]> Git Repo - qemu.git/blame - translate-all.c
target-arm/arm-powerctl: wake up sleeping CPUs
[qemu.git] / translate-all.c
CommitLineData
d19893da
FB
1/*
2 * Host code generation
5fafdf24 3 *
d19893da
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
d19893da 18 */
5b6dd868
BS
19#ifdef _WIN32
20#include <windows.h>
5b6dd868 21#endif
7b31bbc2 22#include "qemu/osdep.h"
d19893da 23
2054396a 24
5b6dd868 25#include "qemu-common.h"
af5ad107 26#define NO_CPU_IO_DEFS
d3eead2e 27#include "cpu.h"
6db8b538 28#include "trace.h"
76cad711 29#include "disas/disas.h"
63c91552 30#include "exec/exec-all.h"
57fec1fe 31#include "tcg.h"
5b6dd868
BS
32#if defined(CONFIG_USER_ONLY)
33#include "qemu.h"
301e40ed 34#include "exec/exec-all.h"
5b6dd868
BS
35#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36#include <sys/param.h>
37#if __FreeBSD_version >= 700104
38#define HAVE_KINFO_GETVMMAP
39#define sigqueue sigqueue_freebsd /* avoid redefinition */
5b6dd868
BS
40#include <sys/proc.h>
41#include <machine/profile.h>
42#define _KERNEL
43#include <sys/user.h>
44#undef _KERNEL
45#undef sigqueue
46#include <libutil.h>
47#endif
48#endif
0bc3cd62
PB
49#else
50#include "exec/address-spaces.h"
5b6dd868
BS
51#endif
52
022c62cb 53#include "exec/cputlb.h"
e1b89321 54#include "exec/tb-hash.h"
5b6dd868 55#include "translate-all.h"
510a647f 56#include "qemu/bitmap.h"
0aa09897 57#include "qemu/timer.h"
508127e2 58#include "exec/log.h"
5b6dd868 59
955939a2
AB
60/* #define DEBUG_TB_INVALIDATE */
61/* #define DEBUG_TB_FLUSH */
301e40ed 62/* #define DEBUG_LOCKING */
5b6dd868 63/* make various TB consistency checks */
955939a2 64/* #define DEBUG_TB_CHECK */
5b6dd868
BS
65
66#if !defined(CONFIG_USER_ONLY)
67/* TB consistency checks only implemented for usermode emulation. */
68#undef DEBUG_TB_CHECK
69#endif
70
301e40ed
AB
71/* Access to the various translations structures need to be serialised via locks
72 * for consistency. This is automatic for SoftMMU based system
73 * emulation due to its single threaded nature. In user-mode emulation
74 * access to the memory related structures are protected with the
75 * mmap_lock.
76 */
77#ifdef DEBUG_LOCKING
78#define DEBUG_MEM_LOCKS 1
79#else
80#define DEBUG_MEM_LOCKS 0
81#endif
82
83#ifdef CONFIG_SOFTMMU
84#define assert_memory_lock() do { /* nothing */ } while (0)
85#else
86#define assert_memory_lock() do { \
87 if (DEBUG_MEM_LOCKS) { \
88 g_assert(have_mmap_lock()); \
89 } \
90 } while (0)
91#endif
92
5b6dd868
BS
93#define SMC_BITMAP_USE_THRESHOLD 10
94
5b6dd868
BS
95typedef struct PageDesc {
96 /* list of TBs intersecting this ram page */
97 TranslationBlock *first_tb;
6fad459c 98#ifdef CONFIG_SOFTMMU
5b6dd868
BS
99 /* in order to optimize self modifying code, we count the number
100 of lookups we do to a given page to use a bitmap */
101 unsigned int code_write_count;
510a647f 102 unsigned long *code_bitmap;
6fad459c 103#else
5b6dd868
BS
104 unsigned long flags;
105#endif
106} PageDesc;
107
108/* In system mode we want L1_MAP to be based on ram offsets,
109 while in user mode we want it to be based on virtual addresses. */
110#if !defined(CONFIG_USER_ONLY)
111#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
112# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
113#else
114# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
115#endif
116#else
117# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
118#endif
119
03f49957
PB
120/* Size of the L2 (and L3, etc) page tables. */
121#define V_L2_BITS 10
122#define V_L2_SIZE (1 << V_L2_BITS)
123
5b6dd868 124uintptr_t qemu_host_page_size;
0c2d70c4 125intptr_t qemu_host_page_mask;
5b6dd868 126
66ec9f49
VK
127/*
128 * L1 Mapping properties
129 */
130static int v_l1_size;
131static int v_l1_shift;
132static int v_l2_levels;
133
134/* The bottom level has pointers to PageDesc, and is indexed by
135 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
136 */
137#define V_L1_MIN_BITS 4
138#define V_L1_MAX_BITS (V_L2_BITS + 3)
139#define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
140
141static void *l1_map[V_L1_MAX_SIZE];
5b6dd868 142
57fec1fe
FB
143/* code generation context */
144TCGContext tcg_ctx;
fdbc2b57 145bool parallel_cpus;
d19893da 146
677ef623
FK
147/* translation block context */
148#ifdef CONFIG_USER_ONLY
149__thread int have_tb_lock;
150#endif
151
66ec9f49
VK
152static void page_table_config_init(void)
153{
154 uint32_t v_l1_bits;
155
156 assert(TARGET_PAGE_BITS);
157 /* The bits remaining after N lower levels of page tables. */
158 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
159 if (v_l1_bits < V_L1_MIN_BITS) {
160 v_l1_bits += V_L2_BITS;
161 }
162
163 v_l1_size = 1 << v_l1_bits;
164 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
165 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
166
167 assert(v_l1_bits <= V_L1_MAX_BITS);
168 assert(v_l1_shift % V_L2_BITS == 0);
169 assert(v_l2_levels >= 0);
170}
171
677ef623
FK
172void tb_lock(void)
173{
174#ifdef CONFIG_USER_ONLY
175 assert(!have_tb_lock);
176 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
177 have_tb_lock++;
178#endif
179}
180
181void tb_unlock(void)
182{
183#ifdef CONFIG_USER_ONLY
184 assert(have_tb_lock);
185 have_tb_lock--;
186 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
187#endif
188}
189
190void tb_lock_reset(void)
191{
192#ifdef CONFIG_USER_ONLY
193 if (have_tb_lock) {
194 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
195 have_tb_lock = 0;
196 }
197#endif
198}
199
301e40ed
AB
200#ifdef DEBUG_LOCKING
201#define DEBUG_TB_LOCKS 1
202#else
203#define DEBUG_TB_LOCKS 0
204#endif
205
206#ifdef CONFIG_SOFTMMU
207#define assert_tb_lock() do { /* nothing */ } while (0)
208#else
209#define assert_tb_lock() do { \
210 if (DEBUG_TB_LOCKS) { \
211 g_assert(have_tb_lock); \
212 } \
213 } while (0)
214#endif
215
216
a8a826a3 217static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
5b6dd868 218
57fec1fe
FB
219void cpu_gen_init(void)
220{
221 tcg_context_init(&tcg_ctx);
57fec1fe
FB
222}
223
fca8a500
RH
224/* Encode VAL as a signed leb128 sequence at P.
225 Return P incremented past the encoded value. */
226static uint8_t *encode_sleb128(uint8_t *p, target_long val)
227{
228 int more, byte;
229
230 do {
231 byte = val & 0x7f;
232 val >>= 7;
233 more = !((val == 0 && (byte & 0x40) == 0)
234 || (val == -1 && (byte & 0x40) != 0));
235 if (more) {
236 byte |= 0x80;
237 }
238 *p++ = byte;
239 } while (more);
240
241 return p;
242}
243
244/* Decode a signed leb128 sequence at *PP; increment *PP past the
245 decoded value. Return the decoded value. */
246static target_long decode_sleb128(uint8_t **pp)
247{
248 uint8_t *p = *pp;
249 target_long val = 0;
250 int byte, shift = 0;
251
252 do {
253 byte = *p++;
254 val |= (target_ulong)(byte & 0x7f) << shift;
255 shift += 7;
256 } while (byte & 0x80);
257 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
258 val |= -(target_ulong)1 << shift;
259 }
260
261 *pp = p;
262 return val;
263}
264
265/* Encode the data collected about the instructions while compiling TB.
266 Place the data at BLOCK, and return the number of bytes consumed.
267
268 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
269 which come from the target's insn_start data, followed by a uintptr_t
270 which comes from the host pc of the end of the code implementing the insn.
271
272 Each line of the table is encoded as sleb128 deltas from the previous
273 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
274 That is, the first column is seeded with the guest pc, the last column
275 with the host pc, and the middle columns with zeros. */
276
277static int encode_search(TranslationBlock *tb, uint8_t *block)
278{
b125f9dc 279 uint8_t *highwater = tcg_ctx.code_gen_highwater;
fca8a500
RH
280 uint8_t *p = block;
281 int i, j, n;
282
283 tb->tc_search = block;
284
285 for (i = 0, n = tb->icount; i < n; ++i) {
286 target_ulong prev;
287
288 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
289 if (i == 0) {
290 prev = (j == 0 ? tb->pc : 0);
291 } else {
292 prev = tcg_ctx.gen_insn_data[i - 1][j];
293 }
294 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
295 }
296 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
297 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
b125f9dc
RH
298
299 /* Test for (pending) buffer overflow. The assumption is that any
300 one row beginning below the high water mark cannot overrun
301 the buffer completely. Thus we can test for overflow after
302 encoding a row without having to check during encoding. */
303 if (unlikely(p > highwater)) {
304 return -1;
305 }
fca8a500
RH
306 }
307
308 return p - block;
309}
310
7d7500d9
PB
311/* The cpu state corresponding to 'searched_pc' is restored.
312 * Called with tb_lock held.
313 */
74f10515 314static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
a8a826a3 315 uintptr_t searched_pc)
d19893da 316{
fca8a500
RH
317 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
318 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
74f10515 319 CPUArchState *env = cpu->env_ptr;
fca8a500
RH
320 uint8_t *p = tb->tc_search;
321 int i, j, num_insns = tb->icount;
57fec1fe 322#ifdef CONFIG_PROFILER
fca8a500 323 int64_t ti = profile_getclock();
57fec1fe
FB
324#endif
325
01ecaf43
RH
326 searched_pc -= GETPC_ADJ;
327
fca8a500
RH
328 if (searched_pc < host_pc) {
329 return -1;
330 }
d19893da 331
fca8a500
RH
332 /* Reconstruct the stored insn data while looking for the point at
333 which the end of the insn exceeds the searched_pc. */
334 for (i = 0; i < num_insns; ++i) {
335 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
336 data[j] += decode_sleb128(&p);
337 }
338 host_pc += decode_sleb128(&p);
339 if (host_pc > searched_pc) {
340 goto found;
341 }
342 }
343 return -1;
3b46e624 344
fca8a500 345 found:
bd79255d 346 if (tb->cflags & CF_USE_ICOUNT) {
414b15c9 347 assert(use_icount);
2e70f6ef 348 /* Reset the cycle counter to the start of the block. */
fca8a500 349 cpu->icount_decr.u16.low += num_insns;
2e70f6ef 350 /* Clear the IO flag. */
99df7dce 351 cpu->can_do_io = 0;
2e70f6ef 352 }
fca8a500
RH
353 cpu->icount_decr.u16.low -= i;
354 restore_state_to_opc(env, tb, data);
57fec1fe
FB
355
356#ifdef CONFIG_PROFILER
fca8a500
RH
357 tcg_ctx.restore_time += profile_getclock() - ti;
358 tcg_ctx.restore_count++;
57fec1fe 359#endif
d19893da
FB
360 return 0;
361}
5b6dd868 362
3f38f309 363bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
a8a826a3
BS
364{
365 TranslationBlock *tb;
a5e99826 366 bool r = false;
a8a826a3 367
a5e99826 368 tb_lock();
a8a826a3
BS
369 tb = tb_find_pc(retaddr);
370 if (tb) {
74f10515 371 cpu_restore_state_from_tb(cpu, tb, retaddr);
d8a499f1
PD
372 if (tb->cflags & CF_NOCACHE) {
373 /* one-shot translation, invalidate it immediately */
d8a499f1
PD
374 tb_phys_invalidate(tb, -1);
375 tb_free(tb);
376 }
a5e99826 377 r = true;
a8a826a3 378 }
a5e99826
FK
379 tb_unlock();
380
381 return r;
a8a826a3
BS
382}
383
47c16ed5 384void page_size_init(void)
5b6dd868
BS
385{
386 /* NOTE: we can always suppose that qemu_host_page_size >=
387 TARGET_PAGE_SIZE */
5b6dd868 388 qemu_real_host_page_size = getpagesize();
0c2d70c4 389 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
5b6dd868
BS
390 if (qemu_host_page_size == 0) {
391 qemu_host_page_size = qemu_real_host_page_size;
392 }
393 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
394 qemu_host_page_size = TARGET_PAGE_SIZE;
395 }
0c2d70c4 396 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
47c16ed5 397}
5b6dd868 398
47c16ed5
AK
399static void page_init(void)
400{
401 page_size_init();
66ec9f49
VK
402 page_table_config_init();
403
5b6dd868
BS
404#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
405 {
406#ifdef HAVE_KINFO_GETVMMAP
407 struct kinfo_vmentry *freep;
408 int i, cnt;
409
410 freep = kinfo_getvmmap(getpid(), &cnt);
411 if (freep) {
412 mmap_lock();
413 for (i = 0; i < cnt; i++) {
414 unsigned long startaddr, endaddr;
415
416 startaddr = freep[i].kve_start;
417 endaddr = freep[i].kve_end;
418 if (h2g_valid(startaddr)) {
419 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
420
421 if (h2g_valid(endaddr)) {
422 endaddr = h2g(endaddr);
423 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
424 } else {
425#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
426 endaddr = ~0ul;
427 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
428#endif
429 }
430 }
431 }
432 free(freep);
433 mmap_unlock();
434 }
435#else
436 FILE *f;
437
438 last_brk = (unsigned long)sbrk(0);
439
440 f = fopen("/compat/linux/proc/self/maps", "r");
441 if (f) {
442 mmap_lock();
443
444 do {
445 unsigned long startaddr, endaddr;
446 int n;
447
448 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
449
450 if (n == 2 && h2g_valid(startaddr)) {
451 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
452
453 if (h2g_valid(endaddr)) {
454 endaddr = h2g(endaddr);
455 } else {
456 endaddr = ~0ul;
457 }
458 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
459 }
460 } while (!feof(f));
461
462 fclose(f);
463 mmap_unlock();
464 }
465#endif
466 }
467#endif
468}
469
75692087 470/* If alloc=1:
7d7500d9 471 * Called with tb_lock held for system emulation.
75692087
PB
472 * Called with mmap_lock held for user-mode emulation.
473 */
5b6dd868
BS
474static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
475{
476 PageDesc *pd;
477 void **lp;
478 int i;
479
e505a063
AB
480 if (alloc) {
481 assert_memory_lock();
482 }
483
5b6dd868 484 /* Level 1. Always allocated. */
66ec9f49 485 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
5b6dd868
BS
486
487 /* Level 2..N-1. */
66ec9f49 488 for (i = v_l2_levels; i > 0; i--) {
6940fab8 489 void **p = atomic_rcu_read(lp);
5b6dd868
BS
490
491 if (p == NULL) {
492 if (!alloc) {
493 return NULL;
494 }
e3a0abfd 495 p = g_new0(void *, V_L2_SIZE);
6940fab8 496 atomic_rcu_set(lp, p);
5b6dd868
BS
497 }
498
03f49957 499 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
5b6dd868
BS
500 }
501
6940fab8 502 pd = atomic_rcu_read(lp);
5b6dd868
BS
503 if (pd == NULL) {
504 if (!alloc) {
505 return NULL;
506 }
e3a0abfd 507 pd = g_new0(PageDesc, V_L2_SIZE);
6940fab8 508 atomic_rcu_set(lp, pd);
5b6dd868
BS
509 }
510
03f49957 511 return pd + (index & (V_L2_SIZE - 1));
5b6dd868
BS
512}
513
514static inline PageDesc *page_find(tb_page_addr_t index)
515{
516 return page_find_alloc(index, 0);
517}
518
5b6dd868
BS
519#if defined(CONFIG_USER_ONLY)
520/* Currently it is not recommended to allocate big chunks of data in
521 user mode. It will change when a dedicated libc will be used. */
522/* ??? 64-bit hosts ought to have no problem mmaping data outside the
523 region in which the guest needs to run. Revisit this. */
524#define USE_STATIC_CODE_GEN_BUFFER
525#endif
526
5b6dd868
BS
527/* Minimum size of the code gen buffer. This number is randomly chosen,
528 but not so small that we can't have a fair number of TB's live. */
529#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
530
531/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
532 indicated, this is constrained by the range of direct branches on the
533 host cpu, as used by the TCG implementation of goto_tb. */
534#if defined(__x86_64__)
535# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
536#elif defined(__sparc__)
537# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
5bfd75a3
RH
538#elif defined(__powerpc64__)
539# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
399f1648
SF
540#elif defined(__powerpc__)
541# define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
4a136e0a
CF
542#elif defined(__aarch64__)
543# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
544#elif defined(__arm__)
545# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
546#elif defined(__s390x__)
547 /* We have a +- 4GB range on the branches; leave some slop. */
548# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
479eb121
RH
549#elif defined(__mips__)
550 /* We have a 256MB branch region, but leave room to make sure the
551 main executable is also within that region. */
552# define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
5b6dd868
BS
553#else
554# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
555#endif
556
557#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
558
559#define DEFAULT_CODE_GEN_BUFFER_SIZE \
560 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
561 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
562
563static inline size_t size_code_gen_buffer(size_t tb_size)
564{
565 /* Size the buffer. */
566 if (tb_size == 0) {
567#ifdef USE_STATIC_CODE_GEN_BUFFER
568 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
569#else
570 /* ??? Needs adjustments. */
571 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
572 static buffer, we could size this on RESERVED_VA, on the text
573 segment size of the executable, or continue to use the default. */
574 tb_size = (unsigned long)(ram_size / 4);
575#endif
576 }
577 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
578 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
579 }
580 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
581 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
582 }
5b6dd868
BS
583 return tb_size;
584}
585
483c76e1
RH
586#ifdef __mips__
587/* In order to use J and JAL within the code_gen_buffer, we require
588 that the buffer not cross a 256MB boundary. */
589static inline bool cross_256mb(void *addr, size_t size)
590{
7ba6a512 591 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
483c76e1
RH
592}
593
594/* We weren't able to allocate a buffer without crossing that boundary,
595 so make do with the larger portion of the buffer that doesn't cross.
596 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
597static inline void *split_cross_256mb(void *buf1, size_t size1)
598{
7ba6a512 599 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
483c76e1
RH
600 size_t size2 = buf1 + size1 - buf2;
601
602 size1 = buf2 - buf1;
603 if (size1 < size2) {
604 size1 = size2;
605 buf1 = buf2;
606 }
607
608 tcg_ctx.code_gen_buffer_size = size1;
609 return buf1;
610}
611#endif
612
5b6dd868
BS
613#ifdef USE_STATIC_CODE_GEN_BUFFER
614static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
615 __attribute__((aligned(CODE_GEN_ALIGN)));
616
f293709c
RH
617# ifdef _WIN32
618static inline void do_protect(void *addr, long size, int prot)
619{
620 DWORD old_protect;
621 VirtualProtect(addr, size, prot, &old_protect);
622}
623
624static inline void map_exec(void *addr, long size)
625{
626 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
627}
628
629static inline void map_none(void *addr, long size)
630{
631 do_protect(addr, size, PAGE_NOACCESS);
632}
633# else
634static inline void do_protect(void *addr, long size, int prot)
635{
636 uintptr_t start, end;
637
638 start = (uintptr_t)addr;
639 start &= qemu_real_host_page_mask;
640
641 end = (uintptr_t)addr + size;
642 end = ROUND_UP(end, qemu_real_host_page_size);
643
644 mprotect((void *)start, end - start, prot);
645}
646
647static inline void map_exec(void *addr, long size)
648{
649 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
650}
651
652static inline void map_none(void *addr, long size)
653{
654 do_protect(addr, size, PROT_NONE);
655}
656# endif /* WIN32 */
657
5b6dd868
BS
658static inline void *alloc_code_gen_buffer(void)
659{
483c76e1 660 void *buf = static_code_gen_buffer;
f293709c
RH
661 size_t full_size, size;
662
663 /* The size of the buffer, rounded down to end on a page boundary. */
664 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
665 & qemu_real_host_page_mask) - (uintptr_t)buf;
666
667 /* Reserve a guard page. */
668 size = full_size - qemu_real_host_page_size;
669
670 /* Honor a command-line option limiting the size of the buffer. */
671 if (size > tcg_ctx.code_gen_buffer_size) {
672 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
673 & qemu_real_host_page_mask) - (uintptr_t)buf;
674 }
675 tcg_ctx.code_gen_buffer_size = size;
676
483c76e1 677#ifdef __mips__
f293709c
RH
678 if (cross_256mb(buf, size)) {
679 buf = split_cross_256mb(buf, size);
680 size = tcg_ctx.code_gen_buffer_size;
483c76e1
RH
681 }
682#endif
f293709c
RH
683
684 map_exec(buf, size);
685 map_none(buf + size, qemu_real_host_page_size);
686 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
687
483c76e1 688 return buf;
5b6dd868 689}
f293709c
RH
690#elif defined(_WIN32)
691static inline void *alloc_code_gen_buffer(void)
692{
693 size_t size = tcg_ctx.code_gen_buffer_size;
694 void *buf1, *buf2;
695
696 /* Perform the allocation in two steps, so that the guard page
697 is reserved but uncommitted. */
698 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
699 MEM_RESERVE, PAGE_NOACCESS);
700 if (buf1 != NULL) {
701 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
702 assert(buf1 == buf2);
703 }
704
705 return buf1;
706}
707#else
5b6dd868
BS
708static inline void *alloc_code_gen_buffer(void)
709{
710 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
711 uintptr_t start = 0;
f293709c 712 size_t size = tcg_ctx.code_gen_buffer_size;
5b6dd868
BS
713 void *buf;
714
715 /* Constrain the position of the buffer based on the host cpu.
716 Note that these addresses are chosen in concert with the
717 addresses assigned in the relevant linker script file. */
718# if defined(__PIE__) || defined(__PIC__)
719 /* Don't bother setting a preferred location if we're building
720 a position-independent executable. We're more likely to get
721 an address near the main executable if we let the kernel
722 choose the address. */
723# elif defined(__x86_64__) && defined(MAP_32BIT)
724 /* Force the memory down into low memory with the executable.
725 Leave the choice of exact location with the kernel. */
726 flags |= MAP_32BIT;
727 /* Cannot expect to map more than 800MB in low memory. */
f293709c
RH
728 if (size > 800u * 1024 * 1024) {
729 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
5b6dd868
BS
730 }
731# elif defined(__sparc__)
732 start = 0x40000000ul;
733# elif defined(__s390x__)
734 start = 0x90000000ul;
479eb121 735# elif defined(__mips__)
f293709c 736# if _MIPS_SIM == _ABI64
479eb121
RH
737 start = 0x128000000ul;
738# else
739 start = 0x08000000ul;
740# endif
5b6dd868
BS
741# endif
742
f293709c
RH
743 buf = mmap((void *)start, size + qemu_real_host_page_size,
744 PROT_NONE, flags, -1, 0);
483c76e1
RH
745 if (buf == MAP_FAILED) {
746 return NULL;
747 }
748
749#ifdef __mips__
f293709c 750 if (cross_256mb(buf, size)) {
5d831be2 751 /* Try again, with the original still mapped, to avoid re-acquiring
483c76e1 752 that 256mb crossing. This time don't specify an address. */
f293709c
RH
753 size_t size2;
754 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
755 PROT_NONE, flags, -1, 0);
756 switch (buf2 != MAP_FAILED) {
757 case 1:
758 if (!cross_256mb(buf2, size)) {
483c76e1 759 /* Success! Use the new buffer. */
8bdf4997 760 munmap(buf, size + qemu_real_host_page_size);
f293709c 761 break;
483c76e1
RH
762 }
763 /* Failure. Work with what we had. */
8bdf4997 764 munmap(buf2, size + qemu_real_host_page_size);
f293709c
RH
765 /* fallthru */
766 default:
767 /* Split the original buffer. Free the smaller half. */
768 buf2 = split_cross_256mb(buf, size);
769 size2 = tcg_ctx.code_gen_buffer_size;
770 if (buf == buf2) {
771 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
772 } else {
773 munmap(buf, size - size2);
774 }
775 size = size2;
776 break;
483c76e1 777 }
f293709c 778 buf = buf2;
483c76e1
RH
779 }
780#endif
781
f293709c
RH
782 /* Make the final buffer accessible. The guard page at the end
783 will remain inaccessible with PROT_NONE. */
784 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
483c76e1 785
f293709c
RH
786 /* Request large pages for the buffer. */
787 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
483c76e1 788
5b6dd868
BS
789 return buf;
790}
f293709c 791#endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
5b6dd868
BS
792
793static inline void code_gen_alloc(size_t tb_size)
794{
0b0d3320
EV
795 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
796 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
797 if (tcg_ctx.code_gen_buffer == NULL) {
5b6dd868
BS
798 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
799 exit(1);
800 }
801
8163b749
RH
802 /* Estimate a good size for the number of TBs we can support. We
803 still haven't deducted the prologue from the buffer size here,
804 but that's minimal and won't affect the estimate much. */
805 tcg_ctx.code_gen_max_blocks
806 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
807 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
808
677ef623 809 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
5b6dd868
BS
810}
811
909eaac9
EC
812static void tb_htable_init(void)
813{
814 unsigned int mode = QHT_MODE_AUTO_RESIZE;
815
816 qht_init(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE, mode);
817}
818
5b6dd868
BS
819/* Must be called before using the QEMU cpus. 'tb_size' is the size
820 (in bytes) allocated to the translation buffer. Zero means default
821 size. */
822void tcg_exec_init(unsigned long tb_size)
823{
824 cpu_gen_init();
5b6dd868 825 page_init();
909eaac9 826 tb_htable_init();
f293709c 827 code_gen_alloc(tb_size);
4cbea598 828#if defined(CONFIG_SOFTMMU)
5b6dd868
BS
829 /* There's no guest base to take into account, so go ahead and
830 initialize the prologue now. */
831 tcg_prologue_init(&tcg_ctx);
832#endif
833}
834
835bool tcg_enabled(void)
836{
0b0d3320 837 return tcg_ctx.code_gen_buffer != NULL;
5b6dd868
BS
838}
839
7d7500d9
PB
840/*
841 * Allocate a new translation block. Flush the translation buffer if
842 * too many translation blocks or too much generated code.
843 *
844 * Called with tb_lock held.
845 */
5b6dd868
BS
846static TranslationBlock *tb_alloc(target_ulong pc)
847{
848 TranslationBlock *tb;
849
e505a063
AB
850 assert_tb_lock();
851
b125f9dc 852 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
5b6dd868
BS
853 return NULL;
854 }
5e5f07e0 855 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
5b6dd868
BS
856 tb->pc = pc;
857 tb->cflags = 0;
6d21e420 858 tb->invalid = false;
5b6dd868
BS
859 return tb;
860}
861
7d7500d9 862/* Called with tb_lock held. */
5b6dd868
BS
863void tb_free(TranslationBlock *tb)
864{
e505a063
AB
865 assert_tb_lock();
866
5b6dd868
BS
867 /* In practice this is mostly used for single use temporary TB
868 Ignore the hard cases and just back up if this TB happens to
869 be the last one generated. */
5e5f07e0
EV
870 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
871 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
0b0d3320 872 tcg_ctx.code_gen_ptr = tb->tc_ptr;
5e5f07e0 873 tcg_ctx.tb_ctx.nb_tbs--;
5b6dd868
BS
874 }
875}
876
877static inline void invalidate_page_bitmap(PageDesc *p)
878{
6fad459c 879#ifdef CONFIG_SOFTMMU
012aef07
MA
880 g_free(p->code_bitmap);
881 p->code_bitmap = NULL;
5b6dd868 882 p->code_write_count = 0;
6fad459c 883#endif
5b6dd868
BS
884}
885
886/* Set to NULL all the 'first_tb' fields in all PageDescs. */
887static void page_flush_tb_1(int level, void **lp)
888{
889 int i;
890
891 if (*lp == NULL) {
892 return;
893 }
894 if (level == 0) {
895 PageDesc *pd = *lp;
896
03f49957 897 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
898 pd[i].first_tb = NULL;
899 invalidate_page_bitmap(pd + i);
900 }
901 } else {
902 void **pp = *lp;
903
03f49957 904 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
905 page_flush_tb_1(level - 1, pp + i);
906 }
907 }
908}
909
910static void page_flush_tb(void)
911{
66ec9f49 912 int i, l1_sz = v_l1_size;
5b6dd868 913
66ec9f49
VK
914 for (i = 0; i < l1_sz; i++) {
915 page_flush_tb_1(v_l2_levels, l1_map + i);
5b6dd868
BS
916 }
917}
918
919/* flush all the translation blocks */
3359baad 920static void do_tb_flush(CPUState *cpu, void *data)
5b6dd868 921{
3359baad
SF
922 unsigned tb_flush_req = (unsigned) (uintptr_t) data;
923
924 tb_lock();
925
926 /* If it's already been done on request of another CPU,
927 * just retry.
928 */
929 if (tcg_ctx.tb_ctx.tb_flush_count != tb_flush_req) {
930 goto done;
135a972b 931 }
3359baad 932
955939a2 933#if defined(DEBUG_TB_FLUSH)
5b6dd868 934 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
0b0d3320 935 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
5e5f07e0 936 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
0b0d3320 937 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
5e5f07e0 938 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868 939#endif
0b0d3320
EV
940 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
941 > tcg_ctx.code_gen_buffer_size) {
a47dddd7 942 cpu_abort(cpu, "Internal error: code buffer overflow\n");
5b6dd868 943 }
5b6dd868 944
bdc44640 945 CPU_FOREACH(cpu) {
89a16b1e
SF
946 int i;
947
948 for (i = 0; i < TB_JMP_CACHE_SIZE; ++i) {
949 atomic_set(&cpu->tb_jmp_cache[i], NULL);
950 }
5b6dd868
BS
951 }
952
118b0730 953 tcg_ctx.tb_ctx.nb_tbs = 0;
909eaac9 954 qht_reset_size(&tcg_ctx.tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
5b6dd868
BS
955 page_flush_tb();
956
0b0d3320 957 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
5b6dd868
BS
958 /* XXX: flush processor icache at this point if cache flush is
959 expensive */
3359baad
SF
960 atomic_mb_set(&tcg_ctx.tb_ctx.tb_flush_count,
961 tcg_ctx.tb_ctx.tb_flush_count + 1);
962
963done:
964 tb_unlock();
965}
966
967void tb_flush(CPUState *cpu)
968{
969 if (tcg_enabled()) {
970 uintptr_t tb_flush_req = atomic_mb_read(&tcg_ctx.tb_ctx.tb_flush_count);
971 async_safe_run_on_cpu(cpu, do_tb_flush, (void *) tb_flush_req);
972 }
5b6dd868
BS
973}
974
975#ifdef DEBUG_TB_CHECK
976
909eaac9
EC
977static void
978do_tb_invalidate_check(struct qht *ht, void *p, uint32_t hash, void *userp)
5b6dd868 979{
909eaac9
EC
980 TranslationBlock *tb = p;
981 target_ulong addr = *(target_ulong *)userp;
982
983 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
984 printf("ERROR invalidate: address=" TARGET_FMT_lx
985 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
986 }
987}
5b6dd868 988
7d7500d9
PB
989/* verify that all the pages have correct rights for code
990 *
991 * Called with tb_lock held.
992 */
909eaac9
EC
993static void tb_invalidate_check(target_ulong address)
994{
5b6dd868 995 address &= TARGET_PAGE_MASK;
909eaac9
EC
996 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_invalidate_check, &address);
997}
998
999static void
1000do_tb_page_check(struct qht *ht, void *p, uint32_t hash, void *userp)
1001{
1002 TranslationBlock *tb = p;
1003 int flags1, flags2;
1004
1005 flags1 = page_get_flags(tb->pc);
1006 flags2 = page_get_flags(tb->pc + tb->size - 1);
1007 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1008 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1009 (long)tb->pc, tb->size, flags1, flags2);
5b6dd868
BS
1010 }
1011}
1012
1013/* verify that all the pages have correct rights for code */
1014static void tb_page_check(void)
1015{
909eaac9 1016 qht_iter(&tcg_ctx.tb_ctx.htable, do_tb_page_check, NULL);
5b6dd868
BS
1017}
1018
1019#endif
1020
5b6dd868
BS
1021static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
1022{
1023 TranslationBlock *tb1;
1024 unsigned int n1;
1025
1026 for (;;) {
1027 tb1 = *ptb;
1028 n1 = (uintptr_t)tb1 & 3;
1029 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1030 if (tb1 == tb) {
1031 *ptb = tb1->page_next[n1];
1032 break;
1033 }
1034 ptb = &tb1->page_next[n1];
1035 }
1036}
1037
13362678
SF
1038/* remove the TB from a list of TBs jumping to the n-th jump target of the TB */
1039static inline void tb_remove_from_jmp_list(TranslationBlock *tb, int n)
5b6dd868 1040{
c37e6d7e
SF
1041 TranslationBlock *tb1;
1042 uintptr_t *ptb, ntb;
5b6dd868
BS
1043 unsigned int n1;
1044
f309101c 1045 ptb = &tb->jmp_list_next[n];
c37e6d7e 1046 if (*ptb) {
5b6dd868
BS
1047 /* find tb(n) in circular list */
1048 for (;;) {
c37e6d7e
SF
1049 ntb = *ptb;
1050 n1 = ntb & 3;
1051 tb1 = (TranslationBlock *)(ntb & ~3);
5b6dd868
BS
1052 if (n1 == n && tb1 == tb) {
1053 break;
1054 }
1055 if (n1 == 2) {
f309101c 1056 ptb = &tb1->jmp_list_first;
5b6dd868 1057 } else {
f309101c 1058 ptb = &tb1->jmp_list_next[n1];
5b6dd868
BS
1059 }
1060 }
1061 /* now we can suppress tb(n) from the list */
f309101c 1062 *ptb = tb->jmp_list_next[n];
5b6dd868 1063
c37e6d7e 1064 tb->jmp_list_next[n] = (uintptr_t)NULL;
5b6dd868
BS
1065 }
1066}
1067
1068/* reset the jump entry 'n' of a TB so that it is not chained to
1069 another TB */
1070static inline void tb_reset_jump(TranslationBlock *tb, int n)
1071{
f309101c
SF
1072 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
1073 tb_set_jmp_target(tb, n, addr);
5b6dd868
BS
1074}
1075
89bba496
SF
1076/* remove any jumps to the TB */
1077static inline void tb_jmp_unlink(TranslationBlock *tb)
1078{
f9c5b66f
SF
1079 TranslationBlock *tb1;
1080 uintptr_t *ptb, ntb;
89bba496
SF
1081 unsigned int n1;
1082
f9c5b66f 1083 ptb = &tb->jmp_list_first;
89bba496 1084 for (;;) {
f9c5b66f
SF
1085 ntb = *ptb;
1086 n1 = ntb & 3;
1087 tb1 = (TranslationBlock *)(ntb & ~3);
89bba496
SF
1088 if (n1 == 2) {
1089 break;
1090 }
f9c5b66f
SF
1091 tb_reset_jump(tb1, n1);
1092 *ptb = tb1->jmp_list_next[n1];
1093 tb1->jmp_list_next[n1] = (uintptr_t)NULL;
89bba496 1094 }
89bba496
SF
1095}
1096
7d7500d9
PB
1097/* invalidate one TB
1098 *
1099 * Called with tb_lock held.
1100 */
5b6dd868
BS
1101void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1102{
182735ef 1103 CPUState *cpu;
5b6dd868 1104 PageDesc *p;
42bd3228 1105 uint32_t h;
5b6dd868 1106 tb_page_addr_t phys_pc;
5b6dd868 1107
e505a063
AB
1108 assert_tb_lock();
1109
6d21e420
PB
1110 atomic_set(&tb->invalid, true);
1111
5b6dd868
BS
1112 /* remove the TB from the hash list */
1113 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
42bd3228 1114 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
909eaac9 1115 qht_remove(&tcg_ctx.tb_ctx.htable, tb, h);
5b6dd868
BS
1116
1117 /* remove the TB from the page list */
1118 if (tb->page_addr[0] != page_addr) {
1119 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1120 tb_page_remove(&p->first_tb, tb);
1121 invalidate_page_bitmap(p);
1122 }
1123 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
1124 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1125 tb_page_remove(&p->first_tb, tb);
1126 invalidate_page_bitmap(p);
1127 }
1128
5b6dd868
BS
1129 /* remove the TB from the hash list */
1130 h = tb_jmp_cache_hash_func(tb->pc);
bdc44640 1131 CPU_FOREACH(cpu) {
89a16b1e
SF
1132 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1133 atomic_set(&cpu->tb_jmp_cache[h], NULL);
5b6dd868
BS
1134 }
1135 }
1136
1137 /* suppress this TB from the two jump lists */
13362678
SF
1138 tb_remove_from_jmp_list(tb, 0);
1139 tb_remove_from_jmp_list(tb, 1);
5b6dd868
BS
1140
1141 /* suppress any remaining jumps to this TB */
89bba496 1142 tb_jmp_unlink(tb);
5b6dd868 1143
5e5f07e0 1144 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
5b6dd868
BS
1145}
1146
6fad459c 1147#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1148static void build_page_bitmap(PageDesc *p)
1149{
1150 int n, tb_start, tb_end;
1151 TranslationBlock *tb;
1152
510a647f 1153 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
5b6dd868
BS
1154
1155 tb = p->first_tb;
1156 while (tb != NULL) {
1157 n = (uintptr_t)tb & 3;
1158 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1159 /* NOTE: this is subtle as a TB may span two physical pages */
1160 if (n == 0) {
1161 /* NOTE: tb_end may be after the end of the page, but
1162 it is not a problem */
1163 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1164 tb_end = tb_start + tb->size;
1165 if (tb_end > TARGET_PAGE_SIZE) {
1166 tb_end = TARGET_PAGE_SIZE;
e505a063 1167 }
5b6dd868
BS
1168 } else {
1169 tb_start = 0;
1170 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1171 }
510a647f 1172 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
5b6dd868
BS
1173 tb = tb->page_next[n];
1174 }
1175}
6fad459c 1176#endif
5b6dd868 1177
e90d96b1
SF
1178/* add the tb in the target page and protect it if necessary
1179 *
1180 * Called with mmap_lock held for user-mode emulation.
1181 */
1182static inline void tb_alloc_page(TranslationBlock *tb,
1183 unsigned int n, tb_page_addr_t page_addr)
1184{
1185 PageDesc *p;
1186#ifndef CONFIG_USER_ONLY
1187 bool page_already_protected;
1188#endif
1189
e505a063
AB
1190 assert_memory_lock();
1191
e90d96b1
SF
1192 tb->page_addr[n] = page_addr;
1193 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1194 tb->page_next[n] = p->first_tb;
1195#ifndef CONFIG_USER_ONLY
1196 page_already_protected = p->first_tb != NULL;
1197#endif
1198 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1199 invalidate_page_bitmap(p);
1200
1201#if defined(CONFIG_USER_ONLY)
1202 if (p->flags & PAGE_WRITE) {
1203 target_ulong addr;
1204 PageDesc *p2;
1205 int prot;
1206
1207 /* force the host page as non writable (writes will have a
1208 page fault + mprotect overhead) */
1209 page_addr &= qemu_host_page_mask;
1210 prot = 0;
1211 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1212 addr += TARGET_PAGE_SIZE) {
1213
1214 p2 = page_find(addr >> TARGET_PAGE_BITS);
1215 if (!p2) {
1216 continue;
1217 }
1218 prot |= p2->flags;
1219 p2->flags &= ~PAGE_WRITE;
1220 }
1221 mprotect(g2h(page_addr), qemu_host_page_size,
1222 (prot & PAGE_BITS) & ~PAGE_WRITE);
1223#ifdef DEBUG_TB_INVALIDATE
1224 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1225 page_addr);
1226#endif
1227 }
1228#else
1229 /* if some code is already present, then the pages are already
1230 protected. So we handle the case where only the first TB is
1231 allocated in a physical page */
1232 if (!page_already_protected) {
1233 tlb_protect_code(page_addr);
1234 }
1235#endif
1236}
1237
1238/* add a new TB and link it to the physical page tables. phys_page2 is
1239 * (-1) to indicate that only one page contains the TB.
1240 *
1241 * Called with mmap_lock held for user-mode emulation.
1242 */
1243static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1244 tb_page_addr_t phys_page2)
1245{
42bd3228 1246 uint32_t h;
e90d96b1 1247
e505a063
AB
1248 assert_memory_lock();
1249
e90d96b1
SF
1250 /* add in the page list */
1251 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1252 if (phys_page2 != -1) {
1253 tb_alloc_page(tb, 1, phys_page2);
1254 } else {
1255 tb->page_addr[1] = -1;
1256 }
1257
2e1ae44a
AB
1258 /* add in the hash table */
1259 h = tb_hash_func(phys_pc, tb->pc, tb->flags);
1260 qht_insert(&tcg_ctx.tb_ctx.htable, tb, h);
1261
e90d96b1
SF
1262#ifdef DEBUG_TB_CHECK
1263 tb_page_check();
1264#endif
1265}
1266
75692087 1267/* Called with mmap_lock held for user mode emulation. */
648f034c 1268TranslationBlock *tb_gen_code(CPUState *cpu,
5b6dd868 1269 target_ulong pc, target_ulong cs_base,
89fee74a 1270 uint32_t flags, int cflags)
5b6dd868 1271{
648f034c 1272 CPUArchState *env = cpu->env_ptr;
5b6dd868 1273 TranslationBlock *tb;
5b6dd868
BS
1274 tb_page_addr_t phys_pc, phys_page2;
1275 target_ulong virt_page2;
fec88f64 1276 tcg_insn_unit *gen_code_buf;
fca8a500 1277 int gen_code_size, search_size;
fec88f64
RH
1278#ifdef CONFIG_PROFILER
1279 int64_t ti;
1280#endif
e505a063 1281 assert_memory_lock();
5b6dd868
BS
1282
1283 phys_pc = get_page_addr_code(env, pc);
56c0269a 1284 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
0266359e
PB
1285 cflags |= CF_USE_ICOUNT;
1286 }
b125f9dc 1287
5b6dd868 1288 tb = tb_alloc(pc);
b125f9dc
RH
1289 if (unlikely(!tb)) {
1290 buffer_overflow:
5b6dd868 1291 /* flush must be done */
bbd77c18 1292 tb_flush(cpu);
3359baad
SF
1293 mmap_unlock();
1294 cpu_loop_exit(cpu);
5b6dd868 1295 }
fec88f64
RH
1296
1297 gen_code_buf = tcg_ctx.code_gen_ptr;
1298 tb->tc_ptr = gen_code_buf;
5b6dd868
BS
1299 tb->cs_base = cs_base;
1300 tb->flags = flags;
1301 tb->cflags = cflags;
fec88f64
RH
1302
1303#ifdef CONFIG_PROFILER
1304 tcg_ctx.tb_count1++; /* includes aborted translations because of
1305 exceptions */
1306 ti = profile_getclock();
1307#endif
1308
1309 tcg_func_start(&tcg_ctx);
1310
7c255043 1311 tcg_ctx.cpu = ENV_GET_CPU(env);
fec88f64 1312 gen_intermediate_code(env, tb);
7c255043 1313 tcg_ctx.cpu = NULL;
fec88f64
RH
1314
1315 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1316
1317 /* generate machine code */
f309101c
SF
1318 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1319 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1320 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
fec88f64 1321#ifdef USE_DIRECT_JUMP
f309101c
SF
1322 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1323 tcg_ctx.tb_jmp_target_addr = NULL;
fec88f64 1324#else
f309101c
SF
1325 tcg_ctx.tb_jmp_insn_offset = NULL;
1326 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
fec88f64
RH
1327#endif
1328
1329#ifdef CONFIG_PROFILER
1330 tcg_ctx.tb_count++;
1331 tcg_ctx.interm_time += profile_getclock() - ti;
1332 tcg_ctx.code_time -= profile_getclock();
1333#endif
1334
b125f9dc
RH
1335 /* ??? Overflow could be handled better here. In particular, we
1336 don't need to re-do gen_intermediate_code, nor should we re-do
1337 the tcg optimization currently hidden inside tcg_gen_code. All
1338 that should be required is to flush the TBs, allocate a new TB,
1339 re-initialize it per above, and re-do the actual code generation. */
5bd2ec3d 1340 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
b125f9dc
RH
1341 if (unlikely(gen_code_size < 0)) {
1342 goto buffer_overflow;
1343 }
fca8a500 1344 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
b125f9dc
RH
1345 if (unlikely(search_size < 0)) {
1346 goto buffer_overflow;
1347 }
fec88f64
RH
1348
1349#ifdef CONFIG_PROFILER
1350 tcg_ctx.code_time += profile_getclock();
1351 tcg_ctx.code_in_len += tb->size;
1352 tcg_ctx.code_out_len += gen_code_size;
fca8a500 1353 tcg_ctx.search_out_len += search_size;
fec88f64
RH
1354#endif
1355
1356#ifdef DEBUG_DISAS
d977e1c2
AB
1357 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1358 qemu_log_in_addr_range(tb->pc)) {
fec88f64
RH
1359 qemu_log("OUT: [size=%d]\n", gen_code_size);
1360 log_disas(tb->tc_ptr, gen_code_size);
1361 qemu_log("\n");
1362 qemu_log_flush();
1363 }
1364#endif
1365
fca8a500
RH
1366 tcg_ctx.code_gen_ptr = (void *)
1367 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1368 CODE_GEN_ALIGN);
5b6dd868 1369
901bc3de
SF
1370 /* init jump list */
1371 assert(((uintptr_t)tb & 3) == 0);
1372 tb->jmp_list_first = (uintptr_t)tb | 2;
1373 tb->jmp_list_next[0] = (uintptr_t)NULL;
1374 tb->jmp_list_next[1] = (uintptr_t)NULL;
1375
1376 /* init original jump addresses wich has been set during tcg_gen_code() */
1377 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1378 tb_reset_jump(tb, 0);
1379 }
1380 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1381 tb_reset_jump(tb, 1);
1382 }
1383
5b6dd868
BS
1384 /* check next page if needed */
1385 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1386 phys_page2 = -1;
1387 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1388 phys_page2 = get_page_addr_code(env, virt_page2);
1389 }
901bc3de
SF
1390 /* As long as consistency of the TB stuff is provided by tb_lock in user
1391 * mode and is implicit in single-threaded softmmu emulation, no explicit
1392 * memory barrier is required before tb_link_page() makes the TB visible
1393 * through the physical hash table and physical page list.
1394 */
5b6dd868
BS
1395 tb_link_page(tb, phys_pc, phys_page2);
1396 return tb;
1397}
1398
1399/*
1400 * Invalidate all TBs which intersect with the target physical address range
1401 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1402 * 'is_cpu_write_access' should be true if called from a real cpu write
1403 * access: the virtual CPU will exit the current TB if code is modified inside
1404 * this TB.
75692087
PB
1405 *
1406 * Called with mmap_lock held for user-mode emulation
5b6dd868 1407 */
35865339 1408void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
5b6dd868 1409{
e505a063
AB
1410 assert_memory_lock();
1411
5b6dd868 1412 while (start < end) {
35865339 1413 tb_invalidate_phys_page_range(start, end, 0);
5b6dd868
BS
1414 start &= TARGET_PAGE_MASK;
1415 start += TARGET_PAGE_SIZE;
1416 }
1417}
1418
1419/*
1420 * Invalidate all TBs which intersect with the target physical address range
1421 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1422 * 'is_cpu_write_access' should be true if called from a real cpu write
1423 * access: the virtual CPU will exit the current TB if code is modified inside
1424 * this TB.
75692087
PB
1425 *
1426 * Called with mmap_lock held for user-mode emulation
5b6dd868
BS
1427 */
1428void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1429 int is_cpu_write_access)
1430{
3213525f 1431 TranslationBlock *tb, *tb_next;
baea4fae 1432#if defined(TARGET_HAS_PRECISE_SMC)
3213525f 1433 CPUState *cpu = current_cpu;
4917cf44
AF
1434 CPUArchState *env = NULL;
1435#endif
5b6dd868
BS
1436 tb_page_addr_t tb_start, tb_end;
1437 PageDesc *p;
1438 int n;
1439#ifdef TARGET_HAS_PRECISE_SMC
1440 int current_tb_not_found = is_cpu_write_access;
1441 TranslationBlock *current_tb = NULL;
1442 int current_tb_modified = 0;
1443 target_ulong current_pc = 0;
1444 target_ulong current_cs_base = 0;
89fee74a 1445 uint32_t current_flags = 0;
5b6dd868
BS
1446#endif /* TARGET_HAS_PRECISE_SMC */
1447
e505a063
AB
1448 assert_memory_lock();
1449
5b6dd868
BS
1450 p = page_find(start >> TARGET_PAGE_BITS);
1451 if (!p) {
1452 return;
1453 }
baea4fae 1454#if defined(TARGET_HAS_PRECISE_SMC)
4917cf44
AF
1455 if (cpu != NULL) {
1456 env = cpu->env_ptr;
d77953b9 1457 }
4917cf44 1458#endif
5b6dd868
BS
1459
1460 /* we remove all the TBs in the range [start, end[ */
1461 /* XXX: see if in some cases it could be faster to invalidate all
1462 the code */
a5e99826 1463 tb_lock();
5b6dd868
BS
1464 tb = p->first_tb;
1465 while (tb != NULL) {
1466 n = (uintptr_t)tb & 3;
1467 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1468 tb_next = tb->page_next[n];
1469 /* NOTE: this is subtle as a TB may span two physical pages */
1470 if (n == 0) {
1471 /* NOTE: tb_end may be after the end of the page, but
1472 it is not a problem */
1473 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1474 tb_end = tb_start + tb->size;
1475 } else {
1476 tb_start = tb->page_addr[1];
1477 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1478 }
1479 if (!(tb_end <= start || tb_start >= end)) {
1480#ifdef TARGET_HAS_PRECISE_SMC
1481 if (current_tb_not_found) {
1482 current_tb_not_found = 0;
1483 current_tb = NULL;
93afeade 1484 if (cpu->mem_io_pc) {
5b6dd868 1485 /* now we have a real cpu fault */
93afeade 1486 current_tb = tb_find_pc(cpu->mem_io_pc);
5b6dd868
BS
1487 }
1488 }
1489 if (current_tb == tb &&
1490 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1491 /* If we are modifying the current TB, we must stop
1492 its execution. We could be more precise by checking
1493 that the modification is after the current PC, but it
1494 would require a specialized function to partially
1495 restore the CPU state */
1496
1497 current_tb_modified = 1;
74f10515 1498 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
5b6dd868
BS
1499 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1500 &current_flags);
1501 }
1502#endif /* TARGET_HAS_PRECISE_SMC */
5b6dd868 1503 tb_phys_invalidate(tb, -1);
5b6dd868
BS
1504 }
1505 tb = tb_next;
1506 }
1507#if !defined(CONFIG_USER_ONLY)
1508 /* if no code remaining, no need to continue to use slow writes */
1509 if (!p->first_tb) {
1510 invalidate_page_bitmap(p);
fc377bcf 1511 tlb_unprotect_code(start);
5b6dd868
BS
1512 }
1513#endif
1514#ifdef TARGET_HAS_PRECISE_SMC
1515 if (current_tb_modified) {
1516 /* we generate a block containing just the instruction
1517 modifying the memory. It will ensure that it cannot modify
1518 itself */
648f034c 1519 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
6886b980 1520 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1521 }
1522#endif
a5e99826 1523 tb_unlock();
5b6dd868
BS
1524}
1525
6fad459c 1526#ifdef CONFIG_SOFTMMU
5b6dd868
BS
1527/* len must be <= 8 and start must be a multiple of len */
1528void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1529{
1530 PageDesc *p;
5b6dd868
BS
1531
1532#if 0
1533 if (1) {
1534 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1535 cpu_single_env->mem_io_vaddr, len,
1536 cpu_single_env->eip,
1537 cpu_single_env->eip +
1538 (intptr_t)cpu_single_env->segs[R_CS].base);
1539 }
1540#endif
1541 p = page_find(start >> TARGET_PAGE_BITS);
1542 if (!p) {
1543 return;
1544 }
fc377bcf
PB
1545 if (!p->code_bitmap &&
1546 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
7d7500d9
PB
1547 /* build code bitmap. FIXME: writes should be protected by
1548 * tb_lock, reads by tb_lock or RCU.
1549 */
fc377bcf
PB
1550 build_page_bitmap(p);
1551 }
5b6dd868 1552 if (p->code_bitmap) {
510a647f
EC
1553 unsigned int nr;
1554 unsigned long b;
1555
1556 nr = start & ~TARGET_PAGE_MASK;
1557 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
5b6dd868
BS
1558 if (b & ((1 << len) - 1)) {
1559 goto do_invalidate;
1560 }
1561 } else {
1562 do_invalidate:
1563 tb_invalidate_phys_page_range(start, start + len, 1);
1564 }
1565}
6fad459c 1566#else
75809229
PM
1567/* Called with mmap_lock held. If pc is not 0 then it indicates the
1568 * host PC of the faulting store instruction that caused this invalidate.
1569 * Returns true if the caller needs to abort execution of the current
1570 * TB (because it was modified by this store and the guest CPU has
1571 * precise-SMC semantics).
1572 */
1573static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
5b6dd868
BS
1574{
1575 TranslationBlock *tb;
1576 PageDesc *p;
1577 int n;
1578#ifdef TARGET_HAS_PRECISE_SMC
1579 TranslationBlock *current_tb = NULL;
4917cf44
AF
1580 CPUState *cpu = current_cpu;
1581 CPUArchState *env = NULL;
5b6dd868
BS
1582 int current_tb_modified = 0;
1583 target_ulong current_pc = 0;
1584 target_ulong current_cs_base = 0;
89fee74a 1585 uint32_t current_flags = 0;
5b6dd868
BS
1586#endif
1587
1588 addr &= TARGET_PAGE_MASK;
1589 p = page_find(addr >> TARGET_PAGE_BITS);
1590 if (!p) {
75809229 1591 return false;
5b6dd868 1592 }
a5e99826
FK
1593
1594 tb_lock();
5b6dd868
BS
1595 tb = p->first_tb;
1596#ifdef TARGET_HAS_PRECISE_SMC
1597 if (tb && pc != 0) {
1598 current_tb = tb_find_pc(pc);
1599 }
4917cf44
AF
1600 if (cpu != NULL) {
1601 env = cpu->env_ptr;
d77953b9 1602 }
5b6dd868
BS
1603#endif
1604 while (tb != NULL) {
1605 n = (uintptr_t)tb & 3;
1606 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1607#ifdef TARGET_HAS_PRECISE_SMC
1608 if (current_tb == tb &&
1609 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1610 /* If we are modifying the current TB, we must stop
1611 its execution. We could be more precise by checking
1612 that the modification is after the current PC, but it
1613 would require a specialized function to partially
1614 restore the CPU state */
1615
1616 current_tb_modified = 1;
74f10515 1617 cpu_restore_state_from_tb(cpu, current_tb, pc);
5b6dd868
BS
1618 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1619 &current_flags);
1620 }
1621#endif /* TARGET_HAS_PRECISE_SMC */
1622 tb_phys_invalidate(tb, addr);
1623 tb = tb->page_next[n];
1624 }
1625 p->first_tb = NULL;
1626#ifdef TARGET_HAS_PRECISE_SMC
1627 if (current_tb_modified) {
1628 /* we generate a block containing just the instruction
1629 modifying the memory. It will ensure that it cannot modify
1630 itself */
648f034c 1631 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
a5e99826
FK
1632 /* tb_lock will be reset after cpu_loop_exit_noexc longjmps
1633 * back into the cpu_exec loop. */
75809229 1634 return true;
5b6dd868
BS
1635 }
1636#endif
a5e99826
FK
1637 tb_unlock();
1638
75809229 1639 return false;
5b6dd868
BS
1640}
1641#endif
1642
5b6dd868
BS
1643/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1644 tb[1].tc_ptr. Return NULL if not found */
a8a826a3 1645static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
5b6dd868
BS
1646{
1647 int m_min, m_max, m;
1648 uintptr_t v;
1649 TranslationBlock *tb;
1650
5e5f07e0 1651 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
5b6dd868
BS
1652 return NULL;
1653 }
0b0d3320
EV
1654 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1655 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
5b6dd868
BS
1656 return NULL;
1657 }
1658 /* binary search (cf Knuth) */
1659 m_min = 0;
5e5f07e0 1660 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
5b6dd868
BS
1661 while (m_min <= m_max) {
1662 m = (m_min + m_max) >> 1;
5e5f07e0 1663 tb = &tcg_ctx.tb_ctx.tbs[m];
5b6dd868
BS
1664 v = (uintptr_t)tb->tc_ptr;
1665 if (v == tc_ptr) {
1666 return tb;
1667 } else if (tc_ptr < v) {
1668 m_max = m - 1;
1669 } else {
1670 m_min = m + 1;
1671 }
1672 }
5e5f07e0 1673 return &tcg_ctx.tb_ctx.tbs[m_max];
5b6dd868
BS
1674}
1675
ec53b45b 1676#if !defined(CONFIG_USER_ONLY)
29d8ec7b 1677void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
5b6dd868
BS
1678{
1679 ram_addr_t ram_addr;
5c8a00ce 1680 MemoryRegion *mr;
149f54b5 1681 hwaddr l = 1;
5b6dd868 1682
41063e1e 1683 rcu_read_lock();
29d8ec7b 1684 mr = address_space_translate(as, addr, &addr, &l, false);
5c8a00ce
PB
1685 if (!(memory_region_is_ram(mr)
1686 || memory_region_is_romd(mr))) {
41063e1e 1687 rcu_read_unlock();
5b6dd868
BS
1688 return;
1689 }
e4e69794 1690 ram_addr = memory_region_get_ram_addr(mr) + addr;
5b6dd868 1691 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
41063e1e 1692 rcu_read_unlock();
5b6dd868 1693}
ec53b45b 1694#endif /* !defined(CONFIG_USER_ONLY) */
5b6dd868 1695
7d7500d9 1696/* Called with tb_lock held. */
239c51a5 1697void tb_check_watchpoint(CPUState *cpu)
5b6dd868
BS
1698{
1699 TranslationBlock *tb;
1700
93afeade 1701 tb = tb_find_pc(cpu->mem_io_pc);
8d302e76
AJ
1702 if (tb) {
1703 /* We can use retranslation to find the PC. */
1704 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1705 tb_phys_invalidate(tb, -1);
1706 } else {
1707 /* The exception probably happened in a helper. The CPU state should
1708 have been saved before calling it. Fetch the PC from there. */
1709 CPUArchState *env = cpu->env_ptr;
1710 target_ulong pc, cs_base;
1711 tb_page_addr_t addr;
89fee74a 1712 uint32_t flags;
8d302e76
AJ
1713
1714 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1715 addr = get_page_addr_code(env, pc);
1716 tb_invalidate_phys_range(addr, addr + 1);
5b6dd868 1717 }
5b6dd868
BS
1718}
1719
1720#ifndef CONFIG_USER_ONLY
5b6dd868
BS
1721/* in deterministic execution mode, instructions doing device I/Os
1722 must be at the end of the TB */
90b40a69 1723void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
5b6dd868 1724{
a47dddd7 1725#if defined(TARGET_MIPS) || defined(TARGET_SH4)
90b40a69 1726 CPUArchState *env = cpu->env_ptr;
a47dddd7 1727#endif
5b6dd868
BS
1728 TranslationBlock *tb;
1729 uint32_t n, cflags;
1730 target_ulong pc, cs_base;
89fee74a 1731 uint32_t flags;
5b6dd868 1732
a5e99826 1733 tb_lock();
5b6dd868
BS
1734 tb = tb_find_pc(retaddr);
1735 if (!tb) {
a47dddd7 1736 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
5b6dd868
BS
1737 (void *)retaddr);
1738 }
28ecfd7a 1739 n = cpu->icount_decr.u16.low + tb->icount;
74f10515 1740 cpu_restore_state_from_tb(cpu, tb, retaddr);
5b6dd868
BS
1741 /* Calculate how many instructions had been executed before the fault
1742 occurred. */
28ecfd7a 1743 n = n - cpu->icount_decr.u16.low;
5b6dd868
BS
1744 /* Generate a new TB ending on the I/O insn. */
1745 n++;
1746 /* On MIPS and SH, delay slot instructions can only be restarted if
1747 they were already the first instruction in the TB. If this is not
1748 the first instruction in a TB then re-execute the preceding
1749 branch. */
1750#if defined(TARGET_MIPS)
1751 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
c3577479 1752 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
28ecfd7a 1753 cpu->icount_decr.u16.low++;
5b6dd868
BS
1754 env->hflags &= ~MIPS_HFLAG_BMASK;
1755 }
1756#elif defined(TARGET_SH4)
1757 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1758 && n > 1) {
1759 env->pc -= 2;
28ecfd7a 1760 cpu->icount_decr.u16.low++;
5b6dd868
BS
1761 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1762 }
1763#endif
1764 /* This should never happen. */
1765 if (n > CF_COUNT_MASK) {
a47dddd7 1766 cpu_abort(cpu, "TB too big during recompile");
5b6dd868
BS
1767 }
1768
1769 cflags = n | CF_LAST_IO;
1770 pc = tb->pc;
1771 cs_base = tb->cs_base;
1772 flags = tb->flags;
1773 tb_phys_invalidate(tb, -1);
02d57ea1
SF
1774 if (tb->cflags & CF_NOCACHE) {
1775 if (tb->orig_tb) {
1776 /* Invalidate original TB if this TB was generated in
1777 * cpu_exec_nocache() */
1778 tb_phys_invalidate(tb->orig_tb, -1);
1779 }
1780 tb_free(tb);
1781 }
5b6dd868
BS
1782 /* FIXME: In theory this could raise an exception. In practice
1783 we have already translated the block once so it's probably ok. */
648f034c 1784 tb_gen_code(cpu, pc, cs_base, flags, cflags);
a5e99826 1785
5b6dd868 1786 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
a5e99826
FK
1787 * the first in the TB) then we end up generating a whole new TB and
1788 * repeating the fault, which is horribly inefficient.
1789 * Better would be to execute just this insn uncached, or generate a
1790 * second new TB.
1791 *
1792 * cpu_loop_exit_noexc will longjmp back to cpu_exec where the
1793 * tb_lock gets reset.
1794 */
6886b980 1795 cpu_loop_exit_noexc(cpu);
5b6dd868
BS
1796}
1797
611d4f99 1798void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
5b6dd868
BS
1799{
1800 unsigned int i;
1801
1802 /* Discard jump cache entries for any tb which might potentially
1803 overlap the flushed page. */
1804 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
8cd70437 1805 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1806 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1807
1808 i = tb_jmp_cache_hash_page(addr);
8cd70437 1809 memset(&cpu->tb_jmp_cache[i], 0,
5b6dd868
BS
1810 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1811}
1812
7266ae91
EC
1813static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
1814 struct qht_stats hst)
1815{
1816 uint32_t hgram_opts;
1817 size_t hgram_bins;
1818 char *hgram;
1819
1820 if (!hst.head_buckets) {
1821 return;
1822 }
1823 cpu_fprintf(f, "TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
1824 hst.used_head_buckets, hst.head_buckets,
1825 (double)hst.used_head_buckets / hst.head_buckets * 100);
1826
1827 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1828 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
1829 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
1830 hgram_opts |= QDIST_PR_NODECIMAL;
1831 }
1832 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
1833 cpu_fprintf(f, "TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
1834 qdist_avg(&hst.occupancy) * 100, hgram);
1835 g_free(hgram);
1836
1837 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
1838 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
1839 if (hgram_bins > 10) {
1840 hgram_bins = 10;
1841 } else {
1842 hgram_bins = 0;
1843 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
1844 }
1845 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
1846 cpu_fprintf(f, "TB hash avg chain %0.3f buckets. Histogram: %s\n",
1847 qdist_avg(&hst.chain), hgram);
1848 g_free(hgram);
1849}
1850
5b6dd868
BS
1851void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1852{
1853 int i, target_code_size, max_target_code_size;
1854 int direct_jmp_count, direct_jmp2_count, cross_page;
1855 TranslationBlock *tb;
329844d4 1856 struct qht_stats hst;
5b6dd868 1857
a5e99826
FK
1858 tb_lock();
1859
5b6dd868
BS
1860 target_code_size = 0;
1861 max_target_code_size = 0;
1862 cross_page = 0;
1863 direct_jmp_count = 0;
1864 direct_jmp2_count = 0;
5e5f07e0
EV
1865 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1866 tb = &tcg_ctx.tb_ctx.tbs[i];
5b6dd868
BS
1867 target_code_size += tb->size;
1868 if (tb->size > max_target_code_size) {
1869 max_target_code_size = tb->size;
1870 }
1871 if (tb->page_addr[1] != -1) {
1872 cross_page++;
1873 }
f309101c 1874 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868 1875 direct_jmp_count++;
f309101c 1876 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
5b6dd868
BS
1877 direct_jmp2_count++;
1878 }
1879 }
1880 }
1881 /* XXX: avoid using doubles ? */
1882 cpu_fprintf(f, "Translation buffer state:\n");
1883 cpu_fprintf(f, "gen code size %td/%zd\n",
0b0d3320 1884 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
b125f9dc 1885 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
5b6dd868 1886 cpu_fprintf(f, "TB count %d/%d\n",
5e5f07e0 1887 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
5b6dd868 1888 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
5e5f07e0
EV
1889 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1890 tcg_ctx.tb_ctx.nb_tbs : 0,
1891 max_target_code_size);
5b6dd868 1892 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
5e5f07e0
EV
1893 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1894 tcg_ctx.code_gen_buffer) /
1895 tcg_ctx.tb_ctx.nb_tbs : 0,
1896 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1897 tcg_ctx.code_gen_buffer) /
1898 target_code_size : 0);
1899 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1900 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1901 tcg_ctx.tb_ctx.nb_tbs : 0);
5b6dd868
BS
1902 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1903 direct_jmp_count,
5e5f07e0
EV
1904 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1905 tcg_ctx.tb_ctx.nb_tbs : 0,
5b6dd868 1906 direct_jmp2_count,
5e5f07e0
EV
1907 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1908 tcg_ctx.tb_ctx.nb_tbs : 0);
329844d4
EC
1909
1910 qht_statistics_init(&tcg_ctx.tb_ctx.htable, &hst);
7266ae91 1911 print_qht_statistics(f, cpu_fprintf, hst);
329844d4
EC
1912 qht_statistics_destroy(&hst);
1913
5b6dd868 1914 cpu_fprintf(f, "\nStatistics:\n");
3359baad
SF
1915 cpu_fprintf(f, "TB flush count %u\n",
1916 atomic_read(&tcg_ctx.tb_ctx.tb_flush_count));
5e5f07e0
EV
1917 cpu_fprintf(f, "TB invalidate count %d\n",
1918 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
5b6dd868
BS
1919 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1920 tcg_dump_info(f, cpu_fprintf);
a5e99826
FK
1921
1922 tb_unlock();
5b6dd868
BS
1923}
1924
246ae24d
MF
1925void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1926{
1927 tcg_dump_op_count(f, cpu_fprintf);
1928}
1929
5b6dd868
BS
1930#else /* CONFIG_USER_ONLY */
1931
c3affe56 1932void cpu_interrupt(CPUState *cpu, int mask)
5b6dd868 1933{
259186a7 1934 cpu->interrupt_request |= mask;
378df4b2 1935 cpu->tcg_exit_req = 1;
5b6dd868
BS
1936}
1937
1938/*
1939 * Walks guest process memory "regions" one by one
1940 * and calls callback function 'fn' for each region.
1941 */
1942struct walk_memory_regions_data {
1943 walk_memory_regions_fn fn;
1944 void *priv;
1a1c4db9 1945 target_ulong start;
5b6dd868
BS
1946 int prot;
1947};
1948
1949static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1a1c4db9 1950 target_ulong end, int new_prot)
5b6dd868 1951{
1a1c4db9 1952 if (data->start != -1u) {
5b6dd868
BS
1953 int rc = data->fn(data->priv, data->start, end, data->prot);
1954 if (rc != 0) {
1955 return rc;
1956 }
1957 }
1958
1a1c4db9 1959 data->start = (new_prot ? end : -1u);
5b6dd868
BS
1960 data->prot = new_prot;
1961
1962 return 0;
1963}
1964
1965static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1a1c4db9 1966 target_ulong base, int level, void **lp)
5b6dd868 1967{
1a1c4db9 1968 target_ulong pa;
5b6dd868
BS
1969 int i, rc;
1970
1971 if (*lp == NULL) {
1972 return walk_memory_regions_end(data, base, 0);
1973 }
1974
1975 if (level == 0) {
1976 PageDesc *pd = *lp;
1977
03f49957 1978 for (i = 0; i < V_L2_SIZE; ++i) {
5b6dd868
BS
1979 int prot = pd[i].flags;
1980
1981 pa = base | (i << TARGET_PAGE_BITS);
1982 if (prot != data->prot) {
1983 rc = walk_memory_regions_end(data, pa, prot);
1984 if (rc != 0) {
1985 return rc;
1986 }
1987 }
1988 }
1989 } else {
1990 void **pp = *lp;
1991
03f49957 1992 for (i = 0; i < V_L2_SIZE; ++i) {
1a1c4db9 1993 pa = base | ((target_ulong)i <<
03f49957 1994 (TARGET_PAGE_BITS + V_L2_BITS * level));
5b6dd868
BS
1995 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1996 if (rc != 0) {
1997 return rc;
1998 }
1999 }
2000 }
2001
2002 return 0;
2003}
2004
2005int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2006{
2007 struct walk_memory_regions_data data;
66ec9f49 2008 uintptr_t i, l1_sz = v_l1_size;
5b6dd868
BS
2009
2010 data.fn = fn;
2011 data.priv = priv;
1a1c4db9 2012 data.start = -1u;
5b6dd868
BS
2013 data.prot = 0;
2014
66ec9f49
VK
2015 for (i = 0; i < l1_sz; i++) {
2016 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2017 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
5b6dd868
BS
2018 if (rc != 0) {
2019 return rc;
2020 }
2021 }
2022
2023 return walk_memory_regions_end(&data, 0, 0);
2024}
2025
1a1c4db9
MI
2026static int dump_region(void *priv, target_ulong start,
2027 target_ulong end, unsigned long prot)
5b6dd868
BS
2028{
2029 FILE *f = (FILE *)priv;
2030
1a1c4db9
MI
2031 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2032 " "TARGET_FMT_lx" %c%c%c\n",
5b6dd868
BS
2033 start, end, end - start,
2034 ((prot & PAGE_READ) ? 'r' : '-'),
2035 ((prot & PAGE_WRITE) ? 'w' : '-'),
2036 ((prot & PAGE_EXEC) ? 'x' : '-'));
2037
2038 return 0;
2039}
2040
2041/* dump memory mappings */
2042void page_dump(FILE *f)
2043{
1a1c4db9 2044 const int length = sizeof(target_ulong) * 2;
227b8175
SW
2045 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2046 length, "start", length, "end", length, "size", "prot");
5b6dd868
BS
2047 walk_memory_regions(f, dump_region);
2048}
2049
2050int page_get_flags(target_ulong address)
2051{
2052 PageDesc *p;
2053
2054 p = page_find(address >> TARGET_PAGE_BITS);
2055 if (!p) {
2056 return 0;
2057 }
2058 return p->flags;
2059}
2060
2061/* Modify the flags of a page and invalidate the code if necessary.
2062 The flag PAGE_WRITE_ORG is positioned automatically depending
2063 on PAGE_WRITE. The mmap_lock should already be held. */
2064void page_set_flags(target_ulong start, target_ulong end, int flags)
2065{
2066 target_ulong addr, len;
2067
2068 /* This function should never be called with addresses outside the
2069 guest address space. If this assert fires, it probably indicates
2070 a missing call to h2g_valid. */
2071#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2072 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2073#endif
2074 assert(start < end);
e505a063 2075 assert_memory_lock();
5b6dd868
BS
2076
2077 start = start & TARGET_PAGE_MASK;
2078 end = TARGET_PAGE_ALIGN(end);
2079
2080 if (flags & PAGE_WRITE) {
2081 flags |= PAGE_WRITE_ORG;
2082 }
2083
2084 for (addr = start, len = end - start;
2085 len != 0;
2086 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2087 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2088
2089 /* If the write protection bit is set, then we invalidate
2090 the code inside. */
2091 if (!(p->flags & PAGE_WRITE) &&
2092 (flags & PAGE_WRITE) &&
2093 p->first_tb) {
75809229 2094 tb_invalidate_phys_page(addr, 0);
5b6dd868
BS
2095 }
2096 p->flags = flags;
2097 }
2098}
2099
2100int page_check_range(target_ulong start, target_ulong len, int flags)
2101{
2102 PageDesc *p;
2103 target_ulong end;
2104 target_ulong addr;
2105
2106 /* This function should never be called with addresses outside the
2107 guest address space. If this assert fires, it probably indicates
2108 a missing call to h2g_valid. */
2109#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1a1c4db9 2110 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
5b6dd868
BS
2111#endif
2112
2113 if (len == 0) {
2114 return 0;
2115 }
2116 if (start + len - 1 < start) {
2117 /* We've wrapped around. */
2118 return -1;
2119 }
2120
2121 /* must do before we loose bits in the next step */
2122 end = TARGET_PAGE_ALIGN(start + len);
2123 start = start & TARGET_PAGE_MASK;
2124
2125 for (addr = start, len = end - start;
2126 len != 0;
2127 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2128 p = page_find(addr >> TARGET_PAGE_BITS);
2129 if (!p) {
2130 return -1;
2131 }
2132 if (!(p->flags & PAGE_VALID)) {
2133 return -1;
2134 }
2135
2136 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2137 return -1;
2138 }
2139 if (flags & PAGE_WRITE) {
2140 if (!(p->flags & PAGE_WRITE_ORG)) {
2141 return -1;
2142 }
2143 /* unprotect the page if it was put read-only because it
2144 contains translated code */
2145 if (!(p->flags & PAGE_WRITE)) {
f213e72f 2146 if (!page_unprotect(addr, 0)) {
5b6dd868
BS
2147 return -1;
2148 }
2149 }
5b6dd868
BS
2150 }
2151 }
2152 return 0;
2153}
2154
2155/* called from signal handler: invalidate the code and unprotect the
f213e72f
PM
2156 * page. Return 0 if the fault was not handled, 1 if it was handled,
2157 * and 2 if it was handled but the caller must cause the TB to be
2158 * immediately exited. (We can only return 2 if the 'pc' argument is
2159 * non-zero.)
2160 */
2161int page_unprotect(target_ulong address, uintptr_t pc)
5b6dd868
BS
2162{
2163 unsigned int prot;
7399a337 2164 bool current_tb_invalidated;
5b6dd868
BS
2165 PageDesc *p;
2166 target_ulong host_start, host_end, addr;
2167
2168 /* Technically this isn't safe inside a signal handler. However we
2169 know this only ever happens in a synchronous SEGV handler, so in
2170 practice it seems to be ok. */
2171 mmap_lock();
2172
2173 p = page_find(address >> TARGET_PAGE_BITS);
2174 if (!p) {
2175 mmap_unlock();
2176 return 0;
2177 }
2178
2179 /* if the page was really writable, then we change its
2180 protection back to writable */
2181 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2182 host_start = address & qemu_host_page_mask;
2183 host_end = host_start + qemu_host_page_size;
2184
2185 prot = 0;
7399a337 2186 current_tb_invalidated = false;
5b6dd868
BS
2187 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2188 p = page_find(addr >> TARGET_PAGE_BITS);
2189 p->flags |= PAGE_WRITE;
2190 prot |= p->flags;
2191
2192 /* and since the content will be modified, we must invalidate
2193 the corresponding translated code. */
7399a337 2194 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
5b6dd868
BS
2195#ifdef DEBUG_TB_CHECK
2196 tb_invalidate_check(addr);
2197#endif
2198 }
2199 mprotect((void *)g2h(host_start), qemu_host_page_size,
2200 prot & PAGE_BITS);
2201
2202 mmap_unlock();
7399a337
SS
2203 /* If current TB was invalidated return to main loop */
2204 return current_tb_invalidated ? 2 : 1;
5b6dd868
BS
2205 }
2206 mmap_unlock();
2207 return 0;
2208}
2209#endif /* CONFIG_USER_ONLY */
This page took 1.232553 seconds and 4 git commands to generate.