]> Git Repo - qemu.git/blame - hw/char/cadence_uart.c
pci: Eliminate redundant PCIDevice::bus pointer
[qemu.git] / hw / char / cadence_uart.c
CommitLineData
35548b06
PC
1/*
2 * Device model for Cadence UART
3 *
6e29651c
PP
4 * Reference: Xilinx Zynq 7000 reference manual
5 * - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
6 * - Chapter 19 UART Controller
7 * - Appendix B for Register details
8 *
35548b06
PC
9 * Copyright (c) 2010 Xilinx Inc.
10 * Copyright (c) 2012 Peter A.G. Crosthwaite ([email protected])
11 * Copyright (c) 2012 PetaLogix Pty Ltd.
12 * Written by Haibing Ma
13 * M.Habib
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
8ef94f0b 24#include "qemu/osdep.h"
03dd024f 25#include "hw/sysbus.h"
4d43a603 26#include "chardev/char-fe.h"
7566c6ef 27#include "chardev/char-serial.h"
03dd024f
PB
28#include "qemu/timer.h"
29#include "qemu/log.h"
8ae57b2f 30#include "hw/char/cadence_uart.h"
35548b06
PC
31
32#ifdef CADENCE_UART_ERR_DEBUG
33#define DB_PRINT(...) do { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
36 } while (0);
37#else
38 #define DB_PRINT(...)
39#endif
40
41#define UART_SR_INTR_RTRIG 0x00000001
42#define UART_SR_INTR_REMPTY 0x00000002
43#define UART_SR_INTR_RFUL 0x00000004
44#define UART_SR_INTR_TEMPTY 0x00000008
45#define UART_SR_INTR_TFUL 0x00000010
11a239a5
PC
46/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
47#define UART_SR_TTRIG 0x00002000
48#define UART_INTR_TTRIG 0x00000400
35548b06
PC
49/* bits fields in CSR that correlate to CISR. If any of these bits are set in
50 * SR, then the same bit in CISR is set high too */
51#define UART_SR_TO_CISR_MASK 0x0000001F
52
53#define UART_INTR_ROVR 0x00000020
54#define UART_INTR_FRAME 0x00000040
55#define UART_INTR_PARE 0x00000080
56#define UART_INTR_TIMEOUT 0x00000100
57#define UART_INTR_DMSI 0x00000200
11a239a5 58#define UART_INTR_TOVR 0x00001000
35548b06
PC
59
60#define UART_SR_RACTIVE 0x00000400
61#define UART_SR_TACTIVE 0x00000800
62#define UART_SR_FDELT 0x00001000
63
64#define UART_CR_RXRST 0x00000001
65#define UART_CR_TXRST 0x00000002
66#define UART_CR_RX_EN 0x00000004
67#define UART_CR_RX_DIS 0x00000008
68#define UART_CR_TX_EN 0x00000010
69#define UART_CR_TX_DIS 0x00000020
70#define UART_CR_RST_TO 0x00000040
71#define UART_CR_STARTBRK 0x00000080
72#define UART_CR_STOPBRK 0x00000100
73
74#define UART_MR_CLKS 0x00000001
75#define UART_MR_CHRL 0x00000006
76#define UART_MR_CHRL_SH 1
77#define UART_MR_PAR 0x00000038
78#define UART_MR_PAR_SH 3
79#define UART_MR_NBSTOP 0x000000C0
80#define UART_MR_NBSTOP_SH 6
81#define UART_MR_CHMODE 0x00000300
82#define UART_MR_CHMODE_SH 8
83#define UART_MR_UCLKEN 0x00000400
84#define UART_MR_IRMODE 0x00000800
85
86#define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
87#define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
88#define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
89#define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
90#define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
91#define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
92#define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
93#define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
94#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
95#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
96
35548b06
PC
97#define UART_INPUT_CLK 50000000
98
99#define R_CR (0x00/4)
100#define R_MR (0x04/4)
101#define R_IER (0x08/4)
102#define R_IDR (0x0C/4)
103#define R_IMR (0x10/4)
104#define R_CISR (0x14/4)
105#define R_BRGR (0x18/4)
106#define R_RTOR (0x1C/4)
107#define R_RTRIG (0x20/4)
108#define R_MCR (0x24/4)
109#define R_MSR (0x28/4)
110#define R_SR (0x2C/4)
111#define R_TX_RX (0x30/4)
112#define R_BDIV (0x34/4)
113#define R_FDEL (0x38/4)
114#define R_PMIN (0x3C/4)
115#define R_PWID (0x40/4)
116#define R_TTRIG (0x44/4)
117
35548b06 118
e86da3cb 119static void uart_update_status(CadenceUARTState *s)
35548b06 120{
676f4c09
PC
121 s->r[R_SR] = 0;
122
e86da3cb
PC
123 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
124 : 0;
676f4c09
PC
125 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
126 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
127
e86da3cb
PC
128 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
129 : 0;
2152e08a
PC
130 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
131 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
132
35548b06 133 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
2152e08a 134 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
35548b06
PC
135 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
136}
137
138static void fifo_trigger_update(void *opaque)
139{
e86da3cb 140 CadenceUARTState *s = opaque;
35548b06 141
2494c9f6
AG
142 if (s->r[R_RTOR]) {
143 s->r[R_CISR] |= UART_INTR_TIMEOUT;
144 uart_update_status(s);
145 }
35548b06
PC
146}
147
e86da3cb 148static void uart_rx_reset(CadenceUARTState *s)
35548b06
PC
149{
150 s->rx_wpos = 0;
151 s->rx_count = 0;
fa394ed6 152 qemu_chr_fe_accept_input(&s->chr);
35548b06
PC
153}
154
e86da3cb 155static void uart_tx_reset(CadenceUARTState *s)
35548b06 156{
2152e08a 157 s->tx_count = 0;
35548b06
PC
158}
159
e86da3cb 160static void uart_send_breaks(CadenceUARTState *s)
35548b06
PC
161{
162 int break_enabled = 1;
163
fa394ed6
MAL
164 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
165 &break_enabled);
35548b06
PC
166}
167
e86da3cb 168static void uart_parameters_setup(CadenceUARTState *s)
35548b06
PC
169{
170 QEMUSerialSetParams ssp;
171 unsigned int baud_rate, packet_size;
172
173 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
174 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
175
176 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
177 packet_size = 1;
178
179 switch (s->r[R_MR] & UART_MR_PAR) {
180 case UART_PARITY_EVEN:
181 ssp.parity = 'E';
182 packet_size++;
183 break;
184 case UART_PARITY_ODD:
185 ssp.parity = 'O';
186 packet_size++;
187 break;
188 default:
189 ssp.parity = 'N';
190 break;
191 }
192
193 switch (s->r[R_MR] & UART_MR_CHRL) {
194 case UART_DATA_BITS_6:
195 ssp.data_bits = 6;
196 break;
197 case UART_DATA_BITS_7:
198 ssp.data_bits = 7;
199 break;
200 default:
201 ssp.data_bits = 8;
202 break;
203 }
204
205 switch (s->r[R_MR] & UART_MR_NBSTOP) {
206 case UART_STOP_BITS_1:
207 ssp.stop_bits = 1;
208 break;
209 default:
210 ssp.stop_bits = 2;
211 break;
212 }
213
214 packet_size += ssp.data_bits + ssp.stop_bits;
73bcb24d 215 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
fa394ed6 216 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
35548b06
PC
217}
218
219static int uart_can_receive(void *opaque)
220{
e86da3cb
PC
221 CadenceUARTState *s = opaque;
222 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
d0ac820f 223 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
35548b06 224
d0ac820f 225 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
e86da3cb 226 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
d0ac820f
PC
227 }
228 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
e86da3cb 229 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
d0ac820f
PC
230 }
231 return ret;
35548b06
PC
232}
233
e86da3cb 234static void uart_ctrl_update(CadenceUARTState *s)
35548b06
PC
235{
236 if (s->r[R_CR] & UART_CR_TXRST) {
237 uart_tx_reset(s);
238 }
239
240 if (s->r[R_CR] & UART_CR_RXRST) {
241 uart_rx_reset(s);
242 }
243
244 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
245
35548b06
PC
246 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
247 uart_send_breaks(s);
248 }
249}
250
251static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
252{
e86da3cb 253 CadenceUARTState *s = opaque;
bc72ad67 254 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
35548b06
PC
255 int i;
256
257 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
258 return;
259 }
260
e86da3cb 261 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
35548b06
PC
262 s->r[R_CISR] |= UART_INTR_ROVR;
263 } else {
264 for (i = 0; i < size; i++) {
1e77c91e 265 s->rx_fifo[s->rx_wpos] = buf[i];
e86da3cb 266 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
35548b06 267 s->rx_count++;
35548b06 268 }
bc72ad67 269 timer_mod(s->fifo_trigger_handle, new_rx_time +
35548b06
PC
270 (s->char_tx_time * 4));
271 }
272 uart_update_status(s);
273}
274
38acd64b
PC
275static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
276 void *opaque)
277{
e86da3cb 278 CadenceUARTState *s = opaque;
38acd64b
PC
279 int ret;
280
281 /* instant drain the fifo when there's no back-end */
30650701 282 if (!qemu_chr_fe_backend_connected(&s->chr)) {
38acd64b 283 s->tx_count = 0;
af52fe86 284 return FALSE;
38acd64b
PC
285 }
286
287 if (!s->tx_count) {
288 return FALSE;
289 }
290
5345fdb4 291 ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
f6cf4193
AF
292
293 if (ret >= 0) {
294 s->tx_count -= ret;
295 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
296 }
38acd64b
PC
297
298 if (s->tx_count) {
5345fdb4 299 guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
6f1de6b7
PB
300 cadence_uart_xmit, s);
301 if (!r) {
302 s->tx_count = 0;
303 return FALSE;
304 }
38acd64b
PC
305 }
306
307 uart_update_status(s);
308 return FALSE;
309}
310
e86da3cb
PC
311static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
312 int size)
35548b06
PC
313{
314 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
315 return;
316 }
317
e86da3cb
PC
318 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
319 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
86baecc3
PC
320 /*
321 * This can only be a guest error via a bad tx fifo register push,
322 * as can_receive() should stop remote loop and echo modes ever getting
323 * us to here.
324 */
325 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
326 s->r[R_CISR] |= UART_INTR_ROVR;
327 }
328
329 memcpy(s->tx_fifo + s->tx_count, buf, size);
330 s->tx_count += size;
331
38acd64b 332 cadence_uart_xmit(NULL, G_IO_OUT, s);
35548b06
PC
333}
334
335static void uart_receive(void *opaque, const uint8_t *buf, int size)
336{
e86da3cb 337 CadenceUARTState *s = opaque;
35548b06
PC
338 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
339
340 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
341 uart_write_rx_fifo(opaque, buf, size);
342 }
343 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
344 uart_write_tx_fifo(s, buf, size);
345 }
346}
347
348static void uart_event(void *opaque, int event)
349{
e86da3cb 350 CadenceUARTState *s = opaque;
35548b06
PC
351 uint8_t buf = '\0';
352
353 if (event == CHR_EVENT_BREAK) {
354 uart_write_rx_fifo(opaque, &buf, 1);
355 }
356
357 uart_update_status(s);
358}
359
e86da3cb 360static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
35548b06
PC
361{
362 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
363 return;
364 }
365
35548b06 366 if (s->rx_count) {
e86da3cb
PC
367 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
368 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
1e77c91e 369 *c = s->rx_fifo[rx_rpos];
35548b06
PC
370 s->rx_count--;
371
fa394ed6 372 qemu_chr_fe_accept_input(&s->chr);
35548b06
PC
373 } else {
374 *c = 0;
35548b06
PC
375 }
376
35548b06
PC
377 uart_update_status(s);
378}
379
a8170e5e 380static void uart_write(void *opaque, hwaddr offset,
35548b06
PC
381 uint64_t value, unsigned size)
382{
e86da3cb 383 CadenceUARTState *s = opaque;
35548b06 384
2ddef11b 385 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
35548b06 386 offset >>= 2;
5eb0b194
MT
387 if (offset >= CADENCE_UART_R_MAX) {
388 return;
389 }
35548b06
PC
390 switch (offset) {
391 case R_IER: /* ier (wts imr) */
392 s->r[R_IMR] |= value;
393 break;
394 case R_IDR: /* idr (wtc imr) */
395 s->r[R_IMR] &= ~value;
396 break;
397 case R_IMR: /* imr (read only) */
398 break;
399 case R_CISR: /* cisr (wtc) */
400 s->r[R_CISR] &= ~value;
401 break;
402 case R_TX_RX: /* UARTDR */
403 switch (s->r[R_MR] & UART_MR_CHMODE) {
404 case NORMAL_MODE:
405 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
406 break;
407 case LOCAL_LOOPBACK:
408 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
409 break;
410 }
411 break;
6e29651c
PP
412 case R_BRGR: /* Baud rate generator */
413 if (value >= 0x01) {
414 s->r[offset] = value & 0xFFFF;
415 }
416 break;
417 case R_BDIV: /* Baud rate divider */
418 if (value >= 0x04) {
419 s->r[offset] = value & 0xFF;
420 }
421 break;
35548b06
PC
422 default:
423 s->r[offset] = value;
424 }
425
426 switch (offset) {
427 case R_CR:
428 uart_ctrl_update(s);
429 break;
430 case R_MR:
431 uart_parameters_setup(s);
432 break;
433 }
589bfb68 434 uart_update_status(s);
35548b06
PC
435}
436
a8170e5e 437static uint64_t uart_read(void *opaque, hwaddr offset,
35548b06
PC
438 unsigned size)
439{
e86da3cb 440 CadenceUARTState *s = opaque;
35548b06
PC
441 uint32_t c = 0;
442
443 offset >>= 2;
e86da3cb 444 if (offset >= CADENCE_UART_R_MAX) {
2ddef11b 445 c = 0;
35548b06
PC
446 } else if (offset == R_TX_RX) {
447 uart_read_rx_fifo(s, &c);
2ddef11b
PC
448 } else {
449 c = s->r[offset];
35548b06 450 }
2ddef11b
PC
451
452 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
453 return c;
35548b06
PC
454}
455
456static const MemoryRegionOps uart_ops = {
457 .read = uart_read,
458 .write = uart_write,
459 .endianness = DEVICE_NATIVE_ENDIAN,
460};
461
823dd487 462static void cadence_uart_reset(DeviceState *dev)
35548b06 463{
e86da3cb 464 CadenceUARTState *s = CADENCE_UART(dev);
823dd487 465
35548b06
PC
466 s->r[R_CR] = 0x00000128;
467 s->r[R_IMR] = 0;
468 s->r[R_CISR] = 0;
469 s->r[R_RTRIG] = 0x00000020;
d1df5cf3
PP
470 s->r[R_BRGR] = 0x0000028B;
471 s->r[R_BDIV] = 0x0000000F;
35548b06
PC
472 s->r[R_TTRIG] = 0x00000020;
473
474 uart_rx_reset(s);
475 uart_tx_reset(s);
476
676f4c09 477 uart_update_status(s);
35548b06
PC
478}
479
96f20926 480static void cadence_uart_realize(DeviceState *dev, Error **errp)
35548b06 481{
e86da3cb 482 CadenceUARTState *s = CADENCE_UART(dev);
35548b06 483
bc72ad67 484 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
96f20926 485 fifo_trigger_update, s);
35548b06 486
fa394ed6 487 qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
81517ba3 488 uart_event, NULL, s, NULL, true);
96f20926 489}
35548b06 490
96f20926
AF
491static void cadence_uart_init(Object *obj)
492{
493 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
e86da3cb 494 CadenceUARTState *s = CADENCE_UART(obj);
96f20926
AF
495
496 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
497 sysbus_init_mmio(sbd, &s->iomem);
498 sysbus_init_irq(sbd, &s->irq);
499
73bcb24d 500 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
35548b06
PC
501}
502
503static int cadence_uart_post_load(void *opaque, int version_id)
504{
e86da3cb 505 CadenceUARTState *s = opaque;
35548b06 506
450aaae8
AF
507 /* Ensure these two aren't invalid numbers */
508 if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
509 s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
510 /* Value is invalid, abort */
511 return 1;
512 }
513
35548b06
PC
514 uart_parameters_setup(s);
515 uart_update_status(s);
516 return 0;
517}
518
519static const VMStateDescription vmstate_cadence_uart = {
520 .name = "cadence_uart",
2152e08a
PC
521 .version_id = 2,
522 .minimum_version_id = 2,
35548b06
PC
523 .post_load = cadence_uart_post_load,
524 .fields = (VMStateField[]) {
e86da3cb
PC
525 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
526 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
527 CADENCE_UART_RX_FIFO_SIZE),
528 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
529 CADENCE_UART_TX_FIFO_SIZE),
530 VMSTATE_UINT32(rx_count, CadenceUARTState),
531 VMSTATE_UINT32(tx_count, CadenceUARTState),
532 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
533 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
35548b06
PC
534 VMSTATE_END_OF_LIST()
535 }
536};
537
4be12ea0
XZ
538static Property cadence_uart_properties[] = {
539 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
540 DEFINE_PROP_END_OF_LIST(),
541};
542
35548b06
PC
543static void cadence_uart_class_init(ObjectClass *klass, void *data)
544{
545 DeviceClass *dc = DEVICE_CLASS(klass);
35548b06 546
96f20926 547 dc->realize = cadence_uart_realize;
35548b06 548 dc->vmsd = &vmstate_cadence_uart;
823dd487 549 dc->reset = cadence_uart_reset;
4be12ea0
XZ
550 dc->props = cadence_uart_properties;
551 }
35548b06 552
8c43a6f0 553static const TypeInfo cadence_uart_info = {
534f6ff9 554 .name = TYPE_CADENCE_UART,
35548b06 555 .parent = TYPE_SYS_BUS_DEVICE,
e86da3cb 556 .instance_size = sizeof(CadenceUARTState),
96f20926 557 .instance_init = cadence_uart_init,
35548b06
PC
558 .class_init = cadence_uart_class_init,
559};
560
561static void cadence_uart_register_types(void)
562{
563 type_register_static(&cadence_uart_info);
564}
565
566type_init(cadence_uart_register_types)
This page took 0.424619 seconds and 4 git commands to generate.