]> Git Repo - qemu.git/blob - target/arm/cpu.c
target/arm: Implement ARMv8M's PMSAv8 registers
[qemu.git] / target / arm / cpu.c
1 /*
2  * QEMU ARM CPU
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20
21 #include "qemu/osdep.h"
22 #include "qemu/error-report.h"
23 #include "qapi/error.h"
24 #include "cpu.h"
25 #include "internals.h"
26 #include "qemu-common.h"
27 #include "exec/exec-all.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/loader.h"
31 #endif
32 #include "hw/arm/arm.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/hw_accel.h"
35 #include "kvm_arm.h"
36
37 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
38 {
39     ARMCPU *cpu = ARM_CPU(cs);
40
41     cpu->env.regs[15] = value;
42 }
43
44 static bool arm_cpu_has_work(CPUState *cs)
45 {
46     ARMCPU *cpu = ARM_CPU(cs);
47
48     return (cpu->power_state != PSCI_OFF)
49         && cs->interrupt_request &
50         (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
51          | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
52          | CPU_INTERRUPT_EXITTB);
53 }
54
55 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
56                                  void *opaque)
57 {
58     /* We currently only support registering a single hook function */
59     assert(!cpu->el_change_hook);
60     cpu->el_change_hook = hook;
61     cpu->el_change_hook_opaque = opaque;
62 }
63
64 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
65 {
66     /* Reset a single ARMCPRegInfo register */
67     ARMCPRegInfo *ri = value;
68     ARMCPU *cpu = opaque;
69
70     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
71         return;
72     }
73
74     if (ri->resetfn) {
75         ri->resetfn(&cpu->env, ri);
76         return;
77     }
78
79     /* A zero offset is never possible as it would be regs[0]
80      * so we use it to indicate that reset is being handled elsewhere.
81      * This is basically only used for fields in non-core coprocessors
82      * (like the pxa2xx ones).
83      */
84     if (!ri->fieldoffset) {
85         return;
86     }
87
88     if (cpreg_field_is_64bit(ri)) {
89         CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
90     } else {
91         CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
92     }
93 }
94
95 static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
96 {
97     /* Purely an assertion check: we've already done reset once,
98      * so now check that running the reset for the cpreg doesn't
99      * change its value. This traps bugs where two different cpregs
100      * both try to reset the same state field but to different values.
101      */
102     ARMCPRegInfo *ri = value;
103     ARMCPU *cpu = opaque;
104     uint64_t oldvalue, newvalue;
105
106     if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
107         return;
108     }
109
110     oldvalue = read_raw_cp_reg(&cpu->env, ri);
111     cp_reg_reset(key, value, opaque);
112     newvalue = read_raw_cp_reg(&cpu->env, ri);
113     assert(oldvalue == newvalue);
114 }
115
116 /* CPUClass::reset() */
117 static void arm_cpu_reset(CPUState *s)
118 {
119     ARMCPU *cpu = ARM_CPU(s);
120     ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
121     CPUARMState *env = &cpu->env;
122
123     acc->parent_reset(s);
124
125     memset(env, 0, offsetof(CPUARMState, end_reset_fields));
126
127     g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
128     g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
129
130     env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
131     env->vfp.xregs[ARM_VFP_MVFR0] = cpu->mvfr0;
132     env->vfp.xregs[ARM_VFP_MVFR1] = cpu->mvfr1;
133     env->vfp.xregs[ARM_VFP_MVFR2] = cpu->mvfr2;
134
135     cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
136     s->halted = cpu->start_powered_off;
137
138     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
139         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
140     }
141
142     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
143         /* 64 bit CPUs always start in 64 bit mode */
144         env->aarch64 = 1;
145 #if defined(CONFIG_USER_ONLY)
146         env->pstate = PSTATE_MODE_EL0t;
147         /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
148         env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
149         /* and to the FP/Neon instructions */
150         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
151 #else
152         /* Reset into the highest available EL */
153         if (arm_feature(env, ARM_FEATURE_EL3)) {
154             env->pstate = PSTATE_MODE_EL3h;
155         } else if (arm_feature(env, ARM_FEATURE_EL2)) {
156             env->pstate = PSTATE_MODE_EL2h;
157         } else {
158             env->pstate = PSTATE_MODE_EL1h;
159         }
160         env->pc = cpu->rvbar;
161 #endif
162     } else {
163 #if defined(CONFIG_USER_ONLY)
164         /* Userspace expects access to cp10 and cp11 for FP/Neon */
165         env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
166 #endif
167     }
168
169 #if defined(CONFIG_USER_ONLY)
170     env->uncached_cpsr = ARM_CPU_MODE_USR;
171     /* For user mode we must enable access to coprocessors */
172     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
173     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
174         env->cp15.c15_cpar = 3;
175     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
176         env->cp15.c15_cpar = 1;
177     }
178 #else
179     /* SVC mode with interrupts disabled.  */
180     env->uncached_cpsr = ARM_CPU_MODE_SVC;
181     env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
182
183     if (arm_feature(env, ARM_FEATURE_M)) {
184         uint32_t initial_msp; /* Loaded from 0x0 */
185         uint32_t initial_pc; /* Loaded from 0x4 */
186         uint8_t *rom;
187
188         /* The reset value of this bit is IMPDEF, but ARM recommends
189          * that it resets to 1, so QEMU always does that rather than making
190          * it dependent on CPU model.
191          */
192         env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
193
194         /* Unlike A/R profile, M profile defines the reset LR value */
195         env->regs[14] = 0xffffffff;
196
197         /* Load the initial SP and PC from the vector table at address 0 */
198         rom = rom_ptr(0);
199         if (rom) {
200             /* Address zero is covered by ROM which hasn't yet been
201              * copied into physical memory.
202              */
203             initial_msp = ldl_p(rom);
204             initial_pc = ldl_p(rom + 4);
205         } else {
206             /* Address zero not covered by a ROM blob, or the ROM blob
207              * is in non-modifiable memory and this is a second reset after
208              * it got copied into memory. In the latter case, rom_ptr
209              * will return a NULL pointer and we should use ldl_phys instead.
210              */
211             initial_msp = ldl_phys(s->as, 0);
212             initial_pc = ldl_phys(s->as, 4);
213         }
214
215         env->regs[13] = initial_msp & 0xFFFFFFFC;
216         env->regs[15] = initial_pc & ~1;
217         env->thumb = initial_pc & 1;
218     }
219
220     /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
221      * executing as AArch32 then check if highvecs are enabled and
222      * adjust the PC accordingly.
223      */
224     if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
225         env->regs[15] = 0xFFFF0000;
226     }
227
228     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
229 #endif
230
231     if (arm_feature(env, ARM_FEATURE_PMSA)) {
232         if (cpu->pmsav7_dregion > 0) {
233             if (arm_feature(env, ARM_FEATURE_V8)) {
234                 memset(env->pmsav8.rbar, 0,
235                        sizeof(*env->pmsav8.rbar) * cpu->pmsav7_dregion);
236                 memset(env->pmsav8.rlar, 0,
237                        sizeof(*env->pmsav8.rlar) * cpu->pmsav7_dregion);
238             } else if (arm_feature(env, ARM_FEATURE_V7)) {
239                 memset(env->pmsav7.drbar, 0,
240                        sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
241                 memset(env->pmsav7.drsr, 0,
242                        sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
243                 memset(env->pmsav7.dracr, 0,
244                        sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
245             }
246         }
247         env->pmsav7.rnr = 0;
248         env->pmsav8.mair0 = 0;
249         env->pmsav8.mair1 = 0;
250     }
251
252     set_flush_to_zero(1, &env->vfp.standard_fp_status);
253     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
254     set_default_nan_mode(1, &env->vfp.standard_fp_status);
255     set_float_detect_tininess(float_tininess_before_rounding,
256                               &env->vfp.fp_status);
257     set_float_detect_tininess(float_tininess_before_rounding,
258                               &env->vfp.standard_fp_status);
259 #ifndef CONFIG_USER_ONLY
260     if (kvm_enabled()) {
261         kvm_arm_reset_vcpu(cpu);
262     }
263 #endif
264
265     hw_breakpoint_update_all(cpu);
266     hw_watchpoint_update_all(cpu);
267 }
268
269 bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
270 {
271     CPUClass *cc = CPU_GET_CLASS(cs);
272     CPUARMState *env = cs->env_ptr;
273     uint32_t cur_el = arm_current_el(env);
274     bool secure = arm_is_secure(env);
275     uint32_t target_el;
276     uint32_t excp_idx;
277     bool ret = false;
278
279     if (interrupt_request & CPU_INTERRUPT_FIQ) {
280         excp_idx = EXCP_FIQ;
281         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
282         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
283             cs->exception_index = excp_idx;
284             env->exception.target_el = target_el;
285             cc->do_interrupt(cs);
286             ret = true;
287         }
288     }
289     if (interrupt_request & CPU_INTERRUPT_HARD) {
290         excp_idx = EXCP_IRQ;
291         target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
292         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
293             cs->exception_index = excp_idx;
294             env->exception.target_el = target_el;
295             cc->do_interrupt(cs);
296             ret = true;
297         }
298     }
299     if (interrupt_request & CPU_INTERRUPT_VIRQ) {
300         excp_idx = EXCP_VIRQ;
301         target_el = 1;
302         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
303             cs->exception_index = excp_idx;
304             env->exception.target_el = target_el;
305             cc->do_interrupt(cs);
306             ret = true;
307         }
308     }
309     if (interrupt_request & CPU_INTERRUPT_VFIQ) {
310         excp_idx = EXCP_VFIQ;
311         target_el = 1;
312         if (arm_excp_unmasked(cs, excp_idx, target_el)) {
313             cs->exception_index = excp_idx;
314             env->exception.target_el = target_el;
315             cc->do_interrupt(cs);
316             ret = true;
317         }
318     }
319
320     return ret;
321 }
322
323 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
324 static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
325 {
326     CPUClass *cc = CPU_GET_CLASS(cs);
327     ARMCPU *cpu = ARM_CPU(cs);
328     CPUARMState *env = &cpu->env;
329     bool ret = false;
330
331     /* ARMv7-M interrupt masking works differently than -A or -R.
332      * There is no FIQ/IRQ distinction. Instead of I and F bits
333      * masking FIQ and IRQ interrupts, an exception is taken only
334      * if it is higher priority than the current execution priority
335      * (which depends on state like BASEPRI, FAULTMASK and the
336      * currently active exception).
337      */
338     if (interrupt_request & CPU_INTERRUPT_HARD
339         && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
340         cs->exception_index = EXCP_IRQ;
341         cc->do_interrupt(cs);
342         ret = true;
343     }
344     return ret;
345 }
346 #endif
347
348 #ifndef CONFIG_USER_ONLY
349 static void arm_cpu_set_irq(void *opaque, int irq, int level)
350 {
351     ARMCPU *cpu = opaque;
352     CPUARMState *env = &cpu->env;
353     CPUState *cs = CPU(cpu);
354     static const int mask[] = {
355         [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
356         [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
357         [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
358         [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
359     };
360
361     switch (irq) {
362     case ARM_CPU_VIRQ:
363     case ARM_CPU_VFIQ:
364         assert(arm_feature(env, ARM_FEATURE_EL2));
365         /* fall through */
366     case ARM_CPU_IRQ:
367     case ARM_CPU_FIQ:
368         if (level) {
369             cpu_interrupt(cs, mask[irq]);
370         } else {
371             cpu_reset_interrupt(cs, mask[irq]);
372         }
373         break;
374     default:
375         g_assert_not_reached();
376     }
377 }
378
379 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
380 {
381 #ifdef CONFIG_KVM
382     ARMCPU *cpu = opaque;
383     CPUState *cs = CPU(cpu);
384     int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
385
386     switch (irq) {
387     case ARM_CPU_IRQ:
388         kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
389         break;
390     case ARM_CPU_FIQ:
391         kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
392         break;
393     default:
394         g_assert_not_reached();
395     }
396     kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
397     kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
398 #endif
399 }
400
401 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
402 {
403     ARMCPU *cpu = ARM_CPU(cs);
404     CPUARMState *env = &cpu->env;
405
406     cpu_synchronize_state(cs);
407     return arm_cpu_data_is_big_endian(env);
408 }
409
410 #endif
411
412 static inline void set_feature(CPUARMState *env, int feature)
413 {
414     env->features |= 1ULL << feature;
415 }
416
417 static inline void unset_feature(CPUARMState *env, int feature)
418 {
419     env->features &= ~(1ULL << feature);
420 }
421
422 static int
423 print_insn_thumb1(bfd_vma pc, disassemble_info *info)
424 {
425   return print_insn_arm(pc | 1, info);
426 }
427
428 static int arm_read_memory_func(bfd_vma memaddr, bfd_byte *b,
429                                 int length, struct disassemble_info *info)
430 {
431     assert(info->read_memory_inner_func);
432     assert((info->flags & INSN_ARM_BE32) == 0 || length == 2 || length == 4);
433
434     if ((info->flags & INSN_ARM_BE32) != 0 && length == 2) {
435         assert(info->endian == BFD_ENDIAN_LITTLE);
436         return info->read_memory_inner_func(memaddr ^ 2, (bfd_byte *)b, 2,
437                                             info);
438     } else {
439         return info->read_memory_inner_func(memaddr, b, length, info);
440     }
441 }
442
443 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
444 {
445     ARMCPU *ac = ARM_CPU(cpu);
446     CPUARMState *env = &ac->env;
447
448     if (is_a64(env)) {
449         /* We might not be compiled with the A64 disassembler
450          * because it needs a C++ compiler. Leave print_insn
451          * unset in this case to use the caller default behaviour.
452          */
453 #if defined(CONFIG_ARM_A64_DIS)
454         info->print_insn = print_insn_arm_a64;
455 #endif
456     } else if (env->thumb) {
457         info->print_insn = print_insn_thumb1;
458     } else {
459         info->print_insn = print_insn_arm;
460     }
461     if (bswap_code(arm_sctlr_b(env))) {
462 #ifdef TARGET_WORDS_BIGENDIAN
463         info->endian = BFD_ENDIAN_LITTLE;
464 #else
465         info->endian = BFD_ENDIAN_BIG;
466 #endif
467     }
468     if (info->read_memory_inner_func == NULL) {
469         info->read_memory_inner_func = info->read_memory_func;
470         info->read_memory_func = arm_read_memory_func;
471     }
472     info->flags &= ~INSN_ARM_BE32;
473     if (arm_sctlr_b(env)) {
474         info->flags |= INSN_ARM_BE32;
475     }
476 }
477
478 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
479 {
480     uint32_t Aff1 = idx / clustersz;
481     uint32_t Aff0 = idx % clustersz;
482     return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
483 }
484
485 static void arm_cpu_initfn(Object *obj)
486 {
487     CPUState *cs = CPU(obj);
488     ARMCPU *cpu = ARM_CPU(obj);
489     static bool inited;
490
491     cs->env_ptr = &cpu->env;
492     cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
493                                          g_free, g_free);
494
495 #ifndef CONFIG_USER_ONLY
496     /* Our inbound IRQ and FIQ lines */
497     if (kvm_enabled()) {
498         /* VIRQ and VFIQ are unused with KVM but we add them to maintain
499          * the same interface as non-KVM CPUs.
500          */
501         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
502     } else {
503         qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
504     }
505
506     cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
507                                                 arm_gt_ptimer_cb, cpu);
508     cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
509                                                 arm_gt_vtimer_cb, cpu);
510     cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
511                                                 arm_gt_htimer_cb, cpu);
512     cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
513                                                 arm_gt_stimer_cb, cpu);
514     qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
515                        ARRAY_SIZE(cpu->gt_timer_outputs));
516
517     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
518                              "gicv3-maintenance-interrupt", 1);
519     qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
520                              "pmu-interrupt", 1);
521 #endif
522
523     /* DTB consumers generally don't in fact care what the 'compatible'
524      * string is, so always provide some string and trust that a hypothetical
525      * picky DTB consumer will also provide a helpful error message.
526      */
527     cpu->dtb_compatible = "qemu,unknown";
528     cpu->psci_version = 1; /* By default assume PSCI v0.1 */
529     cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
530
531     if (tcg_enabled()) {
532         cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
533         if (!inited) {
534             inited = true;
535             arm_translate_init();
536         }
537     }
538 }
539
540 static Property arm_cpu_reset_cbar_property =
541             DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
542
543 static Property arm_cpu_reset_hivecs_property =
544             DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
545
546 static Property arm_cpu_rvbar_property =
547             DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
548
549 static Property arm_cpu_has_el2_property =
550             DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
551
552 static Property arm_cpu_has_el3_property =
553             DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
554
555 static Property arm_cpu_cfgend_property =
556             DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
557
558 /* use property name "pmu" to match other archs and virt tools */
559 static Property arm_cpu_has_pmu_property =
560             DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
561
562 static Property arm_cpu_has_mpu_property =
563             DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
564
565 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
566  * because the CPU initfn will have already set cpu->pmsav7_dregion to
567  * the right value for that particular CPU type, and we don't want
568  * to override that with an incorrect constant value.
569  */
570 static Property arm_cpu_pmsav7_dregion_property =
571             DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
572                                            pmsav7_dregion,
573                                            qdev_prop_uint32, uint32_t);
574
575 static void arm_cpu_post_init(Object *obj)
576 {
577     ARMCPU *cpu = ARM_CPU(obj);
578
579     /* M profile implies PMSA. We have to do this here rather than
580      * in realize with the other feature-implication checks because
581      * we look at the PMSA bit to see if we should add some properties.
582      */
583     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
584         set_feature(&cpu->env, ARM_FEATURE_PMSA);
585     }
586
587     if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
588         arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
589         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
590                                  &error_abort);
591     }
592
593     if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
594         qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
595                                  &error_abort);
596     }
597
598     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
599         qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
600                                  &error_abort);
601     }
602
603     if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
604         /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
605          * prevent "has_el3" from existing on CPUs which cannot support EL3.
606          */
607         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
608                                  &error_abort);
609
610 #ifndef CONFIG_USER_ONLY
611         object_property_add_link(obj, "secure-memory",
612                                  TYPE_MEMORY_REGION,
613                                  (Object **)&cpu->secure_memory,
614                                  qdev_prop_allow_set_link_before_realize,
615                                  OBJ_PROP_LINK_UNREF_ON_RELEASE,
616                                  &error_abort);
617 #endif
618     }
619
620     if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
621         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
622                                  &error_abort);
623     }
624
625     if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
626         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
627                                  &error_abort);
628     }
629
630     if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
631         qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
632                                  &error_abort);
633         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
634             qdev_property_add_static(DEVICE(obj),
635                                      &arm_cpu_pmsav7_dregion_property,
636                                      &error_abort);
637         }
638     }
639
640     qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
641                              &error_abort);
642 }
643
644 static void arm_cpu_finalizefn(Object *obj)
645 {
646     ARMCPU *cpu = ARM_CPU(obj);
647     g_hash_table_destroy(cpu->cp_regs);
648 }
649
650 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
651 {
652     CPUState *cs = CPU(dev);
653     ARMCPU *cpu = ARM_CPU(dev);
654     ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
655     CPUARMState *env = &cpu->env;
656     int pagebits;
657     Error *local_err = NULL;
658
659     cpu_exec_realizefn(cs, &local_err);
660     if (local_err != NULL) {
661         error_propagate(errp, local_err);
662         return;
663     }
664
665     /* Some features automatically imply others: */
666     if (arm_feature(env, ARM_FEATURE_V8)) {
667         set_feature(env, ARM_FEATURE_V7);
668         set_feature(env, ARM_FEATURE_ARM_DIV);
669         set_feature(env, ARM_FEATURE_LPAE);
670     }
671     if (arm_feature(env, ARM_FEATURE_V7)) {
672         set_feature(env, ARM_FEATURE_VAPA);
673         set_feature(env, ARM_FEATURE_THUMB2);
674         set_feature(env, ARM_FEATURE_MPIDR);
675         if (!arm_feature(env, ARM_FEATURE_M)) {
676             set_feature(env, ARM_FEATURE_V6K);
677         } else {
678             set_feature(env, ARM_FEATURE_V6);
679         }
680
681         /* Always define VBAR for V7 CPUs even if it doesn't exist in
682          * non-EL3 configs. This is needed by some legacy boards.
683          */
684         set_feature(env, ARM_FEATURE_VBAR);
685     }
686     if (arm_feature(env, ARM_FEATURE_V6K)) {
687         set_feature(env, ARM_FEATURE_V6);
688         set_feature(env, ARM_FEATURE_MVFR);
689     }
690     if (arm_feature(env, ARM_FEATURE_V6)) {
691         set_feature(env, ARM_FEATURE_V5);
692         if (!arm_feature(env, ARM_FEATURE_M)) {
693             set_feature(env, ARM_FEATURE_AUXCR);
694         }
695     }
696     if (arm_feature(env, ARM_FEATURE_V5)) {
697         set_feature(env, ARM_FEATURE_V4T);
698     }
699     if (arm_feature(env, ARM_FEATURE_M)) {
700         set_feature(env, ARM_FEATURE_THUMB_DIV);
701     }
702     if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
703         set_feature(env, ARM_FEATURE_THUMB_DIV);
704     }
705     if (arm_feature(env, ARM_FEATURE_VFP4)) {
706         set_feature(env, ARM_FEATURE_VFP3);
707         set_feature(env, ARM_FEATURE_VFP_FP16);
708     }
709     if (arm_feature(env, ARM_FEATURE_VFP3)) {
710         set_feature(env, ARM_FEATURE_VFP);
711     }
712     if (arm_feature(env, ARM_FEATURE_LPAE)) {
713         set_feature(env, ARM_FEATURE_V7MP);
714         set_feature(env, ARM_FEATURE_PXN);
715     }
716     if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
717         set_feature(env, ARM_FEATURE_CBAR);
718     }
719     if (arm_feature(env, ARM_FEATURE_THUMB2) &&
720         !arm_feature(env, ARM_FEATURE_M)) {
721         set_feature(env, ARM_FEATURE_THUMB_DSP);
722     }
723
724     if (arm_feature(env, ARM_FEATURE_V7) &&
725         !arm_feature(env, ARM_FEATURE_M) &&
726         !arm_feature(env, ARM_FEATURE_PMSA)) {
727         /* v7VMSA drops support for the old ARMv5 tiny pages, so we
728          * can use 4K pages.
729          */
730         pagebits = 12;
731     } else {
732         /* For CPUs which might have tiny 1K pages, or which have an
733          * MPU and might have small region sizes, stick with 1K pages.
734          */
735         pagebits = 10;
736     }
737     if (!set_preferred_target_page_bits(pagebits)) {
738         /* This can only ever happen for hotplugging a CPU, or if
739          * the board code incorrectly creates a CPU which it has
740          * promised via minimum_page_size that it will not.
741          */
742         error_setg(errp, "This CPU requires a smaller page size than the "
743                    "system is using");
744         return;
745     }
746
747     /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
748      * We don't support setting cluster ID ([16..23]) (known as Aff2
749      * in later ARM ARM versions), or any of the higher affinity level fields,
750      * so these bits always RAZ.
751      */
752     if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
753         cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
754                                                ARM_DEFAULT_CPUS_PER_CLUSTER);
755     }
756
757     if (cpu->reset_hivecs) {
758             cpu->reset_sctlr |= (1 << 13);
759     }
760
761     if (cpu->cfgend) {
762         if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
763             cpu->reset_sctlr |= SCTLR_EE;
764         } else {
765             cpu->reset_sctlr |= SCTLR_B;
766         }
767     }
768
769     if (!cpu->has_el3) {
770         /* If the has_el3 CPU property is disabled then we need to disable the
771          * feature.
772          */
773         unset_feature(env, ARM_FEATURE_EL3);
774
775         /* Disable the security extension feature bits in the processor feature
776          * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
777          */
778         cpu->id_pfr1 &= ~0xf0;
779         cpu->id_aa64pfr0 &= ~0xf000;
780     }
781
782     if (!cpu->has_el2) {
783         unset_feature(env, ARM_FEATURE_EL2);
784     }
785
786     if (!cpu->has_pmu) {
787         unset_feature(env, ARM_FEATURE_PMU);
788         cpu->id_aa64dfr0 &= ~0xf00;
789     }
790
791     if (!arm_feature(env, ARM_FEATURE_EL2)) {
792         /* Disable the hypervisor feature bits in the processor feature
793          * registers if we don't have EL2. These are id_pfr1[15:12] and
794          * id_aa64pfr0_el1[11:8].
795          */
796         cpu->id_aa64pfr0 &= ~0xf00;
797         cpu->id_pfr1 &= ~0xf000;
798     }
799
800     /* MPU can be configured out of a PMSA CPU either by setting has-mpu
801      * to false or by setting pmsav7-dregion to 0.
802      */
803     if (!cpu->has_mpu) {
804         cpu->pmsav7_dregion = 0;
805     }
806     if (cpu->pmsav7_dregion == 0) {
807         cpu->has_mpu = false;
808     }
809
810     if (arm_feature(env, ARM_FEATURE_PMSA) &&
811         arm_feature(env, ARM_FEATURE_V7)) {
812         uint32_t nr = cpu->pmsav7_dregion;
813
814         if (nr > 0xff) {
815             error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
816             return;
817         }
818
819         if (nr) {
820             if (arm_feature(env, ARM_FEATURE_V8)) {
821                 /* PMSAv8 */
822                 env->pmsav8.rbar = g_new0(uint32_t, nr);
823                 env->pmsav8.rlar = g_new0(uint32_t, nr);
824             } else {
825                 env->pmsav7.drbar = g_new0(uint32_t, nr);
826                 env->pmsav7.drsr = g_new0(uint32_t, nr);
827                 env->pmsav7.dracr = g_new0(uint32_t, nr);
828             }
829         }
830     }
831
832     if (arm_feature(env, ARM_FEATURE_EL3)) {
833         set_feature(env, ARM_FEATURE_VBAR);
834     }
835
836     register_cp_regs_for_features(cpu);
837     arm_cpu_register_gdb_regs_for_features(cpu);
838
839     init_cpreg_list(cpu);
840
841 #ifndef CONFIG_USER_ONLY
842     if (cpu->has_el3) {
843         cs->num_ases = 2;
844     } else {
845         cs->num_ases = 1;
846     }
847
848     if (cpu->has_el3) {
849         AddressSpace *as;
850
851         if (!cpu->secure_memory) {
852             cpu->secure_memory = cs->memory;
853         }
854         as = address_space_init_shareable(cpu->secure_memory,
855                                           "cpu-secure-memory");
856         cpu_address_space_init(cs, as, ARMASIdx_S);
857     }
858     cpu_address_space_init(cs,
859                            address_space_init_shareable(cs->memory,
860                                                         "cpu-memory"),
861                            ARMASIdx_NS);
862 #endif
863
864     qemu_init_vcpu(cs);
865     cpu_reset(cs);
866
867     acc->parent_realize(dev, errp);
868 }
869
870 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
871 {
872     ObjectClass *oc;
873     char *typename;
874     char **cpuname;
875
876     if (!cpu_model) {
877         return NULL;
878     }
879
880     cpuname = g_strsplit(cpu_model, ",", 1);
881     typename = g_strdup_printf("%s-" TYPE_ARM_CPU, cpuname[0]);
882     oc = object_class_by_name(typename);
883     g_strfreev(cpuname);
884     g_free(typename);
885     if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
886         object_class_is_abstract(oc)) {
887         return NULL;
888     }
889     return oc;
890 }
891
892 /* CPU models. These are not needed for the AArch64 linux-user build. */
893 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
894
895 static void arm926_initfn(Object *obj)
896 {
897     ARMCPU *cpu = ARM_CPU(obj);
898
899     cpu->dtb_compatible = "arm,arm926";
900     set_feature(&cpu->env, ARM_FEATURE_V5);
901     set_feature(&cpu->env, ARM_FEATURE_VFP);
902     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
903     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
904     cpu->midr = 0x41069265;
905     cpu->reset_fpsid = 0x41011090;
906     cpu->ctr = 0x1dd20d2;
907     cpu->reset_sctlr = 0x00090078;
908 }
909
910 static void arm946_initfn(Object *obj)
911 {
912     ARMCPU *cpu = ARM_CPU(obj);
913
914     cpu->dtb_compatible = "arm,arm946";
915     set_feature(&cpu->env, ARM_FEATURE_V5);
916     set_feature(&cpu->env, ARM_FEATURE_PMSA);
917     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
918     cpu->midr = 0x41059461;
919     cpu->ctr = 0x0f004006;
920     cpu->reset_sctlr = 0x00000078;
921 }
922
923 static void arm1026_initfn(Object *obj)
924 {
925     ARMCPU *cpu = ARM_CPU(obj);
926
927     cpu->dtb_compatible = "arm,arm1026";
928     set_feature(&cpu->env, ARM_FEATURE_V5);
929     set_feature(&cpu->env, ARM_FEATURE_VFP);
930     set_feature(&cpu->env, ARM_FEATURE_AUXCR);
931     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
932     set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
933     cpu->midr = 0x4106a262;
934     cpu->reset_fpsid = 0x410110a0;
935     cpu->ctr = 0x1dd20d2;
936     cpu->reset_sctlr = 0x00090078;
937     cpu->reset_auxcr = 1;
938     {
939         /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
940         ARMCPRegInfo ifar = {
941             .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
942             .access = PL1_RW,
943             .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
944             .resetvalue = 0
945         };
946         define_one_arm_cp_reg(cpu, &ifar);
947     }
948 }
949
950 static void arm1136_r2_initfn(Object *obj)
951 {
952     ARMCPU *cpu = ARM_CPU(obj);
953     /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
954      * older core than plain "arm1136". In particular this does not
955      * have the v6K features.
956      * These ID register values are correct for 1136 but may be wrong
957      * for 1136_r2 (in particular r0p2 does not actually implement most
958      * of the ID registers).
959      */
960
961     cpu->dtb_compatible = "arm,arm1136";
962     set_feature(&cpu->env, ARM_FEATURE_V6);
963     set_feature(&cpu->env, ARM_FEATURE_VFP);
964     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
965     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
966     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
967     cpu->midr = 0x4107b362;
968     cpu->reset_fpsid = 0x410120b4;
969     cpu->mvfr0 = 0x11111111;
970     cpu->mvfr1 = 0x00000000;
971     cpu->ctr = 0x1dd20d2;
972     cpu->reset_sctlr = 0x00050078;
973     cpu->id_pfr0 = 0x111;
974     cpu->id_pfr1 = 0x1;
975     cpu->id_dfr0 = 0x2;
976     cpu->id_afr0 = 0x3;
977     cpu->id_mmfr0 = 0x01130003;
978     cpu->id_mmfr1 = 0x10030302;
979     cpu->id_mmfr2 = 0x01222110;
980     cpu->id_isar0 = 0x00140011;
981     cpu->id_isar1 = 0x12002111;
982     cpu->id_isar2 = 0x11231111;
983     cpu->id_isar3 = 0x01102131;
984     cpu->id_isar4 = 0x141;
985     cpu->reset_auxcr = 7;
986 }
987
988 static void arm1136_initfn(Object *obj)
989 {
990     ARMCPU *cpu = ARM_CPU(obj);
991
992     cpu->dtb_compatible = "arm,arm1136";
993     set_feature(&cpu->env, ARM_FEATURE_V6K);
994     set_feature(&cpu->env, ARM_FEATURE_V6);
995     set_feature(&cpu->env, ARM_FEATURE_VFP);
996     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
997     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
998     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
999     cpu->midr = 0x4117b363;
1000     cpu->reset_fpsid = 0x410120b4;
1001     cpu->mvfr0 = 0x11111111;
1002     cpu->mvfr1 = 0x00000000;
1003     cpu->ctr = 0x1dd20d2;
1004     cpu->reset_sctlr = 0x00050078;
1005     cpu->id_pfr0 = 0x111;
1006     cpu->id_pfr1 = 0x1;
1007     cpu->id_dfr0 = 0x2;
1008     cpu->id_afr0 = 0x3;
1009     cpu->id_mmfr0 = 0x01130003;
1010     cpu->id_mmfr1 = 0x10030302;
1011     cpu->id_mmfr2 = 0x01222110;
1012     cpu->id_isar0 = 0x00140011;
1013     cpu->id_isar1 = 0x12002111;
1014     cpu->id_isar2 = 0x11231111;
1015     cpu->id_isar3 = 0x01102131;
1016     cpu->id_isar4 = 0x141;
1017     cpu->reset_auxcr = 7;
1018 }
1019
1020 static void arm1176_initfn(Object *obj)
1021 {
1022     ARMCPU *cpu = ARM_CPU(obj);
1023
1024     cpu->dtb_compatible = "arm,arm1176";
1025     set_feature(&cpu->env, ARM_FEATURE_V6K);
1026     set_feature(&cpu->env, ARM_FEATURE_VFP);
1027     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1028     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1029     set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1030     set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1031     set_feature(&cpu->env, ARM_FEATURE_EL3);
1032     cpu->midr = 0x410fb767;
1033     cpu->reset_fpsid = 0x410120b5;
1034     cpu->mvfr0 = 0x11111111;
1035     cpu->mvfr1 = 0x00000000;
1036     cpu->ctr = 0x1dd20d2;
1037     cpu->reset_sctlr = 0x00050078;
1038     cpu->id_pfr0 = 0x111;
1039     cpu->id_pfr1 = 0x11;
1040     cpu->id_dfr0 = 0x33;
1041     cpu->id_afr0 = 0;
1042     cpu->id_mmfr0 = 0x01130003;
1043     cpu->id_mmfr1 = 0x10030302;
1044     cpu->id_mmfr2 = 0x01222100;
1045     cpu->id_isar0 = 0x0140011;
1046     cpu->id_isar1 = 0x12002111;
1047     cpu->id_isar2 = 0x11231121;
1048     cpu->id_isar3 = 0x01102131;
1049     cpu->id_isar4 = 0x01141;
1050     cpu->reset_auxcr = 7;
1051 }
1052
1053 static void arm11mpcore_initfn(Object *obj)
1054 {
1055     ARMCPU *cpu = ARM_CPU(obj);
1056
1057     cpu->dtb_compatible = "arm,arm11mpcore";
1058     set_feature(&cpu->env, ARM_FEATURE_V6K);
1059     set_feature(&cpu->env, ARM_FEATURE_VFP);
1060     set_feature(&cpu->env, ARM_FEATURE_VAPA);
1061     set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1062     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1063     cpu->midr = 0x410fb022;
1064     cpu->reset_fpsid = 0x410120b4;
1065     cpu->mvfr0 = 0x11111111;
1066     cpu->mvfr1 = 0x00000000;
1067     cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1068     cpu->id_pfr0 = 0x111;
1069     cpu->id_pfr1 = 0x1;
1070     cpu->id_dfr0 = 0;
1071     cpu->id_afr0 = 0x2;
1072     cpu->id_mmfr0 = 0x01100103;
1073     cpu->id_mmfr1 = 0x10020302;
1074     cpu->id_mmfr2 = 0x01222000;
1075     cpu->id_isar0 = 0x00100011;
1076     cpu->id_isar1 = 0x12002111;
1077     cpu->id_isar2 = 0x11221011;
1078     cpu->id_isar3 = 0x01102131;
1079     cpu->id_isar4 = 0x141;
1080     cpu->reset_auxcr = 1;
1081 }
1082
1083 static void cortex_m3_initfn(Object *obj)
1084 {
1085     ARMCPU *cpu = ARM_CPU(obj);
1086     set_feature(&cpu->env, ARM_FEATURE_V7);
1087     set_feature(&cpu->env, ARM_FEATURE_M);
1088     cpu->midr = 0x410fc231;
1089     cpu->pmsav7_dregion = 8;
1090 }
1091
1092 static void cortex_m4_initfn(Object *obj)
1093 {
1094     ARMCPU *cpu = ARM_CPU(obj);
1095
1096     set_feature(&cpu->env, ARM_FEATURE_V7);
1097     set_feature(&cpu->env, ARM_FEATURE_M);
1098     set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1099     cpu->midr = 0x410fc240; /* r0p0 */
1100     cpu->pmsav7_dregion = 8;
1101 }
1102 static void arm_v7m_class_init(ObjectClass *oc, void *data)
1103 {
1104     CPUClass *cc = CPU_CLASS(oc);
1105
1106 #ifndef CONFIG_USER_ONLY
1107     cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1108 #endif
1109
1110     cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1111 }
1112
1113 static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1114     /* Dummy the TCM region regs for the moment */
1115     { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1116       .access = PL1_RW, .type = ARM_CP_CONST },
1117     { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1118       .access = PL1_RW, .type = ARM_CP_CONST },
1119     { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1120       .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1121     REGINFO_SENTINEL
1122 };
1123
1124 static void cortex_r5_initfn(Object *obj)
1125 {
1126     ARMCPU *cpu = ARM_CPU(obj);
1127
1128     set_feature(&cpu->env, ARM_FEATURE_V7);
1129     set_feature(&cpu->env, ARM_FEATURE_THUMB_DIV);
1130     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1131     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1132     set_feature(&cpu->env, ARM_FEATURE_PMSA);
1133     cpu->midr = 0x411fc153; /* r1p3 */
1134     cpu->id_pfr0 = 0x0131;
1135     cpu->id_pfr1 = 0x001;
1136     cpu->id_dfr0 = 0x010400;
1137     cpu->id_afr0 = 0x0;
1138     cpu->id_mmfr0 = 0x0210030;
1139     cpu->id_mmfr1 = 0x00000000;
1140     cpu->id_mmfr2 = 0x01200000;
1141     cpu->id_mmfr3 = 0x0211;
1142     cpu->id_isar0 = 0x2101111;
1143     cpu->id_isar1 = 0x13112111;
1144     cpu->id_isar2 = 0x21232141;
1145     cpu->id_isar3 = 0x01112131;
1146     cpu->id_isar4 = 0x0010142;
1147     cpu->id_isar5 = 0x0;
1148     cpu->mp_is_up = true;
1149     cpu->pmsav7_dregion = 16;
1150     define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1151 }
1152
1153 static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1154     { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1155       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1156     { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1157       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1158     REGINFO_SENTINEL
1159 };
1160
1161 static void cortex_a8_initfn(Object *obj)
1162 {
1163     ARMCPU *cpu = ARM_CPU(obj);
1164
1165     cpu->dtb_compatible = "arm,cortex-a8";
1166     set_feature(&cpu->env, ARM_FEATURE_V7);
1167     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1168     set_feature(&cpu->env, ARM_FEATURE_NEON);
1169     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1170     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1171     set_feature(&cpu->env, ARM_FEATURE_EL3);
1172     cpu->midr = 0x410fc080;
1173     cpu->reset_fpsid = 0x410330c0;
1174     cpu->mvfr0 = 0x11110222;
1175     cpu->mvfr1 = 0x00011111;
1176     cpu->ctr = 0x82048004;
1177     cpu->reset_sctlr = 0x00c50078;
1178     cpu->id_pfr0 = 0x1031;
1179     cpu->id_pfr1 = 0x11;
1180     cpu->id_dfr0 = 0x400;
1181     cpu->id_afr0 = 0;
1182     cpu->id_mmfr0 = 0x31100003;
1183     cpu->id_mmfr1 = 0x20000000;
1184     cpu->id_mmfr2 = 0x01202000;
1185     cpu->id_mmfr3 = 0x11;
1186     cpu->id_isar0 = 0x00101111;
1187     cpu->id_isar1 = 0x12112111;
1188     cpu->id_isar2 = 0x21232031;
1189     cpu->id_isar3 = 0x11112131;
1190     cpu->id_isar4 = 0x00111142;
1191     cpu->dbgdidr = 0x15141000;
1192     cpu->clidr = (1 << 27) | (2 << 24) | 3;
1193     cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1194     cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1195     cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1196     cpu->reset_auxcr = 2;
1197     define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1198 }
1199
1200 static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1201     /* power_control should be set to maximum latency. Again,
1202      * default to 0 and set by private hook
1203      */
1204     { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1205       .access = PL1_RW, .resetvalue = 0,
1206       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1207     { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1208       .access = PL1_RW, .resetvalue = 0,
1209       .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1210     { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1211       .access = PL1_RW, .resetvalue = 0,
1212       .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1213     { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1214       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1215     /* TLB lockdown control */
1216     { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1217       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1218     { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1219       .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1220     { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1221       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1222     { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1223       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1224     { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1225       .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1226     REGINFO_SENTINEL
1227 };
1228
1229 static void cortex_a9_initfn(Object *obj)
1230 {
1231     ARMCPU *cpu = ARM_CPU(obj);
1232
1233     cpu->dtb_compatible = "arm,cortex-a9";
1234     set_feature(&cpu->env, ARM_FEATURE_V7);
1235     set_feature(&cpu->env, ARM_FEATURE_VFP3);
1236     set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1237     set_feature(&cpu->env, ARM_FEATURE_NEON);
1238     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1239     set_feature(&cpu->env, ARM_FEATURE_EL3);
1240     /* Note that A9 supports the MP extensions even for
1241      * A9UP and single-core A9MP (which are both different
1242      * and valid configurations; we don't model A9UP).
1243      */
1244     set_feature(&cpu->env, ARM_FEATURE_V7MP);
1245     set_feature(&cpu->env, ARM_FEATURE_CBAR);
1246     cpu->midr = 0x410fc090;
1247     cpu->reset_fpsid = 0x41033090;
1248     cpu->mvfr0 = 0x11110222;
1249     cpu->mvfr1 = 0x01111111;
1250     cpu->ctr = 0x80038003;
1251     cpu->reset_sctlr = 0x00c50078;
1252     cpu->id_pfr0 = 0x1031;
1253     cpu->id_pfr1 = 0x11;
1254     cpu->id_dfr0 = 0x000;
1255     cpu->id_afr0 = 0;
1256     cpu->id_mmfr0 = 0x00100103;
1257     cpu->id_mmfr1 = 0x20000000;
1258     cpu->id_mmfr2 = 0x01230000;
1259     cpu->id_mmfr3 = 0x00002111;
1260     cpu->id_isar0 = 0x00101111;
1261     cpu->id_isar1 = 0x13112111;
1262     cpu->id_isar2 = 0x21232041;
1263     cpu->id_isar3 = 0x11112131;
1264     cpu->id_isar4 = 0x00111142;
1265     cpu->dbgdidr = 0x35141000;
1266     cpu->clidr = (1 << 27) | (1 << 24) | 3;
1267     cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1268     cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1269     define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1270 }
1271
1272 #ifndef CONFIG_USER_ONLY
1273 static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1274 {
1275     /* Linux wants the number of processors from here.
1276      * Might as well set the interrupt-controller bit too.
1277      */
1278     return ((smp_cpus - 1) << 24) | (1 << 23);
1279 }
1280 #endif
1281
1282 static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1283 #ifndef CONFIG_USER_ONLY
1284     { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1285       .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1286       .writefn = arm_cp_write_ignore, },
1287 #endif
1288     { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1289       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1290     REGINFO_SENTINEL
1291 };
1292
1293 static void cortex_a7_initfn(Object *obj)
1294 {
1295     ARMCPU *cpu = ARM_CPU(obj);
1296
1297     cpu->dtb_compatible = "arm,cortex-a7";
1298     set_feature(&cpu->env, ARM_FEATURE_V7);
1299     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1300     set_feature(&cpu->env, ARM_FEATURE_NEON);
1301     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1302     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1303     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1304     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1305     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1306     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1307     set_feature(&cpu->env, ARM_FEATURE_EL3);
1308     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1309     cpu->midr = 0x410fc075;
1310     cpu->reset_fpsid = 0x41023075;
1311     cpu->mvfr0 = 0x10110222;
1312     cpu->mvfr1 = 0x11111111;
1313     cpu->ctr = 0x84448003;
1314     cpu->reset_sctlr = 0x00c50078;
1315     cpu->id_pfr0 = 0x00001131;
1316     cpu->id_pfr1 = 0x00011011;
1317     cpu->id_dfr0 = 0x02010555;
1318     cpu->pmceid0 = 0x00000000;
1319     cpu->pmceid1 = 0x00000000;
1320     cpu->id_afr0 = 0x00000000;
1321     cpu->id_mmfr0 = 0x10101105;
1322     cpu->id_mmfr1 = 0x40000000;
1323     cpu->id_mmfr2 = 0x01240000;
1324     cpu->id_mmfr3 = 0x02102211;
1325     cpu->id_isar0 = 0x01101110;
1326     cpu->id_isar1 = 0x13112111;
1327     cpu->id_isar2 = 0x21232041;
1328     cpu->id_isar3 = 0x11112131;
1329     cpu->id_isar4 = 0x10011142;
1330     cpu->dbgdidr = 0x3515f005;
1331     cpu->clidr = 0x0a200023;
1332     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1333     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1334     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1335     define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1336 }
1337
1338 static void cortex_a15_initfn(Object *obj)
1339 {
1340     ARMCPU *cpu = ARM_CPU(obj);
1341
1342     cpu->dtb_compatible = "arm,cortex-a15";
1343     set_feature(&cpu->env, ARM_FEATURE_V7);
1344     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1345     set_feature(&cpu->env, ARM_FEATURE_NEON);
1346     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1347     set_feature(&cpu->env, ARM_FEATURE_ARM_DIV);
1348     set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1349     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1350     set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1351     set_feature(&cpu->env, ARM_FEATURE_LPAE);
1352     set_feature(&cpu->env, ARM_FEATURE_EL3);
1353     cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1354     cpu->midr = 0x412fc0f1;
1355     cpu->reset_fpsid = 0x410430f0;
1356     cpu->mvfr0 = 0x10110222;
1357     cpu->mvfr1 = 0x11111111;
1358     cpu->ctr = 0x8444c004;
1359     cpu->reset_sctlr = 0x00c50078;
1360     cpu->id_pfr0 = 0x00001131;
1361     cpu->id_pfr1 = 0x00011011;
1362     cpu->id_dfr0 = 0x02010555;
1363     cpu->pmceid0 = 0x0000000;
1364     cpu->pmceid1 = 0x00000000;
1365     cpu->id_afr0 = 0x00000000;
1366     cpu->id_mmfr0 = 0x10201105;
1367     cpu->id_mmfr1 = 0x20000000;
1368     cpu->id_mmfr2 = 0x01240000;
1369     cpu->id_mmfr3 = 0x02102211;
1370     cpu->id_isar0 = 0x02101110;
1371     cpu->id_isar1 = 0x13112111;
1372     cpu->id_isar2 = 0x21232041;
1373     cpu->id_isar3 = 0x11112131;
1374     cpu->id_isar4 = 0x10011142;
1375     cpu->dbgdidr = 0x3515f021;
1376     cpu->clidr = 0x0a200023;
1377     cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1378     cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1379     cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1380     define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1381 }
1382
1383 static void ti925t_initfn(Object *obj)
1384 {
1385     ARMCPU *cpu = ARM_CPU(obj);
1386     set_feature(&cpu->env, ARM_FEATURE_V4T);
1387     set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1388     cpu->midr = ARM_CPUID_TI925T;
1389     cpu->ctr = 0x5109149;
1390     cpu->reset_sctlr = 0x00000070;
1391 }
1392
1393 static void sa1100_initfn(Object *obj)
1394 {
1395     ARMCPU *cpu = ARM_CPU(obj);
1396
1397     cpu->dtb_compatible = "intel,sa1100";
1398     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1399     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1400     cpu->midr = 0x4401A11B;
1401     cpu->reset_sctlr = 0x00000070;
1402 }
1403
1404 static void sa1110_initfn(Object *obj)
1405 {
1406     ARMCPU *cpu = ARM_CPU(obj);
1407     set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1408     set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1409     cpu->midr = 0x6901B119;
1410     cpu->reset_sctlr = 0x00000070;
1411 }
1412
1413 static void pxa250_initfn(Object *obj)
1414 {
1415     ARMCPU *cpu = ARM_CPU(obj);
1416
1417     cpu->dtb_compatible = "marvell,xscale";
1418     set_feature(&cpu->env, ARM_FEATURE_V5);
1419     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1420     cpu->midr = 0x69052100;
1421     cpu->ctr = 0xd172172;
1422     cpu->reset_sctlr = 0x00000078;
1423 }
1424
1425 static void pxa255_initfn(Object *obj)
1426 {
1427     ARMCPU *cpu = ARM_CPU(obj);
1428
1429     cpu->dtb_compatible = "marvell,xscale";
1430     set_feature(&cpu->env, ARM_FEATURE_V5);
1431     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1432     cpu->midr = 0x69052d00;
1433     cpu->ctr = 0xd172172;
1434     cpu->reset_sctlr = 0x00000078;
1435 }
1436
1437 static void pxa260_initfn(Object *obj)
1438 {
1439     ARMCPU *cpu = ARM_CPU(obj);
1440
1441     cpu->dtb_compatible = "marvell,xscale";
1442     set_feature(&cpu->env, ARM_FEATURE_V5);
1443     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1444     cpu->midr = 0x69052903;
1445     cpu->ctr = 0xd172172;
1446     cpu->reset_sctlr = 0x00000078;
1447 }
1448
1449 static void pxa261_initfn(Object *obj)
1450 {
1451     ARMCPU *cpu = ARM_CPU(obj);
1452
1453     cpu->dtb_compatible = "marvell,xscale";
1454     set_feature(&cpu->env, ARM_FEATURE_V5);
1455     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1456     cpu->midr = 0x69052d05;
1457     cpu->ctr = 0xd172172;
1458     cpu->reset_sctlr = 0x00000078;
1459 }
1460
1461 static void pxa262_initfn(Object *obj)
1462 {
1463     ARMCPU *cpu = ARM_CPU(obj);
1464
1465     cpu->dtb_compatible = "marvell,xscale";
1466     set_feature(&cpu->env, ARM_FEATURE_V5);
1467     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1468     cpu->midr = 0x69052d06;
1469     cpu->ctr = 0xd172172;
1470     cpu->reset_sctlr = 0x00000078;
1471 }
1472
1473 static void pxa270a0_initfn(Object *obj)
1474 {
1475     ARMCPU *cpu = ARM_CPU(obj);
1476
1477     cpu->dtb_compatible = "marvell,xscale";
1478     set_feature(&cpu->env, ARM_FEATURE_V5);
1479     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1480     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1481     cpu->midr = 0x69054110;
1482     cpu->ctr = 0xd172172;
1483     cpu->reset_sctlr = 0x00000078;
1484 }
1485
1486 static void pxa270a1_initfn(Object *obj)
1487 {
1488     ARMCPU *cpu = ARM_CPU(obj);
1489
1490     cpu->dtb_compatible = "marvell,xscale";
1491     set_feature(&cpu->env, ARM_FEATURE_V5);
1492     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1493     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1494     cpu->midr = 0x69054111;
1495     cpu->ctr = 0xd172172;
1496     cpu->reset_sctlr = 0x00000078;
1497 }
1498
1499 static void pxa270b0_initfn(Object *obj)
1500 {
1501     ARMCPU *cpu = ARM_CPU(obj);
1502
1503     cpu->dtb_compatible = "marvell,xscale";
1504     set_feature(&cpu->env, ARM_FEATURE_V5);
1505     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1506     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1507     cpu->midr = 0x69054112;
1508     cpu->ctr = 0xd172172;
1509     cpu->reset_sctlr = 0x00000078;
1510 }
1511
1512 static void pxa270b1_initfn(Object *obj)
1513 {
1514     ARMCPU *cpu = ARM_CPU(obj);
1515
1516     cpu->dtb_compatible = "marvell,xscale";
1517     set_feature(&cpu->env, ARM_FEATURE_V5);
1518     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1519     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1520     cpu->midr = 0x69054113;
1521     cpu->ctr = 0xd172172;
1522     cpu->reset_sctlr = 0x00000078;
1523 }
1524
1525 static void pxa270c0_initfn(Object *obj)
1526 {
1527     ARMCPU *cpu = ARM_CPU(obj);
1528
1529     cpu->dtb_compatible = "marvell,xscale";
1530     set_feature(&cpu->env, ARM_FEATURE_V5);
1531     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1532     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1533     cpu->midr = 0x69054114;
1534     cpu->ctr = 0xd172172;
1535     cpu->reset_sctlr = 0x00000078;
1536 }
1537
1538 static void pxa270c5_initfn(Object *obj)
1539 {
1540     ARMCPU *cpu = ARM_CPU(obj);
1541
1542     cpu->dtb_compatible = "marvell,xscale";
1543     set_feature(&cpu->env, ARM_FEATURE_V5);
1544     set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1545     set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1546     cpu->midr = 0x69054117;
1547     cpu->ctr = 0xd172172;
1548     cpu->reset_sctlr = 0x00000078;
1549 }
1550
1551 #ifdef CONFIG_USER_ONLY
1552 static void arm_any_initfn(Object *obj)
1553 {
1554     ARMCPU *cpu = ARM_CPU(obj);
1555     set_feature(&cpu->env, ARM_FEATURE_V8);
1556     set_feature(&cpu->env, ARM_FEATURE_VFP4);
1557     set_feature(&cpu->env, ARM_FEATURE_NEON);
1558     set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1559     set_feature(&cpu->env, ARM_FEATURE_V8_AES);
1560     set_feature(&cpu->env, ARM_FEATURE_V8_SHA1);
1561     set_feature(&cpu->env, ARM_FEATURE_V8_SHA256);
1562     set_feature(&cpu->env, ARM_FEATURE_V8_PMULL);
1563     set_feature(&cpu->env, ARM_FEATURE_CRC);
1564     cpu->midr = 0xffffffff;
1565 }
1566 #endif
1567
1568 #endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1569
1570 typedef struct ARMCPUInfo {
1571     const char *name;
1572     void (*initfn)(Object *obj);
1573     void (*class_init)(ObjectClass *oc, void *data);
1574 } ARMCPUInfo;
1575
1576 static const ARMCPUInfo arm_cpus[] = {
1577 #if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1578     { .name = "arm926",      .initfn = arm926_initfn },
1579     { .name = "arm946",      .initfn = arm946_initfn },
1580     { .name = "arm1026",     .initfn = arm1026_initfn },
1581     /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1582      * older core than plain "arm1136". In particular this does not
1583      * have the v6K features.
1584      */
1585     { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1586     { .name = "arm1136",     .initfn = arm1136_initfn },
1587     { .name = "arm1176",     .initfn = arm1176_initfn },
1588     { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1589     { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1590                              .class_init = arm_v7m_class_init },
1591     { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1592                              .class_init = arm_v7m_class_init },
1593     { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1594     { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1595     { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1596     { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1597     { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1598     { .name = "ti925t",      .initfn = ti925t_initfn },
1599     { .name = "sa1100",      .initfn = sa1100_initfn },
1600     { .name = "sa1110",      .initfn = sa1110_initfn },
1601     { .name = "pxa250",      .initfn = pxa250_initfn },
1602     { .name = "pxa255",      .initfn = pxa255_initfn },
1603     { .name = "pxa260",      .initfn = pxa260_initfn },
1604     { .name = "pxa261",      .initfn = pxa261_initfn },
1605     { .name = "pxa262",      .initfn = pxa262_initfn },
1606     /* "pxa270" is an alias for "pxa270-a0" */
1607     { .name = "pxa270",      .initfn = pxa270a0_initfn },
1608     { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1609     { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1610     { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1611     { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1612     { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1613     { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1614 #ifdef CONFIG_USER_ONLY
1615     { .name = "any",         .initfn = arm_any_initfn },
1616 #endif
1617 #endif
1618     { .name = NULL }
1619 };
1620
1621 static Property arm_cpu_properties[] = {
1622     DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
1623     DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
1624     DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
1625     DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
1626                         mp_affinity, ARM64_AFFINITY_INVALID),
1627     DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
1628     DEFINE_PROP_END_OF_LIST()
1629 };
1630
1631 #ifdef CONFIG_USER_ONLY
1632 static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int rw,
1633                                     int mmu_idx)
1634 {
1635     ARMCPU *cpu = ARM_CPU(cs);
1636     CPUARMState *env = &cpu->env;
1637
1638     env->exception.vaddress = address;
1639     if (rw == 2) {
1640         cs->exception_index = EXCP_PREFETCH_ABORT;
1641     } else {
1642         cs->exception_index = EXCP_DATA_ABORT;
1643     }
1644     return 1;
1645 }
1646 #endif
1647
1648 static gchar *arm_gdb_arch_name(CPUState *cs)
1649 {
1650     ARMCPU *cpu = ARM_CPU(cs);
1651     CPUARMState *env = &cpu->env;
1652
1653     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
1654         return g_strdup("iwmmxt");
1655     }
1656     return g_strdup("arm");
1657 }
1658
1659 static void arm_cpu_class_init(ObjectClass *oc, void *data)
1660 {
1661     ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1662     CPUClass *cc = CPU_CLASS(acc);
1663     DeviceClass *dc = DEVICE_CLASS(oc);
1664
1665     acc->parent_realize = dc->realize;
1666     dc->realize = arm_cpu_realizefn;
1667     dc->props = arm_cpu_properties;
1668
1669     acc->parent_reset = cc->reset;
1670     cc->reset = arm_cpu_reset;
1671
1672     cc->class_by_name = arm_cpu_class_by_name;
1673     cc->has_work = arm_cpu_has_work;
1674     cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
1675     cc->dump_state = arm_cpu_dump_state;
1676     cc->set_pc = arm_cpu_set_pc;
1677     cc->gdb_read_register = arm_cpu_gdb_read_register;
1678     cc->gdb_write_register = arm_cpu_gdb_write_register;
1679 #ifdef CONFIG_USER_ONLY
1680     cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
1681 #else
1682     cc->do_interrupt = arm_cpu_do_interrupt;
1683     cc->do_unaligned_access = arm_cpu_do_unaligned_access;
1684     cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
1685     cc->asidx_from_attrs = arm_asidx_from_attrs;
1686     cc->vmsd = &vmstate_arm_cpu;
1687     cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
1688     cc->write_elf64_note = arm_cpu_write_elf64_note;
1689     cc->write_elf32_note = arm_cpu_write_elf32_note;
1690 #endif
1691     cc->gdb_num_core_regs = 26;
1692     cc->gdb_core_xml_file = "arm-core.xml";
1693     cc->gdb_arch_name = arm_gdb_arch_name;
1694     cc->gdb_stop_before_watchpoint = true;
1695     cc->debug_excp_handler = arm_debug_excp_handler;
1696     cc->debug_check_watchpoint = arm_debug_check_watchpoint;
1697 #if !defined(CONFIG_USER_ONLY)
1698     cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
1699 #endif
1700
1701     cc->disas_set_info = arm_disas_set_info;
1702 }
1703
1704 static void cpu_register(const ARMCPUInfo *info)
1705 {
1706     TypeInfo type_info = {
1707         .parent = TYPE_ARM_CPU,
1708         .instance_size = sizeof(ARMCPU),
1709         .instance_init = info->initfn,
1710         .class_size = sizeof(ARMCPUClass),
1711         .class_init = info->class_init,
1712     };
1713
1714     type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
1715     type_register(&type_info);
1716     g_free((void *)type_info.name);
1717 }
1718
1719 static const TypeInfo arm_cpu_type_info = {
1720     .name = TYPE_ARM_CPU,
1721     .parent = TYPE_CPU,
1722     .instance_size = sizeof(ARMCPU),
1723     .instance_init = arm_cpu_initfn,
1724     .instance_post_init = arm_cpu_post_init,
1725     .instance_finalize = arm_cpu_finalizefn,
1726     .abstract = true,
1727     .class_size = sizeof(ARMCPUClass),
1728     .class_init = arm_cpu_class_init,
1729 };
1730
1731 static void arm_cpu_register_types(void)
1732 {
1733     const ARMCPUInfo *info = arm_cpus;
1734
1735     type_register_static(&arm_cpu_type_info);
1736
1737     while (info->name) {
1738         cpu_register(info);
1739         info++;
1740     }
1741 }
1742
1743 type_init(arm_cpu_register_types)
This page took 0.117386 seconds and 4 git commands to generate.