(void *addr, long size)
631 do_protect(addr, size, PAGE_NOACCESS);
634 static inline void do_protect(void *addr, long size, int prot)
636 uintptr_t start, end;
638 start = (uintptr_t)addr;
639 start &= qemu_real_host_page_mask;
641 end = (uintptr_t)addr + size;
642 end = ROUND_UP(end, qemu_real_host_page_size);
644 mprotect((void *)start, end - start, prot);
647 static inline void map_exec(void *addr, long size)
649 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
652 static inline void map_none(void *addr, long size)
654 do_protect(addr, size, PROT_NONE);
658 static inline void *alloc_code_gen_buffer(void)
660 void *buf = static_code_gen_buffer;
661 size_t full_size, size;
663 /* The size of the buffer, rounded down to end on a page boundary. */
664 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
665 & qemu_real_host_page_mask) - (uintptr_t)buf;
667 /* Reserve a guard page. */
668 size = full_size - qemu_real_host_page_size;
670 /* Honor a command-line option limiting the size of the buffer. */
671 if (size > tcg_ctx.code_gen_buffer_size) {
672 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
673 & qemu_real_host_page_mask) - (uintptr_t)buf;
675 tcg_ctx.code_gen_buffer_size = size;
678 if (cross_256mb(buf, size)) {
679 buf = split_cross_256mb(buf, size);
680 size = tcg_ctx.code_gen_buffer_size;
685 map_none(buf + size, qemu_real_host_page_size);
686 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
690 #elif defined(_WIN32)
691 static inline void *alloc_code_gen_buffer(void)
693 size_t size = tcg_ctx.code_gen_buffer_size;
696 /* Perform the allocation in two steps, so that the guard page
697 is reserved but uncommitted. */
698 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
699 MEM_RESERVE, PAGE_NOACCESS);
701 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
702 assert(buf1 == buf2);
708 static inline void *alloc_code_gen_buffer(void)
710 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
712 size_t size = tcg_ctx.code_gen_buffer_size;
715 /* Constrain the position of the buffer based on the host cpu.
716 Note that these addresses are chosen in concert with the
717 addresses assigned in the relevant linker script file. */
718 # if defined(__PIE__) || defined(__PIC__)
719 /* Don't bother setting a preferred location if we're building
720 a position-independent executable. We're more likely to get
721 an address near the main executable if we let the kernel
722 choose the address. */
723 # elif defined(__x86_64__) && defined(MAP_32BIT)
724 /* Force the memory down into low memory with the executable.
725 Leave the choice of exact location with the kernel. */
727 /* Cannot expect to map more than 800MB in low memory. */
728 if (size > 800u * 1024 * 1024) {
729 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
731 # elif defined(__sparc__)
732 start = 0x40000000ul;
733 # elif defined(__s390x__)
734 start = 0x90000000ul;
735 # elif defined(__mips__)
736 # if _MIPS_SIM == _ABI64
737 start = 0x128000000ul;
739 start = 0x08000000ul;
743 buf = mmap((void *)start, size + qemu_real_host_page_size,
744 PROT_NONE, flags, -1, 0);
745 if (buf == MAP_FAILED) {
750 if (cross_256mb(buf, size)) {
751 /* Try again, with the original still mapped, to avoid re-acquiring
752 that 256mb crossing. This time don't specify an address. */
754 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
755 PROT_NONE, flags, -1, 0);
756 switch (buf2 != MAP_FAILED) {
758 if (!cross_256mb(buf2, size)) {
759 /* Success! Use the new buffer. */
760 munmap(buf, size + qemu_real_host_page_size);
763 /* Failure. Work with what we had. */
764 munmap(buf2, size + qemu_real_host_page_size);
767 /* Split the original buffer. Free the smaller half. */
768 buf2 = split_cross_256mb(buf, size);
769 size2 = tcg_ctx.code_gen_buffer_size;
771 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
773 munmap(buf, size - size2);
782 /* Make the final buffer accessible. The guard page at the end
783 will remain inaccessible with PROT_NONE. */
784 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
786 /* Request large pages for the buffer. */
787 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
791 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
793 static inline void code_gen_alloc(size_t tb_size)
795 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
796 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
797 if (tcg_ctx.code_gen_buffer == NULL) {
798 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
802 /* Estimate a good size for the number of TBs we can support. We
803 still haven't deducted the prologue from the buffer size here,
804 but that's minimal and won't affect the estimate much. */
805 tcg_ctx.code_gen_max_blocks
806 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
807 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
809 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
812 static void tb_htable_init(void)
814 unsigned int mode = QHT_MODE_AUTO_RESIZE;
816 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
819 /* Must be called before using the QEMU cpus. 'tb_size' is the size
820 (in bytes) allocated to the translation buffer. Zero means default
822 void tcg_exec_init(unsigned long tb_size)
827 code_gen_alloc(tb_size);
828 #if defined(CONFIG_SOFTMMU)
829 /* There's no guest base to take into account, so go ahead and
830 initialize the prologue now. */
831 tcg_prologue_init(&tcg_ctx);
835 bool tcg_enabled(void)
837 return tcg_ctx.code_gen_buffer != NULL;
841 * Allocate a new translation block. Flush the translation buffer if
842 * too many translation blocks or too much generated code.
844 * Called with tb_lock held.
846 static TranslationBlock *tb_alloc(target_ulong pc)
848 TranslationBlock *tb;
852 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
855 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
862 /* Called with tb_lock held. */
863 void tb_free(TranslationBlock *tb)
867 /* In practice this is mostly used for single use temporary TB
868 Ignore the hard cases and just back up if this TB happens to
869 be the last one generated. */
870 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
871 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
872 tcg_ctx.code_gen_ptr = tb->tc_ptr;
873 tcg_ctx.tb_ctx.nb_tbs--;
877 static inline void invalidate_page_bitmap(PageDesc *p)
879 #ifdef CONFIG_SOFTMMU
880 g_free(p->code_bitmap);
881 p->code_bitmap = NULL;
882 p->code_write_count = 0;
886 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
887 static void page_flush_tb_1(int level, void **lp)
897 for (i = 0; i < V_L2_SIZE; ++i) {
898 pd[i].first_tb = NULL;
899 invalidate_page_bitmap(pd + i);
904 for (i = 0; i < V_L2_SIZE; ++i) {
905 page_flush_tb_1(level - 1, pp + i);
910 static void page_flush_tb(void)
912 int i, l1_sz = v_l1_size;
914 for (i = 0; i < l1_sz; i++) {
915 page_flush_tb_1(v_l2_levels, l1_map + i);
919 /* flush all the translation blocks */
920 static void do_tb_flush(CPUState *cpu, void *data)
922 unsigned tb_flush_req = (unsigned) (uintptr_t) data;
926 /* If it's already been done on request of another CPU,
929 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
933 #if defined(DEBUG_TB_FLUSH)
934 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
935 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
936 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
937 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
938 tcg_ctx.tb_ctx.nb_tbs : 0);
940 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
941 > tcg_ctx.code_gen_buffer_size) {
942 cpu_abort(cpu, "Internal error: code buffer overflow\n");
948 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
949 atomic_set(&cpu->tb_jmp_cache[i], NULL);
953 tcg_ctx.tb_ctx.nb_tbs = 0;
954 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
957 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
958 /* XXX: flush processor icache at this point if cache flush is
960 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
961 tcg_ctx.tb_ctx.tb_flush_count + 1);
967 void tb_flush(CPUState *cpu)
970 uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
971 async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
975 #ifdef DEBUG_TB_CHECK
978 do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
980 TranslationBlock *tb = p;
981 target_ulong addr = *(target_ulong *)userp;
983 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
984 printf("ERROR invalidate: address=" TARGET_FMT_lx
985 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
989 /* verify that all the pages have correct rights for code
991 * Called with tb_lock held.
993 static void tb_invalidate_check(target_ulong address)
995 address &= TARGET_PAGE_MASK;
996 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
1000 do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1002 TranslationBlock *tb = p;
1005 flags1 = page_get_flags(tb->pc);
1006 flags2 = page_get_flags(tb->pc + tb->size - 1);
1007 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1008 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1009 (long)tb->pc, tb->size, flags1, flags2);
1013 /* verify that all the pages have correct rights for code */
1014 static void tb_page_check(void)
1016 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
1021 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
1023 TranslationBlock *tb1;
1028 n1 = (uintptr_t)tb1 & 3;
1029 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1031 *ptb = tb1->page_next[n1];
1034 ptb = &tb1->page_next[n1];
1038 /* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1039 static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
1041 TranslationBlock *tb1;
1042 uintptr_t *ptb, ntb;
1045 ptb = &tb->jmp_list_next[n];
1047 /* find tb(n) in circular list */
1051 tb1 = (TranslationBlock *)(ntb & ~3);
1052 if (n1 == n && tb1 == tb) {
1056 ptb = &tb1->jmp_list_first;
1058 ptb = &tb1->jmp_list_next[n1];
1061 /* now we can suppress tb(n) from the list */
1062 *ptb = tb->jmp_list_next[n];
1064 tb->jmp_list_next[n] = (uintptr_t)NULL;
1068 /* reset the jump entry 'n' of a TB so that it is not chained to
1070 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1072 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1073 tb_set_jmp_target(tb, n, addr);
1076 /* remove any jumps to the TB */
1077 static inline void tb_jmp_unlink(TranslationBlock *tb)
1079 TranslationBlock *tb1;
1080 uintptr_t *ptb, ntb;
1083 ptb = &tb->jmp_list_first;
1087 tb1 = (TranslationBlock *)(ntb & ~3);
1091 tb_reset_jump(tb1, n1);
1092 *ptb = tb1->jmp_list_next[n1];
1093 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
1097 /* invalidate one TB
1099 * Called with tb_lock held.
1101 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1106 tb_page_addr_t phys_pc;
1110 atomic_set(&tb->invalid, true);
1112 /* remove the TB from the hash list */
1113 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1114 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1115 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
1117 /* remove the TB from the page list */
1118 if (tb->page_addr[0] != page_addr) {
1119 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1120 tb_page_remove(&p->first_tb, tb);
1121 invalidate_page_bitmap(p);
1123 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1124 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1125 tb_page_remove(&p->first_tb, tb);
1126 invalidate_page_bitmap(p);
1129 /* remove the TB from the hash list */
1130 h = tb_jmp_cache_hash_func(tb->pc);
1132 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1133 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1137 /* suppress this TB from the two jump lists */
1138 tb_remove_from_jmp_list(tb, 0);
1139 tb_remove_from_jmp_list(tb, 1);
1141 /* suppress any remaining jumps to this TB */
1144 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1147 #ifdef CONFIG_SOFTMMU
1148 static void build_page_bitmap(PageDesc *p)
1150 int n, tb_start, tb_end;
1151 TranslationBlock *tb;
1153 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1156 while (tb != NULL) {
1157 n = (uintptr_t)tb & 3;
1158 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1159 /* NOTE: this is subtle as a TB may span two physical pages */
1161 /* NOTE: tb_end may be after the end of the page, but
1162 it is not a problem */
1163 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1164 tb_end = tb_start + tb->size;
1165 if (tb_end > TARGET_PAGE_SIZE) {
1166 tb_end = TARGET_PAGE_SIZE;
1170 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1172 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1173 tb = tb->page_next[n];
1178 /* add the tb in the target page and protect it if necessary
1180 * Called with mmap_lock held for user-mode emulation.
1182 static inline void tb_alloc_page(TranslationBlock *tb,
1183 unsigned int n, tb_page_addr_t page_addr)
1186 #ifndef CONFIG_USER_ONLY
1187 bool page_already_protected;
1190 assert_memory_lock();
1192 tb->page_addr[n] = page_addr;
1193 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1194 tb->page_next[n] = p->first_tb;
1195 #ifndef CONFIG_USER_ONLY
1196 page_already_protected = p->first_tb != NULL;
1198 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1199 invalidate_page_bitmap(p);
1201 #if defined(CONFIG_USER_ONLY)
1202 if (p->flags & PAGE_WRITE) {
1207 /* force the host page as non writable (writes will have a
1208 page fault + mprotect overhead) */
1209 page_addr &= qemu_host_page_mask;
1211 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1212 addr += TARGET_PAGE_SIZE) {
1214 p2 = page_find(addr >> TARGET_PAGE_BITS);
1219 p2->flags &= ~PAGE_WRITE;
1221 mprotect(g2h(page_addr), qemu_host_page_size,
1222 (prot & PAGE_BITS) & ~PAGE_WRITE);
1223 #ifdef DEBUG_TB_INVALIDATE
1224 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1229 /* if some code is already present, then the pages are already
1230 protected. So we handle the case where only the first TB is
1231 allocated in a physical page */
1232 if (!page_already_protected) {
1233 tlb_protect_code(page_addr);
1238 /* add a new TB and link it to the physical page tables. phys_page2 is
1239 * (-1) to indicate that only one page contains the TB.
1241 * Called with mmap_lock held for user-mode emulation.
1243 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1244 tb_page_addr_t phys_page2)
1248 assert_memory_lock();
1250 /* add in the page list */
1251 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1252 if (phys_page2 != -1) {
1253 tb_alloc_page(tb, 1, phys_page2);
1255 tb->page_addr[1] = -1;
1258 /* add in the hash table */
1259 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1260 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1262 #ifdef DEBUG_TB_CHECK
1267 /* Called with mmap_lock held for user mode emulation. */
1268 TranslationBlock *tb_gen_code(CPUState *cpu,
1269 target_ulong pc, target_ulong cs_base,
1270 uint32_t flags, int cflags)
1272 CPUArchState *env = cpu->env_ptr;
1273 TranslationBlock *tb;
1274 tb_page_addr_t phys_pc, phys_page2;
1275 target_ulong virt_page2;
1276 tcg_insn_unit *gen_code_buf;
1277 int gen_code_size, search_size;
1278 #ifdef CONFIG_PROFILER
1281 assert_memory_lock();
1283 phys_pc = get_page_addr_code(env, pc);
1284 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1285 cflags |= CF_USE_ICOUNT;
1289 if (unlikely(!tb)) {
1291 /* flush must be done */
1297 gen_code_buf = tcg_ctx.code_gen_ptr;
1298 tb->tc_ptr = gen_code_buf;
1299 tb->cs_base = cs_base;
1301 tb->cflags = cflags;
1303 #ifdef CONFIG_PROFILER
1304 tcg_ctx.tb_count1++; /* includes aborted translations because of
1306 ti = profile_getclock();
1309 tcg_func_start(&tcg_ctx);
1311 tcg_ctx.cpu = ENV_GET_CPU(env);
1312 gen_intermediate_code(env, tb);
1315 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1317 /* generate machine code */
1318 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1319 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1320 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1321 #ifdef USE_DIRECT_JUMP
1322 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1323 tcg_ctx.tb_jmp_target_addr = NULL;
1325 tcg_ctx.tb_jmp_insn_offset = NULL;
1326 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1329 #ifdef CONFIG_PROFILER
1331 tcg_ctx.interm_time += profile_getclock() - ti;
1332 tcg_ctx.code_time -= profile_getclock();
1335 /* ??? Overflow could be handled better here. In particular, we
1336 don't need to re-do gen_intermediate_code, nor should we re-do
1337 the tcg optimization currently hidden inside tcg_gen_code. All
1338 that should be required is to flush the TBs, allocate a new TB,
1339 re-initialize it per above, and re-do the actual code generation. */
1340 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1341 if (unlikely(gen_code_size < 0)) {
1342 goto buffer_overflow;
1344 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1345 if (unlikely(search_size < 0)) {
1346 goto buffer_overflow;
1349 #ifdef CONFIG_PROFILER
1350 tcg_ctx.code_time += profile_getclock();
1351 tcg_ctx.code_in_len += tb->size;
1352 tcg_ctx.code_out_len += gen_code_size;
1353 tcg_ctx.search_out_len += search_size;
1357 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1358 qemu_log_in_addr_range(tb->pc)) {
1359 qemu_log("OUT: [size=%d]\n", gen_code_size);
1360 log_disas(tb->tc_ptr, gen_code_size);
1366 tcg_ctx.code_gen_ptr = (void *)
1367 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1370 /* init jump list */
1371 assert(((uintptr_t)tb & 3) == 0);
1372 tb->jmp_list_first = (uintptr_t)tb | 2;
1373 tb->jmp_list_next[0] = (uintptr_t)NULL;
1374 tb->jmp_list_next[1] = (uintptr_t)NULL;
1376 /* init original jump addresses wich has been set during tcg_gen_code() */
1377 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1378 tb_reset_jump(tb, 0);
1380 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1381 tb_reset_jump(tb, 1);
1384 /* check next page if needed */
1385 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1387 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1388 phys_page2 = get_page_addr_code(env, virt_page2);
1390 /* As long as consistency of the TB stuff is provided by tb_lock in user
1391 * mode and is implicit in single-threaded softmmu emulation, no explicit
1392 * memory barrier is required before tb_link_page() makes the TB visible
1393 * through the physical hash table and physical page list.
1395 tb_link_page(tb, phys_pc, phys_page2);
1400 * Invalidate all TBs which intersect with the target physical address range
1401 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1402 * 'is_cpu_write_access' should be true if called from a real cpu write
1403 * access: the virtual CPU will exit the current TB if code is modified inside
1406 * Called with mmap_lock held for user-mode emulation
1408 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1410 assert_memory_lock();
1412 while (start < end) {
1413 tb_invalidate_phys_page_range(start, end, 0);
1414 start &= TARGET_PAGE_MASK;
1415 start += TARGET_PAGE_SIZE;
1420 * Invalidate all TBs which intersect with the target physical address range
1421 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1422 * 'is_cpu_write_access' should be true if called from a real cpu write
1423 * access: the virtual CPU will exit the current TB if code is modified inside
1426 * Called with mmap_lock held for user-mode emulation
1428 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1429 int is_cpu_write_access)
1431 TranslationBlock *tb, *tb_next;
1432 #if defined(TARGET_HAS_PRECISE_SMC)
1433 CPUState *cpu = current_cpu;
1434 CPUArchState *env = NULL;
1436 tb_page_addr_t tb_start, tb_end;
1439 #ifdef TARGET_HAS_PRECISE_SMC
1440 int current_tb_not_found = is_cpu_write_access;
1441 TranslationBlock *current_tb = NULL;
1442 int current_tb_modified = 0;
1443 target_ulong current_pc = 0;
1444 target_ulong current_cs_base = 0;
1445 uint32_t current_flags = 0;
1446 #endif /* TARGET_HAS_PRECISE_SMC */
1448 assert_memory_lock();
1450 p = page_find(start >> TARGET_PAGE_BITS);
1454 #if defined(TARGET_HAS_PRECISE_SMC)
1460 /* we remove all the TBs in the range [start, end[ */
1461 /* XXX: see if in some cases it could be faster to invalidate all
1465 while (tb != NULL) {
1466 n = (uintptr_t)tb & 3;
1467 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1468 tb_next = tb->page_next[n];
1469 /* NOTE: this is subtle as a TB may span two physical pages */
1471 /* NOTE: tb_end may be after the end of the page, but
1472 it is not a problem */
1473 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1474 tb_end = tb_start + tb->size;
1476 tb_start = tb->page_addr[1];
1477 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1479 if (!(tb_end <= start || tb_start >= end)) {
1480 #ifdef TARGET_HAS_PRECISE_SMC
1481 if (current_tb_not_found) {
1482 current_tb_not_found = 0;
1484 if (cpu->mem_io_pc) {
1485 /* now we have a real cpu fault */
1486 current_tb = tb_find_pc(cpu->mem_io_pc);
1489 if (current_tb == tb &&
1490 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1491 /* If we are modifying the current TB, we must stop
1492 its execution. We could be more precise by checking
1493 that the modification is after the current PC, but it
1494 would require a specialized function to partially
1495 restore the CPU state */
1497 current_tb_modified = 1;
1498 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1499 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1502 #endif /* TARGET_HAS_PRECISE_SMC */
1503 tb_phys_invalidate(tb, -1);
1507 #if !defined(CONFIG_USER_ONLY)
1508 /* if no code remaining, no need to continue to use slow writes */
1510 invalidate_page_bitmap(p);
1511 tlb_unprotect_code(start);
1514 #ifdef TARGET_HAS_PRECISE_SMC
1515 if (current_tb_modified) {
1516 /* we generate a block containing just the instruction
1517 modifying the memory. It will ensure that it cannot modify
1519 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1520 cpu_loop_exit_noexc(cpu);
1526 #ifdef CONFIG_SOFTMMU
1527 /* len must be <= 8 and start must be a multiple of len */
1528 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1534 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1535 cpu_single_env->mem_io_vaddr, len,
1536 cpu_single_env->eip,
1537 cpu_single_env->eip +
1538 (intptr_t)cpu_single_env->segs[R_CS].base);
1541 p = page_find(start >> TARGET_PAGE_BITS);
1545 if (!p->code_bitmap &&
1546 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1547 /* build code bitmap. FIXME: writes should be protected by
1548 * tb_lock, reads by tb_lock or RCU.
1550 build_page_bitmap(p);
1552 if (p->code_bitmap) {
1556 nr = start & ~TARGET_PAGE_MASK;
1557 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1558 if (b & ((1 << len) - 1)) {
1563 tb_invalidate_phys_page_range(start, start + len, 1);
1567 /* Called with mmap_lock held. If pc is not 0 then it indicates the
1568 * host PC of the faulting store instruction that caused this invalidate.
1569 * Returns true if the caller needs to abort execution of the current
1570 * TB (because it was modified by this store and the guest CPU has
1571 * precise-SMC semantics).
1573 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
1575 TranslationBlock *tb;
1578 #ifdef TARGET_HAS_PRECISE_SMC
1579 TranslationBlock *current_tb = NULL;
1580 CPUState *cpu = current_cpu;
1581 CPUArchState *env = NULL;
1582 int current_tb_modified = 0;
1583 target_ulong current_pc = 0;
1584 target_ulong current_cs_base = 0;
1585 uint32_t current_flags = 0;
1588 addr &= TARGET_PAGE_MASK;
1589 p = page_find(addr >> TARGET_PAGE_BITS);
1596 #ifdef TARGET_HAS_PRECISE_SMC
1597 if (tb && pc != 0) {
1598 current_tb = tb_find_pc(pc);
1604 while (tb != NULL) {
1605 n = (uintptr_t)tb & 3;
1606 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1607 #ifdef TARGET_HAS_PRECISE_SMC
1608 if (current_tb == tb &&
1609 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1610 /* If we are modifying the current TB, we must stop
1611 its execution. We could be more precise by checking
1612 that the modification is after the current PC, but it
1613 would require a specialized function to partially
1614 restore the CPU state */
1616 current_tb_modified = 1;
1617 cpu_restore_state_from_tb(cpu, current_tb, pc);
1618 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1621 #endif /* TARGET_HAS_PRECISE_SMC */
1622 tb_phys_invalidate(tb, addr);
1623 tb = tb->page_next[n];
1626 #ifdef TARGET_HAS_PRECISE_SMC
1627 if (current_tb_modified) {
1628 /* we generate a block containing just the instruction
1629 modifying the memory. It will ensure that it cannot modify
1631 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1632 /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1633 * back into the cpu_exec loop. */
1643 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1644 tb[1].tc_ptr. Return NULL if not found */
1645 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1647 int m_min, m_max, m;
1649 TranslationBlock *tb;
1651 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1654 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1655 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1658 /* binary search (cf Knuth) */
1660 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1661 while (m_min <= m_max) {
1662 m = (m_min + m_max) >> 1;
1663 tb = &tcg_ctx.tb_ctx.tbs[m];
1664 v = (uintptr_t)tb->tc_ptr;
1667 } else if (tc_ptr < v) {
1673 return &tcg_ctx.tb_ctx.tbs[m_max];
1676 #if !defined(CONFIG_USER_ONLY)
1677 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1679 ram_addr_t ram_addr;
1684 mr = address_space_translate(as, addr, &addr, &l, false);
1685 if (!(memory_region_is_ram(mr)
1686 || memory_region_is_romd(mr))) {
1690 ram_addr = memory_region_get_ram_addr(mr) + addr;
1691 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1694 #endif /* !defined(CONFIG_USER_ONLY) */
1696 /* Called with tb_lock held. */
1697 void tb_check_watchpoint(CPUState *cpu)
1699 TranslationBlock *tb;
1701 tb = tb_find_pc(cpu->mem_io_pc);
1703 /* We can use retranslation to find the PC. */
1704 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1705 tb_phys_invalidate(tb, -1);
1707 /* The exception probably happened in a helper. The CPU state should
1708 have been saved before calling it. Fetch the PC from there. */
1709 CPUArchState *env = cpu->env_ptr;
1710 target_ulong pc, cs_base;
1711 tb_page_addr_t addr;
1714 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1715 addr = get_page_addr_code(env, pc);
1716 tb_invalidate_phys_range(addr, addr + 1);
1720 #ifndef CONFIG_USER_ONLY
1721 /* in deterministic execution mode, instructions doing device I/Os
1722 must be at the end of the TB */
1723 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1725 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1726 CPUArchState *env = cpu->env_ptr;
1728 TranslationBlock *tb;
1730 target_ulong pc, cs_base;
1734 tb = tb_find_pc(retaddr);
1736 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1739 n = cpu->icount_decr.u16.low + tb->icount;
1740 cpu_restore_state_from_tb(cpu, tb, retaddr);
1741 /* Calculate how many instructions had been executed before the fault
1743 n = n - cpu->icount_decr.u16.low;
1744 /* Generate a new TB ending on the I/O insn. */
1746 /* On MIPS and SH, delay slot instructions can only be restarted if
1747 they were already the first instruction in the TB. If this is not
1748 the first instruction in a TB then re-execute the preceding
1750 #if defined(TARGET_MIPS)
1751 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1752 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1753 cpu->icount_decr.u16.low++;
1754 env->hflags &= ~MIPS_HFLAG_BMASK;
1756 #elif defined(TARGET_SH4)
1757 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1760 cpu->icount_decr.u16.low++;
1761 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1764 /* This should never happen. */
1765 if (n > CF_COUNT_MASK) {
1766 cpu_abort(cpu, "TB too big during recompile");
1769 cflags = n | CF_LAST_IO;
1771 cs_base = tb->cs_base;
1773 tb_phys_invalidate(tb, -1);
1774 if (tb->cflags & CF_NOCACHE) {
1776 /* Invalidate original TB if this TB was generated in
1777 * cpu_exec_nocache() */
1778 tb_phys_invalidate(tb->orig_tb, -1);
1782 /* FIXME: In theory this could raise an exception. In practice
1783 we have already translated the block once so it's probably ok. */
1784 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1786 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1787 * the first in the TB) then we end up generating a whole new TB and
1788 * repeating the fault, which is horribly inefficient.
1789 * Better would be to execute just this insn uncached, or generate a
1792 * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1793 * tb_lock gets reset.
1795 cpu_loop_exit_noexc(cpu);
1798 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1802 /* Discard jump cache entries for any tb which might potentially
1803 overlap the flushed page. */
1804 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1805 memset(&cpu->tb_jmp_cache[i], 0,
1806 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1808 i = tb_jmp_cache_hash_page(addr);
1809 memset(&cpu->tb_jmp_cache[i], 0,
1810 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1813 static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1814 struct qht_stats hst)
1816 uint32_t hgram_opts;
1820 if (!hst.head_buckets) {
1823 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1824 hst.used_head_buckets, hst.head_buckets,
1825 (double)hst.used_head_buckets / hst.head_buckets * 100);
1827 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1828 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1829 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1830 hgram_opts |= QDIST_PR_NODECIMAL;
1832 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1833 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1834 qdist_avg(&hst.occupancy) * 100, hgram);
1837 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1838 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1839 if (hgram_bins > 10) {
1843 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1845 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1846 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1847 qdist_avg(&hst.chain), hgram);
1851 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1853 int i, target_code_size, max_target_code_size;
1854 int direct_jmp_count, direct_jmp2_count, cross_page;
1855 TranslationBlock *tb;
1856 struct qht_stats hst;
1860 target_code_size = 0;
1861 max_target_code_size = 0;
1863 direct_jmp_count = 0;
1864 direct_jmp2_count = 0;
1865 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1866 tb = &tcg_ctx.tb_ctx.tbs[i];
1867 target_code_size += tb->size;
1868 if (tb->size > max_target_code_size) {
1869 max_target_code_size = tb->size;
1871 if (tb->page_addr[1] != -1) {
1874 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1876 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1877 direct_jmp2_count++;
1881 /* XXX: avoid using doubles ? */
1882 cpu_fprintf(f, "Translation buffer state:\n");
1883 cpu_fprintf(f, "gen code size %td/%zd\n",
1884 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1885 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1886 cpu_fprintf(f, "TB count %d/%d\n",
1887 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1888 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1889 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1890 tcg_ctx.tb_ctx.nb_tbs : 0,
1891 max_target_code_size);
1892 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1893 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1894 tcg_ctx.code_gen_buffer) /
1895 tcg_ctx.tb_ctx.nb_tbs : 0,
1896 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1897 tcg_ctx.code_gen_buffer) /
1898 target_code_size : 0);
1899 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1900 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1901 tcg_ctx.tb_ctx.nb_tbs : 0);
1902 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1904 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1905 tcg_ctx.tb_ctx.nb_tbs : 0,
1907 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1908 tcg_ctx.tb_ctx.nb_tbs : 0);
1910 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
1911 print_qht_statistics(f, cpu_fprintf, hst);
1912 qht_statistics_destroy(&hst);
1914 cpu_fprintf(f, "\nStatistics:\n");
1915 cpu_fprintf(f, "TB flush count %u\n",
1916 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
1917 cpu_fprintf(f, "TB invalidate count %d\n",
1918 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1919 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1920 tcg_dump_info(f, cpu_fprintf);
1925 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1927 tcg_dump_op_count(f, cpu_fprintf);
1930 #else /* CONFIG_USER_ONLY */
1932 void cpu_interrupt(CPUState *cpu, int mask)
1934 cpu->interrupt_request |= mask;
1935 cpu->tcg_exit_req = 1;
1939 * Walks guest process memory "regions" one by one
1940 * and calls callback function 'fn' for each region.
1942 struct walk_memory_regions_data {
1943 walk_memory_regions_fn fn;
1949 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1950 target_ulong end, int new_prot)
1952 if (data->start != -1u) {
1953 int rc = data->fn(data->priv, data->start, end, data->prot);
1959 data->start = (new_prot ? end : -1u);
1960 data->prot = new_prot;
1965 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1966 target_ulong base, int level, void **lp)
1972 return walk_memory_regions_end(data, base, 0);
1978 for (i = 0; i < V_L2_SIZE; ++i) {
1979 int prot = pd[i].flags;
1981 pa = base | (i << TARGET_PAGE_BITS);
1982 if (prot != data->prot) {
1983 rc = walk_memory_regions_end(data, pa, prot);
1992 for (i = 0; i < V_L2_SIZE; ++i) {
1993 pa = base | ((target_ulong)i <<
1994 (TARGET_PAGE_BITS + V_L2_BITS * level));
1995 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2005 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2007 struct walk_memory_regions_data data;
2008 uintptr_t i, l1_sz = v_l1_size;
2015 for (i = 0; i < l1_sz; i++) {
2016 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2017 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2023 return walk_memory_regions_end(&data, 0, 0);
2026 static int dump_region(void *priv, target_ulong start,
2027 target_ulong end, unsigned long prot)
2029 FILE *f = (FILE *)priv;
2031 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2032 " "TARGET_FMT_lx" %c%c%c\n",
2033 start, end, end - start,
2034 ((prot & PAGE_READ) ? 'r' : '-'),
2035 ((prot & PAGE_WRITE) ? 'w' : '-'),
2036 ((prot & PAGE_EXEC) ? 'x' : '-'));
2041 /* dump memory mappings */
2042 void page_dump(FILE *f)
2044 const int length = sizeof(target_ulong) * 2;
2045 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2046 length, "start", length, "end", length, "size", "prot");
2047 walk_memory_regions(f, dump_region);
2050 int page_get_flags(target_ulong address)
2054 p = page_find(address >> TARGET_PAGE_BITS);
2061 /* Modify the flags of a page and invalidate the code if necessary.
2062 The flag PAGE_WRITE_ORG is positioned automatically depending
2063 on PAGE_WRITE. The mmap_lock should already be held. */
2064 void page_set_flags(target_ulong start, target_ulong end, int flags)
2066 target_ulong addr, len;
2068 /* This function should never be called with addresses outside the
2069 guest address space. If this assert fires, it probably indicates
2070 a missing call to h2g_valid. */
2071 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2072 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2074 assert(start < end);
2075 assert_memory_lock();
2077 start = start & TARGET_PAGE_MASK;
2078 end = TARGET_PAGE_ALIGN(end);
2080 if (flags & PAGE_WRITE) {
2081 flags |= PAGE_WRITE_ORG;
2084 for (addr = start, len = end - start;
2086 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2087 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2089 /* If the write protection bit is set, then we invalidate
2091 if (!(p->flags & PAGE_WRITE) &&
2092 (flags & PAGE_WRITE) &&
2094 tb_invalidate_phys_page(addr, 0);
2100 int page_check_range(target_ulong start, target_ulong len, int flags)
2106 /* This function should never be called with addresses outside the
2107 guest address space. If this assert fires, it probably indicates
2108 a missing call to h2g_valid. */
2109 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2110 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2116 if (start + len - 1 < start) {
2117 /* We've wrapped around. */
2121 /* must do before we loose bits in the next step */
2122 end = TARGET_PAGE_ALIGN(start + len);
2123 start = start & TARGET_PAGE_MASK;
2125 for (addr = start, len = end - start;
2127 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2128 p = page_find(addr >> TARGET_PAGE_BITS);
2132 if (!(p->flags & PAGE_VALID)) {
2136 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2139 if (flags & PAGE_WRITE) {
2140 if (!(p->flags & PAGE_WRITE_ORG)) {
2143 /* unprotect the page if it was put read-only because it
2144 contains translated code */
2145 if (!(p->flags & PAGE_WRITE)) {
2146 if (!page_unprotect(addr, 0)) {
2155 /* called from signal handler: invalidate the code and unprotect the
2156 * page. Return 0 if the fault was not handled, 1 if it was handled,
2157 * and 2 if it was handled but the caller must cause the TB to be
2158 * immediately exited. (We can only return 2 if the 'pc' argument is
2161 int page_unprotect(target_ulong address, uintptr_t pc)
2164 bool current_tb_invalidated;
2166 target_ulong host_start, host_end, addr;
2168 /* Technically this isn't safe inside a signal handler. However we
2169 know this only ever happens in a synchronous SEGV handler, so in
2170 practice it seems to be ok. */
2173 p = page_find(address >> TARGET_PAGE_BITS);
2179 /* if the page was really writable, then we change its
2180 protection back to writable */
2181 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2182 host_start = address & qemu_host_page_mask;
2183 host_end = host_start + qemu_host_page_size;
2186 current_tb_invalidated = false;
2187 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2188 p = page_find(addr >> TARGET_PAGE_BITS);
2189 p->flags |= PAGE_WRITE;
2192 /* and since the content will be modified, we must invalidate
2193 the corresponding translated code. */
2194 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2195 #ifdef DEBUG_TB_CHECK
2196 tb_invalidate_check(addr);
2199 mprotect((void *)g2h(host_start), qemu_host_page_size,
2203 /* If current TB was invalidated return to main loop */
2204 return current_tb_invalidated ? 2 : 1;
2209 #endif /* CONFIG_USER_ONLY */