]> Git Repo - qemu.git/blame - block/qcow2-cluster.c
qcow2: Convert qcow2_get_cluster_offset() into qcow2_get_host_offset()
[qemu.git] / block / qcow2-cluster.c
CommitLineData
45aba42f
KW
1/*
2 * Block driver for the QCOW version 2 format
3 *
4 * Copyright (c) 2004-2006 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
80c71a24 25#include "qemu/osdep.h"
45aba42f
KW
26#include <zlib.h>
27
c9a442e4 28#include "qapi/error.h"
0d8c41da 29#include "qcow2.h"
58369e22 30#include "qemu/bswap.h"
3cce16f4 31#include "trace.h"
45aba42f 32
46b732cd
PB
33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
34{
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size, i, ret;
37
38 if (exact_size >= s->l1_size) {
39 return 0;
40 }
41
42 new_l1_size = exact_size;
43
44#ifdef DEBUG_ALLOC2
45 fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
46#endif
47
48 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
49 ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
50 new_l1_size * sizeof(uint64_t),
51 (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
52 if (ret < 0) {
53 goto fail;
54 }
55
56 ret = bdrv_flush(bs->file->bs);
57 if (ret < 0) {
58 goto fail;
59 }
60
61 BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
62 for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
63 if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
64 continue;
65 }
66 qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
67 s->cluster_size, QCOW2_DISCARD_ALWAYS);
68 s->l1_table[i] = 0;
69 }
70 return 0;
71
72fail:
73 /*
74 * If the write in the l1_table failed the image may contain a partially
75 * overwritten l1_table. In this case it would be better to clear the
76 * l1_table in memory to avoid possible image corruption.
77 */
78 memset(s->l1_table + new_l1_size, 0,
79 (s->l1_size - new_l1_size) * sizeof(uint64_t));
80 return ret;
81}
82
2cf7cfa1
KW
83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
84 bool exact_size)
45aba42f 85{
ff99129a 86 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 87 int new_l1_size2, ret, i;
45aba42f 88 uint64_t *new_l1_table;
fda74f82 89 int64_t old_l1_table_offset, old_l1_size;
2cf7cfa1 90 int64_t new_l1_table_offset, new_l1_size;
45aba42f
KW
91 uint8_t data[12];
92
72893756 93 if (min_size <= s->l1_size)
45aba42f 94 return 0;
72893756 95
b93f9950
HR
96 /* Do a sanity check on min_size before trying to calculate new_l1_size
97 * (this prevents overflows during the while loop for the calculation of
98 * new_l1_size) */
99 if (min_size > INT_MAX / sizeof(uint64_t)) {
100 return -EFBIG;
101 }
102
72893756
SH
103 if (exact_size) {
104 new_l1_size = min_size;
105 } else {
106 /* Bump size up to reduce the number of times we have to grow */
107 new_l1_size = s->l1_size;
108 if (new_l1_size == 0) {
109 new_l1_size = 1;
110 }
111 while (min_size > new_l1_size) {
21cf3e12 112 new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
72893756 113 }
45aba42f 114 }
72893756 115
84c26520
HR
116 QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
117 if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
2cf7cfa1
KW
118 return -EFBIG;
119 }
120
45aba42f 121#ifdef DEBUG_ALLOC2
2cf7cfa1
KW
122 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
123 s->l1_size, new_l1_size);
45aba42f
KW
124#endif
125
126 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
ef97d608 127 new_l1_table = qemu_try_blockalign(bs->file->bs, new_l1_size2);
de82815d
KW
128 if (new_l1_table == NULL) {
129 return -ENOMEM;
130 }
ef97d608 131 memset(new_l1_table, 0, new_l1_size2);
de82815d 132
0647d47c
SH
133 if (s->l1_size) {
134 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
135 }
45aba42f
KW
136
137 /* write new table (align to cluster) */
66f82cee 138 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
ed6ccf0f 139 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
5d757b56 140 if (new_l1_table_offset < 0) {
de82815d 141 qemu_vfree(new_l1_table);
5d757b56
KW
142 return new_l1_table_offset;
143 }
29c1a730
KW
144
145 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
146 if (ret < 0) {
80fa3341 147 goto fail;
29c1a730 148 }
45aba42f 149
cf93980e
HR
150 /* the L1 position has not yet been updated, so these clusters must
151 * indeed be completely free */
231bb267 152 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
966b000f 153 new_l1_size2, false);
cf93980e
HR
154 if (ret < 0) {
155 goto fail;
156 }
157
66f82cee 158 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
45aba42f
KW
159 for(i = 0; i < s->l1_size; i++)
160 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
d9ca2ea2 161 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
9a4f4c31 162 new_l1_table, new_l1_size2);
8b3b7206 163 if (ret < 0)
45aba42f
KW
164 goto fail;
165 for(i = 0; i < s->l1_size; i++)
166 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
167
168 /* set new table */
66f82cee 169 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
f1f7a1dd 170 stl_be_p(data, new_l1_size);
e4ef9f46 171 stq_be_p(data + 4, new_l1_table_offset);
d9ca2ea2 172 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
9a4f4c31 173 data, sizeof(data));
8b3b7206 174 if (ret < 0) {
45aba42f 175 goto fail;
fb8fa77c 176 }
de82815d 177 qemu_vfree(s->l1_table);
fda74f82 178 old_l1_table_offset = s->l1_table_offset;
45aba42f
KW
179 s->l1_table_offset = new_l1_table_offset;
180 s->l1_table = new_l1_table;
fda74f82 181 old_l1_size = s->l1_size;
45aba42f 182 s->l1_size = new_l1_size;
fda74f82
HR
183 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
184 QCOW2_DISCARD_OTHER);
45aba42f
KW
185 return 0;
186 fail:
de82815d 187 qemu_vfree(new_l1_table);
6cfcb9b8
KW
188 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
189 QCOW2_DISCARD_OTHER);
8b3b7206 190 return ret;
45aba42f
KW
191}
192
45aba42f
KW
193/*
194 * l2_load
195 *
e2b5713e
AG
196 * @bs: The BlockDriverState
197 * @offset: A guest offset, used to calculate what slice of the L2
198 * table to load.
199 * @l2_offset: Offset to the L2 table in the image file.
200 * @l2_slice: Location to store the pointer to the L2 slice.
45aba42f 201 *
e2b5713e
AG
202 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
203 * that are loaded by the qcow2 cache). If the slice is in the cache,
204 * the cache is used; otherwise the L2 slice is loaded from the image
205 * file.
45aba42f 206 */
e2b5713e
AG
207static int l2_load(BlockDriverState *bs, uint64_t offset,
208 uint64_t l2_offset, uint64_t **l2_slice)
45aba42f 209{
ff99129a 210 BDRVQcow2State *s = bs->opaque;
e2b5713e
AG
211 int start_of_slice = sizeof(uint64_t) *
212 (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
45aba42f 213
e2b5713e
AG
214 return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
215 (void **)l2_slice);
45aba42f
KW
216}
217
6583e3c7 218/*
da86f8cb
AG
219 * Writes an L1 entry to disk (note that depending on the alignment
220 * requirements this function may write more that just one entry in
221 * order to prevent bdrv_pwrite from performing a read-modify-write)
6583e3c7 222 */
e23e400e 223int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
6583e3c7 224{
ff99129a 225 BDRVQcow2State *s = bs->opaque;
6583e3c7 226 int l1_start_index;
f7defcb6 227 int i, ret;
da86f8cb
AG
228 int bufsize = MAX(sizeof(uint64_t),
229 MIN(bs->file->bs->bl.request_alignment, s->cluster_size));
230 int nentries = bufsize / sizeof(uint64_t);
231 g_autofree uint64_t *buf = g_try_new0(uint64_t, nentries);
6583e3c7 232
da86f8cb
AG
233 if (buf == NULL) {
234 return -ENOMEM;
235 }
236
237 l1_start_index = QEMU_ALIGN_DOWN(l1_index, nentries);
238 for (i = 0; i < MIN(nentries, s->l1_size - l1_start_index); i++) {
6583e3c7
KW
239 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
240 }
241
231bb267 242 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
da86f8cb 243 s->l1_table_offset + 8 * l1_start_index, bufsize, false);
cf93980e
HR
244 if (ret < 0) {
245 return ret;
246 }
247
66f82cee 248 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
d9ca2ea2 249 ret = bdrv_pwrite_sync(bs->file,
9a4f4c31 250 s->l1_table_offset + 8 * l1_start_index,
da86f8cb 251 buf, bufsize);
f7defcb6
KW
252 if (ret < 0) {
253 return ret;
6583e3c7
KW
254 }
255
256 return 0;
257}
258
45aba42f
KW
259/*
260 * l2_allocate
261 *
262 * Allocate a new l2 entry in the file. If l1_index points to an already
263 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
264 * table) copy the contents of the old L2 table into the newly allocated one.
265 * Otherwise the new table is initialized with zeros.
266 *
267 */
268
3861946a 269static int l2_allocate(BlockDriverState *bs, int l1_index)
45aba42f 270{
ff99129a 271 BDRVQcow2State *s = bs->opaque;
6583e3c7 272 uint64_t old_l2_offset;
3861946a
AG
273 uint64_t *l2_slice = NULL;
274 unsigned slice, slice_size2, n_slices;
f4f0d391 275 int64_t l2_offset;
c46e1167 276 int ret;
45aba42f
KW
277
278 old_l2_offset = s->l1_table[l1_index];
279
3cce16f4
KW
280 trace_qcow2_l2_allocate(bs, l1_index);
281
45aba42f
KW
282 /* allocate a new l2 entry */
283
ed6ccf0f 284 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
5d757b56 285 if (l2_offset < 0) {
be0b742e
HR
286 ret = l2_offset;
287 goto fail;
5d757b56 288 }
29c1a730 289
c1c43990
AG
290 /* The offset must fit in the offset field of the L1 table entry */
291 assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
292
98839750
AG
293 /* If we're allocating the table at offset 0 then something is wrong */
294 if (l2_offset == 0) {
295 qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
296 "allocation of L2 table at offset 0");
297 ret = -EIO;
298 goto fail;
299 }
300
29c1a730
KW
301 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
302 if (ret < 0) {
303 goto fail;
304 }
45aba42f 305
45aba42f
KW
306 /* allocate a new entry in the l2 cache */
307
3861946a
AG
308 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
309 n_slices = s->cluster_size / slice_size2;
310
3cce16f4 311 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
3861946a 312 for (slice = 0; slice < n_slices; slice++) {
6580bb09 313 ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
3861946a
AG
314 l2_offset + slice * slice_size2,
315 (void **) &l2_slice);
6580bb09
AG
316 if (ret < 0) {
317 goto fail;
318 }
29c1a730 319
6580bb09 320 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
3861946a
AG
321 /* if there was no old l2 table, clear the new slice */
322 memset(l2_slice, 0, slice_size2);
6580bb09 323 } else {
3861946a
AG
324 uint64_t *old_slice;
325 uint64_t old_l2_slice_offset =
326 (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
29c1a730 327
3861946a 328 /* if there was an old l2 table, read a slice from the disk */
6580bb09 329 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
3861946a
AG
330 ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
331 (void **) &old_slice);
6580bb09
AG
332 if (ret < 0) {
333 goto fail;
334 }
335
3861946a 336 memcpy(l2_slice, old_slice, slice_size2);
6580bb09 337
3861946a 338 qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
29c1a730
KW
339 }
340
3861946a 341 /* write the l2 slice to the file */
6580bb09 342 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
29c1a730 343
6580bb09 344 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
3861946a
AG
345 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
346 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 347 }
29c1a730 348
29c1a730 349 ret = qcow2_cache_flush(bs, s->l2_table_cache);
c46e1167 350 if (ret < 0) {
175e1152
KW
351 goto fail;
352 }
353
354 /* update the L1 entry */
3cce16f4 355 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
175e1152 356 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
e23e400e 357 ret = qcow2_write_l1_entry(bs, l1_index);
175e1152
KW
358 if (ret < 0) {
359 goto fail;
c46e1167 360 }
45aba42f 361
3cce16f4 362 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
c46e1167 363 return 0;
175e1152
KW
364
365fail:
3cce16f4 366 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
3861946a
AG
367 if (l2_slice != NULL) {
368 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
8585afd8 369 }
68dba0bf 370 s->l1_table[l1_index] = old_l2_offset;
e3b21ef9
HR
371 if (l2_offset > 0) {
372 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
373 QCOW2_DISCARD_ALWAYS);
374 }
175e1152 375 return ret;
45aba42f
KW
376}
377
2bfcc4a0 378/*
13f893c4 379 * Checks how many clusters in a given L2 slice are contiguous in the image
2bfcc4a0
KW
380 * file. As soon as one of the flags in the bitmask stop_flags changes compared
381 * to the first cluster, the search is stopped and the cluster is not counted
382 * as contiguous. (This allows it, for example, to stop at the first compressed
383 * cluster which may require a different handling)
384 */
808c2bb4
KW
385static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
386 int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
45aba42f
KW
387{
388 int i;
3ef95218 389 QCow2ClusterType first_cluster_type;
78a52ad5 390 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
13f893c4 391 uint64_t first_entry = be64_to_cpu(l2_slice[0]);
15684a47 392 uint64_t offset = first_entry & mask;
45aba42f 393
b8c8353a
KW
394 first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
395 if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
45aba42f 396 return 0;
564a6b69 397 }
45aba42f 398
564a6b69 399 /* must be allocated */
564a6b69 400 assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
fdfab37d 401 first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
15684a47 402
61653008 403 for (i = 0; i < nb_clusters; i++) {
13f893c4 404 uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
2bfcc4a0 405 if (offset + (uint64_t) i * cluster_size != l2_entry) {
45aba42f 406 break;
2bfcc4a0
KW
407 }
408 }
45aba42f 409
7d37435b 410 return i;
45aba42f
KW
411}
412
4341df8a
EB
413/*
414 * Checks how many consecutive unallocated clusters in a given L2
c26f10ba 415 * slice have the same cluster type.
4341df8a 416 */
808c2bb4
KW
417static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
418 int nb_clusters,
c26f10ba 419 uint64_t *l2_slice,
3ef95218 420 QCow2ClusterType wanted_type)
45aba42f 421{
2bfcc4a0
KW
422 int i;
423
fdfab37d 424 assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
4341df8a 425 wanted_type == QCOW2_CLUSTER_UNALLOCATED);
2bfcc4a0 426 for (i = 0; i < nb_clusters; i++) {
c26f10ba 427 uint64_t entry = be64_to_cpu(l2_slice[i]);
808c2bb4 428 QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
45aba42f 429
fdfab37d 430 if (type != wanted_type) {
2bfcc4a0
KW
431 break;
432 }
433 }
45aba42f
KW
434
435 return i;
436}
437
672f0f2c
AG
438static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
439 uint64_t src_cluster_offset,
440 unsigned offset_in_cluster,
86b862c4 441 QEMUIOVector *qiov)
45aba42f 442{
aaa4d20b 443 int ret;
1b9f1491 444
86b862c4 445 if (qiov->size == 0) {
99450c6f
AG
446 return 0;
447 }
448
66f82cee 449 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
aef4acb6 450
dba28555 451 if (!bs->drv) {
672f0f2c 452 return -ENOMEDIUM;
dba28555
HR
453 }
454
aef4acb6
SH
455 /* Call .bdrv_co_readv() directly instead of using the public block-layer
456 * interface. This avoids double I/O throttling and request tracking,
457 * which can lead to deadlock when block layer copy-on-read is enabled.
458 */
df893d25
VSO
459 ret = bs->drv->bdrv_co_preadv_part(bs,
460 src_cluster_offset + offset_in_cluster,
461 qiov->size, qiov, 0, 0);
1b9f1491 462 if (ret < 0) {
672f0f2c 463 return ret;
1b9f1491
KW
464 }
465
672f0f2c
AG
466 return 0;
467}
468
672f0f2c
AG
469static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
470 uint64_t cluster_offset,
471 unsigned offset_in_cluster,
86b862c4 472 QEMUIOVector *qiov)
672f0f2c 473{
966b000f 474 BDRVQcow2State *s = bs->opaque;
672f0f2c
AG
475 int ret;
476
86b862c4 477 if (qiov->size == 0) {
672f0f2c
AG
478 return 0;
479 }
480
231bb267 481 ret = qcow2_pre_write_overlap_check(bs, 0,
966b000f 482 cluster_offset + offset_in_cluster, qiov->size, true);
cf93980e 483 if (ret < 0) {
672f0f2c 484 return ret;
cf93980e
HR
485 }
486
66f82cee 487 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
966b000f 488 ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
86b862c4 489 qiov->size, qiov, 0);
1b9f1491 490 if (ret < 0) {
672f0f2c 491 return ret;
1b9f1491
KW
492 }
493
672f0f2c 494 return 0;
45aba42f
KW
495}
496
497
498/*
388e5816 499 * get_host_offset
45aba42f 500 *
388e5816
AG
501 * For a given offset of the virtual disk find the equivalent host
502 * offset in the qcow2 file and store it in *host_offset. Neither
503 * offset needs to be aligned to a cluster boundary.
504 *
505 * If the cluster is unallocated then *host_offset will be 0.
506 * If the cluster is compressed then *host_offset will contain the
507 * complete compressed cluster descriptor.
45aba42f 508 *
ecfe1863
KW
509 * On entry, *bytes is the maximum number of contiguous bytes starting at
510 * offset that we are interested in.
45aba42f 511 *
ecfe1863
KW
512 * On exit, *bytes is the number of bytes starting at offset that have the same
513 * cluster type and (if applicable) are stored contiguously in the image file.
514 * Compressed clusters are always returned one by one.
45aba42f 515 *
68d000a3
KW
516 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
517 * cases.
45aba42f 518 */
388e5816
AG
519int qcow2_get_host_offset(BlockDriverState *bs, uint64_t offset,
520 unsigned int *bytes, uint64_t *host_offset)
45aba42f 521{
ff99129a 522 BDRVQcow2State *s = bs->opaque;
2cf7cfa1 523 unsigned int l2_index;
388e5816 524 uint64_t l1_index, l2_offset, *l2_slice, l2_entry;
fd630039 525 int c;
c834cba9
HR
526 unsigned int offset_in_cluster;
527 uint64_t bytes_available, bytes_needed, nb_clusters;
3ef95218 528 QCow2ClusterType type;
55c17e98 529 int ret;
45aba42f 530
b2f65d6b 531 offset_in_cluster = offset_into_cluster(s, offset);
ecfe1863 532 bytes_needed = (uint64_t) *bytes + offset_in_cluster;
45aba42f 533
b2f65d6b 534 /* compute how many bytes there are between the start of the cluster
fd630039
AG
535 * containing offset and the end of the l2 slice that contains
536 * the entry pointing to it */
537 bytes_available =
538 ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
539 << s->cluster_bits;
45aba42f 540
b2f65d6b
KW
541 if (bytes_needed > bytes_available) {
542 bytes_needed = bytes_available;
45aba42f
KW
543 }
544
388e5816 545 *host_offset = 0;
45aba42f 546
b6af0975 547 /* seek to the l2 offset in the l1 table */
45aba42f 548
05b5b6ee 549 l1_index = offset_to_l1_index(s, offset);
68d000a3 550 if (l1_index >= s->l1_size) {
3ef95218 551 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 552 goto out;
68d000a3 553 }
45aba42f 554
68d000a3
KW
555 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
556 if (!l2_offset) {
3ef95218 557 type = QCOW2_CLUSTER_UNALLOCATED;
45aba42f 558 goto out;
68d000a3 559 }
45aba42f 560
a97c67ee
HR
561 if (offset_into_cluster(s, l2_offset)) {
562 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
563 " unaligned (L1 index: %#" PRIx64 ")",
564 l2_offset, l1_index);
565 return -EIO;
566 }
567
fd630039 568 /* load the l2 slice in memory */
45aba42f 569
fd630039 570 ret = l2_load(bs, offset, l2_offset, &l2_slice);
55c17e98
KW
571 if (ret < 0) {
572 return ret;
1c46efaa 573 }
45aba42f
KW
574
575 /* find the cluster offset for the given disk offset */
576
fd630039 577 l2_index = offset_to_l2_slice_index(s, offset);
388e5816 578 l2_entry = be64_to_cpu(l2_slice[l2_index]);
b6d36def 579
b2f65d6b 580 nb_clusters = size_to_clusters(s, bytes_needed);
c834cba9
HR
581 /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
582 * integers; the minimum cluster size is 512, so this assertion is always
583 * true */
584 assert(nb_clusters <= INT_MAX);
45aba42f 585
388e5816 586 type = qcow2_get_cluster_type(bs, l2_entry);
fdfab37d
EB
587 if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
588 type == QCOW2_CLUSTER_ZERO_ALLOC)) {
589 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
590 " in pre-v3 image (L2 offset: %#" PRIx64
591 ", L2 index: %#x)", l2_offset, l2_index);
592 ret = -EIO;
593 goto fail;
594 }
3ef95218 595 switch (type) {
68d000a3 596 case QCOW2_CLUSTER_COMPRESSED:
966b000f
KW
597 if (has_data_file(bs)) {
598 qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
599 "entry found in image with external data "
600 "file (L2 offset: %#" PRIx64 ", L2 index: "
601 "%#x)", l2_offset, l2_index);
602 ret = -EIO;
603 goto fail;
604 }
68d000a3
KW
605 /* Compressed clusters can only be processed one by one */
606 c = 1;
388e5816 607 *host_offset = l2_entry & L2E_COMPRESSED_OFFSET_SIZE_MASK;
68d000a3 608 break;
fdfab37d 609 case QCOW2_CLUSTER_ZERO_PLAIN:
68d000a3 610 case QCOW2_CLUSTER_UNALLOCATED:
45aba42f 611 /* how many empty clusters ? */
808c2bb4 612 c = count_contiguous_clusters_unallocated(bs, nb_clusters,
fd630039 613 &l2_slice[l2_index], type);
68d000a3 614 break;
fdfab37d 615 case QCOW2_CLUSTER_ZERO_ALLOC:
388e5816
AG
616 case QCOW2_CLUSTER_NORMAL: {
617 uint64_t host_cluster_offset = l2_entry & L2E_OFFSET_MASK;
618 *host_offset = host_cluster_offset + offset_in_cluster;
45aba42f 619 /* how many allocated clusters ? */
808c2bb4 620 c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
fd630039 621 &l2_slice[l2_index], QCOW_OFLAG_ZERO);
388e5816 622 if (offset_into_cluster(s, host_cluster_offset)) {
fdfab37d
EB
623 qcow2_signal_corruption(bs, true, -1, -1,
624 "Cluster allocation offset %#"
a97c67ee 625 PRIx64 " unaligned (L2 offset: %#" PRIx64
388e5816 626 ", L2 index: %#x)", host_cluster_offset,
a97c67ee
HR
627 l2_offset, l2_index);
628 ret = -EIO;
629 goto fail;
630 }
388e5816 631 if (has_data_file(bs) && *host_offset != offset) {
966b000f
KW
632 qcow2_signal_corruption(bs, true, -1, -1,
633 "External data file host cluster offset %#"
634 PRIx64 " does not match guest cluster "
635 "offset: %#" PRIx64
388e5816 636 ", L2 index: %#x)", host_cluster_offset,
966b000f
KW
637 offset - offset_in_cluster, l2_index);
638 ret = -EIO;
639 goto fail;
640 }
68d000a3 641 break;
388e5816 642 }
1417d7e4
KW
643 default:
644 abort();
45aba42f
KW
645 }
646
fd630039 647 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
29c1a730 648
c834cba9 649 bytes_available = (int64_t)c * s->cluster_size;
68d000a3 650
45aba42f 651out:
b2f65d6b
KW
652 if (bytes_available > bytes_needed) {
653 bytes_available = bytes_needed;
654 }
45aba42f 655
c834cba9
HR
656 /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
657 * subtracting offset_in_cluster will therefore definitely yield something
658 * not exceeding UINT_MAX */
659 assert(bytes_available - offset_in_cluster <= UINT_MAX);
ecfe1863 660 *bytes = bytes_available - offset_in_cluster;
45aba42f 661
3ef95218 662 return type;
a97c67ee
HR
663
664fail:
fd630039 665 qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
a97c67ee 666 return ret;
45aba42f
KW
667}
668
669/*
670 * get_cluster_table
671 *
672 * for a given disk offset, load (and allocate if needed)
c03bfc5b 673 * the appropriate slice of its l2 table.
45aba42f 674 *
c03bfc5b 675 * the cluster index in the l2 slice is given to the caller.
45aba42f 676 *
1e3e8f1a 677 * Returns 0 on success, -errno in failure case
45aba42f 678 */
45aba42f 679static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
c03bfc5b 680 uint64_t **new_l2_slice,
45aba42f
KW
681 int *new_l2_index)
682{
ff99129a 683 BDRVQcow2State *s = bs->opaque;
2cf7cfa1
KW
684 unsigned int l2_index;
685 uint64_t l1_index, l2_offset;
c03bfc5b 686 uint64_t *l2_slice = NULL;
80ee15a6 687 int ret;
45aba42f 688
b6af0975 689 /* seek to the l2 offset in the l1 table */
45aba42f 690
05b5b6ee 691 l1_index = offset_to_l1_index(s, offset);
45aba42f 692 if (l1_index >= s->l1_size) {
72893756 693 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
1e3e8f1a
KW
694 if (ret < 0) {
695 return ret;
696 }
45aba42f 697 }
8e37f681 698
2cf7cfa1 699 assert(l1_index < s->l1_size);
8e37f681 700 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
a97c67ee
HR
701 if (offset_into_cluster(s, l2_offset)) {
702 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
703 " unaligned (L1 index: %#" PRIx64 ")",
704 l2_offset, l1_index);
705 return -EIO;
706 }
45aba42f 707
05f9ee46 708 if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
16fde5f2 709 /* First allocate a new L2 table (and do COW if needed) */
3861946a 710 ret = l2_allocate(bs, l1_index);
c46e1167
KW
711 if (ret < 0) {
712 return ret;
1e3e8f1a 713 }
16fde5f2
KW
714
715 /* Then decrease the refcount of the old table */
716 if (l2_offset) {
6cfcb9b8
KW
717 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
718 QCOW2_DISCARD_OTHER);
16fde5f2 719 }
3861946a
AG
720
721 /* Get the offset of the newly-allocated l2 table */
722 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
723 assert(offset_into_cluster(s, l2_offset) == 0);
05f9ee46
AG
724 }
725
c03bfc5b
AG
726 /* load the l2 slice in memory */
727 ret = l2_load(bs, offset, l2_offset, &l2_slice);
05f9ee46
AG
728 if (ret < 0) {
729 return ret;
45aba42f
KW
730 }
731
732 /* find the cluster offset for the given disk offset */
733
c03bfc5b 734 l2_index = offset_to_l2_slice_index(s, offset);
45aba42f 735
c03bfc5b 736 *new_l2_slice = l2_slice;
45aba42f
KW
737 *new_l2_index = l2_index;
738
1e3e8f1a 739 return 0;
45aba42f
KW
740}
741
742/*
743 * alloc_compressed_cluster_offset
744 *
77e023ff
KW
745 * For a given offset on the virtual disk, allocate a new compressed cluster
746 * and put the host offset of the cluster into *host_offset. If a cluster is
747 * already allocated at the offset, return an error.
45aba42f 748 *
77e023ff 749 * Return 0 on success and -errno in error cases
45aba42f 750 */
77e023ff
KW
751int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
752 uint64_t offset,
753 int compressed_size,
754 uint64_t *host_offset)
45aba42f 755{
ff99129a 756 BDRVQcow2State *s = bs->opaque;
45aba42f 757 int l2_index, ret;
e4e72548 758 uint64_t *l2_slice;
f4f0d391 759 int64_t cluster_offset;
45aba42f
KW
760 int nb_csectors;
761
966b000f
KW
762 if (has_data_file(bs)) {
763 return 0;
764 }
765
e4e72548 766 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1e3e8f1a 767 if (ret < 0) {
77e023ff 768 return ret;
1e3e8f1a 769 }
45aba42f 770
b0b6862e
KW
771 /* Compression can't overwrite anything. Fail if the cluster was already
772 * allocated. */
e4e72548 773 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
b0b6862e 774 if (cluster_offset & L2E_OFFSET_MASK) {
e4e72548 775 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 776 return -EIO;
8f1efd00 777 }
45aba42f 778
ed6ccf0f 779 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
5d757b56 780 if (cluster_offset < 0) {
e4e72548 781 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
77e023ff 782 return cluster_offset;
5d757b56
KW
783 }
784
b6c24694
AG
785 nb_csectors =
786 (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
787 (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
45aba42f 788
3a75a870
AG
789 /* The offset and size must fit in their fields of the L2 table entry */
790 assert((cluster_offset & s->cluster_offset_mask) == cluster_offset);
791 assert((nb_csectors & s->csize_mask) == nb_csectors);
792
45aba42f
KW
793 cluster_offset |= QCOW_OFLAG_COMPRESSED |
794 ((uint64_t)nb_csectors << s->csize_shift);
795
796 /* update L2 table */
797
798 /* compressed clusters never have the copied flag */
799
66f82cee 800 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
e4e72548
AG
801 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
802 l2_slice[l2_index] = cpu_to_be64(cluster_offset);
803 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
4c1612d9 804
77e023ff
KW
805 *host_offset = cluster_offset & s->cluster_offset_mask;
806 return 0;
4c1612d9
KW
807}
808
99450c6f 809static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
593fb83c 810{
ff99129a 811 BDRVQcow2State *s = bs->opaque;
99450c6f
AG
812 Qcow2COWRegion *start = &m->cow_start;
813 Qcow2COWRegion *end = &m->cow_end;
672f0f2c 814 unsigned buffer_size;
b3cf1c7c
AG
815 unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
816 bool merge_reads;
672f0f2c 817 uint8_t *start_buffer, *end_buffer;
86b862c4 818 QEMUIOVector qiov;
593fb83c
KW
819 int ret;
820
672f0f2c 821 assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
b3cf1c7c
AG
822 assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
823 assert(start->offset + start->nb_bytes <= end->offset);
672f0f2c 824
c8bb23cb 825 if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
593fb83c
KW
826 return 0;
827 }
828
b3cf1c7c
AG
829 /* If we have to read both the start and end COW regions and the
830 * middle region is not too large then perform just one read
831 * operation */
832 merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
833 if (merge_reads) {
834 buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
835 } else {
836 /* If we have to do two reads, add some padding in the middle
837 * if necessary to make sure that the end region is optimally
838 * aligned. */
839 size_t align = bdrv_opt_mem_align(bs);
840 assert(align > 0 && align <= UINT_MAX);
841 assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
842 UINT_MAX - end->nb_bytes);
843 buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
844 }
845
846 /* Reserve a buffer large enough to store all the data that we're
847 * going to read */
672f0f2c
AG
848 start_buffer = qemu_try_blockalign(bs, buffer_size);
849 if (start_buffer == NULL) {
850 return -ENOMEM;
851 }
852 /* The part of the buffer where the end region is located */
853 end_buffer = start_buffer + buffer_size - end->nb_bytes;
854
5396234b
VSO
855 qemu_iovec_init(&qiov, 2 + (m->data_qiov ?
856 qemu_iovec_subvec_niov(m->data_qiov,
857 m->data_qiov_offset,
858 data_bytes)
859 : 0));
86b862c4 860
593fb83c 861 qemu_co_mutex_unlock(&s->lock);
b3cf1c7c
AG
862 /* First we read the existing data from both COW regions. We
863 * either read the whole region in one go, or the start and end
864 * regions separately. */
865 if (merge_reads) {
86b862c4
AG
866 qemu_iovec_add(&qiov, start_buffer, buffer_size);
867 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c 868 } else {
86b862c4
AG
869 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
870 ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
b3cf1c7c
AG
871 if (ret < 0) {
872 goto fail;
873 }
672f0f2c 874
86b862c4
AG
875 qemu_iovec_reset(&qiov);
876 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
877 ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
b3cf1c7c 878 }
593fb83c 879 if (ret < 0) {
99450c6f 880 goto fail;
593fb83c
KW
881 }
882
672f0f2c
AG
883 /* Encrypt the data if necessary before writing it */
884 if (bs->encrypted) {
603fbd07
ML
885 ret = qcow2_co_encrypt(bs,
886 m->alloc_offset + start->offset,
887 m->offset + start->offset,
888 start_buffer, start->nb_bytes);
889 if (ret < 0) {
890 goto fail;
891 }
892
893 ret = qcow2_co_encrypt(bs,
894 m->alloc_offset + end->offset,
895 m->offset + end->offset,
896 end_buffer, end->nb_bytes);
897 if (ret < 0) {
672f0f2c
AG
898 goto fail;
899 }
900 }
901
ee22a9d8
AG
902 /* And now we can write everything. If we have the guest data we
903 * can write everything in one single operation */
904 if (m->data_qiov) {
905 qemu_iovec_reset(&qiov);
906 if (start->nb_bytes) {
907 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
908 }
5396234b 909 qemu_iovec_concat(&qiov, m->data_qiov, m->data_qiov_offset, data_bytes);
ee22a9d8
AG
910 if (end->nb_bytes) {
911 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
912 }
913 /* NOTE: we have a write_aio blkdebug event here followed by
914 * a cow_write one in do_perform_cow_write(), but there's only
915 * one single I/O operation */
916 BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
917 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
918 } else {
919 /* If there's no guest data then write both COW regions separately */
920 qemu_iovec_reset(&qiov);
921 qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
922 ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
923 if (ret < 0) {
924 goto fail;
925 }
926
927 qemu_iovec_reset(&qiov);
928 qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
929 ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
672f0f2c 930 }
99450c6f
AG
931
932fail:
933 qemu_co_mutex_lock(&s->lock);
934
593fb83c
KW
935 /*
936 * Before we update the L2 table to actually point to the new cluster, we
937 * need to be sure that the refcounts have been increased and COW was
938 * handled.
939 */
99450c6f
AG
940 if (ret == 0) {
941 qcow2_cache_depends_on_flush(s->l2_table_cache);
942 }
593fb83c 943
672f0f2c 944 qemu_vfree(start_buffer);
86b862c4 945 qemu_iovec_destroy(&qiov);
99450c6f 946 return ret;
593fb83c
KW
947}
948
148da7ea 949int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
45aba42f 950{
ff99129a 951 BDRVQcow2State *s = bs->opaque;
45aba42f 952 int i, j = 0, l2_index, ret;
a002c0b0 953 uint64_t *old_cluster, *l2_slice;
250196f1 954 uint64_t cluster_offset = m->alloc_offset;
45aba42f 955
3cce16f4 956 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
f50f88b9 957 assert(m->nb_clusters > 0);
45aba42f 958
5839e53b 959 old_cluster = g_try_new(uint64_t, m->nb_clusters);
de82815d
KW
960 if (old_cluster == NULL) {
961 ret = -ENOMEM;
962 goto err;
963 }
45aba42f
KW
964
965 /* copy content of unmodified sectors */
99450c6f 966 ret = perform_cow(bs, m);
593fb83c
KW
967 if (ret < 0) {
968 goto err;
29c1a730
KW
969 }
970
593fb83c 971 /* Update L2 table. */
74c4510a 972 if (s->use_lazy_refcounts) {
280d3735
KW
973 qcow2_mark_dirty(bs);
974 }
bfe8043e
SH
975 if (qcow2_need_accurate_refcounts(s)) {
976 qcow2_cache_set_dependency(bs, s->l2_table_cache,
977 s->refcount_block_cache);
978 }
280d3735 979
a002c0b0 980 ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
1e3e8f1a 981 if (ret < 0) {
45aba42f 982 goto err;
1e3e8f1a 983 }
a002c0b0 984 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
45aba42f 985
a002c0b0 986 assert(l2_index + m->nb_clusters <= s->l2_slice_size);
45aba42f 987 for (i = 0; i < m->nb_clusters; i++) {
348fcc4f 988 uint64_t offset = cluster_offset + ((uint64_t)i << s->cluster_bits);
45aba42f 989 /* if two concurrent writes happen to the same unallocated cluster
aaa4d20b
KW
990 * each write allocates separate cluster and writes data concurrently.
991 * The first one to complete updates l2 table with pointer to its
992 * cluster the second one has to do RMW (which is done above by
993 * perform_cow()), update l2 table with its cluster pointer and free
994 * old cluster. This is what this loop does */
a002c0b0
AG
995 if (l2_slice[l2_index + i] != 0) {
996 old_cluster[j++] = l2_slice[l2_index + i];
aaa4d20b 997 }
45aba42f 998
3a75a870
AG
999 /* The offset must fit in the offset field of the L2 table entry */
1000 assert((offset & L2E_OFFSET_MASK) == offset);
1001
1002 l2_slice[l2_index + i] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
45aba42f
KW
1003 }
1004
9f8e668e 1005
a002c0b0 1006 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
45aba42f 1007
7ec5e6a4
KW
1008 /*
1009 * If this was a COW, we need to decrease the refcount of the old cluster.
6cfcb9b8
KW
1010 *
1011 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1012 * clusters), the next write will reuse them anyway.
7ec5e6a4 1013 */
564a6b69 1014 if (!m->keep_old_clusters && j != 0) {
7ec5e6a4 1015 for (i = 0; i < j; i++) {
6cfcb9b8
KW
1016 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1017 QCOW2_DISCARD_NEVER);
7ec5e6a4
KW
1018 }
1019 }
45aba42f
KW
1020
1021 ret = 0;
1022err:
7267c094 1023 g_free(old_cluster);
45aba42f
KW
1024 return ret;
1025 }
1026
8b24cd14
KW
1027/**
1028 * Frees the allocated clusters because the request failed and they won't
1029 * actually be linked.
1030 */
1031void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1032{
1033 BDRVQcow2State *s = bs->opaque;
3ede935f 1034 if (!has_data_file(bs) && !m->keep_old_clusters) {
c3b6658c
KW
1035 qcow2_free_clusters(bs, m->alloc_offset,
1036 m->nb_clusters << s->cluster_bits,
1037 QCOW2_DISCARD_NEVER);
1038 }
8b24cd14
KW
1039}
1040
bf319ece
KW
1041/*
1042 * Returns the number of contiguous clusters that can be used for an allocating
1043 * write, but require COW to be performed (this includes yet unallocated space,
1044 * which must copy from the backing file)
1045 */
808c2bb4 1046static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
dd32c881 1047 uint64_t *l2_slice, int l2_index)
bf319ece 1048{
143550a8 1049 int i;
bf319ece 1050
143550a8 1051 for (i = 0; i < nb_clusters; i++) {
dd32c881 1052 uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
808c2bb4 1053 QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
143550a8
KW
1054
1055 switch(cluster_type) {
1056 case QCOW2_CLUSTER_NORMAL:
1057 if (l2_entry & QCOW_OFLAG_COPIED) {
1058 goto out;
1059 }
bf319ece 1060 break;
143550a8
KW
1061 case QCOW2_CLUSTER_UNALLOCATED:
1062 case QCOW2_CLUSTER_COMPRESSED:
fdfab37d
EB
1063 case QCOW2_CLUSTER_ZERO_PLAIN:
1064 case QCOW2_CLUSTER_ZERO_ALLOC:
bf319ece 1065 break;
143550a8
KW
1066 default:
1067 abort();
1068 }
bf319ece
KW
1069 }
1070
143550a8 1071out:
bf319ece
KW
1072 assert(i <= nb_clusters);
1073 return i;
1074}
1075
250196f1 1076/*
226c3c26
KW
1077 * Check if there already is an AIO write request in flight which allocates
1078 * the same cluster. In this case we need to wait until the previous
1079 * request has completed and updated the L2 table accordingly.
65eb2e35
KW
1080 *
1081 * Returns:
1082 * 0 if there was no dependency. *cur_bytes indicates the number of
1083 * bytes from guest_offset that can be read before the next
1084 * dependency must be processed (or the request is complete)
1085 *
1086 * -EAGAIN if we had to wait for another request, previously gathered
1087 * information on cluster allocation may be invalid now. The caller
1088 * must start over anyway, so consider *cur_bytes undefined.
250196f1 1089 */
226c3c26 1090static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
ecdd5333 1091 uint64_t *cur_bytes, QCowL2Meta **m)
250196f1 1092{
ff99129a 1093 BDRVQcow2State *s = bs->opaque;
250196f1 1094 QCowL2Meta *old_alloc;
65eb2e35 1095 uint64_t bytes = *cur_bytes;
250196f1 1096
250196f1
KW
1097 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1098
65eb2e35
KW
1099 uint64_t start = guest_offset;
1100 uint64_t end = start + bytes;
1101 uint64_t old_start = l2meta_cow_start(old_alloc);
1102 uint64_t old_end = l2meta_cow_end(old_alloc);
250196f1 1103
d9d74f41 1104 if (end <= old_start || start >= old_end) {
250196f1
KW
1105 /* No intersection */
1106 } else {
1107 if (start < old_start) {
1108 /* Stop at the start of a running allocation */
65eb2e35 1109 bytes = old_start - start;
250196f1 1110 } else {
65eb2e35 1111 bytes = 0;
250196f1
KW
1112 }
1113
ecdd5333
KW
1114 /* Stop if already an l2meta exists. After yielding, it wouldn't
1115 * be valid any more, so we'd have to clean up the old L2Metas
1116 * and deal with requests depending on them before starting to
1117 * gather new ones. Not worth the trouble. */
1118 if (bytes == 0 && *m) {
1119 *cur_bytes = 0;
1120 return 0;
1121 }
1122
65eb2e35 1123 if (bytes == 0) {
250196f1
KW
1124 /* Wait for the dependency to complete. We need to recheck
1125 * the free/allocated clusters when we continue. */
1ace7cea 1126 qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
250196f1
KW
1127 return -EAGAIN;
1128 }
1129 }
1130 }
1131
65eb2e35
KW
1132 /* Make sure that existing clusters and new allocations are only used up to
1133 * the next dependency if we shortened the request above */
1134 *cur_bytes = bytes;
250196f1 1135
226c3c26
KW
1136 return 0;
1137}
1138
0af729ec
KW
1139/*
1140 * Checks how many already allocated clusters that don't require a copy on
c6d619cc
KW
1141 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1142 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1143 * offset are counted.
0af729ec 1144 *
411d62b0
KW
1145 * Note that guest_offset may not be cluster aligned. In this case, the
1146 * returned *host_offset points to exact byte referenced by guest_offset and
1147 * therefore isn't cluster aligned as well.
0af729ec
KW
1148 *
1149 * Returns:
1150 * 0: if no allocated clusters are available at the given offset.
1151 * *bytes is normally unchanged. It is set to 0 if the cluster
1152 * is allocated and doesn't need COW, but doesn't have the right
1153 * physical offset.
1154 *
1155 * 1: if allocated clusters that don't require a COW are available at
1156 * the requested offset. *bytes may have decreased and describes
1157 * the length of the area that can be written to.
1158 *
1159 * -errno: in error cases
0af729ec
KW
1160 */
1161static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
c53ede9f 1162 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
0af729ec 1163{
ff99129a 1164 BDRVQcow2State *s = bs->opaque;
0af729ec
KW
1165 int l2_index;
1166 uint64_t cluster_offset;
cde91766 1167 uint64_t *l2_slice;
b6d36def 1168 uint64_t nb_clusters;
c53ede9f 1169 unsigned int keep_clusters;
a3f1afb4 1170 int ret;
0af729ec
KW
1171
1172 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1173 *bytes);
0af729ec 1174
c6d619cc
KW
1175 assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1176 == offset_into_cluster(s, *host_offset));
411d62b0 1177
acb0467f 1178 /*
cde91766 1179 * Calculate the number of clusters to look for. We stop at L2 slice
acb0467f
KW
1180 * boundaries to keep things simple.
1181 */
1182 nb_clusters =
1183 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1184
cde91766
AG
1185 l2_index = offset_to_l2_slice_index(s, guest_offset);
1186 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1187 assert(nb_clusters <= INT_MAX);
acb0467f 1188
0af729ec 1189 /* Find L2 entry for the first involved cluster */
cde91766 1190 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
0af729ec
KW
1191 if (ret < 0) {
1192 return ret;
1193 }
1194
cde91766 1195 cluster_offset = be64_to_cpu(l2_slice[l2_index]);
0af729ec
KW
1196
1197 /* Check how many clusters are already allocated and don't need COW */
808c2bb4 1198 if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
0af729ec
KW
1199 && (cluster_offset & QCOW_OFLAG_COPIED))
1200 {
e62daaf6
KW
1201 /* If a specific host_offset is required, check it */
1202 bool offset_matches =
1203 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1204
a97c67ee
HR
1205 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1206 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1207 "%#llx unaligned (guest offset: %#" PRIx64
1208 ")", cluster_offset & L2E_OFFSET_MASK,
1209 guest_offset);
1210 ret = -EIO;
1211 goto out;
1212 }
1213
c6d619cc 1214 if (*host_offset != INV_OFFSET && !offset_matches) {
e62daaf6
KW
1215 *bytes = 0;
1216 ret = 0;
1217 goto out;
1218 }
1219
0af729ec 1220 /* We keep all QCOW_OFLAG_COPIED clusters */
c53ede9f 1221 keep_clusters =
808c2bb4 1222 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
cde91766 1223 &l2_slice[l2_index],
0af729ec 1224 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
c53ede9f
KW
1225 assert(keep_clusters <= nb_clusters);
1226
1227 *bytes = MIN(*bytes,
1228 keep_clusters * s->cluster_size
1229 - offset_into_cluster(s, guest_offset));
0af729ec
KW
1230
1231 ret = 1;
1232 } else {
0af729ec
KW
1233 ret = 0;
1234 }
1235
0af729ec 1236 /* Cleanup */
e62daaf6 1237out:
cde91766 1238 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
0af729ec 1239
e62daaf6
KW
1240 /* Only return a host offset if we actually made progress. Otherwise we
1241 * would make requirements for handle_alloc() that it can't fulfill */
a97c67ee 1242 if (ret > 0) {
411d62b0
KW
1243 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1244 + offset_into_cluster(s, guest_offset);
e62daaf6
KW
1245 }
1246
0af729ec
KW
1247 return ret;
1248}
1249
226c3c26
KW
1250/*
1251 * Allocates new clusters for the given guest_offset.
1252 *
1253 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1254 * contain the number of clusters that have been allocated and are contiguous
1255 * in the image file.
1256 *
c6d619cc
KW
1257 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1258 * at which the new clusters must start. *nb_clusters can be 0 on return in
1259 * this case if the cluster at host_offset is already in use. If *host_offset
1260 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
226c3c26
KW
1261 *
1262 * *host_offset is updated to contain the offset into the image file at which
1263 * the first allocated cluster starts.
1264 *
1265 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1266 * function has been waiting for another request and the allocation must be
1267 * restarted, but the whole request should not be failed.
1268 */
1269static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
b6d36def 1270 uint64_t *host_offset, uint64_t *nb_clusters)
226c3c26 1271{
ff99129a 1272 BDRVQcow2State *s = bs->opaque;
226c3c26
KW
1273
1274 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1275 *host_offset, *nb_clusters);
1276
966b000f
KW
1277 if (has_data_file(bs)) {
1278 assert(*host_offset == INV_OFFSET ||
1279 *host_offset == start_of_cluster(s, guest_offset));
1280 *host_offset = start_of_cluster(s, guest_offset);
1281 return 0;
1282 }
1283
250196f1
KW
1284 /* Allocate new clusters */
1285 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
c6d619cc 1286 if (*host_offset == INV_OFFSET) {
df021791
KW
1287 int64_t cluster_offset =
1288 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1289 if (cluster_offset < 0) {
1290 return cluster_offset;
1291 }
1292 *host_offset = cluster_offset;
1293 return 0;
250196f1 1294 } else {
b6d36def 1295 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
df021791
KW
1296 if (ret < 0) {
1297 return ret;
1298 }
1299 *nb_clusters = ret;
1300 return 0;
250196f1 1301 }
250196f1
KW
1302}
1303
10f0ed8b
KW
1304/*
1305 * Allocates new clusters for an area that either is yet unallocated or needs a
c6d619cc
KW
1306 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1307 * allocated if the new allocation can match the specified host offset.
10f0ed8b 1308 *
411d62b0
KW
1309 * Note that guest_offset may not be cluster aligned. In this case, the
1310 * returned *host_offset points to exact byte referenced by guest_offset and
1311 * therefore isn't cluster aligned as well.
10f0ed8b
KW
1312 *
1313 * Returns:
1314 * 0: if no clusters could be allocated. *bytes is set to 0,
1315 * *host_offset is left unchanged.
1316 *
1317 * 1: if new clusters were allocated. *bytes may be decreased if the
1318 * new allocation doesn't cover all of the requested area.
1319 * *host_offset is updated to contain the host offset of the first
1320 * newly allocated cluster.
1321 *
1322 * -errno: in error cases
10f0ed8b
KW
1323 */
1324static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
c37f4cd7 1325 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
10f0ed8b 1326{
ff99129a 1327 BDRVQcow2State *s = bs->opaque;
10f0ed8b 1328 int l2_index;
6d99a344 1329 uint64_t *l2_slice;
10f0ed8b 1330 uint64_t entry;
b6d36def 1331 uint64_t nb_clusters;
10f0ed8b 1332 int ret;
564a6b69 1333 bool keep_old_clusters = false;
10f0ed8b 1334
c6d619cc 1335 uint64_t alloc_cluster_offset = INV_OFFSET;
10f0ed8b
KW
1336
1337 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1338 *bytes);
1339 assert(*bytes > 0);
1340
f5bc6350 1341 /*
6d99a344 1342 * Calculate the number of clusters to look for. We stop at L2 slice
f5bc6350
KW
1343 * boundaries to keep things simple.
1344 */
c37f4cd7
KW
1345 nb_clusters =
1346 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1347
6d99a344
AG
1348 l2_index = offset_to_l2_slice_index(s, guest_offset);
1349 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1350 assert(nb_clusters <= INT_MAX);
f5bc6350 1351
d1b9d19f
HR
1352 /* Limit total allocation byte count to INT_MAX */
1353 nb_clusters = MIN(nb_clusters, INT_MAX >> s->cluster_bits);
1354
10f0ed8b 1355 /* Find L2 entry for the first involved cluster */
6d99a344 1356 ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
10f0ed8b
KW
1357 if (ret < 0) {
1358 return ret;
1359 }
1360
6d99a344 1361 entry = be64_to_cpu(l2_slice[l2_index]);
bf3d78ae 1362 nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
10f0ed8b 1363
ecdd5333
KW
1364 /* This function is only called when there were no non-COW clusters, so if
1365 * we can't find any unallocated or COW clusters either, something is
1366 * wrong with our code. */
1367 assert(nb_clusters > 0);
1368
808c2bb4 1369 if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
fdfab37d 1370 (entry & QCOW_OFLAG_COPIED) &&
c6d619cc 1371 (*host_offset == INV_OFFSET ||
564a6b69
HR
1372 start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1373 {
93bbaf03
HR
1374 int preallocated_nb_clusters;
1375
1376 if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1377 qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1378 "cluster offset %#llx unaligned (guest "
1379 "offset: %#" PRIx64 ")",
1380 entry & L2E_OFFSET_MASK, guest_offset);
1381 ret = -EIO;
1382 goto fail;
1383 }
1384
564a6b69
HR
1385 /* Try to reuse preallocated zero clusters; contiguous normal clusters
1386 * would be fine, too, but count_cow_clusters() above has limited
1387 * nb_clusters already to a range of COW clusters */
93bbaf03 1388 preallocated_nb_clusters =
808c2bb4 1389 count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
6d99a344 1390 &l2_slice[l2_index], QCOW_OFLAG_COPIED);
564a6b69 1391 assert(preallocated_nb_clusters > 0);
10f0ed8b 1392
564a6b69
HR
1393 nb_clusters = preallocated_nb_clusters;
1394 alloc_cluster_offset = entry & L2E_OFFSET_MASK;
10f0ed8b 1395
564a6b69
HR
1396 /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1397 * should not free them. */
1398 keep_old_clusters = true;
10f0ed8b
KW
1399 }
1400
6d99a344 1401 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
564a6b69 1402
c6d619cc 1403 if (alloc_cluster_offset == INV_OFFSET) {
564a6b69 1404 /* Allocate, if necessary at a given offset in the image file */
c6d619cc
KW
1405 alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1406 start_of_cluster(s, *host_offset);
564a6b69
HR
1407 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1408 &nb_clusters);
1409 if (ret < 0) {
1410 goto fail;
1411 }
1412
1413 /* Can't extend contiguous allocation */
1414 if (nb_clusters == 0) {
1415 *bytes = 0;
1416 return 0;
1417 }
1418
c6d619cc 1419 assert(alloc_cluster_offset != INV_OFFSET);
ff52aab2
HR
1420 }
1421
83baa9a4
KW
1422 /*
1423 * Save info needed for meta data update.
1424 *
85567393 1425 * requested_bytes: Number of bytes from the start of the first
83baa9a4
KW
1426 * newly allocated cluster to the end of the (possibly shortened
1427 * before) write request.
1428 *
85567393 1429 * avail_bytes: Number of bytes from the start of the first
83baa9a4
KW
1430 * newly allocated to the end of the last newly allocated cluster.
1431 *
85567393 1432 * nb_bytes: The number of bytes from the start of the first
83baa9a4
KW
1433 * newly allocated cluster to the end of the area that the write
1434 * request actually writes to (excluding COW at the end)
1435 */
85567393 1436 uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
d1b9d19f 1437 int avail_bytes = nb_clusters << s->cluster_bits;
85567393 1438 int nb_bytes = MIN(requested_bytes, avail_bytes);
88c6588c 1439 QCowL2Meta *old_m = *m;
83baa9a4 1440
83baa9a4
KW
1441 *m = g_malloc0(sizeof(**m));
1442
1443 **m = (QCowL2Meta) {
88c6588c
KW
1444 .next = old_m,
1445
411d62b0 1446 .alloc_offset = alloc_cluster_offset,
83baa9a4
KW
1447 .offset = start_of_cluster(s, guest_offset),
1448 .nb_clusters = nb_clusters,
83baa9a4 1449
564a6b69
HR
1450 .keep_old_clusters = keep_old_clusters,
1451
83baa9a4
KW
1452 .cow_start = {
1453 .offset = 0,
85567393 1454 .nb_bytes = offset_into_cluster(s, guest_offset),
83baa9a4
KW
1455 },
1456 .cow_end = {
85567393
KW
1457 .offset = nb_bytes,
1458 .nb_bytes = avail_bytes - nb_bytes,
83baa9a4
KW
1459 },
1460 };
1461 qemu_co_queue_init(&(*m)->dependent_requests);
1462 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1463
411d62b0 1464 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
85567393 1465 *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
83baa9a4
KW
1466 assert(*bytes != 0);
1467
10f0ed8b
KW
1468 return 1;
1469
1470fail:
1471 if (*m && (*m)->nb_clusters > 0) {
1472 QLIST_REMOVE(*m, next_in_flight);
1473 }
1474 return ret;
1475}
1476
45aba42f
KW
1477/*
1478 * alloc_cluster_offset
1479 *
250196f1
KW
1480 * For a given offset on the virtual disk, find the cluster offset in qcow2
1481 * file. If the offset is not found, allocate a new cluster.
45aba42f 1482 *
250196f1 1483 * If the cluster was already allocated, m->nb_clusters is set to 0 and
a7912369 1484 * other fields in m are meaningless.
148da7ea
KW
1485 *
1486 * If the cluster is newly allocated, m->nb_clusters is set to the number of
68d100e9
KW
1487 * contiguous clusters that have been allocated. In this case, the other
1488 * fields of m are valid and contain information about the first allocated
1489 * cluster.
45aba42f 1490 *
68d100e9
KW
1491 * If the request conflicts with another write request in flight, the coroutine
1492 * is queued and will be reentered when the dependency has completed.
148da7ea
KW
1493 *
1494 * Return 0 on success and -errno in error cases
45aba42f 1495 */
f4f0d391 1496int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
d46a0bb2
KW
1497 unsigned int *bytes, uint64_t *host_offset,
1498 QCowL2Meta **m)
45aba42f 1499{
ff99129a 1500 BDRVQcow2State *s = bs->opaque;
710c2496 1501 uint64_t start, remaining;
250196f1 1502 uint64_t cluster_offset;
65eb2e35 1503 uint64_t cur_bytes;
710c2496 1504 int ret;
45aba42f 1505
d46a0bb2 1506 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
710c2496 1507
72424114 1508again:
16f0587e 1509 start = offset;
d46a0bb2 1510 remaining = *bytes;
c6d619cc
KW
1511 cluster_offset = INV_OFFSET;
1512 *host_offset = INV_OFFSET;
ecdd5333
KW
1513 cur_bytes = 0;
1514 *m = NULL;
0af729ec 1515
2c3b32d2 1516 while (true) {
ecdd5333 1517
c6d619cc 1518 if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
ecdd5333
KW
1519 *host_offset = start_of_cluster(s, cluster_offset);
1520 }
1521
1522 assert(remaining >= cur_bytes);
1523
1524 start += cur_bytes;
1525 remaining -= cur_bytes;
c6d619cc
KW
1526
1527 if (cluster_offset != INV_OFFSET) {
1528 cluster_offset += cur_bytes;
1529 }
ecdd5333
KW
1530
1531 if (remaining == 0) {
1532 break;
1533 }
1534
1535 cur_bytes = remaining;
1536
2c3b32d2
KW
1537 /*
1538 * Now start gathering as many contiguous clusters as possible:
1539 *
1540 * 1. Check for overlaps with in-flight allocations
1541 *
1542 * a) Overlap not in the first cluster -> shorten this request and
1543 * let the caller handle the rest in its next loop iteration.
1544 *
1545 * b) Real overlaps of two requests. Yield and restart the search
1546 * for contiguous clusters (the situation could have changed
1547 * while we were sleeping)
1548 *
1549 * c) TODO: Request starts in the same cluster as the in-flight
1550 * allocation ends. Shorten the COW of the in-fight allocation,
1551 * set cluster_offset to write to the same cluster and set up
1552 * the right synchronisation between the in-flight request and
1553 * the new one.
1554 */
ecdd5333 1555 ret = handle_dependencies(bs, start, &cur_bytes, m);
2c3b32d2 1556 if (ret == -EAGAIN) {
ecdd5333
KW
1557 /* Currently handle_dependencies() doesn't yield if we already had
1558 * an allocation. If it did, we would have to clean up the L2Meta
1559 * structs before starting over. */
1560 assert(*m == NULL);
2c3b32d2
KW
1561 goto again;
1562 } else if (ret < 0) {
1563 return ret;
ecdd5333
KW
1564 } else if (cur_bytes == 0) {
1565 break;
2c3b32d2
KW
1566 } else {
1567 /* handle_dependencies() may have decreased cur_bytes (shortened
1568 * the allocations below) so that the next dependency is processed
1569 * correctly during the next loop iteration. */
0af729ec 1570 }
710c2496 1571
2c3b32d2
KW
1572 /*
1573 * 2. Count contiguous COPIED clusters.
1574 */
1575 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1576 if (ret < 0) {
1577 return ret;
1578 } else if (ret) {
ecdd5333 1579 continue;
2c3b32d2
KW
1580 } else if (cur_bytes == 0) {
1581 break;
1582 }
060bee89 1583
2c3b32d2
KW
1584 /*
1585 * 3. If the request still hasn't completed, allocate new clusters,
1586 * considering any cluster_offset of steps 1c or 2.
1587 */
1588 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1589 if (ret < 0) {
1590 return ret;
1591 } else if (ret) {
ecdd5333 1592 continue;
2c3b32d2
KW
1593 } else {
1594 assert(cur_bytes == 0);
1595 break;
1596 }
f5bc6350 1597 }
10f0ed8b 1598
d46a0bb2
KW
1599 *bytes -= remaining;
1600 assert(*bytes > 0);
c6d619cc 1601 assert(*host_offset != INV_OFFSET);
45aba42f 1602
148da7ea 1603 return 0;
45aba42f
KW
1604}
1605
5ea929e3
KW
1606/*
1607 * This discards as many clusters of nb_clusters as possible at once (i.e.
21ab3add 1608 * all clusters in the same L2 slice) and returns the number of discarded
5ea929e3
KW
1609 * clusters.
1610 */
21ab3add
AG
1611static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1612 uint64_t nb_clusters,
1613 enum qcow2_discard_type type, bool full_discard)
5ea929e3 1614{
ff99129a 1615 BDRVQcow2State *s = bs->opaque;
21ab3add 1616 uint64_t *l2_slice;
5ea929e3
KW
1617 int l2_index;
1618 int ret;
1619 int i;
1620
21ab3add 1621 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
5ea929e3
KW
1622 if (ret < 0) {
1623 return ret;
1624 }
1625
21ab3add
AG
1626 /* Limit nb_clusters to one L2 slice */
1627 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1628 assert(nb_clusters <= INT_MAX);
5ea929e3
KW
1629
1630 for (i = 0; i < nb_clusters; i++) {
c883db0d 1631 uint64_t old_l2_entry;
5ea929e3 1632
21ab3add 1633 old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
a71835a0
KW
1634
1635 /*
808c4b6f
HR
1636 * If full_discard is false, make sure that a discarded area reads back
1637 * as zeroes for v3 images (we cannot do it for v2 without actually
1638 * writing a zero-filled buffer). We can skip the operation if the
1639 * cluster is already marked as zero, or if it's unallocated and we
1640 * don't have a backing file.
a71835a0 1641 *
237d78f8 1642 * TODO We might want to use bdrv_block_status(bs) here, but we're
a71835a0 1643 * holding s->lock, so that doesn't work today.
808c4b6f
HR
1644 *
1645 * If full_discard is true, the sector should not read back as zeroes,
1646 * but rather fall through to the backing file.
a71835a0 1647 */
808c2bb4 1648 switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
bbd995d8
EB
1649 case QCOW2_CLUSTER_UNALLOCATED:
1650 if (full_discard || !bs->backing) {
1651 continue;
1652 }
1653 break;
1654
fdfab37d
EB
1655 case QCOW2_CLUSTER_ZERO_PLAIN:
1656 if (!full_discard) {
bbd995d8
EB
1657 continue;
1658 }
1659 break;
1660
fdfab37d 1661 case QCOW2_CLUSTER_ZERO_ALLOC:
bbd995d8
EB
1662 case QCOW2_CLUSTER_NORMAL:
1663 case QCOW2_CLUSTER_COMPRESSED:
1664 break;
1665
1666 default:
1667 abort();
5ea929e3
KW
1668 }
1669
1670 /* First remove L2 entries */
21ab3add 1671 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
808c4b6f 1672 if (!full_discard && s->qcow_version >= 3) {
21ab3add 1673 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
a71835a0 1674 } else {
21ab3add 1675 l2_slice[l2_index + i] = cpu_to_be64(0);
a71835a0 1676 }
5ea929e3
KW
1677
1678 /* Then decrease the refcount */
c883db0d 1679 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
5ea929e3
KW
1680 }
1681
21ab3add 1682 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
5ea929e3
KW
1683
1684 return nb_clusters;
1685}
1686
d2cb36af
EB
1687int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1688 uint64_t bytes, enum qcow2_discard_type type,
1689 bool full_discard)
5ea929e3 1690{
ff99129a 1691 BDRVQcow2State *s = bs->opaque;
d2cb36af 1692 uint64_t end_offset = offset + bytes;
b6d36def 1693 uint64_t nb_clusters;
d2cb36af 1694 int64_t cleared;
5ea929e3
KW
1695 int ret;
1696
f10ee139 1697 /* Caller must pass aligned values, except at image end */
0c1bd469 1698 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
f10ee139
EB
1699 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1700 end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
5ea929e3 1701
d2cb36af 1702 nb_clusters = size_to_clusters(s, bytes);
5ea929e3 1703
0b919fae
KW
1704 s->cache_discards = true;
1705
21ab3add 1706 /* Each L2 slice is handled by its own loop iteration */
5ea929e3 1707 while (nb_clusters > 0) {
21ab3add
AG
1708 cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1709 full_discard);
d2cb36af
EB
1710 if (cleared < 0) {
1711 ret = cleared;
0b919fae 1712 goto fail;
5ea929e3
KW
1713 }
1714
d2cb36af
EB
1715 nb_clusters -= cleared;
1716 offset += (cleared * s->cluster_size);
5ea929e3
KW
1717 }
1718
0b919fae
KW
1719 ret = 0;
1720fail:
1721 s->cache_discards = false;
1722 qcow2_process_discards(bs, ret);
1723
1724 return ret;
5ea929e3 1725}
621f0589
KW
1726
1727/*
1728 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
a9a9f8f0 1729 * all clusters in the same L2 slice) and returns the number of zeroed
621f0589
KW
1730 * clusters.
1731 */
a9a9f8f0
AG
1732static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1733 uint64_t nb_clusters, int flags)
621f0589 1734{
ff99129a 1735 BDRVQcow2State *s = bs->opaque;
a9a9f8f0 1736 uint64_t *l2_slice;
621f0589
KW
1737 int l2_index;
1738 int ret;
1739 int i;
06cc5e2b 1740 bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
621f0589 1741
a9a9f8f0 1742 ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
621f0589
KW
1743 if (ret < 0) {
1744 return ret;
1745 }
1746
a9a9f8f0
AG
1747 /* Limit nb_clusters to one L2 slice */
1748 nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
b6d36def 1749 assert(nb_clusters <= INT_MAX);
621f0589
KW
1750
1751 for (i = 0; i < nb_clusters; i++) {
1752 uint64_t old_offset;
06cc5e2b 1753 QCow2ClusterType cluster_type;
621f0589 1754
a9a9f8f0 1755 old_offset = be64_to_cpu(l2_slice[l2_index + i]);
621f0589 1756
06cc5e2b
EB
1757 /*
1758 * Minimize L2 changes if the cluster already reads back as
1759 * zeroes with correct allocation.
1760 */
808c2bb4 1761 cluster_type = qcow2_get_cluster_type(bs, old_offset);
06cc5e2b
EB
1762 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1763 (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1764 continue;
1765 }
1766
a9a9f8f0 1767 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
06cc5e2b 1768 if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
a9a9f8f0 1769 l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
6cfcb9b8 1770 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
621f0589 1771 } else {
a9a9f8f0 1772 l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
621f0589
KW
1773 }
1774 }
1775
a9a9f8f0 1776 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
621f0589
KW
1777
1778 return nb_clusters;
1779}
1780
d2cb36af
EB
1781int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1782 uint64_t bytes, int flags)
621f0589 1783{
ff99129a 1784 BDRVQcow2State *s = bs->opaque;
d2cb36af 1785 uint64_t end_offset = offset + bytes;
b6d36def 1786 uint64_t nb_clusters;
d2cb36af 1787 int64_t cleared;
621f0589
KW
1788 int ret;
1789
6c3944dc
KW
1790 /* If we have to stay in sync with an external data file, zero out
1791 * s->data_file first. */
1792 if (data_file_is_raw(bs)) {
1793 assert(has_data_file(bs));
1794 ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1795 if (ret < 0) {
1796 return ret;
1797 }
1798 }
1799
f10ee139
EB
1800 /* Caller must pass aligned values, except at image end */
1801 assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1802 assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
f01643fb 1803 end_offset >= bs->total_sectors << BDRV_SECTOR_BITS);
f10ee139 1804
61b30439
KW
1805 /*
1806 * The zero flag is only supported by version 3 and newer. However, if we
1807 * have no backing file, we can resort to discard in version 2.
1808 */
621f0589 1809 if (s->qcow_version < 3) {
61b30439
KW
1810 if (!bs->backing) {
1811 return qcow2_cluster_discard(bs, offset, bytes,
1812 QCOW2_DISCARD_REQUEST, false);
1813 }
621f0589
KW
1814 return -ENOTSUP;
1815 }
1816
a9a9f8f0 1817 /* Each L2 slice is handled by its own loop iteration */
d2cb36af 1818 nb_clusters = size_to_clusters(s, bytes);
621f0589 1819
0b919fae
KW
1820 s->cache_discards = true;
1821
621f0589 1822 while (nb_clusters > 0) {
a9a9f8f0 1823 cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
d2cb36af
EB
1824 if (cleared < 0) {
1825 ret = cleared;
0b919fae 1826 goto fail;
621f0589
KW
1827 }
1828
d2cb36af
EB
1829 nb_clusters -= cleared;
1830 offset += (cleared * s->cluster_size);
621f0589
KW
1831 }
1832
0b919fae
KW
1833 ret = 0;
1834fail:
1835 s->cache_discards = false;
1836 qcow2_process_discards(bs, ret);
1837
1838 return ret;
621f0589 1839}
32b6444d
HR
1840
1841/*
1842 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1843 * non-backed non-pre-allocated zero clusters).
1844 *
4057a2b2
HR
1845 * l1_entries and *visited_l1_entries are used to keep track of progress for
1846 * status_cb(). l1_entries contains the total number of L1 entries and
1847 * *visited_l1_entries counts all visited L1 entries.
32b6444d
HR
1848 */
1849static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
ecf58777 1850 int l1_size, int64_t *visited_l1_entries,
4057a2b2 1851 int64_t l1_entries,
8b13976d
HR
1852 BlockDriverAmendStatusCB *status_cb,
1853 void *cb_opaque)
32b6444d 1854{
ff99129a 1855 BDRVQcow2State *s = bs->opaque;
32b6444d 1856 bool is_active_l1 = (l1_table == s->l1_table);
415184f5
AG
1857 uint64_t *l2_slice = NULL;
1858 unsigned slice, slice_size2, n_slices;
32b6444d
HR
1859 int ret;
1860 int i, j;
1861
415184f5
AG
1862 slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1863 n_slices = s->cluster_size / slice_size2;
1864
32b6444d
HR
1865 if (!is_active_l1) {
1866 /* inactive L2 tables require a buffer to be stored in when loading
1867 * them from disk */
415184f5
AG
1868 l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1869 if (l2_slice == NULL) {
de82815d
KW
1870 return -ENOMEM;
1871 }
32b6444d
HR
1872 }
1873
1874 for (i = 0; i < l1_size; i++) {
1875 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
0e06528e 1876 uint64_t l2_refcount;
32b6444d
HR
1877
1878 if (!l2_offset) {
1879 /* unallocated */
4057a2b2
HR
1880 (*visited_l1_entries)++;
1881 if (status_cb) {
8b13976d 1882 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 1883 }
32b6444d
HR
1884 continue;
1885 }
1886
8dd93d93
HR
1887 if (offset_into_cluster(s, l2_offset)) {
1888 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1889 PRIx64 " unaligned (L1 index: %#x)",
1890 l2_offset, i);
1891 ret = -EIO;
1892 goto fail;
1893 }
1894
9b765486
AG
1895 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1896 &l2_refcount);
1897 if (ret < 0) {
1898 goto fail;
1899 }
1900
415184f5
AG
1901 for (slice = 0; slice < n_slices; slice++) {
1902 uint64_t slice_offset = l2_offset + slice * slice_size2;
1903 bool l2_dirty = false;
226494ff
AG
1904 if (is_active_l1) {
1905 /* get active L2 tables from cache */
415184f5
AG
1906 ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1907 (void **)&l2_slice);
226494ff
AG
1908 } else {
1909 /* load inactive L2 tables from disk */
415184f5 1910 ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
226494ff
AG
1911 }
1912 if (ret < 0) {
1913 goto fail;
32b6444d
HR
1914 }
1915
415184f5
AG
1916 for (j = 0; j < s->l2_slice_size; j++) {
1917 uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
226494ff
AG
1918 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1919 QCow2ClusterType cluster_type =
808c2bb4 1920 qcow2_get_cluster_type(bs, l2_entry);
226494ff
AG
1921
1922 if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1923 cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
32b6444d
HR
1924 continue;
1925 }
1926
226494ff
AG
1927 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1928 if (!bs->backing) {
1929 /* not backed; therefore we can simply deallocate the
1930 * cluster */
415184f5 1931 l2_slice[j] = 0;
226494ff
AG
1932 l2_dirty = true;
1933 continue;
1934 }
1935
1936 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1937 if (offset < 0) {
1938 ret = offset;
1939 goto fail;
1940 }
ecf58777 1941
3a75a870
AG
1942 /* The offset must fit in the offset field */
1943 assert((offset & L2E_OFFSET_MASK) == offset);
1944
226494ff
AG
1945 if (l2_refcount > 1) {
1946 /* For shared L2 tables, set the refcount accordingly
1947 * (it is already 1 and needs to be l2_refcount) */
1948 ret = qcow2_update_cluster_refcount(
1949 bs, offset >> s->cluster_bits,
2aabe7c7 1950 refcount_diff(1, l2_refcount), false,
ecf58777 1951 QCOW2_DISCARD_OTHER);
226494ff
AG
1952 if (ret < 0) {
1953 qcow2_free_clusters(bs, offset, s->cluster_size,
1954 QCOW2_DISCARD_OTHER);
1955 goto fail;
1956 }
ecf58777
HR
1957 }
1958 }
32b6444d 1959
226494ff 1960 if (offset_into_cluster(s, offset)) {
415184f5 1961 int l2_index = slice * s->l2_slice_size + j;
226494ff
AG
1962 qcow2_signal_corruption(
1963 bs, true, -1, -1,
1964 "Cluster allocation offset "
1965 "%#" PRIx64 " unaligned (L2 offset: %#"
1966 PRIx64 ", L2 index: %#x)", offset,
415184f5 1967 l2_offset, l2_index);
226494ff
AG
1968 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1969 qcow2_free_clusters(bs, offset, s->cluster_size,
1970 QCOW2_DISCARD_ALWAYS);
1971 }
1972 ret = -EIO;
1973 goto fail;
8dd93d93 1974 }
8dd93d93 1975
226494ff 1976 ret = qcow2_pre_write_overlap_check(bs, 0, offset,
966b000f 1977 s->cluster_size, true);
226494ff
AG
1978 if (ret < 0) {
1979 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1980 qcow2_free_clusters(bs, offset, s->cluster_size,
1981 QCOW2_DISCARD_ALWAYS);
1982 }
1983 goto fail;
320c7066 1984 }
32b6444d 1985
966b000f
KW
1986 ret = bdrv_pwrite_zeroes(s->data_file, offset,
1987 s->cluster_size, 0);
226494ff
AG
1988 if (ret < 0) {
1989 if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1990 qcow2_free_clusters(bs, offset, s->cluster_size,
1991 QCOW2_DISCARD_ALWAYS);
1992 }
1993 goto fail;
320c7066 1994 }
32b6444d 1995
226494ff 1996 if (l2_refcount == 1) {
415184f5 1997 l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
226494ff 1998 } else {
415184f5 1999 l2_slice[j] = cpu_to_be64(offset);
226494ff
AG
2000 }
2001 l2_dirty = true;
e390cf5a 2002 }
32b6444d 2003
226494ff
AG
2004 if (is_active_l1) {
2005 if (l2_dirty) {
415184f5 2006 qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
226494ff 2007 qcow2_cache_depends_on_flush(s->l2_table_cache);
32b6444d 2008 }
415184f5 2009 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
226494ff
AG
2010 } else {
2011 if (l2_dirty) {
2012 ret = qcow2_pre_write_overlap_check(
2013 bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
966b000f 2014 slice_offset, slice_size2, false);
226494ff
AG
2015 if (ret < 0) {
2016 goto fail;
2017 }
32b6444d 2018
415184f5
AG
2019 ret = bdrv_pwrite(bs->file, slice_offset,
2020 l2_slice, slice_size2);
226494ff
AG
2021 if (ret < 0) {
2022 goto fail;
2023 }
32b6444d
HR
2024 }
2025 }
2026 }
4057a2b2
HR
2027
2028 (*visited_l1_entries)++;
2029 if (status_cb) {
8b13976d 2030 status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
4057a2b2 2031 }
32b6444d
HR
2032 }
2033
2034 ret = 0;
2035
2036fail:
415184f5 2037 if (l2_slice) {
32b6444d 2038 if (!is_active_l1) {
415184f5 2039 qemu_vfree(l2_slice);
32b6444d 2040 } else {
415184f5 2041 qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
32b6444d
HR
2042 }
2043 }
2044 return ret;
2045}
2046
2047/*
2048 * For backed images, expands all zero clusters on the image. For non-backed
2049 * images, deallocates all non-pre-allocated zero clusters (and claims the
2050 * allocation for pre-allocated ones). This is important for downgrading to a
2051 * qcow2 version which doesn't yet support metadata zero clusters.
2052 */
4057a2b2 2053int qcow2_expand_zero_clusters(BlockDriverState *bs,
8b13976d
HR
2054 BlockDriverAmendStatusCB *status_cb,
2055 void *cb_opaque)
32b6444d 2056{
ff99129a 2057 BDRVQcow2State *s = bs->opaque;
32b6444d 2058 uint64_t *l1_table = NULL;
4057a2b2 2059 int64_t l1_entries = 0, visited_l1_entries = 0;
32b6444d
HR
2060 int ret;
2061 int i, j;
2062
4057a2b2
HR
2063 if (status_cb) {
2064 l1_entries = s->l1_size;
2065 for (i = 0; i < s->nb_snapshots; i++) {
2066 l1_entries += s->snapshots[i].l1_size;
2067 }
2068 }
2069
32b6444d 2070 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
4057a2b2 2071 &visited_l1_entries, l1_entries,
8b13976d 2072 status_cb, cb_opaque);
32b6444d
HR
2073 if (ret < 0) {
2074 goto fail;
2075 }
2076
2077 /* Inactive L1 tables may point to active L2 tables - therefore it is
2078 * necessary to flush the L2 table cache before trying to access the L2
2079 * tables pointed to by inactive L1 entries (else we might try to expand
2080 * zero clusters that have already been expanded); furthermore, it is also
2081 * necessary to empty the L2 table cache, since it may contain tables which
2082 * are now going to be modified directly on disk, bypassing the cache.
2083 * qcow2_cache_empty() does both for us. */
2084 ret = qcow2_cache_empty(bs, s->l2_table_cache);
2085 if (ret < 0) {
2086 goto fail;
2087 }
2088
2089 for (i = 0; i < s->nb_snapshots; i++) {
c9a442e4
AG
2090 int l1_size2;
2091 uint64_t *new_l1_table;
2092 Error *local_err = NULL;
2093
2094 ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2095 s->snapshots[i].l1_size, sizeof(uint64_t),
2096 QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2097 &local_err);
2098 if (ret < 0) {
2099 error_report_err(local_err);
2100 goto fail;
2101 }
32b6444d 2102
c9a442e4
AG
2103 l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2104 new_l1_table = g_try_realloc(l1_table, l1_size2);
de7269d2
AG
2105
2106 if (!new_l1_table) {
2107 ret = -ENOMEM;
2108 goto fail;
2109 }
2110
2111 l1_table = new_l1_table;
32b6444d 2112
c9a442e4
AG
2113 ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2114 l1_table, l1_size2);
32b6444d
HR
2115 if (ret < 0) {
2116 goto fail;
2117 }
2118
2119 for (j = 0; j < s->snapshots[i].l1_size; j++) {
2120 be64_to_cpus(&l1_table[j]);
2121 }
2122
2123 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
4057a2b2 2124 &visited_l1_entries, l1_entries,
8b13976d 2125 status_cb, cb_opaque);
32b6444d
HR
2126 if (ret < 0) {
2127 goto fail;
2128 }
2129 }
2130
2131 ret = 0;
2132
2133fail:
32b6444d
HR
2134 g_free(l1_table);
2135 return ret;
2136}
This page took 1.008254 seconds and 4 git commands to generate.