2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "qemu/timer.h"
18 #include "qemu/error-report.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
23 #include "internals.h"
24 #include "hw/arm/arm.h"
25 #include "exec/memattrs.h"
26 #include "exec/address-spaces.h"
27 #include "hw/boards.h"
30 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
34 static bool cap_has_mp_state;
36 int kvm_arm_vcpu_init(CPUState *cs)
38 ARMCPU *cpu = ARM_CPU(cs);
39 struct kvm_vcpu_init init;
41 init.target = cpu->kvm_target;
42 memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
44 return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
47 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
49 struct kvm_vcpu_init *init)
51 int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
53 kvmfd = qemu_open("/dev/kvm", O_RDWR);
57 vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
61 cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
67 /* Caller doesn't want the VCPU to be initialized, so skip it */
71 ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
73 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
77 } else if (cpus_to_try) {
78 /* Old kernel which doesn't know about the
79 * PREFERRED_TARGET ioctl: we know it will only support
80 * creating one kind of guest CPU which is its preferred
83 while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
84 init->target = *cpus_to_try++;
85 memset(init->features, 0, sizeof(init->features));
86 ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
95 /* Treat a NULL cpus_to_try argument the same as an empty
96 * list, which means we will fail the call since this must
97 * be an old kernel which doesn't support PREFERRED_TARGET.
123 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
127 for (i = 2; i >= 0; i--) {
132 static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
134 ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
136 /* All we really need to set up for the 'host' CPU
137 * is the feature bits -- we rely on the fact that the
138 * various ID register values in ARMCPU are only used for
141 if (!kvm_arm_get_host_cpu_features(ahcc)) {
142 fprintf(stderr, "Failed to retrieve host CPU features!\n");
147 static void kvm_arm_host_cpu_initfn(Object *obj)
149 ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
150 ARMCPU *cpu = ARM_CPU(obj);
151 CPUARMState *env = &cpu->env;
153 cpu->kvm_target = ahcc->target;
154 cpu->dtb_compatible = ahcc->dtb_compatible;
155 env->features = ahcc->features;
158 static const TypeInfo host_arm_cpu_type_info = {
159 .name = TYPE_ARM_HOST_CPU,
160 #ifdef TARGET_AARCH64
161 .parent = TYPE_AARCH64_CPU,
163 .parent = TYPE_ARM_CPU,
165 .instance_init = kvm_arm_host_cpu_initfn,
166 .class_init = kvm_arm_host_cpu_class_init,
167 .class_size = sizeof(ARMHostCPUClass),
170 int kvm_arch_init(MachineState *ms, KVMState *s)
172 /* For ARM interrupt delivery is always asynchronous,
173 * whether we are using an in-kernel VGIC or not.
175 kvm_async_interrupts_allowed = true;
178 * PSCI wakes up secondary cores, so we always need to
179 * have vCPUs waiting in kernel space
181 kvm_halt_in_kernel_allowed = true;
183 cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
185 type_register_static(&host_arm_cpu_type_info);
190 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
192 return cpu->cpu_index;
195 /* We track all the KVM devices which need their memory addresses
196 * passing to the kernel in a list of these structures.
197 * When board init is complete we run through the list and
198 * tell the kernel the base addresses of the memory regions.
199 * We use a MemoryListener to track mapping and unmapping of
200 * the regions during board creation, so the board models don't
201 * need to do anything special for the KVM case.
203 typedef struct KVMDevice {
204 struct kvm_arm_device_addr kda;
205 struct kvm_device_attr kdattr;
207 QSLIST_ENTRY(KVMDevice) entries;
211 static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
213 static void kvm_arm_devlistener_add(MemoryListener *listener,
214 MemoryRegionSection *section)
218 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
219 if (section->mr == kd->mr) {
220 kd->kda.addr = section->offset_within_address_space;
225 static void kvm_arm_devlistener_del(MemoryListener *listener,
226 MemoryRegionSection *section)
230 QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
231 if (section->mr == kd->mr) {
237 static MemoryListener devlistener = {
238 .region_add = kvm_arm_devlistener_add,
239 .region_del = kvm_arm_devlistener_del,
242 static void kvm_arm_set_device_addr(KVMDevice *kd)
244 struct kvm_device_attr *attr = &kd->kdattr;
247 /* If the device control API is available and we have a device fd on the
248 * KVMDevice struct, let's use the newer API
250 if (kd->dev_fd >= 0) {
251 uint64_t addr = kd->kda.addr;
252 attr->addr = (uintptr_t)&addr;
253 ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
255 ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
259 fprintf(stderr, "Failed to set device address: %s\n",
265 static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
269 memory_listener_unregister(&devlistener);
270 QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
271 if (kd->kda.addr != -1) {
272 kvm_arm_set_device_addr(kd);
274 memory_region_unref(kd->mr);
279 static Notifier notify = {
280 .notify = kvm_arm_machine_init_done,
283 void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
284 uint64_t attr, int dev_fd)
288 if (!kvm_irqchip_in_kernel()) {
292 if (QSLIST_EMPTY(&kvm_devices_head)) {
293 memory_listener_register(&devlistener, &address_space_memory);
294 qemu_add_machine_init_done_notifier(¬ify);
296 kd = g_new0(KVMDevice, 1);
300 kd->kdattr.flags = 0;
301 kd->kdattr.group = group;
302 kd->kdattr.attr = attr;
304 QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
305 memory_region_ref(kd->mr);
308 static int compare_u64(const void *a, const void *b)
310 if (*(uint64_t *)a > *(uint64_t *)b) {
313 if (*(uint64_t *)a < *(uint64_t *)b) {
319 /* Initialize the CPUState's cpreg list according to the kernel's
320 * definition of what CPU registers it knows about (and throw away
321 * the previous TCG-created cpreg list).
323 int kvm_arm_init_cpreg_list(ARMCPU *cpu)
325 struct kvm_reg_list rl;
326 struct kvm_reg_list *rlp;
327 int i, ret, arraylen;
328 CPUState *cs = CPU(cpu);
331 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
335 rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
337 ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
341 /* Sort the list we get back from the kernel, since cpreg_tuples
342 * must be in strictly ascending order.
344 qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
346 for (i = 0, arraylen = 0; i < rlp->n; i++) {
347 if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
350 switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
351 case KVM_REG_SIZE_U32:
352 case KVM_REG_SIZE_U64:
355 fprintf(stderr, "Can't handle size of register in kernel list\n");
363 cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
364 cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
365 cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
367 cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
369 cpu->cpreg_array_len = arraylen;
370 cpu->cpreg_vmstate_array_len = arraylen;
372 for (i = 0, arraylen = 0; i < rlp->n; i++) {
373 uint64_t regidx = rlp->reg[i];
374 if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
377 cpu->cpreg_indexes[arraylen] = regidx;
380 assert(cpu->cpreg_array_len == arraylen);
382 if (!write_kvmstate_to_list(cpu)) {
383 /* Shouldn't happen unless kernel is inconsistent about
384 * what registers exist.
386 fprintf(stderr, "Initial read of kernel register state failed\n");
396 bool write_kvmstate_to_list(ARMCPU *cpu)
398 CPUState *cs = CPU(cpu);
402 for (i = 0; i < cpu->cpreg_array_len; i++) {
403 struct kvm_one_reg r;
404 uint64_t regidx = cpu->cpreg_indexes[i];
410 switch (regidx & KVM_REG_SIZE_MASK) {
411 case KVM_REG_SIZE_U32:
412 r.addr = (uintptr_t)&v32;
413 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
415 cpu->cpreg_values[i] = v32;
418 case KVM_REG_SIZE_U64:
419 r.addr = (uintptr_t)(cpu->cpreg_values + i);
420 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
432 bool write_list_to_kvmstate(ARMCPU *cpu, int level)
434 CPUState *cs = CPU(cpu);
438 for (i = 0; i < cpu->cpreg_array_len; i++) {
439 struct kvm_one_reg r;
440 uint64_t regidx = cpu->cpreg_indexes[i];
444 if (kvm_arm_cpreg_level(regidx) > level) {
449 switch (regidx & KVM_REG_SIZE_MASK) {
450 case KVM_REG_SIZE_U32:
451 v32 = cpu->cpreg_values[i];
452 r.addr = (uintptr_t)&v32;
454 case KVM_REG_SIZE_U64:
455 r.addr = (uintptr_t)(cpu->cpreg_values + i);
460 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
462 /* We might fail for "unknown register" and also for
463 * "you tried to set a register which is constant with
464 * a different value from what it actually contains".
472 void kvm_arm_reset_vcpu(ARMCPU *cpu)
476 /* Re-init VCPU so that all registers are set to
477 * their respective reset values.
479 ret = kvm_arm_vcpu_init(CPU(cpu));
481 fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
484 if (!write_kvmstate_to_list(cpu)) {
485 fprintf(stderr, "write_kvmstate_to_list failed\n");
491 * Update KVM's MP_STATE based on what QEMU thinks it is
493 int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
495 if (cap_has_mp_state) {
496 struct kvm_mp_state mp_state = {
497 .mp_state = (cpu->power_state == PSCI_OFF) ?
498 KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
500 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
502 fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
503 __func__, ret, strerror(-ret));
512 * Sync the KVM MP_STATE into QEMU
514 int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
516 if (cap_has_mp_state) {
517 struct kvm_mp_state mp_state;
518 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
520 fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
521 __func__, ret, strerror(-ret));
524 cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
531 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
535 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
538 uint32_t switched_level;
540 if (kvm_irqchip_in_kernel()) {
542 * We only need to sync timer states with user-space interrupt
543 * controllers, so return early and save cycles if we don't.
545 return MEMTXATTRS_UNSPECIFIED;
550 /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
551 if (run->s.regs.device_irq_level != cpu->device_irq_level) {
552 switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
554 qemu_mutex_lock_iothread();
556 if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
557 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
558 !!(run->s.regs.device_irq_level &
559 KVM_ARM_DEV_EL1_VTIMER));
560 switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
563 if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
564 qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
565 !!(run->s.regs.device_irq_level &
566 KVM_ARM_DEV_EL1_PTIMER));
567 switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
570 if (switched_level & KVM_ARM_DEV_PMU) {
571 qemu_set_irq(cpu->pmu_interrupt,
572 !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
573 switched_level &= ~KVM_ARM_DEV_PMU;
576 if (switched_level) {
577 qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
578 __func__, switched_level);
581 /* We also mark unknown levels as processed to not waste cycles */
582 cpu->device_irq_level = run->s.regs.device_irq_level;
583 qemu_mutex_unlock_iothread();
586 return MEMTXATTRS_UNSPECIFIED;
590 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
594 switch (run->exit_reason) {
596 if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
598 } /* otherwise return to guest */
601 qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
602 __func__, run->exit_reason);
608 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
613 int kvm_arch_process_async_events(CPUState *cs)
618 /* The #ifdef protections are until 32bit headers are imported and can
619 * be removed once both 32 and 64 bit reach feature parity.
621 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
623 #ifdef KVM_GUESTDBG_USE_SW_BP
624 if (kvm_sw_breakpoints_active(cs)) {
625 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
628 #ifdef KVM_GUESTDBG_USE_HW
629 if (kvm_arm_hw_debug_active(cs)) {
630 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
631 kvm_arm_copy_hw_debug_data(&dbg->arch);
636 void kvm_arch_init_irq_routing(KVMState *s)
640 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
642 if (machine_kernel_irqchip_split(ms)) {
643 perror("-machine kernel_irqchip=split is not supported on ARM.");
647 /* If we can create the VGIC using the newer device control API, we
648 * let the device do this when it initializes itself, otherwise we
649 * fall back to the old API */
650 return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
653 int kvm_arm_vgic_probe(void)
655 if (kvm_create_device(kvm_state,
656 KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
658 } else if (kvm_create_device(kvm_state,
659 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
666 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
667 uint64_t address, uint32_t data, PCIDevice *dev)
672 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
673 int vector, PCIDevice *dev)
678 int kvm_arch_release_virq_post(int virq)
683 int kvm_arch_msi_data_to_gsi(uint32_t data)
685 return (data - 32) & 0xffff;