]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
74c21bd0 | 11 | #include "qemu/osdep.h" |
494b00c7 | 12 | #include <sys/ioctl.h> |
494b00c7 CD |
13 | |
14 | #include <linux/kvm.h> | |
15 | ||
16 | #include "qemu-common.h" | |
17 | #include "qemu/timer.h" | |
2ecb2027 | 18 | #include "qemu/error-report.h" |
494b00c7 CD |
19 | #include "sysemu/sysemu.h" |
20 | #include "sysemu/kvm.h" | |
eb035b48 | 21 | #include "kvm_arm.h" |
494b00c7 | 22 | #include "cpu.h" |
38df27c8 | 23 | #include "internals.h" |
bd2be150 | 24 | #include "hw/arm/arm.h" |
4c663752 | 25 | #include "exec/memattrs.h" |
4344af65 | 26 | #include "exec/address-spaces.h" |
15eafc2e | 27 | #include "hw/boards.h" |
03dd024f | 28 | #include "qemu/log.h" |
494b00c7 CD |
29 | |
30 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
31 | KVM_CAP_LAST_INFO | |
32 | }; | |
33 | ||
1a1753f7 AB |
34 | static bool cap_has_mp_state; |
35 | ||
228d5e04 PS |
36 | int kvm_arm_vcpu_init(CPUState *cs) |
37 | { | |
38 | ARMCPU *cpu = ARM_CPU(cs); | |
39 | struct kvm_vcpu_init init; | |
40 | ||
41 | init.target = cpu->kvm_target; | |
42 | memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); | |
43 | ||
44 | return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); | |
45 | } | |
46 | ||
a96c0514 PM |
47 | bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
48 | int *fdarray, | |
49 | struct kvm_vcpu_init *init) | |
50 | { | |
51 | int ret, kvmfd = -1, vmfd = -1, cpufd = -1; | |
52 | ||
53 | kvmfd = qemu_open("/dev/kvm", O_RDWR); | |
54 | if (kvmfd < 0) { | |
55 | goto err; | |
56 | } | |
57 | vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); | |
58 | if (vmfd < 0) { | |
59 | goto err; | |
60 | } | |
61 | cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); | |
62 | if (cpufd < 0) { | |
63 | goto err; | |
64 | } | |
65 | ||
2f340e9c PX |
66 | if (!init) { |
67 | /* Caller doesn't want the VCPU to be initialized, so skip it */ | |
68 | goto finish; | |
69 | } | |
70 | ||
a96c0514 PM |
71 | ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); |
72 | if (ret >= 0) { | |
73 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
74 | if (ret < 0) { | |
75 | goto err; | |
76 | } | |
2f340e9c | 77 | } else if (cpus_to_try) { |
a96c0514 PM |
78 | /* Old kernel which doesn't know about the |
79 | * PREFERRED_TARGET ioctl: we know it will only support | |
80 | * creating one kind of guest CPU which is its preferred | |
81 | * CPU type. | |
82 | */ | |
83 | while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { | |
84 | init->target = *cpus_to_try++; | |
85 | memset(init->features, 0, sizeof(init->features)); | |
86 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
87 | if (ret >= 0) { | |
88 | break; | |
89 | } | |
90 | } | |
91 | if (ret < 0) { | |
92 | goto err; | |
93 | } | |
2f340e9c PX |
94 | } else { |
95 | /* Treat a NULL cpus_to_try argument the same as an empty | |
96 | * list, which means we will fail the call since this must | |
97 | * be an old kernel which doesn't support PREFERRED_TARGET. | |
98 | */ | |
99 | goto err; | |
a96c0514 PM |
100 | } |
101 | ||
2f340e9c | 102 | finish: |
a96c0514 PM |
103 | fdarray[0] = kvmfd; |
104 | fdarray[1] = vmfd; | |
105 | fdarray[2] = cpufd; | |
106 | ||
107 | return true; | |
108 | ||
109 | err: | |
110 | if (cpufd >= 0) { | |
111 | close(cpufd); | |
112 | } | |
113 | if (vmfd >= 0) { | |
114 | close(vmfd); | |
115 | } | |
116 | if (kvmfd >= 0) { | |
117 | close(kvmfd); | |
118 | } | |
119 | ||
120 | return false; | |
121 | } | |
122 | ||
123 | void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) | |
124 | { | |
125 | int i; | |
126 | ||
127 | for (i = 2; i >= 0; i--) { | |
128 | close(fdarray[i]); | |
129 | } | |
130 | } | |
131 | ||
a96c0514 PM |
132 | static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data) |
133 | { | |
134 | ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc); | |
135 | ||
136 | /* All we really need to set up for the 'host' CPU | |
137 | * is the feature bits -- we rely on the fact that the | |
138 | * various ID register values in ARMCPU are only used for | |
139 | * TCG CPUs. | |
140 | */ | |
141 | if (!kvm_arm_get_host_cpu_features(ahcc)) { | |
142 | fprintf(stderr, "Failed to retrieve host CPU features!\n"); | |
143 | abort(); | |
144 | } | |
145 | } | |
146 | ||
147 | static void kvm_arm_host_cpu_initfn(Object *obj) | |
148 | { | |
149 | ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj); | |
150 | ARMCPU *cpu = ARM_CPU(obj); | |
151 | CPUARMState *env = &cpu->env; | |
152 | ||
153 | cpu->kvm_target = ahcc->target; | |
154 | cpu->dtb_compatible = ahcc->dtb_compatible; | |
155 | env->features = ahcc->features; | |
156 | } | |
157 | ||
158 | static const TypeInfo host_arm_cpu_type_info = { | |
159 | .name = TYPE_ARM_HOST_CPU, | |
26861c7c MH |
160 | #ifdef TARGET_AARCH64 |
161 | .parent = TYPE_AARCH64_CPU, | |
162 | #else | |
a96c0514 | 163 | .parent = TYPE_ARM_CPU, |
26861c7c | 164 | #endif |
a96c0514 PM |
165 | .instance_init = kvm_arm_host_cpu_initfn, |
166 | .class_init = kvm_arm_host_cpu_class_init, | |
167 | .class_size = sizeof(ARMHostCPUClass), | |
168 | }; | |
169 | ||
b16565b3 | 170 | int kvm_arch_init(MachineState *ms, KVMState *s) |
494b00c7 CD |
171 | { |
172 | /* For ARM interrupt delivery is always asynchronous, | |
173 | * whether we are using an in-kernel VGIC or not. | |
174 | */ | |
175 | kvm_async_interrupts_allowed = true; | |
a96c0514 | 176 | |
5d721b78 AG |
177 | /* |
178 | * PSCI wakes up secondary cores, so we always need to | |
179 | * have vCPUs waiting in kernel space | |
180 | */ | |
181 | kvm_halt_in_kernel_allowed = true; | |
182 | ||
1a1753f7 AB |
183 | cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
184 | ||
a96c0514 PM |
185 | type_register_static(&host_arm_cpu_type_info); |
186 | ||
494b00c7 CD |
187 | return 0; |
188 | } | |
189 | ||
190 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
191 | { | |
192 | return cpu->cpu_index; | |
193 | } | |
194 | ||
eb035b48 PM |
195 | /* We track all the KVM devices which need their memory addresses |
196 | * passing to the kernel in a list of these structures. | |
197 | * When board init is complete we run through the list and | |
198 | * tell the kernel the base addresses of the memory regions. | |
199 | * We use a MemoryListener to track mapping and unmapping of | |
200 | * the regions during board creation, so the board models don't | |
201 | * need to do anything special for the KVM case. | |
202 | */ | |
203 | typedef struct KVMDevice { | |
204 | struct kvm_arm_device_addr kda; | |
1da41cc1 | 205 | struct kvm_device_attr kdattr; |
eb035b48 PM |
206 | MemoryRegion *mr; |
207 | QSLIST_ENTRY(KVMDevice) entries; | |
1da41cc1 | 208 | int dev_fd; |
eb035b48 PM |
209 | } KVMDevice; |
210 | ||
211 | static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; | |
212 | ||
213 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
214 | MemoryRegionSection *section) | |
215 | { | |
216 | KVMDevice *kd; | |
217 | ||
218 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
219 | if (section->mr == kd->mr) { | |
220 | kd->kda.addr = section->offset_within_address_space; | |
221 | } | |
222 | } | |
223 | } | |
224 | ||
225 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
226 | MemoryRegionSection *section) | |
227 | { | |
228 | KVMDevice *kd; | |
229 | ||
230 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
231 | if (section->mr == kd->mr) { | |
232 | kd->kda.addr = -1; | |
233 | } | |
234 | } | |
235 | } | |
236 | ||
237 | static MemoryListener devlistener = { | |
238 | .region_add = kvm_arm_devlistener_add, | |
239 | .region_del = kvm_arm_devlistener_del, | |
240 | }; | |
241 | ||
1da41cc1 CD |
242 | static void kvm_arm_set_device_addr(KVMDevice *kd) |
243 | { | |
244 | struct kvm_device_attr *attr = &kd->kdattr; | |
245 | int ret; | |
246 | ||
247 | /* If the device control API is available and we have a device fd on the | |
248 | * KVMDevice struct, let's use the newer API | |
249 | */ | |
250 | if (kd->dev_fd >= 0) { | |
251 | uint64_t addr = kd->kda.addr; | |
252 | attr->addr = (uintptr_t)&addr; | |
253 | ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); | |
254 | } else { | |
255 | ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); | |
256 | } | |
257 | ||
258 | if (ret < 0) { | |
259 | fprintf(stderr, "Failed to set device address: %s\n", | |
260 | strerror(-ret)); | |
261 | abort(); | |
262 | } | |
263 | } | |
264 | ||
eb035b48 PM |
265 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
266 | { | |
267 | KVMDevice *kd, *tkd; | |
268 | ||
269 | memory_listener_unregister(&devlistener); | |
270 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { | |
271 | if (kd->kda.addr != -1) { | |
1da41cc1 | 272 | kvm_arm_set_device_addr(kd); |
eb035b48 | 273 | } |
dfde4e6e | 274 | memory_region_unref(kd->mr); |
eb035b48 PM |
275 | g_free(kd); |
276 | } | |
277 | } | |
278 | ||
279 | static Notifier notify = { | |
280 | .notify = kvm_arm_machine_init_done, | |
281 | }; | |
282 | ||
1da41cc1 CD |
283 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
284 | uint64_t attr, int dev_fd) | |
eb035b48 PM |
285 | { |
286 | KVMDevice *kd; | |
287 | ||
288 | if (!kvm_irqchip_in_kernel()) { | |
289 | return; | |
290 | } | |
291 | ||
292 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
4344af65 | 293 | memory_listener_register(&devlistener, &address_space_memory); |
eb035b48 PM |
294 | qemu_add_machine_init_done_notifier(¬ify); |
295 | } | |
296 | kd = g_new0(KVMDevice, 1); | |
297 | kd->mr = mr; | |
298 | kd->kda.id = devid; | |
299 | kd->kda.addr = -1; | |
1da41cc1 CD |
300 | kd->kdattr.flags = 0; |
301 | kd->kdattr.group = group; | |
302 | kd->kdattr.attr = attr; | |
303 | kd->dev_fd = dev_fd; | |
eb035b48 | 304 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
dfde4e6e | 305 | memory_region_ref(kd->mr); |
eb035b48 PM |
306 | } |
307 | ||
38df27c8 AB |
308 | static int compare_u64(const void *a, const void *b) |
309 | { | |
310 | if (*(uint64_t *)a > *(uint64_t *)b) { | |
311 | return 1; | |
312 | } | |
313 | if (*(uint64_t *)a < *(uint64_t *)b) { | |
314 | return -1; | |
315 | } | |
316 | return 0; | |
317 | } | |
318 | ||
319 | /* Initialize the CPUState's cpreg list according to the kernel's | |
320 | * definition of what CPU registers it knows about (and throw away | |
321 | * the previous TCG-created cpreg list). | |
322 | */ | |
323 | int kvm_arm_init_cpreg_list(ARMCPU *cpu) | |
324 | { | |
325 | struct kvm_reg_list rl; | |
326 | struct kvm_reg_list *rlp; | |
327 | int i, ret, arraylen; | |
328 | CPUState *cs = CPU(cpu); | |
329 | ||
330 | rl.n = 0; | |
331 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); | |
332 | if (ret != -E2BIG) { | |
333 | return ret; | |
334 | } | |
335 | rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); | |
336 | rlp->n = rl.n; | |
337 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); | |
338 | if (ret) { | |
339 | goto out; | |
340 | } | |
341 | /* Sort the list we get back from the kernel, since cpreg_tuples | |
342 | * must be in strictly ascending order. | |
343 | */ | |
344 | qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); | |
345 | ||
346 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
347 | if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { | |
348 | continue; | |
349 | } | |
350 | switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { | |
351 | case KVM_REG_SIZE_U32: | |
352 | case KVM_REG_SIZE_U64: | |
353 | break; | |
354 | default: | |
355 | fprintf(stderr, "Can't handle size of register in kernel list\n"); | |
356 | ret = -EINVAL; | |
357 | goto out; | |
358 | } | |
359 | ||
360 | arraylen++; | |
361 | } | |
362 | ||
363 | cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); | |
364 | cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); | |
365 | cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, | |
366 | arraylen); | |
367 | cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, | |
368 | arraylen); | |
369 | cpu->cpreg_array_len = arraylen; | |
370 | cpu->cpreg_vmstate_array_len = arraylen; | |
371 | ||
372 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
373 | uint64_t regidx = rlp->reg[i]; | |
374 | if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { | |
375 | continue; | |
376 | } | |
377 | cpu->cpreg_indexes[arraylen] = regidx; | |
378 | arraylen++; | |
379 | } | |
380 | assert(cpu->cpreg_array_len == arraylen); | |
381 | ||
382 | if (!write_kvmstate_to_list(cpu)) { | |
383 | /* Shouldn't happen unless kernel is inconsistent about | |
384 | * what registers exist. | |
385 | */ | |
386 | fprintf(stderr, "Initial read of kernel register state failed\n"); | |
387 | ret = -EINVAL; | |
388 | goto out; | |
389 | } | |
390 | ||
391 | out: | |
392 | g_free(rlp); | |
393 | return ret; | |
394 | } | |
395 | ||
ff047453 PM |
396 | bool write_kvmstate_to_list(ARMCPU *cpu) |
397 | { | |
398 | CPUState *cs = CPU(cpu); | |
399 | int i; | |
400 | bool ok = true; | |
401 | ||
402 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
403 | struct kvm_one_reg r; | |
404 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
405 | uint32_t v32; | |
406 | int ret; | |
407 | ||
408 | r.id = regidx; | |
409 | ||
410 | switch (regidx & KVM_REG_SIZE_MASK) { | |
411 | case KVM_REG_SIZE_U32: | |
412 | r.addr = (uintptr_t)&v32; | |
413 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
414 | if (!ret) { | |
415 | cpu->cpreg_values[i] = v32; | |
416 | } | |
417 | break; | |
418 | case KVM_REG_SIZE_U64: | |
419 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
420 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
421 | break; | |
422 | default: | |
423 | abort(); | |
424 | } | |
425 | if (ret) { | |
426 | ok = false; | |
427 | } | |
428 | } | |
429 | return ok; | |
430 | } | |
431 | ||
4b7a6bf4 | 432 | bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
ff047453 PM |
433 | { |
434 | CPUState *cs = CPU(cpu); | |
435 | int i; | |
436 | bool ok = true; | |
437 | ||
438 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
439 | struct kvm_one_reg r; | |
440 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
441 | uint32_t v32; | |
442 | int ret; | |
443 | ||
4b7a6bf4 CD |
444 | if (kvm_arm_cpreg_level(regidx) > level) { |
445 | continue; | |
446 | } | |
447 | ||
ff047453 PM |
448 | r.id = regidx; |
449 | switch (regidx & KVM_REG_SIZE_MASK) { | |
450 | case KVM_REG_SIZE_U32: | |
451 | v32 = cpu->cpreg_values[i]; | |
452 | r.addr = (uintptr_t)&v32; | |
453 | break; | |
454 | case KVM_REG_SIZE_U64: | |
455 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
456 | break; | |
457 | default: | |
458 | abort(); | |
459 | } | |
460 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
461 | if (ret) { | |
462 | /* We might fail for "unknown register" and also for | |
463 | * "you tried to set a register which is constant with | |
464 | * a different value from what it actually contains". | |
465 | */ | |
466 | ok = false; | |
467 | } | |
468 | } | |
469 | return ok; | |
470 | } | |
471 | ||
38df27c8 AB |
472 | void kvm_arm_reset_vcpu(ARMCPU *cpu) |
473 | { | |
25f2895e CD |
474 | int ret; |
475 | ||
38df27c8 AB |
476 | /* Re-init VCPU so that all registers are set to |
477 | * their respective reset values. | |
478 | */ | |
25f2895e CD |
479 | ret = kvm_arm_vcpu_init(CPU(cpu)); |
480 | if (ret < 0) { | |
481 | fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); | |
482 | abort(); | |
483 | } | |
484 | if (!write_kvmstate_to_list(cpu)) { | |
485 | fprintf(stderr, "write_kvmstate_to_list failed\n"); | |
486 | abort(); | |
487 | } | |
38df27c8 AB |
488 | } |
489 | ||
1a1753f7 AB |
490 | /* |
491 | * Update KVM's MP_STATE based on what QEMU thinks it is | |
492 | */ | |
493 | int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) | |
494 | { | |
495 | if (cap_has_mp_state) { | |
496 | struct kvm_mp_state mp_state = { | |
062ba099 AB |
497 | .mp_state = (cpu->power_state == PSCI_OFF) ? |
498 | KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE | |
1a1753f7 AB |
499 | }; |
500 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); | |
501 | if (ret) { | |
502 | fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", | |
503 | __func__, ret, strerror(-ret)); | |
504 | return -1; | |
505 | } | |
506 | } | |
507 | ||
508 | return 0; | |
509 | } | |
510 | ||
511 | /* | |
512 | * Sync the KVM MP_STATE into QEMU | |
513 | */ | |
514 | int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) | |
515 | { | |
516 | if (cap_has_mp_state) { | |
517 | struct kvm_mp_state mp_state; | |
518 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); | |
519 | if (ret) { | |
520 | fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", | |
521 | __func__, ret, strerror(-ret)); | |
522 | abort(); | |
523 | } | |
062ba099 AB |
524 | cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? |
525 | PSCI_OFF : PSCI_ON; | |
1a1753f7 AB |
526 | } |
527 | ||
528 | return 0; | |
529 | } | |
530 | ||
494b00c7 CD |
531 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
532 | { | |
533 | } | |
534 | ||
4c663752 | 535 | MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
494b00c7 | 536 | { |
5d721b78 AG |
537 | ARMCPU *cpu; |
538 | uint32_t switched_level; | |
539 | ||
540 | if (kvm_irqchip_in_kernel()) { | |
541 | /* | |
542 | * We only need to sync timer states with user-space interrupt | |
543 | * controllers, so return early and save cycles if we don't. | |
544 | */ | |
545 | return MEMTXATTRS_UNSPECIFIED; | |
546 | } | |
547 | ||
548 | cpu = ARM_CPU(cs); | |
549 | ||
550 | /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ | |
551 | if (run->s.regs.device_irq_level != cpu->device_irq_level) { | |
552 | switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; | |
553 | ||
554 | qemu_mutex_lock_iothread(); | |
555 | ||
556 | if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { | |
557 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], | |
558 | !!(run->s.regs.device_irq_level & | |
559 | KVM_ARM_DEV_EL1_VTIMER)); | |
560 | switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; | |
561 | } | |
562 | ||
563 | if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { | |
564 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], | |
565 | !!(run->s.regs.device_irq_level & | |
566 | KVM_ARM_DEV_EL1_PTIMER)); | |
567 | switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; | |
568 | } | |
569 | ||
b1659527 AJ |
570 | if (switched_level & KVM_ARM_DEV_PMU) { |
571 | qemu_set_irq(cpu->pmu_interrupt, | |
572 | !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); | |
573 | switched_level &= ~KVM_ARM_DEV_PMU; | |
574 | } | |
5d721b78 AG |
575 | |
576 | if (switched_level) { | |
577 | qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", | |
578 | __func__, switched_level); | |
579 | } | |
580 | ||
581 | /* We also mark unknown levels as processed to not waste cycles */ | |
582 | cpu->device_irq_level = run->s.regs.device_irq_level; | |
583 | qemu_mutex_unlock_iothread(); | |
584 | } | |
585 | ||
4c663752 | 586 | return MEMTXATTRS_UNSPECIFIED; |
494b00c7 CD |
587 | } |
588 | ||
2ecb2027 | 589 | |
494b00c7 CD |
590 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
591 | { | |
2ecb2027 AB |
592 | int ret = 0; |
593 | ||
594 | switch (run->exit_reason) { | |
595 | case KVM_EXIT_DEBUG: | |
596 | if (kvm_arm_handle_debug(cs, &run->debug.arch)) { | |
597 | ret = EXCP_DEBUG; | |
598 | } /* otherwise return to guest */ | |
599 | break; | |
600 | default: | |
601 | qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", | |
602 | __func__, run->exit_reason); | |
603 | break; | |
604 | } | |
605 | return ret; | |
494b00c7 CD |
606 | } |
607 | ||
494b00c7 CD |
608 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
609 | { | |
610 | return true; | |
611 | } | |
612 | ||
613 | int kvm_arch_process_async_events(CPUState *cs) | |
614 | { | |
615 | return 0; | |
616 | } | |
617 | ||
2ecb2027 AB |
618 | /* The #ifdef protections are until 32bit headers are imported and can |
619 | * be removed once both 32 and 64 bit reach feature parity. | |
620 | */ | |
494b00c7 CD |
621 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
622 | { | |
2ecb2027 AB |
623 | #ifdef KVM_GUESTDBG_USE_SW_BP |
624 | if (kvm_sw_breakpoints_active(cs)) { | |
625 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
626 | } | |
627 | #endif | |
e4482ab7 AB |
628 | #ifdef KVM_GUESTDBG_USE_HW |
629 | if (kvm_arm_hw_debug_active(cs)) { | |
630 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; | |
631 | kvm_arm_copy_hw_debug_data(&dbg->arch); | |
632 | } | |
633 | #endif | |
494b00c7 | 634 | } |
b3a1c626 AK |
635 | |
636 | void kvm_arch_init_irq_routing(KVMState *s) | |
637 | { | |
638 | } | |
1da41cc1 | 639 | |
15eafc2e | 640 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) |
1da41cc1 | 641 | { |
15eafc2e PB |
642 | if (machine_kernel_irqchip_split(ms)) { |
643 | perror("-machine kernel_irqchip=split is not supported on ARM."); | |
644 | exit(1); | |
645 | } | |
646 | ||
1da41cc1 CD |
647 | /* If we can create the VGIC using the newer device control API, we |
648 | * let the device do this when it initializes itself, otherwise we | |
649 | * fall back to the old API */ | |
34e85cd9 PF |
650 | return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
651 | } | |
1da41cc1 | 652 | |
34e85cd9 PF |
653 | int kvm_arm_vgic_probe(void) |
654 | { | |
655 | if (kvm_create_device(kvm_state, | |
656 | KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { | |
657 | return 3; | |
658 | } else if (kvm_create_device(kvm_state, | |
659 | KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { | |
660 | return 2; | |
661 | } else { | |
662 | return 0; | |
1da41cc1 | 663 | } |
1da41cc1 | 664 | } |
9e03a040 FB |
665 | |
666 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 667 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 FB |
668 | { |
669 | return 0; | |
670 | } | |
1850b6b7 | 671 | |
38d87493 PX |
672 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
673 | int vector, PCIDevice *dev) | |
674 | { | |
675 | return 0; | |
676 | } | |
677 | ||
678 | int kvm_arch_release_virq_post(int virq) | |
679 | { | |
680 | return 0; | |
681 | } | |
682 | ||
1850b6b7 EA |
683 | int kvm_arch_msi_data_to_gsi(uint32_t data) |
684 | { | |
685 | return (data - 32) & 0xffff; | |
686 | } |