2 * AArch64 SVE translation
4 * Copyright (c) 2018 Linaro, Ltd
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
24 #include "tcg-op-gvec.h"
25 #include "tcg-gvec-desc.h"
28 #include "translate.h"
29 #include "internals.h"
30 #include "exec/helper-proto.h"
31 #include "exec/helper-gen.h"
33 #include "trace-tcg.h"
34 #include "translate-a64.h"
35 #include "fpu/softfloat.h"
38 typedef void GVecGen2sFn(unsigned, uint32_t, uint32_t,
39 TCGv_i64, uint32_t, uint32_t);
41 typedef void gen_helper_gvec_flags_3(TCGv_i32, TCGv_ptr, TCGv_ptr,
43 typedef void gen_helper_gvec_flags_4(TCGv_i32, TCGv_ptr, TCGv_ptr,
44 TCGv_ptr, TCGv_ptr, TCGv_i32);
46 typedef void gen_helper_gvec_mem(TCGv_env, TCGv_ptr, TCGv_i64, TCGv_i32);
47 typedef void gen_helper_gvec_mem_scatter(TCGv_env, TCGv_ptr, TCGv_ptr,
48 TCGv_ptr, TCGv_i64, TCGv_i32);
51 * Helpers for extracting complex instruction fields.
54 /* See e.g. ASR (immediate, predicated).
55 * Returns -1 for unallocated encoding; diagnose later.
57 static int tszimm_esz(int x)
59 x >>= 3; /* discard imm3 */
63 static int tszimm_shr(int x)
65 return (16 << tszimm_esz(x)) - x;
68 /* See e.g. LSL (immediate, predicated). */
69 static int tszimm_shl(int x)
71 return x - (8 << tszimm_esz(x));
74 static inline int plus1(int x)
79 /* The SH bit is in bit 8. Extract the low 8 and shift. */
80 static inline int expand_imm_sh8s(int x)
82 return (int8_t)x << (x & 0x100 ? 8 : 0);
85 static inline int expand_imm_sh8u(int x)
87 return (uint8_t)x << (x & 0x100 ? 8 : 0);
90 /* Convert a 2-bit memory size (msz) to a 4-bit data type (dtype)
91 * with unsigned data. C.f. SVE Memory Contiguous Load Group.
93 static inline int msz_dtype(int msz)
95 static const uint8_t dtype[4] = { 0, 5, 10, 15 };
100 * Include the generated decoder.
103 #include "decode-sve.inc.c"
106 * Implement all of the translator functions referenced by the decoder.
109 /* Return the offset info CPUARMState of the predicate vector register Pn.
110 * Note for this purpose, FFR is P16.
112 static inline int pred_full_reg_offset(DisasContext *s, int regno)
114 return offsetof(CPUARMState, vfp.pregs[regno]);
117 /* Return the byte size of the whole predicate register, VL / 64. */
118 static inline int pred_full_reg_size(DisasContext *s)
120 return s->sve_len >> 3;
123 /* Round up the size of a register to a size allowed by
124 * the tcg vector infrastructure. Any operation which uses this
125 * size may assume that the bits above pred_full_reg_size are zero,
126 * and must leave them the same way.
128 * Note that this is not needed for the vector registers as they
129 * are always properly sized for tcg vectors.
131 static int size_for_gvec(int size)
136 return QEMU_ALIGN_UP(size, 16);
140 static int pred_gvec_reg_size(DisasContext *s)
142 return size_for_gvec(pred_full_reg_size(s));
145 /* Invoke a vector expander on two Zregs. */
146 static bool do_vector2_z(DisasContext *s, GVecGen2Fn *gvec_fn,
147 int esz, int rd, int rn)
149 if (sve_access_check(s)) {
150 unsigned vsz = vec_full_reg_size(s);
151 gvec_fn(esz, vec_full_reg_offset(s, rd),
152 vec_full_reg_offset(s, rn), vsz, vsz);
157 /* Invoke a vector expander on three Zregs. */
158 static bool do_vector3_z(DisasContext *s, GVecGen3Fn *gvec_fn,
159 int esz, int rd, int rn, int rm)
161 if (sve_access_check(s)) {
162 unsigned vsz = vec_full_reg_size(s);
163 gvec_fn(esz, vec_full_reg_offset(s, rd),
164 vec_full_reg_offset(s, rn),
165 vec_full_reg_offset(s, rm), vsz, vsz);
170 /* Invoke a vector move on two Zregs. */
171 static bool do_mov_z(DisasContext *s, int rd, int rn)
173 return do_vector2_z(s, tcg_gen_gvec_mov, 0, rd, rn);
176 /* Initialize a Zreg with replications of a 64-bit immediate. */
177 static void do_dupi_z(DisasContext *s, int rd, uint64_t word)
179 unsigned vsz = vec_full_reg_size(s);
180 tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), vsz, vsz, word);
183 /* Invoke a vector expander on two Pregs. */
184 static bool do_vector2_p(DisasContext *s, GVecGen2Fn *gvec_fn,
185 int esz, int rd, int rn)
187 if (sve_access_check(s)) {
188 unsigned psz = pred_gvec_reg_size(s);
189 gvec_fn(esz, pred_full_reg_offset(s, rd),
190 pred_full_reg_offset(s, rn), psz, psz);
195 /* Invoke a vector expander on three Pregs. */
196 static bool do_vector3_p(DisasContext *s, GVecGen3Fn *gvec_fn,
197 int esz, int rd, int rn, int rm)
199 if (sve_access_check(s)) {
200 unsigned psz = pred_gvec_reg_size(s);
201 gvec_fn(esz, pred_full_reg_offset(s, rd),
202 pred_full_reg_offset(s, rn),
203 pred_full_reg_offset(s, rm), psz, psz);
208 /* Invoke a vector operation on four Pregs. */
209 static bool do_vecop4_p(DisasContext *s, const GVecGen4 *gvec_op,
210 int rd, int rn, int rm, int rg)
212 if (sve_access_check(s)) {
213 unsigned psz = pred_gvec_reg_size(s);
214 tcg_gen_gvec_4(pred_full_reg_offset(s, rd),
215 pred_full_reg_offset(s, rn),
216 pred_full_reg_offset(s, rm),
217 pred_full_reg_offset(s, rg),
223 /* Invoke a vector move on two Pregs. */
224 static bool do_mov_p(DisasContext *s, int rd, int rn)
226 return do_vector2_p(s, tcg_gen_gvec_mov, 0, rd, rn);
229 /* Set the cpu flags as per a return from an SVE helper. */
230 static void do_pred_flags(TCGv_i32 t)
232 tcg_gen_mov_i32(cpu_NF, t);
233 tcg_gen_andi_i32(cpu_ZF, t, 2);
234 tcg_gen_andi_i32(cpu_CF, t, 1);
235 tcg_gen_movi_i32(cpu_VF, 0);
238 /* Subroutines computing the ARM PredTest psuedofunction. */
239 static void do_predtest1(TCGv_i64 d, TCGv_i64 g)
241 TCGv_i32 t = tcg_temp_new_i32();
243 gen_helper_sve_predtest1(t, d, g);
245 tcg_temp_free_i32(t);
248 static void do_predtest(DisasContext *s, int dofs, int gofs, int words)
250 TCGv_ptr dptr = tcg_temp_new_ptr();
251 TCGv_ptr gptr = tcg_temp_new_ptr();
254 tcg_gen_addi_ptr(dptr, cpu_env, dofs);
255 tcg_gen_addi_ptr(gptr, cpu_env, gofs);
256 t = tcg_const_i32(words);
258 gen_helper_sve_predtest(t, dptr, gptr, t);
259 tcg_temp_free_ptr(dptr);
260 tcg_temp_free_ptr(gptr);
263 tcg_temp_free_i32(t);
266 /* For each element size, the bits within a predicate word that are active. */
267 const uint64_t pred_esz_masks[4] = {
268 0xffffffffffffffffull, 0x5555555555555555ull,
269 0x1111111111111111ull, 0x0101010101010101ull
273 *** SVE Logical - Unpredicated Group
276 static bool trans_AND_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
278 return do_vector3_z(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
281 static bool trans_ORR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
283 if (a->rn == a->rm) { /* MOV */
284 return do_mov_z(s, a->rd, a->rn);
286 return do_vector3_z(s, tcg_gen_gvec_or, 0, a->rd, a->rn, a->rm);
290 static bool trans_EOR_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
292 return do_vector3_z(s, tcg_gen_gvec_xor, 0, a->rd, a->rn, a->rm);
295 static bool trans_BIC_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
297 return do_vector3_z(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
301 *** SVE Integer Arithmetic - Unpredicated Group
304 static bool trans_ADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
306 return do_vector3_z(s, tcg_gen_gvec_add, a->esz, a->rd, a->rn, a->rm);
309 static bool trans_SUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
311 return do_vector3_z(s, tcg_gen_gvec_sub, a->esz, a->rd, a->rn, a->rm);
314 static bool trans_SQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
316 return do_vector3_z(s, tcg_gen_gvec_ssadd, a->esz, a->rd, a->rn, a->rm);
319 static bool trans_SQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
321 return do_vector3_z(s, tcg_gen_gvec_sssub, a->esz, a->rd, a->rn, a->rm);
324 static bool trans_UQADD_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
326 return do_vector3_z(s, tcg_gen_gvec_usadd, a->esz, a->rd, a->rn, a->rm);
329 static bool trans_UQSUB_zzz(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
331 return do_vector3_z(s, tcg_gen_gvec_ussub, a->esz, a->rd, a->rn, a->rm);
335 *** SVE Integer Arithmetic - Binary Predicated Group
338 static bool do_zpzz_ool(DisasContext *s, arg_rprr_esz *a, gen_helper_gvec_4 *fn)
340 unsigned vsz = vec_full_reg_size(s);
344 if (sve_access_check(s)) {
345 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
346 vec_full_reg_offset(s, a->rn),
347 vec_full_reg_offset(s, a->rm),
348 pred_full_reg_offset(s, a->pg),
354 /* Select active elememnts from Zn and inactive elements from Zm,
355 * storing the result in Zd.
357 static void do_sel_z(DisasContext *s, int rd, int rn, int rm, int pg, int esz)
359 static gen_helper_gvec_4 * const fns[4] = {
360 gen_helper_sve_sel_zpzz_b, gen_helper_sve_sel_zpzz_h,
361 gen_helper_sve_sel_zpzz_s, gen_helper_sve_sel_zpzz_d
363 unsigned vsz = vec_full_reg_size(s);
364 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
365 vec_full_reg_offset(s, rn),
366 vec_full_reg_offset(s, rm),
367 pred_full_reg_offset(s, pg),
368 vsz, vsz, 0, fns[esz]);
371 #define DO_ZPZZ(NAME, name) \
372 static bool trans_##NAME##_zpzz(DisasContext *s, arg_rprr_esz *a, \
375 static gen_helper_gvec_4 * const fns[4] = { \
376 gen_helper_sve_##name##_zpzz_b, gen_helper_sve_##name##_zpzz_h, \
377 gen_helper_sve_##name##_zpzz_s, gen_helper_sve_##name##_zpzz_d, \
379 return do_zpzz_ool(s, a, fns[a->esz]); \
398 DO_ZPZZ(SMULH, smulh)
399 DO_ZPZZ(UMULH, umulh)
405 static bool trans_SDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
407 static gen_helper_gvec_4 * const fns[4] = {
408 NULL, NULL, gen_helper_sve_sdiv_zpzz_s, gen_helper_sve_sdiv_zpzz_d
410 return do_zpzz_ool(s, a, fns[a->esz]);
413 static bool trans_UDIV_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
415 static gen_helper_gvec_4 * const fns[4] = {
416 NULL, NULL, gen_helper_sve_udiv_zpzz_s, gen_helper_sve_udiv_zpzz_d
418 return do_zpzz_ool(s, a, fns[a->esz]);
421 static bool trans_SEL_zpzz(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
423 if (sve_access_check(s)) {
424 do_sel_z(s, a->rd, a->rn, a->rm, a->pg, a->esz);
432 *** SVE Integer Arithmetic - Unary Predicated Group
435 static bool do_zpz_ool(DisasContext *s, arg_rpr_esz *a, gen_helper_gvec_3 *fn)
440 if (sve_access_check(s)) {
441 unsigned vsz = vec_full_reg_size(s);
442 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
443 vec_full_reg_offset(s, a->rn),
444 pred_full_reg_offset(s, a->pg),
450 #define DO_ZPZ(NAME, name) \
451 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
453 static gen_helper_gvec_3 * const fns[4] = { \
454 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
455 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
457 return do_zpz_ool(s, a, fns[a->esz]); \
462 DO_ZPZ(CNT_zpz, cnt_zpz)
464 DO_ZPZ(NOT_zpz, not_zpz)
468 static bool trans_FABS(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
470 static gen_helper_gvec_3 * const fns[4] = {
472 gen_helper_sve_fabs_h,
473 gen_helper_sve_fabs_s,
474 gen_helper_sve_fabs_d
476 return do_zpz_ool(s, a, fns[a->esz]);
479 static bool trans_FNEG(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
481 static gen_helper_gvec_3 * const fns[4] = {
483 gen_helper_sve_fneg_h,
484 gen_helper_sve_fneg_s,
485 gen_helper_sve_fneg_d
487 return do_zpz_ool(s, a, fns[a->esz]);
490 static bool trans_SXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
492 static gen_helper_gvec_3 * const fns[4] = {
494 gen_helper_sve_sxtb_h,
495 gen_helper_sve_sxtb_s,
496 gen_helper_sve_sxtb_d
498 return do_zpz_ool(s, a, fns[a->esz]);
501 static bool trans_UXTB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
503 static gen_helper_gvec_3 * const fns[4] = {
505 gen_helper_sve_uxtb_h,
506 gen_helper_sve_uxtb_s,
507 gen_helper_sve_uxtb_d
509 return do_zpz_ool(s, a, fns[a->esz]);
512 static bool trans_SXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
514 static gen_helper_gvec_3 * const fns[4] = {
516 gen_helper_sve_sxth_s,
517 gen_helper_sve_sxth_d
519 return do_zpz_ool(s, a, fns[a->esz]);
522 static bool trans_UXTH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
524 static gen_helper_gvec_3 * const fns[4] = {
526 gen_helper_sve_uxth_s,
527 gen_helper_sve_uxth_d
529 return do_zpz_ool(s, a, fns[a->esz]);
532 static bool trans_SXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
534 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_sxtw_d : NULL);
537 static bool trans_UXTW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
539 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_uxtw_d : NULL);
545 *** SVE Integer Reduction Group
548 typedef void gen_helper_gvec_reduc(TCGv_i64, TCGv_ptr, TCGv_ptr, TCGv_i32);
549 static bool do_vpz_ool(DisasContext *s, arg_rpr_esz *a,
550 gen_helper_gvec_reduc *fn)
552 unsigned vsz = vec_full_reg_size(s);
560 if (!sve_access_check(s)) {
564 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
565 temp = tcg_temp_new_i64();
566 t_zn = tcg_temp_new_ptr();
567 t_pg = tcg_temp_new_ptr();
569 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
570 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
571 fn(temp, t_zn, t_pg, desc);
572 tcg_temp_free_ptr(t_zn);
573 tcg_temp_free_ptr(t_pg);
574 tcg_temp_free_i32(desc);
576 write_fp_dreg(s, a->rd, temp);
577 tcg_temp_free_i64(temp);
581 #define DO_VPZ(NAME, name) \
582 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
584 static gen_helper_gvec_reduc * const fns[4] = { \
585 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
586 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
588 return do_vpz_ool(s, a, fns[a->esz]); \
601 static bool trans_SADDV(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
603 static gen_helper_gvec_reduc * const fns[4] = {
604 gen_helper_sve_saddv_b, gen_helper_sve_saddv_h,
605 gen_helper_sve_saddv_s, NULL
607 return do_vpz_ool(s, a, fns[a->esz]);
613 *** SVE Shift by Immediate - Predicated Group
616 /* Store zero into every active element of Zd. We will use this for two
617 * and three-operand predicated instructions for which logic dictates a
620 static bool do_clr_zp(DisasContext *s, int rd, int pg, int esz)
622 static gen_helper_gvec_2 * const fns[4] = {
623 gen_helper_sve_clr_b, gen_helper_sve_clr_h,
624 gen_helper_sve_clr_s, gen_helper_sve_clr_d,
626 if (sve_access_check(s)) {
627 unsigned vsz = vec_full_reg_size(s);
628 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
629 pred_full_reg_offset(s, pg),
630 vsz, vsz, 0, fns[esz]);
635 /* Copy Zn into Zd, storing zeros into inactive elements. */
636 static void do_movz_zpz(DisasContext *s, int rd, int rn, int pg, int esz)
638 static gen_helper_gvec_3 * const fns[4] = {
639 gen_helper_sve_movz_b, gen_helper_sve_movz_h,
640 gen_helper_sve_movz_s, gen_helper_sve_movz_d,
642 unsigned vsz = vec_full_reg_size(s);
643 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
644 vec_full_reg_offset(s, rn),
645 pred_full_reg_offset(s, pg),
646 vsz, vsz, 0, fns[esz]);
649 static bool do_zpzi_ool(DisasContext *s, arg_rpri_esz *a,
650 gen_helper_gvec_3 *fn)
652 if (sve_access_check(s)) {
653 unsigned vsz = vec_full_reg_size(s);
654 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
655 vec_full_reg_offset(s, a->rn),
656 pred_full_reg_offset(s, a->pg),
657 vsz, vsz, a->imm, fn);
662 static bool trans_ASR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
664 static gen_helper_gvec_3 * const fns[4] = {
665 gen_helper_sve_asr_zpzi_b, gen_helper_sve_asr_zpzi_h,
666 gen_helper_sve_asr_zpzi_s, gen_helper_sve_asr_zpzi_d,
669 /* Invalid tsz encoding -- see tszimm_esz. */
672 /* Shift by element size is architecturally valid. For
673 arithmetic right-shift, it's the same as by one less. */
674 a->imm = MIN(a->imm, (8 << a->esz) - 1);
675 return do_zpzi_ool(s, a, fns[a->esz]);
678 static bool trans_LSR_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
680 static gen_helper_gvec_3 * const fns[4] = {
681 gen_helper_sve_lsr_zpzi_b, gen_helper_sve_lsr_zpzi_h,
682 gen_helper_sve_lsr_zpzi_s, gen_helper_sve_lsr_zpzi_d,
687 /* Shift by element size is architecturally valid.
688 For logical shifts, it is a zeroing operation. */
689 if (a->imm >= (8 << a->esz)) {
690 return do_clr_zp(s, a->rd, a->pg, a->esz);
692 return do_zpzi_ool(s, a, fns[a->esz]);
696 static bool trans_LSL_zpzi(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
698 static gen_helper_gvec_3 * const fns[4] = {
699 gen_helper_sve_lsl_zpzi_b, gen_helper_sve_lsl_zpzi_h,
700 gen_helper_sve_lsl_zpzi_s, gen_helper_sve_lsl_zpzi_d,
705 /* Shift by element size is architecturally valid.
706 For logical shifts, it is a zeroing operation. */
707 if (a->imm >= (8 << a->esz)) {
708 return do_clr_zp(s, a->rd, a->pg, a->esz);
710 return do_zpzi_ool(s, a, fns[a->esz]);
714 static bool trans_ASRD(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
716 static gen_helper_gvec_3 * const fns[4] = {
717 gen_helper_sve_asrd_b, gen_helper_sve_asrd_h,
718 gen_helper_sve_asrd_s, gen_helper_sve_asrd_d,
723 /* Shift by element size is architecturally valid. For arithmetic
724 right shift for division, it is a zeroing operation. */
725 if (a->imm >= (8 << a->esz)) {
726 return do_clr_zp(s, a->rd, a->pg, a->esz);
728 return do_zpzi_ool(s, a, fns[a->esz]);
733 *** SVE Bitwise Shift - Predicated Group
736 #define DO_ZPZW(NAME, name) \
737 static bool trans_##NAME##_zpzw(DisasContext *s, arg_rprr_esz *a, \
740 static gen_helper_gvec_4 * const fns[3] = { \
741 gen_helper_sve_##name##_zpzw_b, gen_helper_sve_##name##_zpzw_h, \
742 gen_helper_sve_##name##_zpzw_s, \
744 if (a->esz < 0 || a->esz >= 3) { \
747 return do_zpzz_ool(s, a, fns[a->esz]); \
757 *** SVE Bitwise Shift - Unpredicated Group
760 static bool do_shift_imm(DisasContext *s, arg_rri_esz *a, bool asr,
761 void (*gvec_fn)(unsigned, uint32_t, uint32_t,
762 int64_t, uint32_t, uint32_t))
765 /* Invalid tsz encoding -- see tszimm_esz. */
768 if (sve_access_check(s)) {
769 unsigned vsz = vec_full_reg_size(s);
770 /* Shift by element size is architecturally valid. For
771 arithmetic right-shift, it's the same as by one less.
772 Otherwise it is a zeroing operation. */
773 if (a->imm >= 8 << a->esz) {
775 a->imm = (8 << a->esz) - 1;
777 do_dupi_z(s, a->rd, 0);
781 gvec_fn(a->esz, vec_full_reg_offset(s, a->rd),
782 vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
787 static bool trans_ASR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
789 return do_shift_imm(s, a, true, tcg_gen_gvec_sari);
792 static bool trans_LSR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
794 return do_shift_imm(s, a, false, tcg_gen_gvec_shri);
797 static bool trans_LSL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
799 return do_shift_imm(s, a, false, tcg_gen_gvec_shli);
802 static bool do_zzw_ool(DisasContext *s, arg_rrr_esz *a, gen_helper_gvec_3 *fn)
807 if (sve_access_check(s)) {
808 unsigned vsz = vec_full_reg_size(s);
809 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
810 vec_full_reg_offset(s, a->rn),
811 vec_full_reg_offset(s, a->rm),
817 #define DO_ZZW(NAME, name) \
818 static bool trans_##NAME##_zzw(DisasContext *s, arg_rrr_esz *a, \
821 static gen_helper_gvec_3 * const fns[4] = { \
822 gen_helper_sve_##name##_zzw_b, gen_helper_sve_##name##_zzw_h, \
823 gen_helper_sve_##name##_zzw_s, NULL \
825 return do_zzw_ool(s, a, fns[a->esz]); \
835 *** SVE Integer Multiply-Add Group
838 static bool do_zpzzz_ool(DisasContext *s, arg_rprrr_esz *a,
839 gen_helper_gvec_5 *fn)
841 if (sve_access_check(s)) {
842 unsigned vsz = vec_full_reg_size(s);
843 tcg_gen_gvec_5_ool(vec_full_reg_offset(s, a->rd),
844 vec_full_reg_offset(s, a->ra),
845 vec_full_reg_offset(s, a->rn),
846 vec_full_reg_offset(s, a->rm),
847 pred_full_reg_offset(s, a->pg),
853 #define DO_ZPZZZ(NAME, name) \
854 static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \
856 static gen_helper_gvec_5 * const fns[4] = { \
857 gen_helper_sve_##name##_b, gen_helper_sve_##name##_h, \
858 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d, \
860 return do_zpzzz_ool(s, a, fns[a->esz]); \
869 *** SVE Index Generation Group
872 static void do_index(DisasContext *s, int esz, int rd,
873 TCGv_i64 start, TCGv_i64 incr)
875 unsigned vsz = vec_full_reg_size(s);
876 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
877 TCGv_ptr t_zd = tcg_temp_new_ptr();
879 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd));
881 gen_helper_sve_index_d(t_zd, start, incr, desc);
883 typedef void index_fn(TCGv_ptr, TCGv_i32, TCGv_i32, TCGv_i32);
884 static index_fn * const fns[3] = {
885 gen_helper_sve_index_b,
886 gen_helper_sve_index_h,
887 gen_helper_sve_index_s,
889 TCGv_i32 s32 = tcg_temp_new_i32();
890 TCGv_i32 i32 = tcg_temp_new_i32();
892 tcg_gen_extrl_i64_i32(s32, start);
893 tcg_gen_extrl_i64_i32(i32, incr);
894 fns[esz](t_zd, s32, i32, desc);
896 tcg_temp_free_i32(s32);
897 tcg_temp_free_i32(i32);
899 tcg_temp_free_ptr(t_zd);
900 tcg_temp_free_i32(desc);
903 static bool trans_INDEX_ii(DisasContext *s, arg_INDEX_ii *a, uint32_t insn)
905 if (sve_access_check(s)) {
906 TCGv_i64 start = tcg_const_i64(a->imm1);
907 TCGv_i64 incr = tcg_const_i64(a->imm2);
908 do_index(s, a->esz, a->rd, start, incr);
909 tcg_temp_free_i64(start);
910 tcg_temp_free_i64(incr);
915 static bool trans_INDEX_ir(DisasContext *s, arg_INDEX_ir *a, uint32_t insn)
917 if (sve_access_check(s)) {
918 TCGv_i64 start = tcg_const_i64(a->imm);
919 TCGv_i64 incr = cpu_reg(s, a->rm);
920 do_index(s, a->esz, a->rd, start, incr);
921 tcg_temp_free_i64(start);
926 static bool trans_INDEX_ri(DisasContext *s, arg_INDEX_ri *a, uint32_t insn)
928 if (sve_access_check(s)) {
929 TCGv_i64 start = cpu_reg(s, a->rn);
930 TCGv_i64 incr = tcg_const_i64(a->imm);
931 do_index(s, a->esz, a->rd, start, incr);
932 tcg_temp_free_i64(incr);
937 static bool trans_INDEX_rr(DisasContext *s, arg_INDEX_rr *a, uint32_t insn)
939 if (sve_access_check(s)) {
940 TCGv_i64 start = cpu_reg(s, a->rn);
941 TCGv_i64 incr = cpu_reg(s, a->rm);
942 do_index(s, a->esz, a->rd, start, incr);
948 *** SVE Stack Allocation Group
951 static bool trans_ADDVL(DisasContext *s, arg_ADDVL *a, uint32_t insn)
953 TCGv_i64 rd = cpu_reg_sp(s, a->rd);
954 TCGv_i64 rn = cpu_reg_sp(s, a->rn);
955 tcg_gen_addi_i64(rd, rn, a->imm * vec_full_reg_size(s));
959 static bool trans_ADDPL(DisasContext *s, arg_ADDPL *a, uint32_t insn)
961 TCGv_i64 rd = cpu_reg_sp(s, a->rd);
962 TCGv_i64 rn = cpu_reg_sp(s, a->rn);
963 tcg_gen_addi_i64(rd, rn, a->imm * pred_full_reg_size(s));
967 static bool trans_RDVL(DisasContext *s, arg_RDVL *a, uint32_t insn)
969 TCGv_i64 reg = cpu_reg(s, a->rd);
970 tcg_gen_movi_i64(reg, a->imm * vec_full_reg_size(s));
975 *** SVE Compute Vector Address Group
978 static bool do_adr(DisasContext *s, arg_rrri *a, gen_helper_gvec_3 *fn)
980 if (sve_access_check(s)) {
981 unsigned vsz = vec_full_reg_size(s);
982 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
983 vec_full_reg_offset(s, a->rn),
984 vec_full_reg_offset(s, a->rm),
985 vsz, vsz, a->imm, fn);
990 static bool trans_ADR_p32(DisasContext *s, arg_rrri *a, uint32_t insn)
992 return do_adr(s, a, gen_helper_sve_adr_p32);
995 static bool trans_ADR_p64(DisasContext *s, arg_rrri *a, uint32_t insn)
997 return do_adr(s, a, gen_helper_sve_adr_p64);
1000 static bool trans_ADR_s32(DisasContext *s, arg_rrri *a, uint32_t insn)
1002 return do_adr(s, a, gen_helper_sve_adr_s32);
1005 static bool trans_ADR_u32(DisasContext *s, arg_rrri *a, uint32_t insn)
1007 return do_adr(s, a, gen_helper_sve_adr_u32);
1011 *** SVE Integer Misc - Unpredicated Group
1014 static bool trans_FEXPA(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1016 static gen_helper_gvec_2 * const fns[4] = {
1018 gen_helper_sve_fexpa_h,
1019 gen_helper_sve_fexpa_s,
1020 gen_helper_sve_fexpa_d,
1025 if (sve_access_check(s)) {
1026 unsigned vsz = vec_full_reg_size(s);
1027 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd),
1028 vec_full_reg_offset(s, a->rn),
1029 vsz, vsz, 0, fns[a->esz]);
1034 static bool trans_FTSSEL(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
1036 static gen_helper_gvec_3 * const fns[4] = {
1038 gen_helper_sve_ftssel_h,
1039 gen_helper_sve_ftssel_s,
1040 gen_helper_sve_ftssel_d,
1045 if (sve_access_check(s)) {
1046 unsigned vsz = vec_full_reg_size(s);
1047 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
1048 vec_full_reg_offset(s, a->rn),
1049 vec_full_reg_offset(s, a->rm),
1050 vsz, vsz, 0, fns[a->esz]);
1056 *** SVE Predicate Logical Operations Group
1059 static bool do_pppp_flags(DisasContext *s, arg_rprr_s *a,
1060 const GVecGen4 *gvec_op)
1062 if (!sve_access_check(s)) {
1066 unsigned psz = pred_gvec_reg_size(s);
1067 int dofs = pred_full_reg_offset(s, a->rd);
1068 int nofs = pred_full_reg_offset(s, a->rn);
1069 int mofs = pred_full_reg_offset(s, a->rm);
1070 int gofs = pred_full_reg_offset(s, a->pg);
1073 /* Do the operation and the flags generation in temps. */
1074 TCGv_i64 pd = tcg_temp_new_i64();
1075 TCGv_i64 pn = tcg_temp_new_i64();
1076 TCGv_i64 pm = tcg_temp_new_i64();
1077 TCGv_i64 pg = tcg_temp_new_i64();
1079 tcg_gen_ld_i64(pn, cpu_env, nofs);
1080 tcg_gen_ld_i64(pm, cpu_env, mofs);
1081 tcg_gen_ld_i64(pg, cpu_env, gofs);
1083 gvec_op->fni8(pd, pn, pm, pg);
1084 tcg_gen_st_i64(pd, cpu_env, dofs);
1086 do_predtest1(pd, pg);
1088 tcg_temp_free_i64(pd);
1089 tcg_temp_free_i64(pn);
1090 tcg_temp_free_i64(pm);
1091 tcg_temp_free_i64(pg);
1093 /* The operation and flags generation is large. The computation
1094 * of the flags depends on the original contents of the guarding
1095 * predicate. If the destination overwrites the guarding predicate,
1096 * then the easiest way to get this right is to save a copy.
1099 if (a->rd == a->pg) {
1100 tofs = offsetof(CPUARMState, vfp.preg_tmp);
1101 tcg_gen_gvec_mov(0, tofs, gofs, psz, psz);
1104 tcg_gen_gvec_4(dofs, nofs, mofs, gofs, psz, psz, gvec_op);
1105 do_predtest(s, dofs, tofs, psz / 8);
1110 static void gen_and_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1112 tcg_gen_and_i64(pd, pn, pm);
1113 tcg_gen_and_i64(pd, pd, pg);
1116 static void gen_and_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1117 TCGv_vec pm, TCGv_vec pg)
1119 tcg_gen_and_vec(vece, pd, pn, pm);
1120 tcg_gen_and_vec(vece, pd, pd, pg);
1123 static bool trans_AND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1125 static const GVecGen4 op = {
1126 .fni8 = gen_and_pg_i64,
1127 .fniv = gen_and_pg_vec,
1128 .fno = gen_helper_sve_and_pppp,
1129 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1132 return do_pppp_flags(s, a, &op);
1133 } else if (a->rn == a->rm) {
1134 if (a->pg == a->rn) {
1135 return do_mov_p(s, a->rd, a->rn);
1137 return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->pg);
1139 } else if (a->pg == a->rn || a->pg == a->rm) {
1140 return do_vector3_p(s, tcg_gen_gvec_and, 0, a->rd, a->rn, a->rm);
1142 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1146 static void gen_bic_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1148 tcg_gen_andc_i64(pd, pn, pm);
1149 tcg_gen_and_i64(pd, pd, pg);
1152 static void gen_bic_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1153 TCGv_vec pm, TCGv_vec pg)
1155 tcg_gen_andc_vec(vece, pd, pn, pm);
1156 tcg_gen_and_vec(vece, pd, pd, pg);
1159 static bool trans_BIC_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1161 static const GVecGen4 op = {
1162 .fni8 = gen_bic_pg_i64,
1163 .fniv = gen_bic_pg_vec,
1164 .fno = gen_helper_sve_bic_pppp,
1165 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1168 return do_pppp_flags(s, a, &op);
1169 } else if (a->pg == a->rn) {
1170 return do_vector3_p(s, tcg_gen_gvec_andc, 0, a->rd, a->rn, a->rm);
1172 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1176 static void gen_eor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1178 tcg_gen_xor_i64(pd, pn, pm);
1179 tcg_gen_and_i64(pd, pd, pg);
1182 static void gen_eor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1183 TCGv_vec pm, TCGv_vec pg)
1185 tcg_gen_xor_vec(vece, pd, pn, pm);
1186 tcg_gen_and_vec(vece, pd, pd, pg);
1189 static bool trans_EOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1191 static const GVecGen4 op = {
1192 .fni8 = gen_eor_pg_i64,
1193 .fniv = gen_eor_pg_vec,
1194 .fno = gen_helper_sve_eor_pppp,
1195 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1198 return do_pppp_flags(s, a, &op);
1200 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1204 static void gen_sel_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1206 tcg_gen_and_i64(pn, pn, pg);
1207 tcg_gen_andc_i64(pm, pm, pg);
1208 tcg_gen_or_i64(pd, pn, pm);
1211 static void gen_sel_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1212 TCGv_vec pm, TCGv_vec pg)
1214 tcg_gen_and_vec(vece, pn, pn, pg);
1215 tcg_gen_andc_vec(vece, pm, pm, pg);
1216 tcg_gen_or_vec(vece, pd, pn, pm);
1219 static bool trans_SEL_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1221 static const GVecGen4 op = {
1222 .fni8 = gen_sel_pg_i64,
1223 .fniv = gen_sel_pg_vec,
1224 .fno = gen_helper_sve_sel_pppp,
1225 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1230 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1234 static void gen_orr_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1236 tcg_gen_or_i64(pd, pn, pm);
1237 tcg_gen_and_i64(pd, pd, pg);
1240 static void gen_orr_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1241 TCGv_vec pm, TCGv_vec pg)
1243 tcg_gen_or_vec(vece, pd, pn, pm);
1244 tcg_gen_and_vec(vece, pd, pd, pg);
1247 static bool trans_ORR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1249 static const GVecGen4 op = {
1250 .fni8 = gen_orr_pg_i64,
1251 .fniv = gen_orr_pg_vec,
1252 .fno = gen_helper_sve_orr_pppp,
1253 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1256 return do_pppp_flags(s, a, &op);
1257 } else if (a->pg == a->rn && a->rn == a->rm) {
1258 return do_mov_p(s, a->rd, a->rn);
1260 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1264 static void gen_orn_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1266 tcg_gen_orc_i64(pd, pn, pm);
1267 tcg_gen_and_i64(pd, pd, pg);
1270 static void gen_orn_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1271 TCGv_vec pm, TCGv_vec pg)
1273 tcg_gen_orc_vec(vece, pd, pn, pm);
1274 tcg_gen_and_vec(vece, pd, pd, pg);
1277 static bool trans_ORN_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1279 static const GVecGen4 op = {
1280 .fni8 = gen_orn_pg_i64,
1281 .fniv = gen_orn_pg_vec,
1282 .fno = gen_helper_sve_orn_pppp,
1283 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1286 return do_pppp_flags(s, a, &op);
1288 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1292 static void gen_nor_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1294 tcg_gen_or_i64(pd, pn, pm);
1295 tcg_gen_andc_i64(pd, pg, pd);
1298 static void gen_nor_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1299 TCGv_vec pm, TCGv_vec pg)
1301 tcg_gen_or_vec(vece, pd, pn, pm);
1302 tcg_gen_andc_vec(vece, pd, pg, pd);
1305 static bool trans_NOR_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1307 static const GVecGen4 op = {
1308 .fni8 = gen_nor_pg_i64,
1309 .fniv = gen_nor_pg_vec,
1310 .fno = gen_helper_sve_nor_pppp,
1311 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1314 return do_pppp_flags(s, a, &op);
1316 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1320 static void gen_nand_pg_i64(TCGv_i64 pd, TCGv_i64 pn, TCGv_i64 pm, TCGv_i64 pg)
1322 tcg_gen_and_i64(pd, pn, pm);
1323 tcg_gen_andc_i64(pd, pg, pd);
1326 static void gen_nand_pg_vec(unsigned vece, TCGv_vec pd, TCGv_vec pn,
1327 TCGv_vec pm, TCGv_vec pg)
1329 tcg_gen_and_vec(vece, pd, pn, pm);
1330 tcg_gen_andc_vec(vece, pd, pg, pd);
1333 static bool trans_NAND_pppp(DisasContext *s, arg_rprr_s *a, uint32_t insn)
1335 static const GVecGen4 op = {
1336 .fni8 = gen_nand_pg_i64,
1337 .fniv = gen_nand_pg_vec,
1338 .fno = gen_helper_sve_nand_pppp,
1339 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
1342 return do_pppp_flags(s, a, &op);
1344 return do_vecop4_p(s, &op, a->rd, a->rn, a->rm, a->pg);
1349 *** SVE Predicate Misc Group
1352 static bool trans_PTEST(DisasContext *s, arg_PTEST *a, uint32_t insn)
1354 if (sve_access_check(s)) {
1355 int nofs = pred_full_reg_offset(s, a->rn);
1356 int gofs = pred_full_reg_offset(s, a->pg);
1357 int words = DIV_ROUND_UP(pred_full_reg_size(s), 8);
1360 TCGv_i64 pn = tcg_temp_new_i64();
1361 TCGv_i64 pg = tcg_temp_new_i64();
1363 tcg_gen_ld_i64(pn, cpu_env, nofs);
1364 tcg_gen_ld_i64(pg, cpu_env, gofs);
1365 do_predtest1(pn, pg);
1367 tcg_temp_free_i64(pn);
1368 tcg_temp_free_i64(pg);
1370 do_predtest(s, nofs, gofs, words);
1376 /* See the ARM pseudocode DecodePredCount. */
1377 static unsigned decode_pred_count(unsigned fullsz, int pattern, int esz)
1379 unsigned elements = fullsz >> esz;
1383 case 0x0: /* POW2 */
1384 return pow2floor(elements);
1395 case 0x9: /* VL16 */
1396 case 0xa: /* VL32 */
1397 case 0xb: /* VL64 */
1398 case 0xc: /* VL128 */
1399 case 0xd: /* VL256 */
1400 bound = 16 << (pattern - 9);
1402 case 0x1d: /* MUL4 */
1403 return elements - elements % 4;
1404 case 0x1e: /* MUL3 */
1405 return elements - elements % 3;
1406 case 0x1f: /* ALL */
1408 default: /* #uimm5 */
1411 return elements >= bound ? bound : 0;
1414 /* This handles all of the predicate initialization instructions,
1415 * PTRUE, PFALSE, SETFFR. For PFALSE, we will have set PAT == 32
1416 * so that decode_pred_count returns 0. For SETFFR, we will have
1417 * set RD == 16 == FFR.
1419 static bool do_predset(DisasContext *s, int esz, int rd, int pat, bool setflag)
1421 if (!sve_access_check(s)) {
1425 unsigned fullsz = vec_full_reg_size(s);
1426 unsigned ofs = pred_full_reg_offset(s, rd);
1427 unsigned numelem, setsz, i;
1428 uint64_t word, lastword;
1431 numelem = decode_pred_count(fullsz, pat, esz);
1433 /* Determine what we must store into each bit, and how many. */
1435 lastword = word = 0;
1438 setsz = numelem << esz;
1439 lastword = word = pred_esz_masks[esz];
1441 lastword &= MAKE_64BIT_MASK(0, setsz % 64);
1445 t = tcg_temp_new_i64();
1447 tcg_gen_movi_i64(t, lastword);
1448 tcg_gen_st_i64(t, cpu_env, ofs);
1452 if (word == lastword) {
1453 unsigned maxsz = size_for_gvec(fullsz / 8);
1454 unsigned oprsz = size_for_gvec(setsz / 8);
1456 if (oprsz * 8 == setsz) {
1457 tcg_gen_gvec_dup64i(ofs, oprsz, maxsz, word);
1465 tcg_gen_movi_i64(t, word);
1466 for (i = 0; i < QEMU_ALIGN_DOWN(setsz, 8); i += 8) {
1467 tcg_gen_st_i64(t, cpu_env, ofs + i);
1469 if (lastword != word) {
1470 tcg_gen_movi_i64(t, lastword);
1471 tcg_gen_st_i64(t, cpu_env, ofs + i);
1475 tcg_gen_movi_i64(t, 0);
1476 for (; i < fullsz; i += 8) {
1477 tcg_gen_st_i64(t, cpu_env, ofs + i);
1482 tcg_temp_free_i64(t);
1486 tcg_gen_movi_i32(cpu_NF, -(word != 0));
1487 tcg_gen_movi_i32(cpu_CF, word == 0);
1488 tcg_gen_movi_i32(cpu_VF, 0);
1489 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
1494 static bool trans_PTRUE(DisasContext *s, arg_PTRUE *a, uint32_t insn)
1496 return do_predset(s, a->esz, a->rd, a->pat, a->s);
1499 static bool trans_SETFFR(DisasContext *s, arg_SETFFR *a, uint32_t insn)
1501 /* Note pat == 31 is #all, to set all elements. */
1502 return do_predset(s, 0, FFR_PRED_NUM, 31, false);
1505 static bool trans_PFALSE(DisasContext *s, arg_PFALSE *a, uint32_t insn)
1507 /* Note pat == 32 is #unimp, to set no elements. */
1508 return do_predset(s, 0, a->rd, 32, false);
1511 static bool trans_RDFFR_p(DisasContext *s, arg_RDFFR_p *a, uint32_t insn)
1513 /* The path through do_pppp_flags is complicated enough to want to avoid
1514 * duplication. Frob the arguments into the form of a predicated AND.
1516 arg_rprr_s alt_a = {
1517 .rd = a->rd, .pg = a->pg, .s = a->s,
1518 .rn = FFR_PRED_NUM, .rm = FFR_PRED_NUM,
1520 return trans_AND_pppp(s, &alt_a, insn);
1523 static bool trans_RDFFR(DisasContext *s, arg_RDFFR *a, uint32_t insn)
1525 return do_mov_p(s, a->rd, FFR_PRED_NUM);
1528 static bool trans_WRFFR(DisasContext *s, arg_WRFFR *a, uint32_t insn)
1530 return do_mov_p(s, FFR_PRED_NUM, a->rn);
1533 static bool do_pfirst_pnext(DisasContext *s, arg_rr_esz *a,
1534 void (*gen_fn)(TCGv_i32, TCGv_ptr,
1535 TCGv_ptr, TCGv_i32))
1537 if (!sve_access_check(s)) {
1541 TCGv_ptr t_pd = tcg_temp_new_ptr();
1542 TCGv_ptr t_pg = tcg_temp_new_ptr();
1546 desc = DIV_ROUND_UP(pred_full_reg_size(s), 8);
1547 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
1549 tcg_gen_addi_ptr(t_pd, cpu_env, pred_full_reg_offset(s, a->rd));
1550 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->rn));
1551 t = tcg_const_i32(desc);
1553 gen_fn(t, t_pd, t_pg, t);
1554 tcg_temp_free_ptr(t_pd);
1555 tcg_temp_free_ptr(t_pg);
1558 tcg_temp_free_i32(t);
1562 static bool trans_PFIRST(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1564 return do_pfirst_pnext(s, a, gen_helper_sve_pfirst);
1567 static bool trans_PNEXT(DisasContext *s, arg_rr_esz *a, uint32_t insn)
1569 return do_pfirst_pnext(s, a, gen_helper_sve_pnext);
1573 *** SVE Element Count Group
1576 /* Perform an inline saturating addition of a 32-bit value within
1577 * a 64-bit register. The second operand is known to be positive,
1578 * which halves the comparisions we must perform to bound the result.
1580 static void do_sat_addsub_32(TCGv_i64 reg, TCGv_i64 val, bool u, bool d)
1586 /* Use normal 64-bit arithmetic to detect 32-bit overflow. */
1588 tcg_gen_ext32u_i64(reg, reg);
1590 tcg_gen_ext32s_i64(reg, reg);
1593 tcg_gen_sub_i64(reg, reg, val);
1594 ibound = (u ? 0 : INT32_MIN);
1597 tcg_gen_add_i64(reg, reg, val);
1598 ibound = (u ? UINT32_MAX : INT32_MAX);
1601 bound = tcg_const_i64(ibound);
1602 tcg_gen_movcond_i64(cond, reg, reg, bound, bound, reg);
1603 tcg_temp_free_i64(bound);
1606 /* Similarly with 64-bit values. */
1607 static void do_sat_addsub_64(TCGv_i64 reg, TCGv_i64 val, bool u, bool d)
1609 TCGv_i64 t0 = tcg_temp_new_i64();
1610 TCGv_i64 t1 = tcg_temp_new_i64();
1615 tcg_gen_sub_i64(t0, reg, val);
1616 tcg_gen_movi_i64(t1, 0);
1617 tcg_gen_movcond_i64(TCG_COND_LTU, reg, reg, val, t1, t0);
1619 tcg_gen_add_i64(t0, reg, val);
1620 tcg_gen_movi_i64(t1, -1);
1621 tcg_gen_movcond_i64(TCG_COND_LTU, reg, t0, reg, t1, t0);
1625 /* Detect signed overflow for subtraction. */
1626 tcg_gen_xor_i64(t0, reg, val);
1627 tcg_gen_sub_i64(t1, reg, val);
1628 tcg_gen_xor_i64(reg, reg, t1);
1629 tcg_gen_and_i64(t0, t0, reg);
1631 /* Bound the result. */
1632 tcg_gen_movi_i64(reg, INT64_MIN);
1633 t2 = tcg_const_i64(0);
1634 tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, reg, t1);
1636 /* Detect signed overflow for addition. */
1637 tcg_gen_xor_i64(t0, reg, val);
1638 tcg_gen_add_i64(reg, reg, val);
1639 tcg_gen_xor_i64(t1, reg, val);
1640 tcg_gen_andc_i64(t0, t1, t0);
1642 /* Bound the result. */
1643 tcg_gen_movi_i64(t1, INT64_MAX);
1644 t2 = tcg_const_i64(0);
1645 tcg_gen_movcond_i64(TCG_COND_LT, reg, t0, t2, t1, reg);
1647 tcg_temp_free_i64(t2);
1649 tcg_temp_free_i64(t0);
1650 tcg_temp_free_i64(t1);
1653 /* Similarly with a vector and a scalar operand. */
1654 static void do_sat_addsub_vec(DisasContext *s, int esz, int rd, int rn,
1655 TCGv_i64 val, bool u, bool d)
1657 unsigned vsz = vec_full_reg_size(s);
1658 TCGv_ptr dptr, nptr;
1662 dptr = tcg_temp_new_ptr();
1663 nptr = tcg_temp_new_ptr();
1664 tcg_gen_addi_ptr(dptr, cpu_env, vec_full_reg_offset(s, rd));
1665 tcg_gen_addi_ptr(nptr, cpu_env, vec_full_reg_offset(s, rn));
1666 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
1670 t32 = tcg_temp_new_i32();
1671 tcg_gen_extrl_i64_i32(t32, val);
1673 tcg_gen_neg_i32(t32, t32);
1676 gen_helper_sve_uqaddi_b(dptr, nptr, t32, desc);
1678 gen_helper_sve_sqaddi_b(dptr, nptr, t32, desc);
1680 tcg_temp_free_i32(t32);
1684 t32 = tcg_temp_new_i32();
1685 tcg_gen_extrl_i64_i32(t32, val);
1687 tcg_gen_neg_i32(t32, t32);
1690 gen_helper_sve_uqaddi_h(dptr, nptr, t32, desc);
1692 gen_helper_sve_sqaddi_h(dptr, nptr, t32, desc);
1694 tcg_temp_free_i32(t32);
1698 t64 = tcg_temp_new_i64();
1700 tcg_gen_neg_i64(t64, val);
1702 tcg_gen_mov_i64(t64, val);
1705 gen_helper_sve_uqaddi_s(dptr, nptr, t64, desc);
1707 gen_helper_sve_sqaddi_s(dptr, nptr, t64, desc);
1709 tcg_temp_free_i64(t64);
1715 gen_helper_sve_uqsubi_d(dptr, nptr, val, desc);
1717 gen_helper_sve_uqaddi_d(dptr, nptr, val, desc);
1720 t64 = tcg_temp_new_i64();
1721 tcg_gen_neg_i64(t64, val);
1722 gen_helper_sve_sqaddi_d(dptr, nptr, t64, desc);
1723 tcg_temp_free_i64(t64);
1725 gen_helper_sve_sqaddi_d(dptr, nptr, val, desc);
1730 g_assert_not_reached();
1733 tcg_temp_free_ptr(dptr);
1734 tcg_temp_free_ptr(nptr);
1735 tcg_temp_free_i32(desc);
1738 static bool trans_CNT_r(DisasContext *s, arg_CNT_r *a, uint32_t insn)
1740 if (sve_access_check(s)) {
1741 unsigned fullsz = vec_full_reg_size(s);
1742 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1743 tcg_gen_movi_i64(cpu_reg(s, a->rd), numelem * a->imm);
1748 static bool trans_INCDEC_r(DisasContext *s, arg_incdec_cnt *a, uint32_t insn)
1750 if (sve_access_check(s)) {
1751 unsigned fullsz = vec_full_reg_size(s);
1752 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1753 int inc = numelem * a->imm * (a->d ? -1 : 1);
1754 TCGv_i64 reg = cpu_reg(s, a->rd);
1756 tcg_gen_addi_i64(reg, reg, inc);
1761 static bool trans_SINCDEC_r_32(DisasContext *s, arg_incdec_cnt *a,
1764 if (!sve_access_check(s)) {
1768 unsigned fullsz = vec_full_reg_size(s);
1769 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1770 int inc = numelem * a->imm;
1771 TCGv_i64 reg = cpu_reg(s, a->rd);
1773 /* Use normal 64-bit arithmetic to detect 32-bit overflow. */
1776 tcg_gen_ext32u_i64(reg, reg);
1778 tcg_gen_ext32s_i64(reg, reg);
1781 TCGv_i64 t = tcg_const_i64(inc);
1782 do_sat_addsub_32(reg, t, a->u, a->d);
1783 tcg_temp_free_i64(t);
1788 static bool trans_SINCDEC_r_64(DisasContext *s, arg_incdec_cnt *a,
1791 if (!sve_access_check(s)) {
1795 unsigned fullsz = vec_full_reg_size(s);
1796 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1797 int inc = numelem * a->imm;
1798 TCGv_i64 reg = cpu_reg(s, a->rd);
1801 TCGv_i64 t = tcg_const_i64(inc);
1802 do_sat_addsub_64(reg, t, a->u, a->d);
1803 tcg_temp_free_i64(t);
1808 static bool trans_INCDEC_v(DisasContext *s, arg_incdec2_cnt *a, uint32_t insn)
1814 unsigned fullsz = vec_full_reg_size(s);
1815 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1816 int inc = numelem * a->imm;
1819 if (sve_access_check(s)) {
1820 TCGv_i64 t = tcg_const_i64(a->d ? -inc : inc);
1821 tcg_gen_gvec_adds(a->esz, vec_full_reg_offset(s, a->rd),
1822 vec_full_reg_offset(s, a->rn),
1824 tcg_temp_free_i64(t);
1827 do_mov_z(s, a->rd, a->rn);
1832 static bool trans_SINCDEC_v(DisasContext *s, arg_incdec2_cnt *a,
1839 unsigned fullsz = vec_full_reg_size(s);
1840 unsigned numelem = decode_pred_count(fullsz, a->pat, a->esz);
1841 int inc = numelem * a->imm;
1844 if (sve_access_check(s)) {
1845 TCGv_i64 t = tcg_const_i64(inc);
1846 do_sat_addsub_vec(s, a->esz, a->rd, a->rn, t, a->u, a->d);
1847 tcg_temp_free_i64(t);
1850 do_mov_z(s, a->rd, a->rn);
1856 *** SVE Bitwise Immediate Group
1859 static bool do_zz_dbm(DisasContext *s, arg_rr_dbm *a, GVecGen2iFn *gvec_fn)
1862 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
1863 extract32(a->dbm, 0, 6),
1864 extract32(a->dbm, 6, 6))) {
1867 if (sve_access_check(s)) {
1868 unsigned vsz = vec_full_reg_size(s);
1869 gvec_fn(MO_64, vec_full_reg_offset(s, a->rd),
1870 vec_full_reg_offset(s, a->rn), imm, vsz, vsz);
1875 static bool trans_AND_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn)
1877 return do_zz_dbm(s, a, tcg_gen_gvec_andi);
1880 static bool trans_ORR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn)
1882 return do_zz_dbm(s, a, tcg_gen_gvec_ori);
1885 static bool trans_EOR_zzi(DisasContext *s, arg_rr_dbm *a, uint32_t insn)
1887 return do_zz_dbm(s, a, tcg_gen_gvec_xori);
1890 static bool trans_DUPM(DisasContext *s, arg_DUPM *a, uint32_t insn)
1893 if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
1894 extract32(a->dbm, 0, 6),
1895 extract32(a->dbm, 6, 6))) {
1898 if (sve_access_check(s)) {
1899 do_dupi_z(s, a->rd, imm);
1905 *** SVE Integer Wide Immediate - Predicated Group
1908 /* Implement all merging copies. This is used for CPY (immediate),
1909 * FCPY, CPY (scalar), CPY (SIMD&FP scalar).
1911 static void do_cpy_m(DisasContext *s, int esz, int rd, int rn, int pg,
1914 typedef void gen_cpy(TCGv_ptr, TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32);
1915 static gen_cpy * const fns[4] = {
1916 gen_helper_sve_cpy_m_b, gen_helper_sve_cpy_m_h,
1917 gen_helper_sve_cpy_m_s, gen_helper_sve_cpy_m_d,
1919 unsigned vsz = vec_full_reg_size(s);
1920 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
1921 TCGv_ptr t_zd = tcg_temp_new_ptr();
1922 TCGv_ptr t_zn = tcg_temp_new_ptr();
1923 TCGv_ptr t_pg = tcg_temp_new_ptr();
1925 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, rd));
1926 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, rn));
1927 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
1929 fns[esz](t_zd, t_zn, t_pg, val, desc);
1931 tcg_temp_free_ptr(t_zd);
1932 tcg_temp_free_ptr(t_zn);
1933 tcg_temp_free_ptr(t_pg);
1934 tcg_temp_free_i32(desc);
1937 static bool trans_FCPY(DisasContext *s, arg_FCPY *a, uint32_t insn)
1942 if (sve_access_check(s)) {
1943 /* Decode the VFP immediate. */
1944 uint64_t imm = vfp_expand_imm(a->esz, a->imm);
1945 TCGv_i64 t_imm = tcg_const_i64(imm);
1946 do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm);
1947 tcg_temp_free_i64(t_imm);
1952 static bool trans_CPY_m_i(DisasContext *s, arg_rpri_esz *a, uint32_t insn)
1954 if (a->esz == 0 && extract32(insn, 13, 1)) {
1957 if (sve_access_check(s)) {
1958 TCGv_i64 t_imm = tcg_const_i64(a->imm);
1959 do_cpy_m(s, a->esz, a->rd, a->rn, a->pg, t_imm);
1960 tcg_temp_free_i64(t_imm);
1965 static bool trans_CPY_z_i(DisasContext *s, arg_CPY_z_i *a, uint32_t insn)
1967 static gen_helper_gvec_2i * const fns[4] = {
1968 gen_helper_sve_cpy_z_b, gen_helper_sve_cpy_z_h,
1969 gen_helper_sve_cpy_z_s, gen_helper_sve_cpy_z_d,
1972 if (a->esz == 0 && extract32(insn, 13, 1)) {
1975 if (sve_access_check(s)) {
1976 unsigned vsz = vec_full_reg_size(s);
1977 TCGv_i64 t_imm = tcg_const_i64(a->imm);
1978 tcg_gen_gvec_2i_ool(vec_full_reg_offset(s, a->rd),
1979 pred_full_reg_offset(s, a->pg),
1980 t_imm, vsz, vsz, 0, fns[a->esz]);
1981 tcg_temp_free_i64(t_imm);
1987 *** SVE Permute Extract Group
1990 static bool trans_EXT(DisasContext *s, arg_EXT *a, uint32_t insn)
1992 if (!sve_access_check(s)) {
1996 unsigned vsz = vec_full_reg_size(s);
1997 unsigned n_ofs = a->imm >= vsz ? 0 : a->imm;
1998 unsigned n_siz = vsz - n_ofs;
1999 unsigned d = vec_full_reg_offset(s, a->rd);
2000 unsigned n = vec_full_reg_offset(s, a->rn);
2001 unsigned m = vec_full_reg_offset(s, a->rm);
2003 /* Use host vector move insns if we have appropriate sizes
2004 * and no unfortunate overlap.
2007 && n_ofs == size_for_gvec(n_ofs)
2008 && n_siz == size_for_gvec(n_siz)
2009 && (d != n || n_siz <= n_ofs)) {
2010 tcg_gen_gvec_mov(0, d, n + n_ofs, n_siz, n_siz);
2012 tcg_gen_gvec_mov(0, d + n_siz, m, n_ofs, n_ofs);
2015 tcg_gen_gvec_3_ool(d, n, m, vsz, vsz, n_ofs, gen_helper_sve_ext);
2021 *** SVE Permute - Unpredicated Group
2024 static bool trans_DUP_s(DisasContext *s, arg_DUP_s *a, uint32_t insn)
2026 if (sve_access_check(s)) {
2027 unsigned vsz = vec_full_reg_size(s);
2028 tcg_gen_gvec_dup_i64(a->esz, vec_full_reg_offset(s, a->rd),
2029 vsz, vsz, cpu_reg_sp(s, a->rn));
2034 static bool trans_DUP_x(DisasContext *s, arg_DUP_x *a, uint32_t insn)
2036 if ((a->imm & 0x1f) == 0) {
2039 if (sve_access_check(s)) {
2040 unsigned vsz = vec_full_reg_size(s);
2041 unsigned dofs = vec_full_reg_offset(s, a->rd);
2042 unsigned esz, index;
2044 esz = ctz32(a->imm);
2045 index = a->imm >> (esz + 1);
2047 if ((index << esz) < vsz) {
2048 unsigned nofs = vec_reg_offset(s, a->rn, index, esz);
2049 tcg_gen_gvec_dup_mem(esz, dofs, nofs, vsz, vsz);
2051 tcg_gen_gvec_dup64i(dofs, vsz, vsz, 0);
2057 static void do_insr_i64(DisasContext *s, arg_rrr_esz *a, TCGv_i64 val)
2059 typedef void gen_insr(TCGv_ptr, TCGv_ptr, TCGv_i64, TCGv_i32);
2060 static gen_insr * const fns[4] = {
2061 gen_helper_sve_insr_b, gen_helper_sve_insr_h,
2062 gen_helper_sve_insr_s, gen_helper_sve_insr_d,
2064 unsigned vsz = vec_full_reg_size(s);
2065 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
2066 TCGv_ptr t_zd = tcg_temp_new_ptr();
2067 TCGv_ptr t_zn = tcg_temp_new_ptr();
2069 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, a->rd));
2070 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
2072 fns[a->esz](t_zd, t_zn, val, desc);
2074 tcg_temp_free_ptr(t_zd);
2075 tcg_temp_free_ptr(t_zn);
2076 tcg_temp_free_i32(desc);
2079 static bool trans_INSR_f(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2081 if (sve_access_check(s)) {
2082 TCGv_i64 t = tcg_temp_new_i64();
2083 tcg_gen_ld_i64(t, cpu_env, vec_reg_offset(s, a->rm, 0, MO_64));
2084 do_insr_i64(s, a, t);
2085 tcg_temp_free_i64(t);
2090 static bool trans_INSR_r(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2092 if (sve_access_check(s)) {
2093 do_insr_i64(s, a, cpu_reg(s, a->rm));
2098 static bool trans_REV_v(DisasContext *s, arg_rr_esz *a, uint32_t insn)
2100 static gen_helper_gvec_2 * const fns[4] = {
2101 gen_helper_sve_rev_b, gen_helper_sve_rev_h,
2102 gen_helper_sve_rev_s, gen_helper_sve_rev_d
2105 if (sve_access_check(s)) {
2106 unsigned vsz = vec_full_reg_size(s);
2107 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd),
2108 vec_full_reg_offset(s, a->rn),
2109 vsz, vsz, 0, fns[a->esz]);
2114 static bool trans_TBL(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2116 static gen_helper_gvec_3 * const fns[4] = {
2117 gen_helper_sve_tbl_b, gen_helper_sve_tbl_h,
2118 gen_helper_sve_tbl_s, gen_helper_sve_tbl_d
2121 if (sve_access_check(s)) {
2122 unsigned vsz = vec_full_reg_size(s);
2123 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
2124 vec_full_reg_offset(s, a->rn),
2125 vec_full_reg_offset(s, a->rm),
2126 vsz, vsz, 0, fns[a->esz]);
2131 static bool trans_UNPK(DisasContext *s, arg_UNPK *a, uint32_t insn)
2133 static gen_helper_gvec_2 * const fns[4][2] = {
2135 { gen_helper_sve_sunpk_h, gen_helper_sve_uunpk_h },
2136 { gen_helper_sve_sunpk_s, gen_helper_sve_uunpk_s },
2137 { gen_helper_sve_sunpk_d, gen_helper_sve_uunpk_d },
2143 if (sve_access_check(s)) {
2144 unsigned vsz = vec_full_reg_size(s);
2145 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, a->rd),
2146 vec_full_reg_offset(s, a->rn)
2147 + (a->h ? vsz / 2 : 0),
2148 vsz, vsz, 0, fns[a->esz][a->u]);
2154 *** SVE Permute - Predicates Group
2157 static bool do_perm_pred3(DisasContext *s, arg_rrr_esz *a, bool high_odd,
2158 gen_helper_gvec_3 *fn)
2160 if (!sve_access_check(s)) {
2164 unsigned vsz = pred_full_reg_size(s);
2166 /* Predicate sizes may be smaller and cannot use simd_desc.
2167 We cannot round up, as we do elsewhere, because we need
2168 the exact size for ZIP2 and REV. We retain the style for
2169 the other helpers for consistency. */
2170 TCGv_ptr t_d = tcg_temp_new_ptr();
2171 TCGv_ptr t_n = tcg_temp_new_ptr();
2172 TCGv_ptr t_m = tcg_temp_new_ptr();
2177 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
2178 desc = deposit32(desc, SIMD_DATA_SHIFT + 2, 2, high_odd);
2180 tcg_gen_addi_ptr(t_d, cpu_env, pred_full_reg_offset(s, a->rd));
2181 tcg_gen_addi_ptr(t_n, cpu_env, pred_full_reg_offset(s, a->rn));
2182 tcg_gen_addi_ptr(t_m, cpu_env, pred_full_reg_offset(s, a->rm));
2183 t_desc = tcg_const_i32(desc);
2185 fn(t_d, t_n, t_m, t_desc);
2187 tcg_temp_free_ptr(t_d);
2188 tcg_temp_free_ptr(t_n);
2189 tcg_temp_free_ptr(t_m);
2190 tcg_temp_free_i32(t_desc);
2194 static bool do_perm_pred2(DisasContext *s, arg_rr_esz *a, bool high_odd,
2195 gen_helper_gvec_2 *fn)
2197 if (!sve_access_check(s)) {
2201 unsigned vsz = pred_full_reg_size(s);
2202 TCGv_ptr t_d = tcg_temp_new_ptr();
2203 TCGv_ptr t_n = tcg_temp_new_ptr();
2207 tcg_gen_addi_ptr(t_d, cpu_env, pred_full_reg_offset(s, a->rd));
2208 tcg_gen_addi_ptr(t_n, cpu_env, pred_full_reg_offset(s, a->rn));
2210 /* Predicate sizes may be smaller and cannot use simd_desc.
2211 We cannot round up, as we do elsewhere, because we need
2212 the exact size for ZIP2 and REV. We retain the style for
2213 the other helpers for consistency. */
2216 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
2217 desc = deposit32(desc, SIMD_DATA_SHIFT + 2, 2, high_odd);
2218 t_desc = tcg_const_i32(desc);
2220 fn(t_d, t_n, t_desc);
2222 tcg_temp_free_i32(t_desc);
2223 tcg_temp_free_ptr(t_d);
2224 tcg_temp_free_ptr(t_n);
2228 static bool trans_ZIP1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2230 return do_perm_pred3(s, a, 0, gen_helper_sve_zip_p);
2233 static bool trans_ZIP2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2235 return do_perm_pred3(s, a, 1, gen_helper_sve_zip_p);
2238 static bool trans_UZP1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2240 return do_perm_pred3(s, a, 0, gen_helper_sve_uzp_p);
2243 static bool trans_UZP2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2245 return do_perm_pred3(s, a, 1, gen_helper_sve_uzp_p);
2248 static bool trans_TRN1_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2250 return do_perm_pred3(s, a, 0, gen_helper_sve_trn_p);
2253 static bool trans_TRN2_p(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2255 return do_perm_pred3(s, a, 1, gen_helper_sve_trn_p);
2258 static bool trans_REV_p(DisasContext *s, arg_rr_esz *a, uint32_t insn)
2260 return do_perm_pred2(s, a, 0, gen_helper_sve_rev_p);
2263 static bool trans_PUNPKLO(DisasContext *s, arg_PUNPKLO *a, uint32_t insn)
2265 return do_perm_pred2(s, a, 0, gen_helper_sve_punpk_p);
2268 static bool trans_PUNPKHI(DisasContext *s, arg_PUNPKHI *a, uint32_t insn)
2270 return do_perm_pred2(s, a, 1, gen_helper_sve_punpk_p);
2274 *** SVE Permute - Interleaving Group
2277 static bool do_zip(DisasContext *s, arg_rrr_esz *a, bool high)
2279 static gen_helper_gvec_3 * const fns[4] = {
2280 gen_helper_sve_zip_b, gen_helper_sve_zip_h,
2281 gen_helper_sve_zip_s, gen_helper_sve_zip_d,
2284 if (sve_access_check(s)) {
2285 unsigned vsz = vec_full_reg_size(s);
2286 unsigned high_ofs = high ? vsz / 2 : 0;
2287 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
2288 vec_full_reg_offset(s, a->rn) + high_ofs,
2289 vec_full_reg_offset(s, a->rm) + high_ofs,
2290 vsz, vsz, 0, fns[a->esz]);
2295 static bool do_zzz_data_ool(DisasContext *s, arg_rrr_esz *a, int data,
2296 gen_helper_gvec_3 *fn)
2298 if (sve_access_check(s)) {
2299 unsigned vsz = vec_full_reg_size(s);
2300 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
2301 vec_full_reg_offset(s, a->rn),
2302 vec_full_reg_offset(s, a->rm),
2303 vsz, vsz, data, fn);
2308 static bool trans_ZIP1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2310 return do_zip(s, a, false);
2313 static bool trans_ZIP2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2315 return do_zip(s, a, true);
2318 static gen_helper_gvec_3 * const uzp_fns[4] = {
2319 gen_helper_sve_uzp_b, gen_helper_sve_uzp_h,
2320 gen_helper_sve_uzp_s, gen_helper_sve_uzp_d,
2323 static bool trans_UZP1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2325 return do_zzz_data_ool(s, a, 0, uzp_fns[a->esz]);
2328 static bool trans_UZP2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2330 return do_zzz_data_ool(s, a, 1 << a->esz, uzp_fns[a->esz]);
2333 static gen_helper_gvec_3 * const trn_fns[4] = {
2334 gen_helper_sve_trn_b, gen_helper_sve_trn_h,
2335 gen_helper_sve_trn_s, gen_helper_sve_trn_d,
2338 static bool trans_TRN1_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2340 return do_zzz_data_ool(s, a, 0, trn_fns[a->esz]);
2343 static bool trans_TRN2_z(DisasContext *s, arg_rrr_esz *a, uint32_t insn)
2345 return do_zzz_data_ool(s, a, 1 << a->esz, trn_fns[a->esz]);
2349 *** SVE Permute Vector - Predicated Group
2352 static bool trans_COMPACT(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2354 static gen_helper_gvec_3 * const fns[4] = {
2355 NULL, NULL, gen_helper_sve_compact_s, gen_helper_sve_compact_d
2357 return do_zpz_ool(s, a, fns[a->esz]);
2360 /* Call the helper that computes the ARM LastActiveElement pseudocode
2361 * function, scaled by the element size. This includes the not found
2362 * indication; e.g. not found for esz=3 is -8.
2364 static void find_last_active(DisasContext *s, TCGv_i32 ret, int esz, int pg)
2366 /* Predicate sizes may be smaller and cannot use simd_desc. We cannot
2367 * round up, as we do elsewhere, because we need the exact size.
2369 TCGv_ptr t_p = tcg_temp_new_ptr();
2371 unsigned vsz = pred_full_reg_size(s);
2375 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, esz);
2377 tcg_gen_addi_ptr(t_p, cpu_env, pred_full_reg_offset(s, pg));
2378 t_desc = tcg_const_i32(desc);
2380 gen_helper_sve_last_active_element(ret, t_p, t_desc);
2382 tcg_temp_free_i32(t_desc);
2383 tcg_temp_free_ptr(t_p);
2386 /* Increment LAST to the offset of the next element in the vector,
2387 * wrapping around to 0.
2389 static void incr_last_active(DisasContext *s, TCGv_i32 last, int esz)
2391 unsigned vsz = vec_full_reg_size(s);
2393 tcg_gen_addi_i32(last, last, 1 << esz);
2394 if (is_power_of_2(vsz)) {
2395 tcg_gen_andi_i32(last, last, vsz - 1);
2397 TCGv_i32 max = tcg_const_i32(vsz);
2398 TCGv_i32 zero = tcg_const_i32(0);
2399 tcg_gen_movcond_i32(TCG_COND_GEU, last, last, max, zero, last);
2400 tcg_temp_free_i32(max);
2401 tcg_temp_free_i32(zero);
2405 /* If LAST < 0, set LAST to the offset of the last element in the vector. */
2406 static void wrap_last_active(DisasContext *s, TCGv_i32 last, int esz)
2408 unsigned vsz = vec_full_reg_size(s);
2410 if (is_power_of_2(vsz)) {
2411 tcg_gen_andi_i32(last, last, vsz - 1);
2413 TCGv_i32 max = tcg_const_i32(vsz - (1 << esz));
2414 TCGv_i32 zero = tcg_const_i32(0);
2415 tcg_gen_movcond_i32(TCG_COND_LT, last, last, zero, max, last);
2416 tcg_temp_free_i32(max);
2417 tcg_temp_free_i32(zero);
2421 /* Load an unsigned element of ESZ from BASE+OFS. */
2422 static TCGv_i64 load_esz(TCGv_ptr base, int ofs, int esz)
2424 TCGv_i64 r = tcg_temp_new_i64();
2428 tcg_gen_ld8u_i64(r, base, ofs);
2431 tcg_gen_ld16u_i64(r, base, ofs);
2434 tcg_gen_ld32u_i64(r, base, ofs);
2437 tcg_gen_ld_i64(r, base, ofs);
2440 g_assert_not_reached();
2445 /* Load an unsigned element of ESZ from RM[LAST]. */
2446 static TCGv_i64 load_last_active(DisasContext *s, TCGv_i32 last,
2449 TCGv_ptr p = tcg_temp_new_ptr();
2452 /* Convert offset into vector into offset into ENV.
2453 * The final adjustment for the vector register base
2454 * is added via constant offset to the load.
2456 #ifdef HOST_WORDS_BIGENDIAN
2457 /* Adjust for element ordering. See vec_reg_offset. */
2459 tcg_gen_xori_i32(last, last, 8 - (1 << esz));
2462 tcg_gen_ext_i32_ptr(p, last);
2463 tcg_gen_add_ptr(p, p, cpu_env);
2465 r = load_esz(p, vec_full_reg_offset(s, rm), esz);
2466 tcg_temp_free_ptr(p);
2471 /* Compute CLAST for a Zreg. */
2472 static bool do_clast_vector(DisasContext *s, arg_rprr_esz *a, bool before)
2477 unsigned vsz, esz = a->esz;
2479 if (!sve_access_check(s)) {
2483 last = tcg_temp_local_new_i32();
2484 over = gen_new_label();
2486 find_last_active(s, last, esz, a->pg);
2488 /* There is of course no movcond for a 2048-bit vector,
2489 * so we must branch over the actual store.
2491 tcg_gen_brcondi_i32(TCG_COND_LT, last, 0, over);
2494 incr_last_active(s, last, esz);
2497 ele = load_last_active(s, last, a->rm, esz);
2498 tcg_temp_free_i32(last);
2500 vsz = vec_full_reg_size(s);
2501 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd), vsz, vsz, ele);
2502 tcg_temp_free_i64(ele);
2504 /* If this insn used MOVPRFX, we may need a second move. */
2505 if (a->rd != a->rn) {
2506 TCGLabel *done = gen_new_label();
2509 gen_set_label(over);
2510 do_mov_z(s, a->rd, a->rn);
2512 gen_set_label(done);
2514 gen_set_label(over);
2519 static bool trans_CLASTA_z(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
2521 return do_clast_vector(s, a, false);
2524 static bool trans_CLASTB_z(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
2526 return do_clast_vector(s, a, true);
2529 /* Compute CLAST for a scalar. */
2530 static void do_clast_scalar(DisasContext *s, int esz, int pg, int rm,
2531 bool before, TCGv_i64 reg_val)
2533 TCGv_i32 last = tcg_temp_new_i32();
2534 TCGv_i64 ele, cmp, zero;
2536 find_last_active(s, last, esz, pg);
2538 /* Extend the original value of last prior to incrementing. */
2539 cmp = tcg_temp_new_i64();
2540 tcg_gen_ext_i32_i64(cmp, last);
2543 incr_last_active(s, last, esz);
2546 /* The conceit here is that while last < 0 indicates not found, after
2547 * adjusting for cpu_env->vfp.zregs[rm], it is still a valid address
2548 * from which we can load garbage. We then discard the garbage with
2549 * a conditional move.
2551 ele = load_last_active(s, last, rm, esz);
2552 tcg_temp_free_i32(last);
2554 zero = tcg_const_i64(0);
2555 tcg_gen_movcond_i64(TCG_COND_GE, reg_val, cmp, zero, ele, reg_val);
2557 tcg_temp_free_i64(zero);
2558 tcg_temp_free_i64(cmp);
2559 tcg_temp_free_i64(ele);
2562 /* Compute CLAST for a Vreg. */
2563 static bool do_clast_fp(DisasContext *s, arg_rpr_esz *a, bool before)
2565 if (sve_access_check(s)) {
2567 int ofs = vec_reg_offset(s, a->rd, 0, esz);
2568 TCGv_i64 reg = load_esz(cpu_env, ofs, esz);
2570 do_clast_scalar(s, esz, a->pg, a->rn, before, reg);
2571 write_fp_dreg(s, a->rd, reg);
2572 tcg_temp_free_i64(reg);
2577 static bool trans_CLASTA_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2579 return do_clast_fp(s, a, false);
2582 static bool trans_CLASTB_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2584 return do_clast_fp(s, a, true);
2587 /* Compute CLAST for a Xreg. */
2588 static bool do_clast_general(DisasContext *s, arg_rpr_esz *a, bool before)
2592 if (!sve_access_check(s)) {
2596 reg = cpu_reg(s, a->rd);
2599 tcg_gen_ext8u_i64(reg, reg);
2602 tcg_gen_ext16u_i64(reg, reg);
2605 tcg_gen_ext32u_i64(reg, reg);
2610 g_assert_not_reached();
2613 do_clast_scalar(s, a->esz, a->pg, a->rn, before, reg);
2617 static bool trans_CLASTA_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2619 return do_clast_general(s, a, false);
2622 static bool trans_CLASTB_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2624 return do_clast_general(s, a, true);
2627 /* Compute LAST for a scalar. */
2628 static TCGv_i64 do_last_scalar(DisasContext *s, int esz,
2629 int pg, int rm, bool before)
2631 TCGv_i32 last = tcg_temp_new_i32();
2634 find_last_active(s, last, esz, pg);
2636 wrap_last_active(s, last, esz);
2638 incr_last_active(s, last, esz);
2641 ret = load_last_active(s, last, rm, esz);
2642 tcg_temp_free_i32(last);
2646 /* Compute LAST for a Vreg. */
2647 static bool do_last_fp(DisasContext *s, arg_rpr_esz *a, bool before)
2649 if (sve_access_check(s)) {
2650 TCGv_i64 val = do_last_scalar(s, a->esz, a->pg, a->rn, before);
2651 write_fp_dreg(s, a->rd, val);
2652 tcg_temp_free_i64(val);
2657 static bool trans_LASTA_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2659 return do_last_fp(s, a, false);
2662 static bool trans_LASTB_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2664 return do_last_fp(s, a, true);
2667 /* Compute LAST for a Xreg. */
2668 static bool do_last_general(DisasContext *s, arg_rpr_esz *a, bool before)
2670 if (sve_access_check(s)) {
2671 TCGv_i64 val = do_last_scalar(s, a->esz, a->pg, a->rn, before);
2672 tcg_gen_mov_i64(cpu_reg(s, a->rd), val);
2673 tcg_temp_free_i64(val);
2678 static bool trans_LASTA_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2680 return do_last_general(s, a, false);
2683 static bool trans_LASTB_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2685 return do_last_general(s, a, true);
2688 static bool trans_CPY_m_r(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2690 if (sve_access_check(s)) {
2691 do_cpy_m(s, a->esz, a->rd, a->rd, a->pg, cpu_reg_sp(s, a->rn));
2696 static bool trans_CPY_m_v(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2698 if (sve_access_check(s)) {
2699 int ofs = vec_reg_offset(s, a->rn, 0, a->esz);
2700 TCGv_i64 t = load_esz(cpu_env, ofs, a->esz);
2701 do_cpy_m(s, a->esz, a->rd, a->rd, a->pg, t);
2702 tcg_temp_free_i64(t);
2707 static bool trans_REVB(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2709 static gen_helper_gvec_3 * const fns[4] = {
2711 gen_helper_sve_revb_h,
2712 gen_helper_sve_revb_s,
2713 gen_helper_sve_revb_d,
2715 return do_zpz_ool(s, a, fns[a->esz]);
2718 static bool trans_REVH(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2720 static gen_helper_gvec_3 * const fns[4] = {
2723 gen_helper_sve_revh_s,
2724 gen_helper_sve_revh_d,
2726 return do_zpz_ool(s, a, fns[a->esz]);
2729 static bool trans_REVW(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2731 return do_zpz_ool(s, a, a->esz == 3 ? gen_helper_sve_revw_d : NULL);
2734 static bool trans_RBIT(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
2736 static gen_helper_gvec_3 * const fns[4] = {
2737 gen_helper_sve_rbit_b,
2738 gen_helper_sve_rbit_h,
2739 gen_helper_sve_rbit_s,
2740 gen_helper_sve_rbit_d,
2742 return do_zpz_ool(s, a, fns[a->esz]);
2745 static bool trans_SPLICE(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
2747 if (sve_access_check(s)) {
2748 unsigned vsz = vec_full_reg_size(s);
2749 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, a->rd),
2750 vec_full_reg_offset(s, a->rn),
2751 vec_full_reg_offset(s, a->rm),
2752 pred_full_reg_offset(s, a->pg),
2753 vsz, vsz, a->esz, gen_helper_sve_splice);
2759 *** SVE Integer Compare - Vectors Group
2762 static bool do_ppzz_flags(DisasContext *s, arg_rprr_esz *a,
2763 gen_helper_gvec_flags_4 *gen_fn)
2765 TCGv_ptr pd, zn, zm, pg;
2769 if (gen_fn == NULL) {
2772 if (!sve_access_check(s)) {
2776 vsz = vec_full_reg_size(s);
2777 t = tcg_const_i32(simd_desc(vsz, vsz, 0));
2778 pd = tcg_temp_new_ptr();
2779 zn = tcg_temp_new_ptr();
2780 zm = tcg_temp_new_ptr();
2781 pg = tcg_temp_new_ptr();
2783 tcg_gen_addi_ptr(pd, cpu_env, pred_full_reg_offset(s, a->rd));
2784 tcg_gen_addi_ptr(zn, cpu_env, vec_full_reg_offset(s, a->rn));
2785 tcg_gen_addi_ptr(zm, cpu_env, vec_full_reg_offset(s, a->rm));
2786 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
2788 gen_fn(t, pd, zn, zm, pg, t);
2790 tcg_temp_free_ptr(pd);
2791 tcg_temp_free_ptr(zn);
2792 tcg_temp_free_ptr(zm);
2793 tcg_temp_free_ptr(pg);
2797 tcg_temp_free_i32(t);
2801 #define DO_PPZZ(NAME, name) \
2802 static bool trans_##NAME##_ppzz(DisasContext *s, arg_rprr_esz *a, \
2805 static gen_helper_gvec_flags_4 * const fns[4] = { \
2806 gen_helper_sve_##name##_ppzz_b, gen_helper_sve_##name##_ppzz_h, \
2807 gen_helper_sve_##name##_ppzz_s, gen_helper_sve_##name##_ppzz_d, \
2809 return do_ppzz_flags(s, a, fns[a->esz]); \
2812 DO_PPZZ(CMPEQ, cmpeq)
2813 DO_PPZZ(CMPNE, cmpne)
2814 DO_PPZZ(CMPGT, cmpgt)
2815 DO_PPZZ(CMPGE, cmpge)
2816 DO_PPZZ(CMPHI, cmphi)
2817 DO_PPZZ(CMPHS, cmphs)
2821 #define DO_PPZW(NAME, name) \
2822 static bool trans_##NAME##_ppzw(DisasContext *s, arg_rprr_esz *a, \
2825 static gen_helper_gvec_flags_4 * const fns[4] = { \
2826 gen_helper_sve_##name##_ppzw_b, gen_helper_sve_##name##_ppzw_h, \
2827 gen_helper_sve_##name##_ppzw_s, NULL \
2829 return do_ppzz_flags(s, a, fns[a->esz]); \
2832 DO_PPZW(CMPEQ, cmpeq)
2833 DO_PPZW(CMPNE, cmpne)
2834 DO_PPZW(CMPGT, cmpgt)
2835 DO_PPZW(CMPGE, cmpge)
2836 DO_PPZW(CMPHI, cmphi)
2837 DO_PPZW(CMPHS, cmphs)
2838 DO_PPZW(CMPLT, cmplt)
2839 DO_PPZW(CMPLE, cmple)
2840 DO_PPZW(CMPLO, cmplo)
2841 DO_PPZW(CMPLS, cmpls)
2846 *** SVE Integer Compare - Immediate Groups
2849 static bool do_ppzi_flags(DisasContext *s, arg_rpri_esz *a,
2850 gen_helper_gvec_flags_3 *gen_fn)
2852 TCGv_ptr pd, zn, pg;
2856 if (gen_fn == NULL) {
2859 if (!sve_access_check(s)) {
2863 vsz = vec_full_reg_size(s);
2864 t = tcg_const_i32(simd_desc(vsz, vsz, a->imm));
2865 pd = tcg_temp_new_ptr();
2866 zn = tcg_temp_new_ptr();
2867 pg = tcg_temp_new_ptr();
2869 tcg_gen_addi_ptr(pd, cpu_env, pred_full_reg_offset(s, a->rd));
2870 tcg_gen_addi_ptr(zn, cpu_env, vec_full_reg_offset(s, a->rn));
2871 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
2873 gen_fn(t, pd, zn, pg, t);
2875 tcg_temp_free_ptr(pd);
2876 tcg_temp_free_ptr(zn);
2877 tcg_temp_free_ptr(pg);
2881 tcg_temp_free_i32(t);
2885 #define DO_PPZI(NAME, name) \
2886 static bool trans_##NAME##_ppzi(DisasContext *s, arg_rpri_esz *a, \
2889 static gen_helper_gvec_flags_3 * const fns[4] = { \
2890 gen_helper_sve_##name##_ppzi_b, gen_helper_sve_##name##_ppzi_h, \
2891 gen_helper_sve_##name##_ppzi_s, gen_helper_sve_##name##_ppzi_d, \
2893 return do_ppzi_flags(s, a, fns[a->esz]); \
2896 DO_PPZI(CMPEQ, cmpeq)
2897 DO_PPZI(CMPNE, cmpne)
2898 DO_PPZI(CMPGT, cmpgt)
2899 DO_PPZI(CMPGE, cmpge)
2900 DO_PPZI(CMPHI, cmphi)
2901 DO_PPZI(CMPHS, cmphs)
2902 DO_PPZI(CMPLT, cmplt)
2903 DO_PPZI(CMPLE, cmple)
2904 DO_PPZI(CMPLO, cmplo)
2905 DO_PPZI(CMPLS, cmpls)
2910 *** SVE Partition Break Group
2913 static bool do_brk3(DisasContext *s, arg_rprr_s *a,
2914 gen_helper_gvec_4 *fn, gen_helper_gvec_flags_4 *fn_s)
2916 if (!sve_access_check(s)) {
2920 unsigned vsz = pred_full_reg_size(s);
2922 /* Predicate sizes may be smaller and cannot use simd_desc. */
2923 TCGv_ptr d = tcg_temp_new_ptr();
2924 TCGv_ptr n = tcg_temp_new_ptr();
2925 TCGv_ptr m = tcg_temp_new_ptr();
2926 TCGv_ptr g = tcg_temp_new_ptr();
2927 TCGv_i32 t = tcg_const_i32(vsz - 2);
2929 tcg_gen_addi_ptr(d, cpu_env, pred_full_reg_offset(s, a->rd));
2930 tcg_gen_addi_ptr(n, cpu_env, pred_full_reg_offset(s, a->rn));
2931 tcg_gen_addi_ptr(m, cpu_env, pred_full_reg_offset(s, a->rm));
2932 tcg_gen_addi_ptr(g, cpu_env, pred_full_reg_offset(s, a->pg));
2935 fn_s(t, d, n, m, g, t);
2940 tcg_temp_free_ptr(d);
2941 tcg_temp_free_ptr(n);
2942 tcg_temp_free_ptr(m);
2943 tcg_temp_free_ptr(g);
2944 tcg_temp_free_i32(t);
2948 static bool do_brk2(DisasContext *s, arg_rpr_s *a,
2949 gen_helper_gvec_3 *fn, gen_helper_gvec_flags_3 *fn_s)
2951 if (!sve_access_check(s)) {
2955 unsigned vsz = pred_full_reg_size(s);
2957 /* Predicate sizes may be smaller and cannot use simd_desc. */
2958 TCGv_ptr d = tcg_temp_new_ptr();
2959 TCGv_ptr n = tcg_temp_new_ptr();
2960 TCGv_ptr g = tcg_temp_new_ptr();
2961 TCGv_i32 t = tcg_const_i32(vsz - 2);
2963 tcg_gen_addi_ptr(d, cpu_env, pred_full_reg_offset(s, a->rd));
2964 tcg_gen_addi_ptr(n, cpu_env, pred_full_reg_offset(s, a->rn));
2965 tcg_gen_addi_ptr(g, cpu_env, pred_full_reg_offset(s, a->pg));
2968 fn_s(t, d, n, g, t);
2973 tcg_temp_free_ptr(d);
2974 tcg_temp_free_ptr(n);
2975 tcg_temp_free_ptr(g);
2976 tcg_temp_free_i32(t);
2980 static bool trans_BRKPA(DisasContext *s, arg_rprr_s *a, uint32_t insn)
2982 return do_brk3(s, a, gen_helper_sve_brkpa, gen_helper_sve_brkpas);
2985 static bool trans_BRKPB(DisasContext *s, arg_rprr_s *a, uint32_t insn)
2987 return do_brk3(s, a, gen_helper_sve_brkpb, gen_helper_sve_brkpbs);
2990 static bool trans_BRKA_m(DisasContext *s, arg_rpr_s *a, uint32_t insn)
2992 return do_brk2(s, a, gen_helper_sve_brka_m, gen_helper_sve_brkas_m);
2995 static bool trans_BRKB_m(DisasContext *s, arg_rpr_s *a, uint32_t insn)
2997 return do_brk2(s, a, gen_helper_sve_brkb_m, gen_helper_sve_brkbs_m);
3000 static bool trans_BRKA_z(DisasContext *s, arg_rpr_s *a, uint32_t insn)
3002 return do_brk2(s, a, gen_helper_sve_brka_z, gen_helper_sve_brkas_z);
3005 static bool trans_BRKB_z(DisasContext *s, arg_rpr_s *a, uint32_t insn)
3007 return do_brk2(s, a, gen_helper_sve_brkb_z, gen_helper_sve_brkbs_z);
3010 static bool trans_BRKN(DisasContext *s, arg_rpr_s *a, uint32_t insn)
3012 return do_brk2(s, a, gen_helper_sve_brkn, gen_helper_sve_brkns);
3016 *** SVE Predicate Count Group
3019 static void do_cntp(DisasContext *s, TCGv_i64 val, int esz, int pn, int pg)
3021 unsigned psz = pred_full_reg_size(s);
3026 tcg_gen_ld_i64(val, cpu_env, pred_full_reg_offset(s, pn));
3028 TCGv_i64 g = tcg_temp_new_i64();
3029 tcg_gen_ld_i64(g, cpu_env, pred_full_reg_offset(s, pg));
3030 tcg_gen_and_i64(val, val, g);
3031 tcg_temp_free_i64(g);
3034 /* Reduce the pred_esz_masks value simply to reduce the
3035 * size of the code generated here.
3037 psz_mask = MAKE_64BIT_MASK(0, psz * 8);
3038 tcg_gen_andi_i64(val, val, pred_esz_masks[esz] & psz_mask);
3040 tcg_gen_ctpop_i64(val, val);
3042 TCGv_ptr t_pn = tcg_temp_new_ptr();
3043 TCGv_ptr t_pg = tcg_temp_new_ptr();
3048 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, esz);
3050 tcg_gen_addi_ptr(t_pn, cpu_env, pred_full_reg_offset(s, pn));
3051 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
3052 t_desc = tcg_const_i32(desc);
3054 gen_helper_sve_cntp(val, t_pn, t_pg, t_desc);
3055 tcg_temp_free_ptr(t_pn);
3056 tcg_temp_free_ptr(t_pg);
3057 tcg_temp_free_i32(t_desc);
3061 static bool trans_CNTP(DisasContext *s, arg_CNTP *a, uint32_t insn)
3063 if (sve_access_check(s)) {
3064 do_cntp(s, cpu_reg(s, a->rd), a->esz, a->rn, a->pg);
3069 static bool trans_INCDECP_r(DisasContext *s, arg_incdec_pred *a,
3072 if (sve_access_check(s)) {
3073 TCGv_i64 reg = cpu_reg(s, a->rd);
3074 TCGv_i64 val = tcg_temp_new_i64();
3076 do_cntp(s, val, a->esz, a->pg, a->pg);
3078 tcg_gen_sub_i64(reg, reg, val);
3080 tcg_gen_add_i64(reg, reg, val);
3082 tcg_temp_free_i64(val);
3087 static bool trans_INCDECP_z(DisasContext *s, arg_incdec2_pred *a,
3093 if (sve_access_check(s)) {
3094 unsigned vsz = vec_full_reg_size(s);
3095 TCGv_i64 val = tcg_temp_new_i64();
3096 GVecGen2sFn *gvec_fn = a->d ? tcg_gen_gvec_subs : tcg_gen_gvec_adds;
3098 do_cntp(s, val, a->esz, a->pg, a->pg);
3099 gvec_fn(a->esz, vec_full_reg_offset(s, a->rd),
3100 vec_full_reg_offset(s, a->rn), val, vsz, vsz);
3105 static bool trans_SINCDECP_r_32(DisasContext *s, arg_incdec_pred *a,
3108 if (sve_access_check(s)) {
3109 TCGv_i64 reg = cpu_reg(s, a->rd);
3110 TCGv_i64 val = tcg_temp_new_i64();
3112 do_cntp(s, val, a->esz, a->pg, a->pg);
3113 do_sat_addsub_32(reg, val, a->u, a->d);
3118 static bool trans_SINCDECP_r_64(DisasContext *s, arg_incdec_pred *a,
3121 if (sve_access_check(s)) {
3122 TCGv_i64 reg = cpu_reg(s, a->rd);
3123 TCGv_i64 val = tcg_temp_new_i64();
3125 do_cntp(s, val, a->esz, a->pg, a->pg);
3126 do_sat_addsub_64(reg, val, a->u, a->d);
3131 static bool trans_SINCDECP_z(DisasContext *s, arg_incdec2_pred *a,
3137 if (sve_access_check(s)) {
3138 TCGv_i64 val = tcg_temp_new_i64();
3139 do_cntp(s, val, a->esz, a->pg, a->pg);
3140 do_sat_addsub_vec(s, a->esz, a->rd, a->rn, val, a->u, a->d);
3146 *** SVE Integer Compare Scalars Group
3149 static bool trans_CTERM(DisasContext *s, arg_CTERM *a, uint32_t insn)
3151 if (!sve_access_check(s)) {
3155 TCGCond cond = (a->ne ? TCG_COND_NE : TCG_COND_EQ);
3156 TCGv_i64 rn = read_cpu_reg(s, a->rn, a->sf);
3157 TCGv_i64 rm = read_cpu_reg(s, a->rm, a->sf);
3158 TCGv_i64 cmp = tcg_temp_new_i64();
3160 tcg_gen_setcond_i64(cond, cmp, rn, rm);
3161 tcg_gen_extrl_i64_i32(cpu_NF, cmp);
3162 tcg_temp_free_i64(cmp);
3164 /* VF = !NF & !CF. */
3165 tcg_gen_xori_i32(cpu_VF, cpu_NF, 1);
3166 tcg_gen_andc_i32(cpu_VF, cpu_VF, cpu_CF);
3168 /* Both NF and VF actually look at bit 31. */
3169 tcg_gen_neg_i32(cpu_NF, cpu_NF);
3170 tcg_gen_neg_i32(cpu_VF, cpu_VF);
3174 static bool trans_WHILE(DisasContext *s, arg_WHILE *a, uint32_t insn)
3176 TCGv_i64 op0, op1, t0, t1, tmax;
3179 unsigned desc, vsz = vec_full_reg_size(s);
3182 if (!sve_access_check(s)) {
3186 op0 = read_cpu_reg(s, a->rn, 1);
3187 op1 = read_cpu_reg(s, a->rm, 1);
3191 tcg_gen_ext32u_i64(op0, op0);
3192 tcg_gen_ext32u_i64(op1, op1);
3194 tcg_gen_ext32s_i64(op0, op0);
3195 tcg_gen_ext32s_i64(op1, op1);
3199 /* For the helper, compress the different conditions into a computation
3200 * of how many iterations for which the condition is true.
3202 t0 = tcg_temp_new_i64();
3203 t1 = tcg_temp_new_i64();
3204 tcg_gen_sub_i64(t0, op1, op0);
3206 tmax = tcg_const_i64(vsz >> a->esz);
3208 /* Equality means one more iteration. */
3209 tcg_gen_addi_i64(t0, t0, 1);
3211 /* If op1 is max (un)signed integer (and the only time the addition
3212 * above could overflow), then we produce an all-true predicate by
3213 * setting the count to the vector length. This is because the
3214 * pseudocode is described as an increment + compare loop, and the
3215 * max integer would always compare true.
3217 tcg_gen_movi_i64(t1, (a->sf
3218 ? (a->u ? UINT64_MAX : INT64_MAX)
3219 : (a->u ? UINT32_MAX : INT32_MAX)));
3220 tcg_gen_movcond_i64(TCG_COND_EQ, t0, op1, t1, tmax, t0);
3223 /* Bound to the maximum. */
3224 tcg_gen_umin_i64(t0, t0, tmax);
3225 tcg_temp_free_i64(tmax);
3227 /* Set the count to zero if the condition is false. */
3229 ? (a->eq ? TCG_COND_LEU : TCG_COND_LTU)
3230 : (a->eq ? TCG_COND_LE : TCG_COND_LT));
3231 tcg_gen_movi_i64(t1, 0);
3232 tcg_gen_movcond_i64(cond, t0, op0, op1, t0, t1);
3233 tcg_temp_free_i64(t1);
3235 /* Since we're bounded, pass as a 32-bit type. */
3236 t2 = tcg_temp_new_i32();
3237 tcg_gen_extrl_i64_i32(t2, t0);
3238 tcg_temp_free_i64(t0);
3240 /* Scale elements to bits. */
3241 tcg_gen_shli_i32(t2, t2, a->esz);
3243 desc = (vsz / 8) - 2;
3244 desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);
3245 t3 = tcg_const_i32(desc);
3247 ptr = tcg_temp_new_ptr();
3248 tcg_gen_addi_ptr(ptr, cpu_env, pred_full_reg_offset(s, a->rd));
3250 gen_helper_sve_while(t2, ptr, t2, t3);
3253 tcg_temp_free_ptr(ptr);
3254 tcg_temp_free_i32(t2);
3255 tcg_temp_free_i32(t3);
3260 *** SVE Integer Wide Immediate - Unpredicated Group
3263 static bool trans_FDUP(DisasContext *s, arg_FDUP *a, uint32_t insn)
3268 if (sve_access_check(s)) {
3269 unsigned vsz = vec_full_reg_size(s);
3270 int dofs = vec_full_reg_offset(s, a->rd);
3273 /* Decode the VFP immediate. */
3274 imm = vfp_expand_imm(a->esz, a->imm);
3275 imm = dup_const(a->esz, imm);
3277 tcg_gen_gvec_dup64i(dofs, vsz, vsz, imm);
3282 static bool trans_DUP_i(DisasContext *s, arg_DUP_i *a, uint32_t insn)
3284 if (a->esz == 0 && extract32(insn, 13, 1)) {
3287 if (sve_access_check(s)) {
3288 unsigned vsz = vec_full_reg_size(s);
3289 int dofs = vec_full_reg_offset(s, a->rd);
3291 tcg_gen_gvec_dup64i(dofs, vsz, vsz, dup_const(a->esz, a->imm));
3296 static bool trans_ADD_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3298 if (a->esz == 0 && extract32(insn, 13, 1)) {
3301 if (sve_access_check(s)) {
3302 unsigned vsz = vec_full_reg_size(s);
3303 tcg_gen_gvec_addi(a->esz, vec_full_reg_offset(s, a->rd),
3304 vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
3309 static bool trans_SUB_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3312 return trans_ADD_zzi(s, a, insn);
3315 static bool trans_SUBR_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3317 static const GVecGen2s op[4] = {
3318 { .fni8 = tcg_gen_vec_sub8_i64,
3319 .fniv = tcg_gen_sub_vec,
3320 .fno = gen_helper_sve_subri_b,
3321 .opc = INDEX_op_sub_vec,
3323 .scalar_first = true },
3324 { .fni8 = tcg_gen_vec_sub16_i64,
3325 .fniv = tcg_gen_sub_vec,
3326 .fno = gen_helper_sve_subri_h,
3327 .opc = INDEX_op_sub_vec,
3329 .scalar_first = true },
3330 { .fni4 = tcg_gen_sub_i32,
3331 .fniv = tcg_gen_sub_vec,
3332 .fno = gen_helper_sve_subri_s,
3333 .opc = INDEX_op_sub_vec,
3335 .scalar_first = true },
3336 { .fni8 = tcg_gen_sub_i64,
3337 .fniv = tcg_gen_sub_vec,
3338 .fno = gen_helper_sve_subri_d,
3339 .opc = INDEX_op_sub_vec,
3340 .prefer_i64 = TCG_TARGET_REG_BITS == 64,
3342 .scalar_first = true }
3345 if (a->esz == 0 && extract32(insn, 13, 1)) {
3348 if (sve_access_check(s)) {
3349 unsigned vsz = vec_full_reg_size(s);
3350 TCGv_i64 c = tcg_const_i64(a->imm);
3351 tcg_gen_gvec_2s(vec_full_reg_offset(s, a->rd),
3352 vec_full_reg_offset(s, a->rn),
3353 vsz, vsz, c, &op[a->esz]);
3354 tcg_temp_free_i64(c);
3359 static bool trans_MUL_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3361 if (sve_access_check(s)) {
3362 unsigned vsz = vec_full_reg_size(s);
3363 tcg_gen_gvec_muli(a->esz, vec_full_reg_offset(s, a->rd),
3364 vec_full_reg_offset(s, a->rn), a->imm, vsz, vsz);
3369 static bool do_zzi_sat(DisasContext *s, arg_rri_esz *a, uint32_t insn,
3372 if (a->esz == 0 && extract32(insn, 13, 1)) {
3375 if (sve_access_check(s)) {
3376 TCGv_i64 val = tcg_const_i64(a->imm);
3377 do_sat_addsub_vec(s, a->esz, a->rd, a->rn, val, u, d);
3378 tcg_temp_free_i64(val);
3383 static bool trans_SQADD_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3385 return do_zzi_sat(s, a, insn, false, false);
3388 static bool trans_UQADD_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3390 return do_zzi_sat(s, a, insn, true, false);
3393 static bool trans_SQSUB_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3395 return do_zzi_sat(s, a, insn, false, true);
3398 static bool trans_UQSUB_zzi(DisasContext *s, arg_rri_esz *a, uint32_t insn)
3400 return do_zzi_sat(s, a, insn, true, true);
3403 static bool do_zzi_ool(DisasContext *s, arg_rri_esz *a, gen_helper_gvec_2i *fn)
3405 if (sve_access_check(s)) {
3406 unsigned vsz = vec_full_reg_size(s);
3407 TCGv_i64 c = tcg_const_i64(a->imm);
3409 tcg_gen_gvec_2i_ool(vec_full_reg_offset(s, a->rd),
3410 vec_full_reg_offset(s, a->rn),
3411 c, vsz, vsz, 0, fn);
3412 tcg_temp_free_i64(c);
3417 #define DO_ZZI(NAME, name) \
3418 static bool trans_##NAME##_zzi(DisasContext *s, arg_rri_esz *a, \
3421 static gen_helper_gvec_2i * const fns[4] = { \
3422 gen_helper_sve_##name##i_b, gen_helper_sve_##name##i_h, \
3423 gen_helper_sve_##name##i_s, gen_helper_sve_##name##i_d, \
3425 return do_zzi_ool(s, a, fns[a->esz]); \
3435 static bool trans_DOT_zzz(DisasContext *s, arg_DOT_zzz *a, uint32_t insn)
3437 static gen_helper_gvec_3 * const fns[2][2] = {
3438 { gen_helper_gvec_sdot_b, gen_helper_gvec_sdot_h },
3439 { gen_helper_gvec_udot_b, gen_helper_gvec_udot_h }
3442 if (sve_access_check(s)) {
3443 unsigned vsz = vec_full_reg_size(s);
3444 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
3445 vec_full_reg_offset(s, a->rn),
3446 vec_full_reg_offset(s, a->rm),
3447 vsz, vsz, 0, fns[a->u][a->sz]);
3452 static bool trans_DOT_zzx(DisasContext *s, arg_DOT_zzx *a, uint32_t insn)
3454 static gen_helper_gvec_3 * const fns[2][2] = {
3455 { gen_helper_gvec_sdot_idx_b, gen_helper_gvec_sdot_idx_h },
3456 { gen_helper_gvec_udot_idx_b, gen_helper_gvec_udot_idx_h }
3459 if (sve_access_check(s)) {
3460 unsigned vsz = vec_full_reg_size(s);
3461 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, a->rd),
3462 vec_full_reg_offset(s, a->rn),
3463 vec_full_reg_offset(s, a->rm),
3464 vsz, vsz, a->index, fns[a->u][a->sz]);
3471 *** SVE Floating Point Multiply-Add Indexed Group
3474 static bool trans_FMLA_zzxz(DisasContext *s, arg_FMLA_zzxz *a, uint32_t insn)
3476 static gen_helper_gvec_4_ptr * const fns[3] = {
3477 gen_helper_gvec_fmla_idx_h,
3478 gen_helper_gvec_fmla_idx_s,
3479 gen_helper_gvec_fmla_idx_d,
3482 if (sve_access_check(s)) {
3483 unsigned vsz = vec_full_reg_size(s);
3484 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3485 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, a->rd),
3486 vec_full_reg_offset(s, a->rn),
3487 vec_full_reg_offset(s, a->rm),
3488 vec_full_reg_offset(s, a->ra),
3489 status, vsz, vsz, (a->index << 1) | a->sub,
3491 tcg_temp_free_ptr(status);
3497 *** SVE Floating Point Multiply Indexed Group
3500 static bool trans_FMUL_zzx(DisasContext *s, arg_FMUL_zzx *a, uint32_t insn)
3502 static gen_helper_gvec_3_ptr * const fns[3] = {
3503 gen_helper_gvec_fmul_idx_h,
3504 gen_helper_gvec_fmul_idx_s,
3505 gen_helper_gvec_fmul_idx_d,
3508 if (sve_access_check(s)) {
3509 unsigned vsz = vec_full_reg_size(s);
3510 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3511 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
3512 vec_full_reg_offset(s, a->rn),
3513 vec_full_reg_offset(s, a->rm),
3514 status, vsz, vsz, a->index, fns[a->esz - 1]);
3515 tcg_temp_free_ptr(status);
3521 *** SVE Floating Point Fast Reduction Group
3524 typedef void gen_helper_fp_reduce(TCGv_i64, TCGv_ptr, TCGv_ptr,
3525 TCGv_ptr, TCGv_i32);
3527 static void do_reduce(DisasContext *s, arg_rpr_esz *a,
3528 gen_helper_fp_reduce *fn)
3530 unsigned vsz = vec_full_reg_size(s);
3531 unsigned p2vsz = pow2ceil(vsz);
3532 TCGv_i32 t_desc = tcg_const_i32(simd_desc(vsz, p2vsz, 0));
3533 TCGv_ptr t_zn, t_pg, status;
3536 temp = tcg_temp_new_i64();
3537 t_zn = tcg_temp_new_ptr();
3538 t_pg = tcg_temp_new_ptr();
3540 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, a->rn));
3541 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
3542 status = get_fpstatus_ptr(a->esz == MO_16);
3544 fn(temp, t_zn, t_pg, status, t_desc);
3545 tcg_temp_free_ptr(t_zn);
3546 tcg_temp_free_ptr(t_pg);
3547 tcg_temp_free_ptr(status);
3548 tcg_temp_free_i32(t_desc);
3550 write_fp_dreg(s, a->rd, temp);
3551 tcg_temp_free_i64(temp);
3554 #define DO_VPZ(NAME, name) \
3555 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
3557 static gen_helper_fp_reduce * const fns[3] = { \
3558 gen_helper_sve_##name##_h, \
3559 gen_helper_sve_##name##_s, \
3560 gen_helper_sve_##name##_d, \
3562 if (a->esz == 0) { \
3565 if (sve_access_check(s)) { \
3566 do_reduce(s, a, fns[a->esz - 1]); \
3571 DO_VPZ(FADDV, faddv)
3572 DO_VPZ(FMINNMV, fminnmv)
3573 DO_VPZ(FMAXNMV, fmaxnmv)
3574 DO_VPZ(FMINV, fminv)
3575 DO_VPZ(FMAXV, fmaxv)
3578 *** SVE Floating Point Unary Operations - Unpredicated Group
3581 static void do_zz_fp(DisasContext *s, arg_rr_esz *a, gen_helper_gvec_2_ptr *fn)
3583 unsigned vsz = vec_full_reg_size(s);
3584 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3586 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, a->rd),
3587 vec_full_reg_offset(s, a->rn),
3588 status, vsz, vsz, 0, fn);
3589 tcg_temp_free_ptr(status);
3592 static bool trans_FRECPE(DisasContext *s, arg_rr_esz *a, uint32_t insn)
3594 static gen_helper_gvec_2_ptr * const fns[3] = {
3595 gen_helper_gvec_frecpe_h,
3596 gen_helper_gvec_frecpe_s,
3597 gen_helper_gvec_frecpe_d,
3602 if (sve_access_check(s)) {
3603 do_zz_fp(s, a, fns[a->esz - 1]);
3608 static bool trans_FRSQRTE(DisasContext *s, arg_rr_esz *a, uint32_t insn)
3610 static gen_helper_gvec_2_ptr * const fns[3] = {
3611 gen_helper_gvec_frsqrte_h,
3612 gen_helper_gvec_frsqrte_s,
3613 gen_helper_gvec_frsqrte_d,
3618 if (sve_access_check(s)) {
3619 do_zz_fp(s, a, fns[a->esz - 1]);
3625 *** SVE Floating Point Compare with Zero Group
3628 static void do_ppz_fp(DisasContext *s, arg_rpr_esz *a,
3629 gen_helper_gvec_3_ptr *fn)
3631 unsigned vsz = vec_full_reg_size(s);
3632 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3634 tcg_gen_gvec_3_ptr(pred_full_reg_offset(s, a->rd),
3635 vec_full_reg_offset(s, a->rn),
3636 pred_full_reg_offset(s, a->pg),
3637 status, vsz, vsz, 0, fn);
3638 tcg_temp_free_ptr(status);
3641 #define DO_PPZ(NAME, name) \
3642 static bool trans_##NAME(DisasContext *s, arg_rpr_esz *a, uint32_t insn) \
3644 static gen_helper_gvec_3_ptr * const fns[3] = { \
3645 gen_helper_sve_##name##_h, \
3646 gen_helper_sve_##name##_s, \
3647 gen_helper_sve_##name##_d, \
3649 if (a->esz == 0) { \
3652 if (sve_access_check(s)) { \
3653 do_ppz_fp(s, a, fns[a->esz - 1]); \
3658 DO_PPZ(FCMGE_ppz0, fcmge0)
3659 DO_PPZ(FCMGT_ppz0, fcmgt0)
3660 DO_PPZ(FCMLE_ppz0, fcmle0)
3661 DO_PPZ(FCMLT_ppz0, fcmlt0)
3662 DO_PPZ(FCMEQ_ppz0, fcmeq0)
3663 DO_PPZ(FCMNE_ppz0, fcmne0)
3668 *** SVE floating-point trig multiply-add coefficient
3671 static bool trans_FTMAD(DisasContext *s, arg_FTMAD *a, uint32_t insn)
3673 static gen_helper_gvec_3_ptr * const fns[3] = {
3674 gen_helper_sve_ftmad_h,
3675 gen_helper_sve_ftmad_s,
3676 gen_helper_sve_ftmad_d,
3682 if (sve_access_check(s)) {
3683 unsigned vsz = vec_full_reg_size(s);
3684 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3685 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
3686 vec_full_reg_offset(s, a->rn),
3687 vec_full_reg_offset(s, a->rm),
3688 status, vsz, vsz, a->imm, fns[a->esz - 1]);
3689 tcg_temp_free_ptr(status);
3695 *** SVE Floating Point Accumulating Reduction Group
3698 static bool trans_FADDA(DisasContext *s, arg_rprr_esz *a, uint32_t insn)
3700 typedef void fadda_fn(TCGv_i64, TCGv_i64, TCGv_ptr,
3701 TCGv_ptr, TCGv_ptr, TCGv_i32);
3702 static fadda_fn * const fns[3] = {
3703 gen_helper_sve_fadda_h,
3704 gen_helper_sve_fadda_s,
3705 gen_helper_sve_fadda_d,
3707 unsigned vsz = vec_full_reg_size(s);
3708 TCGv_ptr t_rm, t_pg, t_fpst;
3715 if (!sve_access_check(s)) {
3719 t_val = load_esz(cpu_env, vec_reg_offset(s, a->rn, 0, a->esz), a->esz);
3720 t_rm = tcg_temp_new_ptr();
3721 t_pg = tcg_temp_new_ptr();
3722 tcg_gen_addi_ptr(t_rm, cpu_env, vec_full_reg_offset(s, a->rm));
3723 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, a->pg));
3724 t_fpst = get_fpstatus_ptr(a->esz == MO_16);
3725 t_desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
3727 fns[a->esz - 1](t_val, t_val, t_rm, t_pg, t_fpst, t_desc);
3729 tcg_temp_free_i32(t_desc);
3730 tcg_temp_free_ptr(t_fpst);
3731 tcg_temp_free_ptr(t_pg);
3732 tcg_temp_free_ptr(t_rm);
3734 write_fp_dreg(s, a->rd, t_val);
3735 tcg_temp_free_i64(t_val);
3740 *** SVE Floating Point Arithmetic - Unpredicated Group
3743 static bool do_zzz_fp(DisasContext *s, arg_rrr_esz *a,
3744 gen_helper_gvec_3_ptr *fn)
3749 if (sve_access_check(s)) {
3750 unsigned vsz = vec_full_reg_size(s);
3751 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3752 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
3753 vec_full_reg_offset(s, a->rn),
3754 vec_full_reg_offset(s, a->rm),
3755 status, vsz, vsz, 0, fn);
3756 tcg_temp_free_ptr(status);
3762 #define DO_FP3(NAME, name) \
3763 static bool trans_##NAME(DisasContext *s, arg_rrr_esz *a, uint32_t insn) \
3765 static gen_helper_gvec_3_ptr * const fns[4] = { \
3766 NULL, gen_helper_gvec_##name##_h, \
3767 gen_helper_gvec_##name##_s, gen_helper_gvec_##name##_d \
3769 return do_zzz_fp(s, a, fns[a->esz]); \
3772 DO_FP3(FADD_zzz, fadd)
3773 DO_FP3(FSUB_zzz, fsub)
3774 DO_FP3(FMUL_zzz, fmul)
3775 DO_FP3(FTSMUL, ftsmul)
3776 DO_FP3(FRECPS, recps)
3777 DO_FP3(FRSQRTS, rsqrts)
3782 *** SVE Floating Point Arithmetic - Predicated Group
3785 static bool do_zpzz_fp(DisasContext *s, arg_rprr_esz *a,
3786 gen_helper_gvec_4_ptr *fn)
3791 if (sve_access_check(s)) {
3792 unsigned vsz = vec_full_reg_size(s);
3793 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3794 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, a->rd),
3795 vec_full_reg_offset(s, a->rn),
3796 vec_full_reg_offset(s, a->rm),
3797 pred_full_reg_offset(s, a->pg),
3798 status, vsz, vsz, 0, fn);
3799 tcg_temp_free_ptr(status);
3804 #define DO_FP3(NAME, name) \
3805 static bool trans_##NAME(DisasContext *s, arg_rprr_esz *a, uint32_t insn) \
3807 static gen_helper_gvec_4_ptr * const fns[4] = { \
3808 NULL, gen_helper_sve_##name##_h, \
3809 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d \
3811 return do_zpzz_fp(s, a, fns[a->esz]); \
3814 DO_FP3(FADD_zpzz, fadd)
3815 DO_FP3(FSUB_zpzz, fsub)
3816 DO_FP3(FMUL_zpzz, fmul)
3817 DO_FP3(FMIN_zpzz, fmin)
3818 DO_FP3(FMAX_zpzz, fmax)
3819 DO_FP3(FMINNM_zpzz, fminnum)
3820 DO_FP3(FMAXNM_zpzz, fmaxnum)
3822 DO_FP3(FSCALE, fscalbn)
3824 DO_FP3(FMULX, fmulx)
3828 typedef void gen_helper_sve_fp2scalar(TCGv_ptr, TCGv_ptr, TCGv_ptr,
3829 TCGv_i64, TCGv_ptr, TCGv_i32);
3831 static void do_fp_scalar(DisasContext *s, int zd, int zn, int pg, bool is_fp16,
3832 TCGv_i64 scalar, gen_helper_sve_fp2scalar *fn)
3834 unsigned vsz = vec_full_reg_size(s);
3835 TCGv_ptr t_zd, t_zn, t_pg, status;
3838 t_zd = tcg_temp_new_ptr();
3839 t_zn = tcg_temp_new_ptr();
3840 t_pg = tcg_temp_new_ptr();
3841 tcg_gen_addi_ptr(t_zd, cpu_env, vec_full_reg_offset(s, zd));
3842 tcg_gen_addi_ptr(t_zn, cpu_env, vec_full_reg_offset(s, zn));
3843 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
3845 status = get_fpstatus_ptr(is_fp16);
3846 desc = tcg_const_i32(simd_desc(vsz, vsz, 0));
3847 fn(t_zd, t_zn, t_pg, scalar, status, desc);
3849 tcg_temp_free_i32(desc);
3850 tcg_temp_free_ptr(status);
3851 tcg_temp_free_ptr(t_pg);
3852 tcg_temp_free_ptr(t_zn);
3853 tcg_temp_free_ptr(t_zd);
3856 static void do_fp_imm(DisasContext *s, arg_rpri_esz *a, uint64_t imm,
3857 gen_helper_sve_fp2scalar *fn)
3859 TCGv_i64 temp = tcg_const_i64(imm);
3860 do_fp_scalar(s, a->rd, a->rn, a->pg, a->esz == MO_16, temp, fn);
3861 tcg_temp_free_i64(temp);
3864 #define DO_FP_IMM(NAME, name, const0, const1) \
3865 static bool trans_##NAME##_zpzi(DisasContext *s, arg_rpri_esz *a, \
3868 static gen_helper_sve_fp2scalar * const fns[3] = { \
3869 gen_helper_sve_##name##_h, \
3870 gen_helper_sve_##name##_s, \
3871 gen_helper_sve_##name##_d \
3873 static uint64_t const val[3][2] = { \
3874 { float16_##const0, float16_##const1 }, \
3875 { float32_##const0, float32_##const1 }, \
3876 { float64_##const0, float64_##const1 }, \
3878 if (a->esz == 0) { \
3881 if (sve_access_check(s)) { \
3882 do_fp_imm(s, a, val[a->esz - 1][a->imm], fns[a->esz - 1]); \
3887 #define float16_two make_float16(0x4000)
3888 #define float32_two make_float32(0x40000000)
3889 #define float64_two make_float64(0x4000000000000000ULL)
3891 DO_FP_IMM(FADD, fadds, half, one)
3892 DO_FP_IMM(FSUB, fsubs, half, one)
3893 DO_FP_IMM(FMUL, fmuls, half, two)
3894 DO_FP_IMM(FSUBR, fsubrs, half, one)
3895 DO_FP_IMM(FMAXNM, fmaxnms, zero, one)
3896 DO_FP_IMM(FMINNM, fminnms, zero, one)
3897 DO_FP_IMM(FMAX, fmaxs, zero, one)
3898 DO_FP_IMM(FMIN, fmins, zero, one)
3902 static bool do_fp_cmp(DisasContext *s, arg_rprr_esz *a,
3903 gen_helper_gvec_4_ptr *fn)
3908 if (sve_access_check(s)) {
3909 unsigned vsz = vec_full_reg_size(s);
3910 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3911 tcg_gen_gvec_4_ptr(pred_full_reg_offset(s, a->rd),
3912 vec_full_reg_offset(s, a->rn),
3913 vec_full_reg_offset(s, a->rm),
3914 pred_full_reg_offset(s, a->pg),
3915 status, vsz, vsz, 0, fn);
3916 tcg_temp_free_ptr(status);
3921 #define DO_FPCMP(NAME, name) \
3922 static bool trans_##NAME##_ppzz(DisasContext *s, arg_rprr_esz *a, \
3925 static gen_helper_gvec_4_ptr * const fns[4] = { \
3926 NULL, gen_helper_sve_##name##_h, \
3927 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d \
3929 return do_fp_cmp(s, a, fns[a->esz]); \
3932 DO_FPCMP(FCMGE, fcmge)
3933 DO_FPCMP(FCMGT, fcmgt)
3934 DO_FPCMP(FCMEQ, fcmeq)
3935 DO_FPCMP(FCMNE, fcmne)
3936 DO_FPCMP(FCMUO, fcmuo)
3937 DO_FPCMP(FACGE, facge)
3938 DO_FPCMP(FACGT, facgt)
3942 static bool trans_FCADD(DisasContext *s, arg_FCADD *a, uint32_t insn)
3944 static gen_helper_gvec_4_ptr * const fns[3] = {
3945 gen_helper_sve_fcadd_h,
3946 gen_helper_sve_fcadd_s,
3947 gen_helper_sve_fcadd_d
3953 if (sve_access_check(s)) {
3954 unsigned vsz = vec_full_reg_size(s);
3955 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
3956 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, a->rd),
3957 vec_full_reg_offset(s, a->rn),
3958 vec_full_reg_offset(s, a->rm),
3959 pred_full_reg_offset(s, a->pg),
3960 status, vsz, vsz, a->rot, fns[a->esz - 1]);
3961 tcg_temp_free_ptr(status);
3966 typedef void gen_helper_sve_fmla(TCGv_env, TCGv_ptr, TCGv_i32);
3968 static bool do_fmla(DisasContext *s, arg_rprrr_esz *a, gen_helper_sve_fmla *fn)
3973 if (!sve_access_check(s)) {
3977 unsigned vsz = vec_full_reg_size(s);
3980 TCGv_ptr pg = tcg_temp_new_ptr();
3982 /* We would need 7 operands to pass these arguments "properly".
3983 * So we encode all the register numbers into the descriptor.
3985 desc = deposit32(a->rd, 5, 5, a->rn);
3986 desc = deposit32(desc, 10, 5, a->rm);
3987 desc = deposit32(desc, 15, 5, a->ra);
3988 desc = simd_desc(vsz, vsz, desc);
3990 t_desc = tcg_const_i32(desc);
3991 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
3992 fn(cpu_env, pg, t_desc);
3993 tcg_temp_free_i32(t_desc);
3994 tcg_temp_free_ptr(pg);
3998 #define DO_FMLA(NAME, name) \
3999 static bool trans_##NAME(DisasContext *s, arg_rprrr_esz *a, uint32_t insn) \
4001 static gen_helper_sve_fmla * const fns[4] = { \
4002 NULL, gen_helper_sve_##name##_h, \
4003 gen_helper_sve_##name##_s, gen_helper_sve_##name##_d \
4005 return do_fmla(s, a, fns[a->esz]); \
4008 DO_FMLA(FMLA_zpzzz, fmla_zpzzz)
4009 DO_FMLA(FMLS_zpzzz, fmls_zpzzz)
4010 DO_FMLA(FNMLA_zpzzz, fnmla_zpzzz)
4011 DO_FMLA(FNMLS_zpzzz, fnmls_zpzzz)
4015 static bool trans_FCMLA_zpzzz(DisasContext *s,
4016 arg_FCMLA_zpzzz *a, uint32_t insn)
4018 static gen_helper_sve_fmla * const fns[3] = {
4019 gen_helper_sve_fcmla_zpzzz_h,
4020 gen_helper_sve_fcmla_zpzzz_s,
4021 gen_helper_sve_fcmla_zpzzz_d,
4027 if (sve_access_check(s)) {
4028 unsigned vsz = vec_full_reg_size(s);
4031 TCGv_ptr pg = tcg_temp_new_ptr();
4033 /* We would need 7 operands to pass these arguments "properly".
4034 * So we encode all the register numbers into the descriptor.
4036 desc = deposit32(a->rd, 5, 5, a->rn);
4037 desc = deposit32(desc, 10, 5, a->rm);
4038 desc = deposit32(desc, 15, 5, a->ra);
4039 desc = deposit32(desc, 20, 2, a->rot);
4040 desc = sextract32(desc, 0, 22);
4041 desc = simd_desc(vsz, vsz, desc);
4043 t_desc = tcg_const_i32(desc);
4044 tcg_gen_addi_ptr(pg, cpu_env, pred_full_reg_offset(s, a->pg));
4045 fns[a->esz - 1](cpu_env, pg, t_desc);
4046 tcg_temp_free_i32(t_desc);
4047 tcg_temp_free_ptr(pg);
4052 static bool trans_FCMLA_zzxz(DisasContext *s, arg_FCMLA_zzxz *a, uint32_t insn)
4054 static gen_helper_gvec_3_ptr * const fns[2] = {
4055 gen_helper_gvec_fcmlah_idx,
4056 gen_helper_gvec_fcmlas_idx,
4059 tcg_debug_assert(a->esz == 1 || a->esz == 2);
4060 tcg_debug_assert(a->rd == a->ra);
4061 if (sve_access_check(s)) {
4062 unsigned vsz = vec_full_reg_size(s);
4063 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
4064 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
4065 vec_full_reg_offset(s, a->rn),
4066 vec_full_reg_offset(s, a->rm),
4068 a->index * 4 + a->rot,
4070 tcg_temp_free_ptr(status);
4076 *** SVE Floating Point Unary Operations Predicated Group
4079 static bool do_zpz_ptr(DisasContext *s, int rd, int rn, int pg,
4080 bool is_fp16, gen_helper_gvec_3_ptr *fn)
4082 if (sve_access_check(s)) {
4083 unsigned vsz = vec_full_reg_size(s);
4084 TCGv_ptr status = get_fpstatus_ptr(is_fp16);
4085 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
4086 vec_full_reg_offset(s, rn),
4087 pred_full_reg_offset(s, pg),
4088 status, vsz, vsz, 0, fn);
4089 tcg_temp_free_ptr(status);
4094 static bool trans_FCVT_sh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4096 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_sh);
4099 static bool trans_FCVT_hs(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4101 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_hs);
4104 static bool trans_FCVT_dh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4106 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_dh);
4109 static bool trans_FCVT_hd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4111 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_hd);
4114 static bool trans_FCVT_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4116 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_ds);
4119 static bool trans_FCVT_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4121 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvt_sd);
4124 static bool trans_FCVTZS_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4126 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzs_hh);
4129 static bool trans_FCVTZU_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4131 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzu_hh);
4134 static bool trans_FCVTZS_hs(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4136 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzs_hs);
4139 static bool trans_FCVTZU_hs(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4141 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzu_hs);
4144 static bool trans_FCVTZS_hd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4146 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzs_hd);
4149 static bool trans_FCVTZU_hd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4151 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_fcvtzu_hd);
4154 static bool trans_FCVTZS_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4156 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_ss);
4159 static bool trans_FCVTZU_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4161 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_ss);
4164 static bool trans_FCVTZS_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4166 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_sd);
4169 static bool trans_FCVTZU_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4171 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_sd);
4174 static bool trans_FCVTZS_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4176 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_ds);
4179 static bool trans_FCVTZU_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4181 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_ds);
4184 static bool trans_FCVTZS_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4186 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzs_dd);
4189 static bool trans_FCVTZU_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4191 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_fcvtzu_dd);
4194 static gen_helper_gvec_3_ptr * const frint_fns[3] = {
4195 gen_helper_sve_frint_h,
4196 gen_helper_sve_frint_s,
4197 gen_helper_sve_frint_d
4200 static bool trans_FRINTI(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4205 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16,
4206 frint_fns[a->esz - 1]);
4209 static bool trans_FRINTX(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4211 static gen_helper_gvec_3_ptr * const fns[3] = {
4212 gen_helper_sve_frintx_h,
4213 gen_helper_sve_frintx_s,
4214 gen_helper_sve_frintx_d
4219 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16, fns[a->esz - 1]);
4222 static bool do_frint_mode(DisasContext *s, arg_rpr_esz *a, int mode)
4227 if (sve_access_check(s)) {
4228 unsigned vsz = vec_full_reg_size(s);
4229 TCGv_i32 tmode = tcg_const_i32(mode);
4230 TCGv_ptr status = get_fpstatus_ptr(a->esz == MO_16);
4232 gen_helper_set_rmode(tmode, tmode, status);
4234 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, a->rd),
4235 vec_full_reg_offset(s, a->rn),
4236 pred_full_reg_offset(s, a->pg),
4237 status, vsz, vsz, 0, frint_fns[a->esz - 1]);
4239 gen_helper_set_rmode(tmode, tmode, status);
4240 tcg_temp_free_i32(tmode);
4241 tcg_temp_free_ptr(status);
4246 static bool trans_FRINTN(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4248 return do_frint_mode(s, a, float_round_nearest_even);
4251 static bool trans_FRINTP(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4253 return do_frint_mode(s, a, float_round_up);
4256 static bool trans_FRINTM(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4258 return do_frint_mode(s, a, float_round_down);
4261 static bool trans_FRINTZ(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4263 return do_frint_mode(s, a, float_round_to_zero);
4266 static bool trans_FRINTA(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4268 return do_frint_mode(s, a, float_round_ties_away);
4271 static bool trans_FRECPX(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4273 static gen_helper_gvec_3_ptr * const fns[3] = {
4274 gen_helper_sve_frecpx_h,
4275 gen_helper_sve_frecpx_s,
4276 gen_helper_sve_frecpx_d
4281 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16, fns[a->esz - 1]);
4284 static bool trans_FSQRT(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4286 static gen_helper_gvec_3_ptr * const fns[3] = {
4287 gen_helper_sve_fsqrt_h,
4288 gen_helper_sve_fsqrt_s,
4289 gen_helper_sve_fsqrt_d
4294 return do_zpz_ptr(s, a->rd, a->rn, a->pg, a->esz == MO_16, fns[a->esz - 1]);
4297 static bool trans_SCVTF_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4299 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_scvt_hh);
4302 static bool trans_SCVTF_sh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4304 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_scvt_sh);
4307 static bool trans_SCVTF_dh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4309 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_scvt_dh);
4312 static bool trans_SCVTF_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4314 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_ss);
4317 static bool trans_SCVTF_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4319 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_ds);
4322 static bool trans_SCVTF_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4324 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_sd);
4327 static bool trans_SCVTF_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4329 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_scvt_dd);
4332 static bool trans_UCVTF_hh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4334 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_ucvt_hh);
4337 static bool trans_UCVTF_sh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4339 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_ucvt_sh);
4342 static bool trans_UCVTF_dh(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4344 return do_zpz_ptr(s, a->rd, a->rn, a->pg, true, gen_helper_sve_ucvt_dh);
4347 static bool trans_UCVTF_ss(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4349 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_ss);
4352 static bool trans_UCVTF_ds(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4354 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_ds);
4357 static bool trans_UCVTF_sd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4359 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_sd);
4362 static bool trans_UCVTF_dd(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
4364 return do_zpz_ptr(s, a->rd, a->rn, a->pg, false, gen_helper_sve_ucvt_dd);
4368 *** SVE Memory - 32-bit Gather and Unsized Contiguous Group
4371 /* Subroutine loading a vector register at VOFS of LEN bytes.
4372 * The load should begin at the address Rn + IMM.
4375 static void do_ldr(DisasContext *s, uint32_t vofs, int len, int rn, int imm)
4377 int len_align = QEMU_ALIGN_DOWN(len, 8);
4378 int len_remain = len % 8;
4379 int nparts = len / 8 + ctpop8(len_remain);
4380 int midx = get_mem_index(s);
4381 TCGv_i64 addr, t0, t1;
4383 addr = tcg_temp_new_i64();
4384 t0 = tcg_temp_new_i64();
4386 /* Note that unpredicated load/store of vector/predicate registers
4387 * are defined as a stream of bytes, which equates to little-endian
4388 * operations on larger quantities. There is no nice way to force
4389 * a little-endian load for aarch64_be-linux-user out of line.
4391 * Attempt to keep code expansion to a minimum by limiting the
4392 * amount of unrolling done.
4397 for (i = 0; i < len_align; i += 8) {
4398 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i);
4399 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
4400 tcg_gen_st_i64(t0, cpu_env, vofs + i);
4403 TCGLabel *loop = gen_new_label();
4404 TCGv_ptr tp, i = tcg_const_local_ptr(0);
4406 gen_set_label(loop);
4408 /* Minimize the number of local temps that must be re-read from
4409 * the stack each iteration. Instead, re-compute values other
4410 * than the loop counter.
4412 tp = tcg_temp_new_ptr();
4413 tcg_gen_addi_ptr(tp, i, imm);
4414 tcg_gen_extu_ptr_i64(addr, tp);
4415 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn));
4417 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEQ);
4419 tcg_gen_add_ptr(tp, cpu_env, i);
4420 tcg_gen_addi_ptr(i, i, 8);
4421 tcg_gen_st_i64(t0, tp, vofs);
4422 tcg_temp_free_ptr(tp);
4424 tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop);
4425 tcg_temp_free_ptr(i);
4428 /* Predicate register loads can be any multiple of 2.
4429 * Note that we still store the entire 64-bit unit into cpu_env.
4432 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align);
4434 switch (len_remain) {
4438 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LE | ctz32(len_remain));
4442 t1 = tcg_temp_new_i64();
4443 tcg_gen_qemu_ld_i64(t0, addr, midx, MO_LEUL);
4444 tcg_gen_addi_i64(addr, addr, 4);
4445 tcg_gen_qemu_ld_i64(t1, addr, midx, MO_LEUW);
4446 tcg_gen_deposit_i64(t0, t0, t1, 32, 32);
4447 tcg_temp_free_i64(t1);
4451 g_assert_not_reached();
4453 tcg_gen_st_i64(t0, cpu_env, vofs + len_align);
4455 tcg_temp_free_i64(addr);
4456 tcg_temp_free_i64(t0);
4459 /* Similarly for stores. */
4460 static void do_str(DisasContext *s, uint32_t vofs, int len, int rn, int imm)
4462 int len_align = QEMU_ALIGN_DOWN(len, 8);
4463 int len_remain = len % 8;
4464 int nparts = len / 8 + ctpop8(len_remain);
4465 int midx = get_mem_index(s);
4468 addr = tcg_temp_new_i64();
4469 t0 = tcg_temp_new_i64();
4471 /* Note that unpredicated load/store of vector/predicate registers
4472 * are defined as a stream of bytes, which equates to little-endian
4473 * operations on larger quantities. There is no nice way to force
4474 * a little-endian store for aarch64_be-linux-user out of line.
4476 * Attempt to keep code expansion to a minimum by limiting the
4477 * amount of unrolling done.
4482 for (i = 0; i < len_align; i += 8) {
4483 tcg_gen_ld_i64(t0, cpu_env, vofs + i);
4484 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + i);
4485 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEQ);
4488 TCGLabel *loop = gen_new_label();
4489 TCGv_ptr t2, i = tcg_const_local_ptr(0);
4491 gen_set_label(loop);
4493 t2 = tcg_temp_new_ptr();
4494 tcg_gen_add_ptr(t2, cpu_env, i);
4495 tcg_gen_ld_i64(t0, t2, vofs);
4497 /* Minimize the number of local temps that must be re-read from
4498 * the stack each iteration. Instead, re-compute values other
4499 * than the loop counter.
4501 tcg_gen_addi_ptr(t2, i, imm);
4502 tcg_gen_extu_ptr_i64(addr, t2);
4503 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, rn));
4504 tcg_temp_free_ptr(t2);
4506 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEQ);
4508 tcg_gen_addi_ptr(i, i, 8);
4510 tcg_gen_brcondi_ptr(TCG_COND_LTU, i, len_align, loop);
4511 tcg_temp_free_ptr(i);
4514 /* Predicate register stores can be any multiple of 2. */
4516 tcg_gen_ld_i64(t0, cpu_env, vofs + len_align);
4517 tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm + len_align);
4519 switch (len_remain) {
4523 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LE | ctz32(len_remain));
4527 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEUL);
4528 tcg_gen_addi_i64(addr, addr, 4);
4529 tcg_gen_shri_i64(t0, t0, 32);
4530 tcg_gen_qemu_st_i64(t0, addr, midx, MO_LEUW);
4534 g_assert_not_reached();
4537 tcg_temp_free_i64(addr);
4538 tcg_temp_free_i64(t0);
4541 static bool trans_LDR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
4543 if (sve_access_check(s)) {
4544 int size = vec_full_reg_size(s);
4545 int off = vec_full_reg_offset(s, a->rd);
4546 do_ldr(s, off, size, a->rn, a->imm * size);
4551 static bool trans_LDR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
4553 if (sve_access_check(s)) {
4554 int size = pred_full_reg_size(s);
4555 int off = pred_full_reg_offset(s, a->rd);
4556 do_ldr(s, off, size, a->rn, a->imm * size);
4561 static bool trans_STR_zri(DisasContext *s, arg_rri *a, uint32_t insn)
4563 if (sve_access_check(s)) {
4564 int size = vec_full_reg_size(s);
4565 int off = vec_full_reg_offset(s, a->rd);
4566 do_str(s, off, size, a->rn, a->imm * size);
4571 static bool trans_STR_pri(DisasContext *s, arg_rri *a, uint32_t insn)
4573 if (sve_access_check(s)) {
4574 int size = pred_full_reg_size(s);
4575 int off = pred_full_reg_offset(s, a->rd);
4576 do_str(s, off, size, a->rn, a->imm * size);
4582 *** SVE Memory - Contiguous Load Group
4585 /* The memory mode of the dtype. */
4586 static const TCGMemOp dtype_mop[16] = {
4587 MO_UB, MO_UB, MO_UB, MO_UB,
4588 MO_SL, MO_UW, MO_UW, MO_UW,
4589 MO_SW, MO_SW, MO_UL, MO_UL,
4590 MO_SB, MO_SB, MO_SB, MO_Q
4593 #define dtype_msz(x) (dtype_mop[x] & MO_SIZE)
4595 /* The vector element size of dtype. */
4596 static const uint8_t dtype_esz[16] = {
4603 static void do_mem_zpa(DisasContext *s, int zt, int pg, TCGv_i64 addr,
4604 gen_helper_gvec_mem *fn)
4606 unsigned vsz = vec_full_reg_size(s);
4610 /* For e.g. LD4, there are not enough arguments to pass all 4
4611 * registers as pointers, so encode the regno into the data field.
4612 * For consistency, do this even for LD1.
4614 desc = tcg_const_i32(simd_desc(vsz, vsz, zt));
4615 t_pg = tcg_temp_new_ptr();
4617 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
4618 fn(cpu_env, t_pg, addr, desc);
4620 tcg_temp_free_ptr(t_pg);
4621 tcg_temp_free_i32(desc);
4624 static void do_ld_zpa(DisasContext *s, int zt, int pg,
4625 TCGv_i64 addr, int dtype, int nreg)
4627 static gen_helper_gvec_mem * const fns[16][4] = {
4628 { gen_helper_sve_ld1bb_r, gen_helper_sve_ld2bb_r,
4629 gen_helper_sve_ld3bb_r, gen_helper_sve_ld4bb_r },
4630 { gen_helper_sve_ld1bhu_r, NULL, NULL, NULL },
4631 { gen_helper_sve_ld1bsu_r, NULL, NULL, NULL },
4632 { gen_helper_sve_ld1bdu_r, NULL, NULL, NULL },
4634 { gen_helper_sve_ld1sds_r, NULL, NULL, NULL },
4635 { gen_helper_sve_ld1hh_r, gen_helper_sve_ld2hh_r,
4636 gen_helper_sve_ld3hh_r, gen_helper_sve_ld4hh_r },
4637 { gen_helper_sve_ld1hsu_r, NULL, NULL, NULL },
4638 { gen_helper_sve_ld1hdu_r, NULL, NULL, NULL },
4640 { gen_helper_sve_ld1hds_r, NULL, NULL, NULL },
4641 { gen_helper_sve_ld1hss_r, NULL, NULL, NULL },
4642 { gen_helper_sve_ld1ss_r, gen_helper_sve_ld2ss_r,
4643 gen_helper_sve_ld3ss_r, gen_helper_sve_ld4ss_r },
4644 { gen_helper_sve_ld1sdu_r, NULL, NULL, NULL },
4646 { gen_helper_sve_ld1bds_r, NULL, NULL, NULL },
4647 { gen_helper_sve_ld1bss_r, NULL, NULL, NULL },
4648 { gen_helper_sve_ld1bhs_r, NULL, NULL, NULL },
4649 { gen_helper_sve_ld1dd_r, gen_helper_sve_ld2dd_r,
4650 gen_helper_sve_ld3dd_r, gen_helper_sve_ld4dd_r },
4652 gen_helper_gvec_mem *fn = fns[dtype][nreg];
4654 /* While there are holes in the table, they are not
4655 * accessible via the instruction encoding.
4658 do_mem_zpa(s, zt, pg, addr, fn);
4661 static bool trans_LD_zprr(DisasContext *s, arg_rprr_load *a, uint32_t insn)
4666 if (sve_access_check(s)) {
4667 TCGv_i64 addr = new_tmp_a64(s);
4668 tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), dtype_msz(a->dtype));
4669 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4670 do_ld_zpa(s, a->rd, a->pg, addr, a->dtype, a->nreg);
4675 static bool trans_LD_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4677 if (sve_access_check(s)) {
4678 int vsz = vec_full_reg_size(s);
4679 int elements = vsz >> dtype_esz[a->dtype];
4680 TCGv_i64 addr = new_tmp_a64(s);
4682 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn),
4683 (a->imm * elements * (a->nreg + 1))
4684 << dtype_msz(a->dtype));
4685 do_ld_zpa(s, a->rd, a->pg, addr, a->dtype, a->nreg);
4690 static bool trans_LDFF1_zprr(DisasContext *s, arg_rprr_load *a, uint32_t insn)
4692 static gen_helper_gvec_mem * const fns[16] = {
4693 gen_helper_sve_ldff1bb_r,
4694 gen_helper_sve_ldff1bhu_r,
4695 gen_helper_sve_ldff1bsu_r,
4696 gen_helper_sve_ldff1bdu_r,
4698 gen_helper_sve_ldff1sds_r,
4699 gen_helper_sve_ldff1hh_r,
4700 gen_helper_sve_ldff1hsu_r,
4701 gen_helper_sve_ldff1hdu_r,
4703 gen_helper_sve_ldff1hds_r,
4704 gen_helper_sve_ldff1hss_r,
4705 gen_helper_sve_ldff1ss_r,
4706 gen_helper_sve_ldff1sdu_r,
4708 gen_helper_sve_ldff1bds_r,
4709 gen_helper_sve_ldff1bss_r,
4710 gen_helper_sve_ldff1bhs_r,
4711 gen_helper_sve_ldff1dd_r,
4714 if (sve_access_check(s)) {
4715 TCGv_i64 addr = new_tmp_a64(s);
4716 tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), dtype_msz(a->dtype));
4717 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4718 do_mem_zpa(s, a->rd, a->pg, addr, fns[a->dtype]);
4723 static bool trans_LDNF1_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4725 static gen_helper_gvec_mem * const fns[16] = {
4726 gen_helper_sve_ldnf1bb_r,
4727 gen_helper_sve_ldnf1bhu_r,
4728 gen_helper_sve_ldnf1bsu_r,
4729 gen_helper_sve_ldnf1bdu_r,
4731 gen_helper_sve_ldnf1sds_r,
4732 gen_helper_sve_ldnf1hh_r,
4733 gen_helper_sve_ldnf1hsu_r,
4734 gen_helper_sve_ldnf1hdu_r,
4736 gen_helper_sve_ldnf1hds_r,
4737 gen_helper_sve_ldnf1hss_r,
4738 gen_helper_sve_ldnf1ss_r,
4739 gen_helper_sve_ldnf1sdu_r,
4741 gen_helper_sve_ldnf1bds_r,
4742 gen_helper_sve_ldnf1bss_r,
4743 gen_helper_sve_ldnf1bhs_r,
4744 gen_helper_sve_ldnf1dd_r,
4747 if (sve_access_check(s)) {
4748 int vsz = vec_full_reg_size(s);
4749 int elements = vsz >> dtype_esz[a->dtype];
4750 int off = (a->imm * elements) << dtype_msz(a->dtype);
4751 TCGv_i64 addr = new_tmp_a64(s);
4753 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn), off);
4754 do_mem_zpa(s, a->rd, a->pg, addr, fns[a->dtype]);
4759 static void do_ldrq(DisasContext *s, int zt, int pg, TCGv_i64 addr, int msz)
4761 static gen_helper_gvec_mem * const fns[4] = {
4762 gen_helper_sve_ld1bb_r, gen_helper_sve_ld1hh_r,
4763 gen_helper_sve_ld1ss_r, gen_helper_sve_ld1dd_r,
4765 unsigned vsz = vec_full_reg_size(s);
4770 /* Load the first quadword using the normal predicated load helpers. */
4771 desc = tcg_const_i32(simd_desc(16, 16, zt));
4773 poff = pred_full_reg_offset(s, pg);
4776 * Zero-extend the first 16 bits of the predicate into a temporary.
4777 * This avoids triggering an assert making sure we don't have bits
4778 * set within a predicate beyond VQ, but we have lowered VQ to 1
4779 * for this load operation.
4781 TCGv_i64 tmp = tcg_temp_new_i64();
4782 #ifdef HOST_WORDS_BIGENDIAN
4785 tcg_gen_ld16u_i64(tmp, cpu_env, poff);
4787 poff = offsetof(CPUARMState, vfp.preg_tmp);
4788 tcg_gen_st_i64(tmp, cpu_env, poff);
4789 tcg_temp_free_i64(tmp);
4792 t_pg = tcg_temp_new_ptr();
4793 tcg_gen_addi_ptr(t_pg, cpu_env, poff);
4795 fns[msz](cpu_env, t_pg, addr, desc);
4797 tcg_temp_free_ptr(t_pg);
4798 tcg_temp_free_i32(desc);
4800 /* Replicate that first quadword. */
4802 unsigned dofs = vec_full_reg_offset(s, zt);
4803 tcg_gen_gvec_dup_mem(4, dofs + 16, dofs, vsz - 16, vsz - 16);
4807 static bool trans_LD1RQ_zprr(DisasContext *s, arg_rprr_load *a, uint32_t insn)
4812 if (sve_access_check(s)) {
4813 int msz = dtype_msz(a->dtype);
4814 TCGv_i64 addr = new_tmp_a64(s);
4815 tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), msz);
4816 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4817 do_ldrq(s, a->rd, a->pg, addr, msz);
4822 static bool trans_LD1RQ_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4824 if (sve_access_check(s)) {
4825 TCGv_i64 addr = new_tmp_a64(s);
4826 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn), a->imm * 16);
4827 do_ldrq(s, a->rd, a->pg, addr, dtype_msz(a->dtype));
4832 /* Load and broadcast element. */
4833 static bool trans_LD1R_zpri(DisasContext *s, arg_rpri_load *a, uint32_t insn)
4835 if (!sve_access_check(s)) {
4839 unsigned vsz = vec_full_reg_size(s);
4840 unsigned psz = pred_full_reg_size(s);
4841 unsigned esz = dtype_esz[a->dtype];
4842 unsigned msz = dtype_msz(a->dtype);
4843 TCGLabel *over = gen_new_label();
4846 /* If the guarding predicate has no bits set, no load occurs. */
4848 /* Reduce the pred_esz_masks value simply to reduce the
4849 * size of the code generated here.
4851 uint64_t psz_mask = MAKE_64BIT_MASK(0, psz * 8);
4852 temp = tcg_temp_new_i64();
4853 tcg_gen_ld_i64(temp, cpu_env, pred_full_reg_offset(s, a->pg));
4854 tcg_gen_andi_i64(temp, temp, pred_esz_masks[esz] & psz_mask);
4855 tcg_gen_brcondi_i64(TCG_COND_EQ, temp, 0, over);
4856 tcg_temp_free_i64(temp);
4858 TCGv_i32 t32 = tcg_temp_new_i32();
4859 find_last_active(s, t32, esz, a->pg);
4860 tcg_gen_brcondi_i32(TCG_COND_LT, t32, 0, over);
4861 tcg_temp_free_i32(t32);
4864 /* Load the data. */
4865 temp = tcg_temp_new_i64();
4866 tcg_gen_addi_i64(temp, cpu_reg_sp(s, a->rn), a->imm << msz);
4867 tcg_gen_qemu_ld_i64(temp, temp, get_mem_index(s),
4868 s->be_data | dtype_mop[a->dtype]);
4870 /* Broadcast to *all* elements. */
4871 tcg_gen_gvec_dup_i64(esz, vec_full_reg_offset(s, a->rd),
4873 tcg_temp_free_i64(temp);
4875 /* Zero the inactive elements. */
4876 gen_set_label(over);
4877 do_movz_zpz(s, a->rd, a->rd, a->pg, esz);
4881 static void do_st_zpa(DisasContext *s, int zt, int pg, TCGv_i64 addr,
4882 int msz, int esz, int nreg)
4884 static gen_helper_gvec_mem * const fn_single[4][4] = {
4885 { gen_helper_sve_st1bb_r, gen_helper_sve_st1bh_r,
4886 gen_helper_sve_st1bs_r, gen_helper_sve_st1bd_r },
4887 { NULL, gen_helper_sve_st1hh_r,
4888 gen_helper_sve_st1hs_r, gen_helper_sve_st1hd_r },
4890 gen_helper_sve_st1ss_r, gen_helper_sve_st1sd_r },
4891 { NULL, NULL, NULL, gen_helper_sve_st1dd_r },
4893 static gen_helper_gvec_mem * const fn_multiple[3][4] = {
4894 { gen_helper_sve_st2bb_r, gen_helper_sve_st2hh_r,
4895 gen_helper_sve_st2ss_r, gen_helper_sve_st2dd_r },
4896 { gen_helper_sve_st3bb_r, gen_helper_sve_st3hh_r,
4897 gen_helper_sve_st3ss_r, gen_helper_sve_st3dd_r },
4898 { gen_helper_sve_st4bb_r, gen_helper_sve_st4hh_r,
4899 gen_helper_sve_st4ss_r, gen_helper_sve_st4dd_r },
4901 gen_helper_gvec_mem *fn;
4905 fn = fn_single[msz][esz];
4907 /* ST2, ST3, ST4 -- msz == esz, enforced by encoding */
4909 fn = fn_multiple[nreg - 1][msz];
4912 do_mem_zpa(s, zt, pg, addr, fn);
4915 static bool trans_ST_zprr(DisasContext *s, arg_rprr_store *a, uint32_t insn)
4917 if (a->rm == 31 || a->msz > a->esz) {
4920 if (sve_access_check(s)) {
4921 TCGv_i64 addr = new_tmp_a64(s);
4922 tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), a->msz);
4923 tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
4924 do_st_zpa(s, a->rd, a->pg, addr, a->msz, a->esz, a->nreg);
4929 static bool trans_ST_zpri(DisasContext *s, arg_rpri_store *a, uint32_t insn)
4931 if (a->msz > a->esz) {
4934 if (sve_access_check(s)) {
4935 int vsz = vec_full_reg_size(s);
4936 int elements = vsz >> a->esz;
4937 TCGv_i64 addr = new_tmp_a64(s);
4939 tcg_gen_addi_i64(addr, cpu_reg_sp(s, a->rn),
4940 (a->imm * elements * (a->nreg + 1)) << a->msz);
4941 do_st_zpa(s, a->rd, a->pg, addr, a->msz, a->esz, a->nreg);
4947 *** SVE gather loads / scatter stores
4950 static void do_mem_zpz(DisasContext *s, int zt, int pg, int zm, int scale,
4951 TCGv_i64 scalar, gen_helper_gvec_mem_scatter *fn)
4953 unsigned vsz = vec_full_reg_size(s);
4954 TCGv_i32 desc = tcg_const_i32(simd_desc(vsz, vsz, scale));
4955 TCGv_ptr t_zm = tcg_temp_new_ptr();
4956 TCGv_ptr t_pg = tcg_temp_new_ptr();
4957 TCGv_ptr t_zt = tcg_temp_new_ptr();
4959 tcg_gen_addi_ptr(t_pg, cpu_env, pred_full_reg_offset(s, pg));
4960 tcg_gen_addi_ptr(t_zm, cpu_env, vec_full_reg_offset(s, zm));
4961 tcg_gen_addi_ptr(t_zt, cpu_env, vec_full_reg_offset(s, zt));
4962 fn(cpu_env, t_zt, t_pg, t_zm, scalar, desc);
4964 tcg_temp_free_ptr(t_zt);
4965 tcg_temp_free_ptr(t_zm);
4966 tcg_temp_free_ptr(t_pg);
4967 tcg_temp_free_i32(desc);
4970 /* Indexed by [ff][xs][u][msz]. */
4971 static gen_helper_gvec_mem_scatter * const gather_load_fn32[2][2][2][3] = {
4972 { { { gen_helper_sve_ldbss_zsu,
4973 gen_helper_sve_ldhss_zsu,
4975 { gen_helper_sve_ldbsu_zsu,
4976 gen_helper_sve_ldhsu_zsu,
4977 gen_helper_sve_ldssu_zsu, } },
4978 { { gen_helper_sve_ldbss_zss,
4979 gen_helper_sve_ldhss_zss,
4981 { gen_helper_sve_ldbsu_zss,
4982 gen_helper_sve_ldhsu_zss,
4983 gen_helper_sve_ldssu_zss, } } },
4985 { { { gen_helper_sve_ldffbss_zsu,
4986 gen_helper_sve_ldffhss_zsu,
4988 { gen_helper_sve_ldffbsu_zsu,
4989 gen_helper_sve_ldffhsu_zsu,
4990 gen_helper_sve_ldffssu_zsu, } },
4991 { { gen_helper_sve_ldffbss_zss,
4992 gen_helper_sve_ldffhss_zss,
4994 { gen_helper_sve_ldffbsu_zss,
4995 gen_helper_sve_ldffhsu_zss,
4996 gen_helper_sve_ldffssu_zss, } } }
4999 /* Note that we overload xs=2 to indicate 64-bit offset. */
5000 static gen_helper_gvec_mem_scatter * const gather_load_fn64[2][3][2][4] = {
5001 { { { gen_helper_sve_ldbds_zsu,
5002 gen_helper_sve_ldhds_zsu,
5003 gen_helper_sve_ldsds_zsu,
5005 { gen_helper_sve_ldbdu_zsu,
5006 gen_helper_sve_ldhdu_zsu,
5007 gen_helper_sve_ldsdu_zsu,
5008 gen_helper_sve_ldddu_zsu, } },
5009 { { gen_helper_sve_ldbds_zss,
5010 gen_helper_sve_ldhds_zss,
5011 gen_helper_sve_ldsds_zss,
5013 { gen_helper_sve_ldbdu_zss,
5014 gen_helper_sve_ldhdu_zss,
5015 gen_helper_sve_ldsdu_zss,
5016 gen_helper_sve_ldddu_zss, } },
5017 { { gen_helper_sve_ldbds_zd,
5018 gen_helper_sve_ldhds_zd,
5019 gen_helper_sve_ldsds_zd,
5021 { gen_helper_sve_ldbdu_zd,
5022 gen_helper_sve_ldhdu_zd,
5023 gen_helper_sve_ldsdu_zd,
5024 gen_helper_sve_ldddu_zd, } } },
5026 { { { gen_helper_sve_ldffbds_zsu,
5027 gen_helper_sve_ldffhds_zsu,
5028 gen_helper_sve_ldffsds_zsu,
5030 { gen_helper_sve_ldffbdu_zsu,
5031 gen_helper_sve_ldffhdu_zsu,
5032 gen_helper_sve_ldffsdu_zsu,
5033 gen_helper_sve_ldffddu_zsu, } },
5034 { { gen_helper_sve_ldffbds_zss,
5035 gen_helper_sve_ldffhds_zss,
5036 gen_helper_sve_ldffsds_zss,
5038 { gen_helper_sve_ldffbdu_zss,
5039 gen_helper_sve_ldffhdu_zss,
5040 gen_helper_sve_ldffsdu_zss,
5041 gen_helper_sve_ldffddu_zss, } },
5042 { { gen_helper_sve_ldffbds_zd,
5043 gen_helper_sve_ldffhds_zd,
5044 gen_helper_sve_ldffsds_zd,
5046 { gen_helper_sve_ldffbdu_zd,
5047 gen_helper_sve_ldffhdu_zd,
5048 gen_helper_sve_ldffsdu_zd,
5049 gen_helper_sve_ldffddu_zd, } } }
5052 static bool trans_LD1_zprz(DisasContext *s, arg_LD1_zprz *a, uint32_t insn)
5054 gen_helper_gvec_mem_scatter *fn = NULL;
5056 if (!sve_access_check(s)) {
5062 fn = gather_load_fn32[a->ff][a->xs][a->u][a->msz];
5065 fn = gather_load_fn64[a->ff][a->xs][a->u][a->msz];
5070 do_mem_zpz(s, a->rd, a->pg, a->rm, a->scale * a->msz,
5071 cpu_reg_sp(s, a->rn), fn);
5075 static bool trans_LD1_zpiz(DisasContext *s, arg_LD1_zpiz *a, uint32_t insn)
5077 gen_helper_gvec_mem_scatter *fn = NULL;
5080 if (a->esz < a->msz || (a->esz == a->msz && !a->u)) {
5083 if (!sve_access_check(s)) {
5089 fn = gather_load_fn32[a->ff][0][a->u][a->msz];
5092 fn = gather_load_fn64[a->ff][2][a->u][a->msz];
5097 /* Treat LD1_zpiz (zn[x] + imm) the same way as LD1_zprz (rn + zm[x])
5098 * by loading the immediate into the scalar parameter.
5100 imm = tcg_const_i64(a->imm << a->msz);
5101 do_mem_zpz(s, a->rd, a->pg, a->rn, 0, imm, fn);
5102 tcg_temp_free_i64(imm);
5106 /* Indexed by [xs][msz]. */
5107 static gen_helper_gvec_mem_scatter * const scatter_store_fn32[2][3] = {
5108 { gen_helper_sve_stbs_zsu,
5109 gen_helper_sve_sths_zsu,
5110 gen_helper_sve_stss_zsu, },
5111 { gen_helper_sve_stbs_zss,
5112 gen_helper_sve_sths_zss,
5113 gen_helper_sve_stss_zss, },
5116 /* Note that we overload xs=2 to indicate 64-bit offset. */
5117 static gen_helper_gvec_mem_scatter * const scatter_store_fn64[3][4] = {
5118 { gen_helper_sve_stbd_zsu,
5119 gen_helper_sve_sthd_zsu,
5120 gen_helper_sve_stsd_zsu,
5121 gen_helper_sve_stdd_zsu, },
5122 { gen_helper_sve_stbd_zss,
5123 gen_helper_sve_sthd_zss,
5124 gen_helper_sve_stsd_zss,
5125 gen_helper_sve_stdd_zss, },
5126 { gen_helper_sve_stbd_zd,
5127 gen_helper_sve_sthd_zd,
5128 gen_helper_sve_stsd_zd,
5129 gen_helper_sve_stdd_zd, },
5132 static bool trans_ST1_zprz(DisasContext *s, arg_ST1_zprz *a, uint32_t insn)
5134 gen_helper_gvec_mem_scatter *fn;
5136 if (a->esz < a->msz || (a->msz == 0 && a->scale)) {
5139 if (!sve_access_check(s)) {
5144 fn = scatter_store_fn32[a->xs][a->msz];
5147 fn = scatter_store_fn64[a->xs][a->msz];
5150 g_assert_not_reached();
5152 do_mem_zpz(s, a->rd, a->pg, a->rm, a->scale * a->msz,
5153 cpu_reg_sp(s, a->rn), fn);
5157 static bool trans_ST1_zpiz(DisasContext *s, arg_ST1_zpiz *a, uint32_t insn)
5159 gen_helper_gvec_mem_scatter *fn = NULL;
5162 if (a->esz < a->msz) {
5165 if (!sve_access_check(s)) {
5171 fn = scatter_store_fn32[0][a->msz];
5174 fn = scatter_store_fn64[2][a->msz];
5179 /* Treat ST1_zpiz (zn[x] + imm) the same way as ST1_zprz (rn + zm[x])
5180 * by loading the immediate into the scalar parameter.
5182 imm = tcg_const_i64(a->imm << a->msz);
5183 do_mem_zpz(s, a->rd, a->pg, a->rn, 0, imm, fn);
5184 tcg_temp_free_i64(imm);
5192 static bool trans_PRF(DisasContext *s, arg_PRF *a, uint32_t insn)
5194 /* Prefetch is a nop within QEMU. */
5195 (void)sve_access_check(s);
5199 static bool trans_PRF_rr(DisasContext *s, arg_PRF_rr *a, uint32_t insn)
5204 /* Prefetch is a nop within QEMU. */
5205 (void)sve_access_check(s);
5212 * TODO: The implementation so far could handle predicated merging movprfx.
5213 * The helper functions as written take an extra source register to
5214 * use in the operation, but the result is only written when predication
5215 * succeeds. For unpredicated movprfx, we need to rearrange the helpers
5216 * to allow the final write back to the destination to be unconditional.
5217 * For predicated zeroing movprfx, we need to rearrange the helpers to
5218 * allow the final write back to zero inactives.
5220 * In the meantime, just emit the moves.
5223 static bool trans_MOVPRFX(DisasContext *s, arg_MOVPRFX *a, uint32_t insn)
5225 return do_mov_z(s, a->rd, a->rn);
5228 static bool trans_MOVPRFX_m(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
5230 if (sve_access_check(s)) {
5231 do_sel_z(s, a->rd, a->rn, a->rd, a->pg, a->esz);
5236 static bool trans_MOVPRFX_z(DisasContext *s, arg_rpr_esz *a, uint32_t insn)
5238 if (sve_access_check(s)) {
5239 do_movz_zpz(s, a->rd, a->rn, a->pg, a->esz);