2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
28 #include "qapi/error.h"
30 #include "qemu/bswap.h"
33 int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size, i, ret;
38 if (exact_size >= s->l1_size) {
42 new_l1_size = exact_size;
45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50 new_l1_size * sizeof(uint64_t),
51 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
56 ret = bdrv_flush(bs->file->bs);
61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67 s->cluster_size, QCOW2_DISCARD_ALWAYS);
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
78 memset(s->l1_table + new_l1_size, 0,
79 (s->l1_size - new_l1_size) * sizeof(uint64_t));
83 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
86 BDRVQcow2State *s = bs->opaque;
87 int new_l1_size2, ret, i;
88 uint64_t *new_l1_table;
89 int64_t old_l1_table_offset, old_l1_size;
90 int64_t new_l1_table_offset, new_l1_size;
93 if (min_size <= s->l1_size)
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
99 if (min_size > INT_MAX / sizeof(uint64_t)) {
104 new_l1_size = min_size;
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size = s->l1_size;
108 if (new_l1_size == 0) {
111 while (min_size > new_l1_size) {
112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123 s->l1_size, new_l1_size);
126 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
127 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
128 if (new_l1_table == NULL) {
131 memset(new_l1_table, 0, new_l1_size2);
134 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
137 /* write new table (align to cluster) */
138 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
139 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
140 if (new_l1_table_offset < 0) {
141 qemu_vfree(new_l1_table);
142 return new_l1_table_offset;
145 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
150 /* the L1 position has not yet been updated, so these clusters must
151 * indeed be completely free */
152 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
153 new_l1_size2, false);
158 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
159 for(i = 0; i < s->l1_size; i++)
160 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
161 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
162 new_l1_table, new_l1_size2);
165 for(i = 0; i < s->l1_size; i++)
166 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
169 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
170 stl_be_p(data, new_l1_size);
171 stq_be_p(data + 4, new_l1_table_offset);
172 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
177 qemu_vfree(s->l1_table);
178 old_l1_table_offset = s->l1_table_offset;
179 s->l1_table_offset = new_l1_table_offset;
180 s->l1_table = new_l1_table;
181 old_l1_size = s->l1_size;
182 s->l1_size = new_l1_size;
183 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
184 QCOW2_DISCARD_OTHER);
187 qemu_vfree(new_l1_table);
188 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189 QCOW2_DISCARD_OTHER);
196 * @bs: The BlockDriverState
197 * @offset: A guest offset, used to calculate what slice of the L2
199 * @l2_offset: Offset to the L2 table in the image file.
200 * @l2_slice: Location to store the pointer to the L2 slice.
202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203 * that are loaded by the qcow2 cache). If the slice is in the cache,
204 * the cache is used; otherwise the L2 slice is loaded from the image
207 static int l2_load(BlockDriverState *bs, uint64_t offset,
208 uint64_t l2_offset, uint64_t **l2_slice)
210 BDRVQcow2State *s = bs->opaque;
211 int start_of_slice = sizeof(uint64_t) *
212 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
214 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
219 * Writes an L1 entry to disk (note that depending on the alignment
220 * requirements this function may write more that just one entry in
221 * order to prevent bdrv_pwrite from performing a read-modify-write)
223 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
225 BDRVQcow2State *s = bs->opaque;
228 int bufsize = MAX(sizeof(uint64_t),
229 MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230 int nentries = bufsize / sizeof(uint64_t);
231 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
237 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
239 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
242 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
243 s->l1_table_offset + 8 * l1_start_index, bufsize, false);
248 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
249 ret = bdrv_pwrite_sync(bs->file,
250 s->l1_table_offset + 8 * l1_start_index,
262 * Allocate a new l2 entry in the file. If l1_index points to an already
263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264 * table) copy the contents of the old L2 table into the newly allocated one.
265 * Otherwise the new table is initialized with zeros.
269 static int l2_allocate(BlockDriverState *bs, int l1_index)
271 BDRVQcow2State *s = bs->opaque;
272 uint64_t old_l2_offset;
273 uint64_t *l2_slice = NULL;
274 unsigned slice, slice_size2, n_slices;
278 old_l2_offset = s->l1_table[l1_index];
280 trace_qcow2_l2_allocate(bs, l1_index);
282 /* allocate a new l2 entry */
284 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
290 /* The offset must fit in the offset field of the L1 table entry */
291 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
293 /* If we're allocating the table at offset 0 then something is wrong */
294 if (l2_offset == 0) {
295 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296 "allocation of L2 table at offset 0");
301 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
306 /* allocate a new entry in the l2 cache */
308 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
309 n_slices = s->cluster_size / slice_size2;
311 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
312 for (slice = 0; slice < n_slices; slice++) {
313 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
314 l2_offset + slice * slice_size2,
315 (void **) &l2_slice);
320 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
321 /* if there was no old l2 table, clear the new slice */
322 memset(l2_slice, 0, slice_size2);
325 uint64_t old_l2_slice_offset =
326 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
328 /* if there was an old l2 table, read a slice from the disk */
329 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
330 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331 (void **) &old_slice);
336 memcpy(l2_slice, old_slice, slice_size2);
338 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
341 /* write the l2 slice to the file */
342 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
344 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
345 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
349 ret = qcow2_cache_flush(bs, s->l2_table_cache);
354 /* update the L1 entry */
355 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
356 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
357 ret = qcow2_write_l1_entry(bs, l1_index);
362 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
366 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
367 if (l2_slice != NULL) {
368 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
370 s->l1_table[l1_index] = old_l2_offset;
372 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
373 QCOW2_DISCARD_ALWAYS);
379 * Checks how many clusters in a given L2 slice are contiguous in the image
380 * file. As soon as one of the flags in the bitmask stop_flags changes compared
381 * to the first cluster, the search is stopped and the cluster is not counted
382 * as contiguous. (This allows it, for example, to stop at the first compressed
383 * cluster which may require a different handling)
385 static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
386 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
389 QCow2ClusterType first_cluster_type;
390 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
391 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
392 uint64_t offset = first_entry & mask;
394 first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
395 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
399 /* must be allocated */
400 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
401 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
403 for (i = 0; i < nb_clusters; i++) {
404 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
405 if (offset + (uint64_t) i * cluster_size != l2_entry) {
414 * Checks how many consecutive unallocated clusters in a given L2
415 * slice have the same cluster type.
417 static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
420 QCow2ClusterType wanted_type)
424 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
425 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
426 for (i = 0; i < nb_clusters; i++) {
427 uint64_t entry = be64_to_cpu(l2_slice[i]);
428 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
430 if (type != wanted_type) {
438 static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
439 uint64_t src_cluster_offset,
440 unsigned offset_in_cluster,
445 if (qiov->size == 0) {
449 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
455 /* Call .bdrv_co_readv() directly instead of using the public block-layer
456 * interface. This avoids double I/O throttling and request tracking,
457 * which can lead to deadlock when block layer copy-on-read is enabled.
459 ret = bs->drv->bdrv_co_preadv_part(bs,
460 src_cluster_offset + offset_in_cluster,
461 qiov->size, qiov, 0, 0);
469 static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
470 uint64_t cluster_offset,
471 unsigned offset_in_cluster,
474 BDRVQcow2State *s = bs->opaque;
477 if (qiov->size == 0) {
481 ret = qcow2_pre_write_overlap_check(bs, 0,
482 cluster_offset + offset_in_cluster, qiov->size, true);
487 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
488 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
489 qiov->size, qiov, 0);
501 * For a given offset of the virtual disk find the equivalent host
502 * offset in the qcow2 file and store it in *host_offset. Neither
503 * offset needs to be aligned to a cluster boundary.
505 * If the cluster is unallocated then *host_offset will be 0.
506 * If the cluster is compressed then *host_offset will contain the
507 * complete compressed cluster descriptor.
509 * On entry, *bytes is the maximum number of contiguous bytes starting at
510 * offset that we are interested in.
512 * On exit, *bytes is the number of bytes starting at offset that have the same
513 * cluster type and (if applicable) are stored contiguously in the image file.
514 * Compressed clusters are always returned one by one.
516 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
519 int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
520 unsigned int *bytes, uint64_t *host_offset)
522 BDRVQcow2State *s = bs->opaque;
523 unsigned int l2_index;
524 uint64_t l1_index, l2_offset, *l2_slice, l2_entry;
526 unsigned int offset_in_cluster;
527 uint64_t bytes_available, bytes_needed, nb_clusters;
528 QCow2ClusterType type;
531 offset_in_cluster = offset_into_cluster(s, offset);
532 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
534 /* compute how many bytes there are between the start of the cluster
535 * containing offset and the end of the l2 slice that contains
536 * the entry pointing to it */
538 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
541 if (bytes_needed > bytes_available) {
542 bytes_needed = bytes_available;
547 /* seek to the l2 offset in the l1 table */
549 l1_index = offset_to_l1_index(s, offset);
550 if (l1_index >= s->l1_size) {
551 type = QCOW2_CLUSTER_UNALLOCATED;
555 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
557 type = QCOW2_CLUSTER_UNALLOCATED;
561 if (offset_into_cluster(s, l2_offset)) {
562 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
563 " unaligned (L1 index: %#" PRIx64 ")",
564 l2_offset, l1_index);
568 /* load the l2 slice in memory */
570 ret = l2_load(bs, offset, l2_offset, &l2_slice);
575 /* find the cluster offset for the given disk offset */
577 l2_index = offset_to_l2_slice_index(s, offset);
578 l2_entry = be64_to_cpu(l2_slice[l2_index]);
580 nb_clusters = size_to_clusters(s, bytes_needed);
581 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
582 * integers; the minimum cluster size is 512, so this assertion is always
584 assert(nb_clusters <= INT_MAX);
586 type = qcow2_get_cluster_type(bs, l2_entry);
587 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
588 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
589 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
590 " in pre-v3 image (L2 offset: %#" PRIx64
591 ", L2 index: %#x)", l2_offset, l2_index);
596 case QCOW2_CLUSTER_COMPRESSED:
597 if (has_data_file(bs)) {
598 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
599 "entry found in image with external data "
600 "file (L2 offset: %#" PRIx64 ", L2 index: "
601 "%#x)", l2_offset, l2_index);
605 /* Compressed clusters can only be processed one by one */
607 *host_offset = l2_entry & L2E_COMPRESSED_OFFSET_SIZE_MASK;
609 case QCOW2_CLUSTER_ZERO_PLAIN:
610 case QCOW2_CLUSTER_UNALLOCATED:
611 /* how many empty clusters ? */
612 c = count_contiguous_clusters_unallocated(bs, nb_clusters,
613 &l2_slice[l2_index], type);
615 case QCOW2_CLUSTER_ZERO_ALLOC:
616 case QCOW2_CLUSTER_NORMAL: {
617 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
618 *host_offset = host_cluster_offset + offset_in_cluster;
619 /* how many allocated clusters ? */
620 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
621 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
622 if (offset_into_cluster(s, host_cluster_offset)) {
623 qcow2_signal_corruption(bs, true, -1, -1,
624 "Cluster allocation offset %#"
625 PRIx64 " unaligned (L2 offset: %#" PRIx64
626 ", L2 index: %#x)", host_cluster_offset,
627 l2_offset, l2_index);
631 if (has_data_file(bs) && *host_offset != offset) {
632 qcow2_signal_corruption(bs, true, -1, -1,
633 "External data file host cluster offset %#"
634 PRIx64 " does not match guest cluster "
636 ", L2 index: %#x)", host_cluster_offset,
637 offset - offset_in_cluster, l2_index);
647 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
649 bytes_available = (int64_t)c * s->cluster_size;
652 if (bytes_available > bytes_needed) {
653 bytes_available = bytes_needed;
656 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
657 * subtracting offset_in_cluster will therefore definitely yield something
658 * not exceeding UINT_MAX */
659 assert(bytes_available - offset_in_cluster <= UINT_MAX);
660 *bytes = bytes_available - offset_in_cluster;
665 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
672 * for a given disk offset, load (and allocate if needed)
673 * the appropriate slice of its l2 table.
675 * the cluster index in the l2 slice is given to the caller.
677 * Returns 0 on success, -errno in failure case
679 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
680 uint64_t **new_l2_slice,
683 BDRVQcow2State *s = bs->opaque;
684 unsigned int l2_index;
685 uint64_t l1_index, l2_offset;
686 uint64_t *l2_slice = NULL;
689 /* seek to the l2 offset in the l1 table */
691 l1_index = offset_to_l1_index(s, offset);
692 if (l1_index >= s->l1_size) {
693 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
699 assert(l1_index < s->l1_size);
700 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
701 if (offset_into_cluster(s, l2_offset)) {
702 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
703 " unaligned (L1 index: %#" PRIx64 ")",
704 l2_offset, l1_index);
708 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
709 /* First allocate a new L2 table (and do COW if needed) */
710 ret = l2_allocate(bs, l1_index);
715 /* Then decrease the refcount of the old table */
717 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
718 QCOW2_DISCARD_OTHER);
721 /* Get the offset of the newly-allocated l2 table */
722 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
723 assert(offset_into_cluster(s, l2_offset) == 0);
726 /* load the l2 slice in memory */
727 ret = l2_load(bs, offset, l2_offset, &l2_slice);
732 /* find the cluster offset for the given disk offset */
734 l2_index = offset_to_l2_slice_index(s, offset);
736 *new_l2_slice = l2_slice;
737 *new_l2_index = l2_index;
743 * alloc_compressed_cluster_offset
745 * For a given offset on the virtual disk, allocate a new compressed cluster
746 * and put the host offset of the cluster into *host_offset. If a cluster is
747 * already allocated at the offset, return an error.
749 * Return 0 on success and -errno in error cases
751 int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
754 uint64_t *host_offset)
756 BDRVQcow2State *s = bs->opaque;
759 int64_t cluster_offset;
762 if (has_data_file(bs)) {
766 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
771 /* Compression can't overwrite anything. Fail if the cluster was already
773 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
774 if (cluster_offset & L2E_OFFSET_MASK) {
775 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
779 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
780 if (cluster_offset < 0) {
781 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
782 return cluster_offset;
786 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
787 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
789 /* The offset and size must fit in their fields of the L2 table entry */
790 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
791 assert((nb_csectors & s->csize_mask) == nb_csectors);
793 cluster_offset |= QCOW_OFLAG_COMPRESSED |
794 ((uint64_t)nb_csectors << s->csize_shift);
796 /* update L2 table */
798 /* compressed clusters never have the copied flag */
800 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
801 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
802 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
803 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
805 *host_offset = cluster_offset & s->cluster_offset_mask;
809 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
811 BDRVQcow2State *s = bs->opaque;
812 Qcow2COWRegion *start = &m->cow_start;
813 Qcow2COWRegion *end = &m->cow_end;
814 unsigned buffer_size;
815 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
817 uint8_t *start_buffer, *end_buffer;
821 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
822 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
823 assert(start->offset + start->nb_bytes <= end->offset);
825 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
829 /* If we have to read both the start and end COW regions and the
830 * middle region is not too large then perform just one read
832 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
834 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
836 /* If we have to do two reads, add some padding in the middle
837 * if necessary to make sure that the end region is optimally
839 size_t align = bdrv_opt_mem_align(bs);
840 assert(align > 0 && align <= UINT_MAX);
841 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
842 UINT_MAX - end->nb_bytes);
843 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
846 /* Reserve a buffer large enough to store all the data that we're
848 start_buffer = qemu_try_blockalign(bs, buffer_size);
849 if (start_buffer == NULL) {
852 /* The part of the buffer where the end region is located */
853 end_buffer = start_buffer + buffer_size - end->nb_bytes;
855 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
856 qemu_iovec_subvec_niov(m->data_qiov,
861 qemu_co_mutex_unlock(&s->lock);
862 /* First we read the existing data from both COW regions. We
863 * either read the whole region in one go, or the start and end
864 * regions separately. */
866 qemu_iovec_add(&qiov, start_buffer, buffer_size);
867 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
869 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
870 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
875 qemu_iovec_reset(&qiov);
876 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
877 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
883 /* Encrypt the data if necessary before writing it */
885 ret = qcow2_co_encrypt(bs,
886 m->alloc_offset + start->offset,
887 m->offset + start->offset,
888 start_buffer, start->nb_bytes);
893 ret = qcow2_co_encrypt(bs,
894 m->alloc_offset + end->offset,
895 m->offset + end->offset,
896 end_buffer, end->nb_bytes);
902 /* And now we can write everything. If we have the guest data we
903 * can write everything in one single operation */
905 qemu_iovec_reset(&qiov);
906 if (start->nb_bytes) {
907 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
909 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
911 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
913 /* NOTE: we have a write_aio blkdebug event here followed by
914 * a cow_write one in do_perform_cow_write(), but there's only
915 * one single I/O operation */
916 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
917 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
919 /* If there's no guest data then write both COW regions separately */
920 qemu_iovec_reset(&qiov);
921 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
922 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
927 qemu_iovec_reset(&qiov);
928 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
929 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
933 qemu_co_mutex_lock(&s->lock);
936 * Before we update the L2 table to actually point to the new cluster, we
937 * need to be sure that the refcounts have been increased and COW was
941 qcow2_cache_depends_on_flush(s->l2_table_cache);
944 qemu_vfree(start_buffer);
945 qemu_iovec_destroy(&qiov);
949 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
951 BDRVQcow2State *s = bs->opaque;
952 int i, j = 0, l2_index, ret;
953 uint64_t *old_cluster, *l2_slice;
954 uint64_t cluster_offset = m->alloc_offset;
956 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
957 assert(m->nb_clusters > 0);
959 old_cluster = g_try_new(uint64_t, m->nb_clusters);
960 if (old_cluster == NULL) {
965 /* copy content of unmodified sectors */
966 ret = perform_cow(bs, m);
971 /* Update L2 table. */
972 if (s->use_lazy_refcounts) {
973 qcow2_mark_dirty(bs);
975 if (qcow2_need_accurate_refcounts(s)) {
976 qcow2_cache_set_dependency(bs, s->l2_table_cache,
977 s->refcount_block_cache);
980 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
984 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
986 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
987 for (i = 0; i < m->nb_clusters; i++) {
988 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
989 /* if two concurrent writes happen to the same unallocated cluster
990 * each write allocates separate cluster and writes data concurrently.
991 * The first one to complete updates l2 table with pointer to its
992 * cluster the second one has to do RMW (which is done above by
993 * perform_cow()), update l2 table with its cluster pointer and free
994 * old cluster. This is what this loop does */
995 if (l2_slice[l2_index + i] != 0) {
996 old_cluster[j++] = l2_slice[l2_index + i];
999 /* The offset must fit in the offset field of the L2 table entry */
1000 assert((offset & L2E_OFFSET_MASK) == offset);
1002 l2_slice[l2_index + i] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1006 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1009 * If this was a COW, we need to decrease the refcount of the old cluster.
1011 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1012 * clusters), the next write will reuse them anyway.
1014 if (!m->keep_old_clusters && j != 0) {
1015 for (i = 0; i < j; i++) {
1016 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1017 QCOW2_DISCARD_NEVER);
1023 g_free(old_cluster);
1028 * Frees the allocated clusters because the request failed and they won't
1029 * actually be linked.
1031 void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1033 BDRVQcow2State *s = bs->opaque;
1034 if (!has_data_file(bs) && !m->keep_old_clusters) {
1035 qcow2_free_clusters(bs, m->alloc_offset,
1036 m->nb_clusters << s->cluster_bits,
1037 QCOW2_DISCARD_NEVER);
1042 * Returns the number of contiguous clusters that can be used for an allocating
1043 * write, but require COW to be performed (this includes yet unallocated space,
1044 * which must copy from the backing file)
1046 static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1047 uint64_t *l2_slice, int l2_index)
1051 for (i = 0; i < nb_clusters; i++) {
1052 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1053 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1055 switch(cluster_type) {
1056 case QCOW2_CLUSTER_NORMAL:
1057 if (l2_entry & QCOW_OFLAG_COPIED) {
1061 case QCOW2_CLUSTER_UNALLOCATED:
1062 case QCOW2_CLUSTER_COMPRESSED:
1063 case QCOW2_CLUSTER_ZERO_PLAIN:
1064 case QCOW2_CLUSTER_ZERO_ALLOC:
1072 assert(i <= nb_clusters);
1077 * Check if there already is an AIO write request in flight which allocates
1078 * the same cluster. In this case we need to wait until the previous
1079 * request has completed and updated the L2 table accordingly.
1082 * 0 if there was no dependency. *cur_bytes indicates the number of
1083 * bytes from guest_offset that can be read before the next
1084 * dependency must be processed (or the request is complete)
1086 * -EAGAIN if we had to wait for another request, previously gathered
1087 * information on cluster allocation may be invalid now. The caller
1088 * must start over anyway, so consider *cur_bytes undefined.
1090 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1091 uint64_t *cur_bytes, QCowL2Meta **m)
1093 BDRVQcow2State *s = bs->opaque;
1094 QCowL2Meta *old_alloc;
1095 uint64_t bytes = *cur_bytes;
1097 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1099 uint64_t start = guest_offset;
1100 uint64_t end = start + bytes;
1101 uint64_t old_start = l2meta_cow_start(old_alloc);
1102 uint64_t old_end = l2meta_cow_end(old_alloc);
1104 if (end <= old_start || start >= old_end) {
1105 /* No intersection */
1107 if (start < old_start) {
1108 /* Stop at the start of a running allocation */
1109 bytes = old_start - start;
1114 /* Stop if already an l2meta exists. After yielding, it wouldn't
1115 * be valid any more, so we'd have to clean up the old L2Metas
1116 * and deal with requests depending on them before starting to
1117 * gather new ones. Not worth the trouble. */
1118 if (bytes == 0 && *m) {
1124 /* Wait for the dependency to complete. We need to recheck
1125 * the free/allocated clusters when we continue. */
1126 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1132 /* Make sure that existing clusters and new allocations are only used up to
1133 * the next dependency if we shortened the request above */
1140 * Checks how many already allocated clusters that don't require a copy on
1141 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1142 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1143 * offset are counted.
1145 * Note that guest_offset may not be cluster aligned. In this case, the
1146 * returned *host_offset points to exact byte referenced by guest_offset and
1147 * therefore isn't cluster aligned as well.
1150 * 0: if no allocated clusters are available at the given offset.
1151 * *bytes is normally unchanged. It is set to 0 if the cluster
1152 * is allocated and doesn't need COW, but doesn't have the right
1155 * 1: if allocated clusters that don't require a COW are available at
1156 * the requested offset. *bytes may have decreased and describes
1157 * the length of the area that can be written to.
1159 * -errno: in error cases
1161 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1162 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1164 BDRVQcow2State *s = bs->opaque;
1166 uint64_t cluster_offset;
1168 uint64_t nb_clusters;
1169 unsigned int keep_clusters;
1172 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1175 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1176 == offset_into_cluster(s, *host_offset));
1179 * Calculate the number of clusters to look for. We stop at L2 slice
1180 * boundaries to keep things simple.
1183 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1185 l2_index = offset_to_l2_slice_index(s, guest_offset);
1186 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1187 assert(nb_clusters <= INT_MAX);
1189 /* Find L2 entry for the first involved cluster */
1190 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1195 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1197 /* Check how many clusters are already allocated and don't need COW */
1198 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1199 && (cluster_offset & QCOW_OFLAG_COPIED))
1201 /* If a specific host_offset is required, check it */
1202 bool offset_matches =
1203 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1205 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1206 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1207 "%#llx unaligned (guest offset: %#" PRIx64
1208 ")", cluster_offset & L2E_OFFSET_MASK,
1214 if (*host_offset != INV_OFFSET && !offset_matches) {
1220 /* We keep all QCOW_OFLAG_COPIED clusters */
1222 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1223 &l2_slice[l2_index],
1224 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1225 assert(keep_clusters <= nb_clusters);
1227 *bytes = MIN(*bytes,
1228 keep_clusters * s->cluster_size
1229 - offset_into_cluster(s, guest_offset));
1238 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1240 /* Only return a host offset if we actually made progress. Otherwise we
1241 * would make requirements for handle_alloc() that it can't fulfill */
1243 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1244 + offset_into_cluster(s, guest_offset);
1251 * Allocates new clusters for the given guest_offset.
1253 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1254 * contain the number of clusters that have been allocated and are contiguous
1255 * in the image file.
1257 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1258 * at which the new clusters must start. *nb_clusters can be 0 on return in
1259 * this case if the cluster at host_offset is already in use. If *host_offset
1260 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1262 * *host_offset is updated to contain the offset into the image file at which
1263 * the first allocated cluster starts.
1265 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1266 * function has been waiting for another request and the allocation must be
1267 * restarted, but the whole request should not be failed.
1269 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1270 uint64_t *host_offset, uint64_t *nb_clusters)
1272 BDRVQcow2State *s = bs->opaque;
1274 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1275 *host_offset, *nb_clusters);
1277 if (has_data_file(bs)) {
1278 assert(*host_offset == INV_OFFSET ||
1279 *host_offset == start_of_cluster(s, guest_offset));
1280 *host_offset = start_of_cluster(s, guest_offset);
1284 /* Allocate new clusters */
1285 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1286 if (*host_offset == INV_OFFSET) {
1287 int64_t cluster_offset =
1288 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1289 if (cluster_offset < 0) {
1290 return cluster_offset;
1292 *host_offset = cluster_offset;
1295 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1305 * Allocates new clusters for an area that either is yet unallocated or needs a
1306 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1307 * allocated if the new allocation can match the specified host offset.
1309 * Note that guest_offset may not be cluster aligned. In this case, the
1310 * returned *host_offset points to exact byte referenced by guest_offset and
1311 * therefore isn't cluster aligned as well.
1314 * 0: if no clusters could be allocated. *bytes is set to 0,
1315 * *host_offset is left unchanged.
1317 * 1: if new clusters were allocated. *bytes may be decreased if the
1318 * new allocation doesn't cover all of the requested area.
1319 * *host_offset is updated to contain the host offset of the first
1320 * newly allocated cluster.
1322 * -errno: in error cases
1324 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1325 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1327 BDRVQcow2State *s = bs->opaque;
1331 uint64_t nb_clusters;
1333 bool keep_old_clusters = false;
1335 uint64_t alloc_cluster_offset = INV_OFFSET;
1337 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1342 * Calculate the number of clusters to look for. We stop at L2 slice
1343 * boundaries to keep things simple.
1346 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1348 l2_index = offset_to_l2_slice_index(s, guest_offset);
1349 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1350 assert(nb_clusters <= INT_MAX);
1352 /* Limit total allocation byte count to INT_MAX */
1353 nb_clusters = MIN(nb_clusters, INT_MAX >> s->cluster_bits);
1355 /* Find L2 entry for the first involved cluster */
1356 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1361 entry = be64_to_cpu(l2_slice[l2_index]);
1362 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1364 /* This function is only called when there were no non-COW clusters, so if
1365 * we can't find any unallocated or COW clusters either, something is
1366 * wrong with our code. */
1367 assert(nb_clusters > 0);
1369 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1370 (entry & QCOW_OFLAG_COPIED) &&
1371 (*host_offset == INV_OFFSET ||
1372 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1374 int preallocated_nb_clusters;
1376 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1377 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1378 "cluster offset %#llx unaligned (guest "
1379 "offset: %#" PRIx64 ")",
1380 entry & L2E_OFFSET_MASK, guest_offset);
1385 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1386 * would be fine, too, but count_cow_clusters() above has limited
1387 * nb_clusters already to a range of COW clusters */
1388 preallocated_nb_clusters =
1389 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1390 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1391 assert(preallocated_nb_clusters > 0);
1393 nb_clusters = preallocated_nb_clusters;
1394 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1396 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1397 * should not free them. */
1398 keep_old_clusters = true;
1401 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1403 if (alloc_cluster_offset == INV_OFFSET) {
1404 /* Allocate, if necessary at a given offset in the image file */
1405 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1406 start_of_cluster(s, *host_offset);
1407 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1413 /* Can't extend contiguous allocation */
1414 if (nb_clusters == 0) {
1419 assert(alloc_cluster_offset != INV_OFFSET);
1423 * Save info needed for meta data update.
1425 * requested_bytes: Number of bytes from the start of the first
1426 * newly allocated cluster to the end of the (possibly shortened
1427 * before) write request.
1429 * avail_bytes: Number of bytes from the start of the first
1430 * newly allocated to the end of the last newly allocated cluster.
1432 * nb_bytes: The number of bytes from the start of the first
1433 * newly allocated cluster to the end of the area that the write
1434 * request actually writes to (excluding COW at the end)
1436 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1437 int avail_bytes = nb_clusters << s->cluster_bits;
1438 int nb_bytes = MIN(requested_bytes, avail_bytes);
1439 QCowL2Meta *old_m = *m;
1441 *m = g_malloc0(sizeof(**m));
1443 **m = (QCowL2Meta) {
1446 .alloc_offset = alloc_cluster_offset,
1447 .offset = start_of_cluster(s, guest_offset),
1448 .nb_clusters = nb_clusters,
1450 .keep_old_clusters = keep_old_clusters,
1454 .nb_bytes = offset_into_cluster(s, guest_offset),
1458 .nb_bytes = avail_bytes - nb_bytes,
1461 qemu_co_queue_init(&(*m)->dependent_requests);
1462 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1464 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1465 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1466 assert(*bytes != 0);
1471 if (*m && (*m)->nb_clusters > 0) {
1472 QLIST_REMOVE(*m, next_in_flight);
1478 * alloc_cluster_offset
1480 * For a given offset on the virtual disk, find the cluster offset in qcow2
1481 * file. If the offset is not found, allocate a new cluster.
1483 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1484 * other fields in m are meaningless.
1486 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1487 * contiguous clusters that have been allocated. In this case, the other
1488 * fields of m are valid and contain information about the first allocated
1491 * If the request conflicts with another write request in flight, the coroutine
1492 * is queued and will be reentered when the dependency has completed.
1494 * Return 0 on success and -errno in error cases
1496 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1497 unsigned int *bytes, uint64_t *host_offset,
1500 BDRVQcow2State *s = bs->opaque;
1501 uint64_t start, remaining;
1502 uint64_t cluster_offset;
1506 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1511 cluster_offset = INV_OFFSET;
1512 *host_offset = INV_OFFSET;
1518 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1519 *host_offset = start_of_cluster(s, cluster_offset);
1522 assert(remaining >= cur_bytes);
1525 remaining -= cur_bytes;
1527 if (cluster_offset != INV_OFFSET) {
1528 cluster_offset += cur_bytes;
1531 if (remaining == 0) {
1535 cur_bytes = remaining;
1538 * Now start gathering as many contiguous clusters as possible:
1540 * 1. Check for overlaps with in-flight allocations
1542 * a) Overlap not in the first cluster -> shorten this request and
1543 * let the caller handle the rest in its next loop iteration.
1545 * b) Real overlaps of two requests. Yield and restart the search
1546 * for contiguous clusters (the situation could have changed
1547 * while we were sleeping)
1549 * c) TODO: Request starts in the same cluster as the in-flight
1550 * allocation ends. Shorten the COW of the in-fight allocation,
1551 * set cluster_offset to write to the same cluster and set up
1552 * the right synchronisation between the in-flight request and
1555 ret = handle_dependencies(bs, start, &cur_bytes, m);
1556 if (ret == -EAGAIN) {
1557 /* Currently handle_dependencies() doesn't yield if we already had
1558 * an allocation. If it did, we would have to clean up the L2Meta
1559 * structs before starting over. */
1562 } else if (ret < 0) {
1564 } else if (cur_bytes == 0) {
1567 /* handle_dependencies() may have decreased cur_bytes (shortened
1568 * the allocations below) so that the next dependency is processed
1569 * correctly during the next loop iteration. */
1573 * 2. Count contiguous COPIED clusters.
1575 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1580 } else if (cur_bytes == 0) {
1585 * 3. If the request still hasn't completed, allocate new clusters,
1586 * considering any cluster_offset of steps 1c or 2.
1588 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1594 assert(cur_bytes == 0);
1599 *bytes -= remaining;
1601 assert(*host_offset != INV_OFFSET);
1607 * This discards as many clusters of nb_clusters as possible at once (i.e.
1608 * all clusters in the same L2 slice) and returns the number of discarded
1611 static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1612 uint64_t nb_clusters,
1613 enum qcow2_discard_type type, bool full_discard)
1615 BDRVQcow2State *s = bs->opaque;
1621 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1626 /* Limit nb_clusters to one L2 slice */
1627 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1628 assert(nb_clusters <= INT_MAX);
1630 for (i = 0; i < nb_clusters; i++) {
1631 uint64_t old_l2_entry;
1633 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1636 * If full_discard is false, make sure that a discarded area reads back
1637 * as zeroes for v3 images (we cannot do it for v2 without actually
1638 * writing a zero-filled buffer). We can skip the operation if the
1639 * cluster is already marked as zero, or if it's unallocated and we
1640 * don't have a backing file.
1642 * TODO We might want to use bdrv_block_status(bs) here, but we're
1643 * holding s->lock, so that doesn't work today.
1645 * If full_discard is true, the sector should not read back as zeroes,
1646 * but rather fall through to the backing file.
1648 switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1649 case QCOW2_CLUSTER_UNALLOCATED:
1650 if (full_discard || !bs->backing) {
1655 case QCOW2_CLUSTER_ZERO_PLAIN:
1656 if (!full_discard) {
1661 case QCOW2_CLUSTER_ZERO_ALLOC:
1662 case QCOW2_CLUSTER_NORMAL:
1663 case QCOW2_CLUSTER_COMPRESSED:
1670 /* First remove L2 entries */
1671 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1672 if (!full_discard && s->qcow_version >= 3) {
1673 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1675 l2_slice[l2_index + i] = cpu_to_be64(0);
1678 /* Then decrease the refcount */
1679 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1682 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1687 int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1688 uint64_t bytes, enum qcow2_discard_type type,
1691 BDRVQcow2State *s = bs->opaque;
1692 uint64_t end_offset = offset + bytes;
1693 uint64_t nb_clusters;
1697 /* Caller must pass aligned values, except at image end */
1698 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1699 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1700 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1702 nb_clusters = size_to_clusters(s, bytes);
1704 s->cache_discards = true;
1706 /* Each L2 slice is handled by its own loop iteration */
1707 while (nb_clusters > 0) {
1708 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1715 nb_clusters -= cleared;
1716 offset += (cleared * s->cluster_size);
1721 s->cache_discards = false;
1722 qcow2_process_discards(bs, ret);
1728 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1729 * all clusters in the same L2 slice) and returns the number of zeroed
1732 static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1733 uint64_t nb_clusters, int flags)
1735 BDRVQcow2State *s = bs->opaque;
1740 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1742 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1747 /* Limit nb_clusters to one L2 slice */
1748 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1749 assert(nb_clusters <= INT_MAX);
1751 for (i = 0; i < nb_clusters; i++) {
1752 uint64_t old_offset;
1753 QCow2ClusterType cluster_type;
1755 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1758 * Minimize L2 changes if the cluster already reads back as
1759 * zeroes with correct allocation.
1761 cluster_type = qcow2_get_cluster_type(bs, old_offset);
1762 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1763 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1767 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1768 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1769 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1770 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1772 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1776 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1781 int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1782 uint64_t bytes, int flags)
1784 BDRVQcow2State *s = bs->opaque;
1785 uint64_t end_offset = offset + bytes;
1786 uint64_t nb_clusters;
1790 /* If we have to stay in sync with an external data file, zero out
1791 * s->data_file first. */
1792 if (data_file_is_raw(bs)) {
1793 assert(has_data_file(bs));
1794 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1800 /* Caller must pass aligned values, except at image end */
1801 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1802 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1803 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
1806 * The zero flag is only supported by version 3 and newer. However, if we
1807 * have no backing file, we can resort to discard in version 2.
1809 if (s->qcow_version < 3) {
1811 return qcow2_cluster_discard(bs, offset, bytes,
1812 QCOW2_DISCARD_REQUEST, false);
1817 /* Each L2 slice is handled by its own loop iteration */
1818 nb_clusters = size_to_clusters(s, bytes);
1820 s->cache_discards = true;
1822 while (nb_clusters > 0) {
1823 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1829 nb_clusters -= cleared;
1830 offset += (cleared * s->cluster_size);
1835 s->cache_discards = false;
1836 qcow2_process_discards(bs, ret);
1842 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1843 * non-backed non-pre-allocated zero clusters).
1845 * l1_entries and *visited_l1_entries are used to keep track of progress for
1846 * status_cb(). l1_entries contains the total number of L1 entries and
1847 * *visited_l1_entries counts all visited L1 entries.
1849 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1850 int l1_size, int64_t *visited_l1_entries,
1852 BlockDriverAmendStatusCB *status_cb,
1855 BDRVQcow2State *s = bs->opaque;
1856 bool is_active_l1 = (l1_table == s->l1_table);
1857 uint64_t *l2_slice = NULL;
1858 unsigned slice, slice_size2, n_slices;
1862 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1863 n_slices = s->cluster_size / slice_size2;
1865 if (!is_active_l1) {
1866 /* inactive L2 tables require a buffer to be stored in when loading
1868 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1869 if (l2_slice == NULL) {
1874 for (i = 0; i < l1_size; i++) {
1875 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1876 uint64_t l2_refcount;
1880 (*visited_l1_entries)++;
1882 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1887 if (offset_into_cluster(s, l2_offset)) {
1888 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1889 PRIx64 " unaligned (L1 index: %#x)",
1895 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1901 for (slice = 0; slice < n_slices; slice++) {
1902 uint64_t slice_offset = l2_offset + slice * slice_size2;
1903 bool l2_dirty = false;
1905 /* get active L2 tables from cache */
1906 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1907 (void **)&l2_slice);
1909 /* load inactive L2 tables from disk */
1910 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1916 for (j = 0; j < s->l2_slice_size; j++) {
1917 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1918 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1919 QCow2ClusterType cluster_type =
1920 qcow2_get_cluster_type(bs, l2_entry);
1922 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1923 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1927 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1929 /* not backed; therefore we can simply deallocate the
1936 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1942 /* The offset must fit in the offset field */
1943 assert((offset & L2E_OFFSET_MASK) == offset);
1945 if (l2_refcount > 1) {
1946 /* For shared L2 tables, set the refcount accordingly
1947 * (it is already 1 and needs to be l2_refcount) */
1948 ret = qcow2_update_cluster_refcount(
1949 bs, offset >> s->cluster_bits,
1950 refcount_diff(1, l2_refcount), false,
1951 QCOW2_DISCARD_OTHER);
1953 qcow2_free_clusters(bs, offset, s->cluster_size,
1954 QCOW2_DISCARD_OTHER);
1960 if (offset_into_cluster(s, offset)) {
1961 int l2_index = slice * s->l2_slice_size + j;
1962 qcow2_signal_corruption(
1964 "Cluster allocation offset "
1965 "%#" PRIx64 " unaligned (L2 offset: %#"
1966 PRIx64 ", L2 index: %#x)", offset,
1967 l2_offset, l2_index);
1968 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1969 qcow2_free_clusters(bs, offset, s->cluster_size,
1970 QCOW2_DISCARD_ALWAYS);
1976 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1977 s->cluster_size, true);
1979 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1980 qcow2_free_clusters(bs, offset, s->cluster_size,
1981 QCOW2_DISCARD_ALWAYS);
1986 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1987 s->cluster_size, 0);
1989 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1990 qcow2_free_clusters(bs, offset, s->cluster_size,
1991 QCOW2_DISCARD_ALWAYS);
1996 if (l2_refcount == 1) {
1997 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1999 l2_slice[j] = cpu_to_be64(offset);
2006 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
2007 qcow2_cache_depends_on_flush(s->l2_table_cache);
2009 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2012 ret = qcow2_pre_write_overlap_check(
2013 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2014 slice_offset, slice_size2, false);
2019 ret = bdrv_pwrite(bs->file, slice_offset,
2020 l2_slice, slice_size2);
2028 (*visited_l1_entries)++;
2030 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2038 if (!is_active_l1) {
2039 qemu_vfree(l2_slice);
2041 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2048 * For backed images, expands all zero clusters on the image. For non-backed
2049 * images, deallocates all non-pre-allocated zero clusters (and claims the
2050 * allocation for pre-allocated ones). This is important for downgrading to a
2051 * qcow2 version which doesn't yet support metadata zero clusters.
2053 int qcow2_expand_zero_clusters(BlockDriverState *bs,
2054 BlockDriverAmendStatusCB *status_cb,
2057 BDRVQcow2State *s = bs->opaque;
2058 uint64_t *l1_table = NULL;
2059 int64_t l1_entries = 0, visited_l1_entries = 0;
2064 l1_entries = s->l1_size;
2065 for (i = 0; i < s->nb_snapshots; i++) {
2066 l1_entries += s->snapshots[i].l1_size;
2070 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2071 &visited_l1_entries, l1_entries,
2072 status_cb, cb_opaque);
2077 /* Inactive L1 tables may point to active L2 tables - therefore it is
2078 * necessary to flush the L2 table cache before trying to access the L2
2079 * tables pointed to by inactive L1 entries (else we might try to expand
2080 * zero clusters that have already been expanded); furthermore, it is also
2081 * necessary to empty the L2 table cache, since it may contain tables which
2082 * are now going to be modified directly on disk, bypassing the cache.
2083 * qcow2_cache_empty() does both for us. */
2084 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2089 for (i = 0; i < s->nb_snapshots; i++) {
2091 uint64_t *new_l1_table;
2092 Error *local_err = NULL;
2094 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2095 s->snapshots[i].l1_size, sizeof(uint64_t),
2096 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2099 error_report_err(local_err);
2103 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2104 new_l1_table = g_try_realloc(l1_table, l1_size2);
2106 if (!new_l1_table) {
2111 l1_table = new_l1_table;
2113 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2114 l1_table, l1_size2);
2119 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2120 be64_to_cpus(&l1_table[j]);
2123 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2124 &visited_l1_entries, l1_entries,
2125 status_cb, cb_opaque);