]> Git Repo - qemu.git/blame - hw/char/cadence_uart.c
hw/intc/arm_gicv3: Add missing break
[qemu.git] / hw / char / cadence_uart.c
CommitLineData
35548b06
PC
1/*
2 * Device model for Cadence UART
3 *
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite ([email protected])
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
8ef94f0b 19#include "qemu/osdep.h"
03dd024f
PB
20#include "hw/sysbus.h"
21#include "sysemu/char.h"
22#include "qemu/timer.h"
23#include "qemu/log.h"
8ae57b2f 24#include "hw/char/cadence_uart.h"
35548b06
PC
25
26#ifdef CADENCE_UART_ERR_DEBUG
27#define DB_PRINT(...) do { \
28 fprintf(stderr, ": %s: ", __func__); \
29 fprintf(stderr, ## __VA_ARGS__); \
30 } while (0);
31#else
32 #define DB_PRINT(...)
33#endif
34
35#define UART_SR_INTR_RTRIG 0x00000001
36#define UART_SR_INTR_REMPTY 0x00000002
37#define UART_SR_INTR_RFUL 0x00000004
38#define UART_SR_INTR_TEMPTY 0x00000008
39#define UART_SR_INTR_TFUL 0x00000010
11a239a5
PC
40/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
41#define UART_SR_TTRIG 0x00002000
42#define UART_INTR_TTRIG 0x00000400
35548b06
PC
43/* bits fields in CSR that correlate to CISR. If any of these bits are set in
44 * SR, then the same bit in CISR is set high too */
45#define UART_SR_TO_CISR_MASK 0x0000001F
46
47#define UART_INTR_ROVR 0x00000020
48#define UART_INTR_FRAME 0x00000040
49#define UART_INTR_PARE 0x00000080
50#define UART_INTR_TIMEOUT 0x00000100
51#define UART_INTR_DMSI 0x00000200
11a239a5 52#define UART_INTR_TOVR 0x00001000
35548b06
PC
53
54#define UART_SR_RACTIVE 0x00000400
55#define UART_SR_TACTIVE 0x00000800
56#define UART_SR_FDELT 0x00001000
57
58#define UART_CR_RXRST 0x00000001
59#define UART_CR_TXRST 0x00000002
60#define UART_CR_RX_EN 0x00000004
61#define UART_CR_RX_DIS 0x00000008
62#define UART_CR_TX_EN 0x00000010
63#define UART_CR_TX_DIS 0x00000020
64#define UART_CR_RST_TO 0x00000040
65#define UART_CR_STARTBRK 0x00000080
66#define UART_CR_STOPBRK 0x00000100
67
68#define UART_MR_CLKS 0x00000001
69#define UART_MR_CHRL 0x00000006
70#define UART_MR_CHRL_SH 1
71#define UART_MR_PAR 0x00000038
72#define UART_MR_PAR_SH 3
73#define UART_MR_NBSTOP 0x000000C0
74#define UART_MR_NBSTOP_SH 6
75#define UART_MR_CHMODE 0x00000300
76#define UART_MR_CHMODE_SH 8
77#define UART_MR_UCLKEN 0x00000400
78#define UART_MR_IRMODE 0x00000800
79
80#define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
81#define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
82#define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
83#define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
84#define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
85#define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
86#define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
87#define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
88#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
89#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
90
35548b06
PC
91#define UART_INPUT_CLK 50000000
92
93#define R_CR (0x00/4)
94#define R_MR (0x04/4)
95#define R_IER (0x08/4)
96#define R_IDR (0x0C/4)
97#define R_IMR (0x10/4)
98#define R_CISR (0x14/4)
99#define R_BRGR (0x18/4)
100#define R_RTOR (0x1C/4)
101#define R_RTRIG (0x20/4)
102#define R_MCR (0x24/4)
103#define R_MSR (0x28/4)
104#define R_SR (0x2C/4)
105#define R_TX_RX (0x30/4)
106#define R_BDIV (0x34/4)
107#define R_FDEL (0x38/4)
108#define R_PMIN (0x3C/4)
109#define R_PWID (0x40/4)
110#define R_TTRIG (0x44/4)
111
35548b06 112
e86da3cb 113static void uart_update_status(CadenceUARTState *s)
35548b06 114{
676f4c09
PC
115 s->r[R_SR] = 0;
116
e86da3cb
PC
117 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
118 : 0;
676f4c09
PC
119 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
120 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
121
e86da3cb
PC
122 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
123 : 0;
2152e08a
PC
124 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
125 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
126
35548b06 127 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
2152e08a 128 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
35548b06
PC
129 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
130}
131
132static void fifo_trigger_update(void *opaque)
133{
e86da3cb 134 CadenceUARTState *s = opaque;
35548b06
PC
135
136 s->r[R_CISR] |= UART_INTR_TIMEOUT;
137
138 uart_update_status(s);
139}
140
e86da3cb 141static void uart_rx_reset(CadenceUARTState *s)
35548b06
PC
142{
143 s->rx_wpos = 0;
144 s->rx_count = 0;
9121d02c
PC
145 if (s->chr) {
146 qemu_chr_accept_input(s->chr);
147 }
35548b06
PC
148}
149
e86da3cb 150static void uart_tx_reset(CadenceUARTState *s)
35548b06 151{
2152e08a 152 s->tx_count = 0;
35548b06
PC
153}
154
e86da3cb 155static void uart_send_breaks(CadenceUARTState *s)
35548b06
PC
156{
157 int break_enabled = 1;
158
af52fe86
FK
159 if (s->chr) {
160 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
161 &break_enabled);
162 }
35548b06
PC
163}
164
e86da3cb 165static void uart_parameters_setup(CadenceUARTState *s)
35548b06
PC
166{
167 QEMUSerialSetParams ssp;
168 unsigned int baud_rate, packet_size;
169
170 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
171 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
172
173 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
174 packet_size = 1;
175
176 switch (s->r[R_MR] & UART_MR_PAR) {
177 case UART_PARITY_EVEN:
178 ssp.parity = 'E';
179 packet_size++;
180 break;
181 case UART_PARITY_ODD:
182 ssp.parity = 'O';
183 packet_size++;
184 break;
185 default:
186 ssp.parity = 'N';
187 break;
188 }
189
190 switch (s->r[R_MR] & UART_MR_CHRL) {
191 case UART_DATA_BITS_6:
192 ssp.data_bits = 6;
193 break;
194 case UART_DATA_BITS_7:
195 ssp.data_bits = 7;
196 break;
197 default:
198 ssp.data_bits = 8;
199 break;
200 }
201
202 switch (s->r[R_MR] & UART_MR_NBSTOP) {
203 case UART_STOP_BITS_1:
204 ssp.stop_bits = 1;
205 break;
206 default:
207 ssp.stop_bits = 2;
208 break;
209 }
210
211 packet_size += ssp.data_bits + ssp.stop_bits;
73bcb24d 212 s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
af52fe86
FK
213 if (s->chr) {
214 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
215 }
35548b06
PC
216}
217
218static int uart_can_receive(void *opaque)
219{
e86da3cb
PC
220 CadenceUARTState *s = opaque;
221 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
d0ac820f 222 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
35548b06 223
d0ac820f 224 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
e86da3cb 225 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
d0ac820f
PC
226 }
227 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
e86da3cb 228 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
d0ac820f
PC
229 }
230 return ret;
35548b06
PC
231}
232
e86da3cb 233static void uart_ctrl_update(CadenceUARTState *s)
35548b06
PC
234{
235 if (s->r[R_CR] & UART_CR_TXRST) {
236 uart_tx_reset(s);
237 }
238
239 if (s->r[R_CR] & UART_CR_RXRST) {
240 uart_rx_reset(s);
241 }
242
243 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
244
35548b06
PC
245 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
246 uart_send_breaks(s);
247 }
248}
249
250static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
251{
e86da3cb 252 CadenceUARTState *s = opaque;
bc72ad67 253 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
35548b06
PC
254 int i;
255
256 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
257 return;
258 }
259
e86da3cb 260 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
35548b06
PC
261 s->r[R_CISR] |= UART_INTR_ROVR;
262 } else {
263 for (i = 0; i < size; i++) {
1e77c91e 264 s->rx_fifo[s->rx_wpos] = buf[i];
e86da3cb 265 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
35548b06 266 s->rx_count++;
35548b06 267 }
bc72ad67 268 timer_mod(s->fifo_trigger_handle, new_rx_time +
35548b06
PC
269 (s->char_tx_time * 4));
270 }
271 uart_update_status(s);
272}
273
38acd64b
PC
274static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
275 void *opaque)
276{
e86da3cb 277 CadenceUARTState *s = opaque;
38acd64b
PC
278 int ret;
279
280 /* instant drain the fifo when there's no back-end */
281 if (!s->chr) {
282 s->tx_count = 0;
af52fe86 283 return FALSE;
38acd64b
PC
284 }
285
286 if (!s->tx_count) {
287 return FALSE;
288 }
289
290 ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
291 s->tx_count -= ret;
292 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
293
294 if (s->tx_count) {
e02bc6de
RPM
295 int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
296 cadence_uart_xmit, s);
38acd64b
PC
297 assert(r);
298 }
299
300 uart_update_status(s);
301 return FALSE;
302}
303
e86da3cb
PC
304static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
305 int size)
35548b06
PC
306{
307 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
308 return;
309 }
310
e86da3cb
PC
311 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
312 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
86baecc3
PC
313 /*
314 * This can only be a guest error via a bad tx fifo register push,
315 * as can_receive() should stop remote loop and echo modes ever getting
316 * us to here.
317 */
318 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
319 s->r[R_CISR] |= UART_INTR_ROVR;
320 }
321
322 memcpy(s->tx_fifo + s->tx_count, buf, size);
323 s->tx_count += size;
324
38acd64b 325 cadence_uart_xmit(NULL, G_IO_OUT, s);
35548b06
PC
326}
327
328static void uart_receive(void *opaque, const uint8_t *buf, int size)
329{
e86da3cb 330 CadenceUARTState *s = opaque;
35548b06
PC
331 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
332
333 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
334 uart_write_rx_fifo(opaque, buf, size);
335 }
336 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
337 uart_write_tx_fifo(s, buf, size);
338 }
339}
340
341static void uart_event(void *opaque, int event)
342{
e86da3cb 343 CadenceUARTState *s = opaque;
35548b06
PC
344 uint8_t buf = '\0';
345
346 if (event == CHR_EVENT_BREAK) {
347 uart_write_rx_fifo(opaque, &buf, 1);
348 }
349
350 uart_update_status(s);
351}
352
e86da3cb 353static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
35548b06
PC
354{
355 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
356 return;
357 }
358
35548b06 359 if (s->rx_count) {
e86da3cb
PC
360 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
361 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
1e77c91e 362 *c = s->rx_fifo[rx_rpos];
35548b06
PC
363 s->rx_count--;
364
af52fe86
FK
365 if (s->chr) {
366 qemu_chr_accept_input(s->chr);
367 }
35548b06
PC
368 } else {
369 *c = 0;
35548b06
PC
370 }
371
35548b06
PC
372 uart_update_status(s);
373}
374
a8170e5e 375static void uart_write(void *opaque, hwaddr offset,
35548b06
PC
376 uint64_t value, unsigned size)
377{
e86da3cb 378 CadenceUARTState *s = opaque;
35548b06 379
2ddef11b 380 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
35548b06 381 offset >>= 2;
5eb0b194
MT
382 if (offset >= CADENCE_UART_R_MAX) {
383 return;
384 }
35548b06
PC
385 switch (offset) {
386 case R_IER: /* ier (wts imr) */
387 s->r[R_IMR] |= value;
388 break;
389 case R_IDR: /* idr (wtc imr) */
390 s->r[R_IMR] &= ~value;
391 break;
392 case R_IMR: /* imr (read only) */
393 break;
394 case R_CISR: /* cisr (wtc) */
395 s->r[R_CISR] &= ~value;
396 break;
397 case R_TX_RX: /* UARTDR */
398 switch (s->r[R_MR] & UART_MR_CHMODE) {
399 case NORMAL_MODE:
400 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
401 break;
402 case LOCAL_LOOPBACK:
403 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
404 break;
405 }
406 break;
407 default:
408 s->r[offset] = value;
409 }
410
411 switch (offset) {
412 case R_CR:
413 uart_ctrl_update(s);
414 break;
415 case R_MR:
416 uart_parameters_setup(s);
417 break;
418 }
589bfb68 419 uart_update_status(s);
35548b06
PC
420}
421
a8170e5e 422static uint64_t uart_read(void *opaque, hwaddr offset,
35548b06
PC
423 unsigned size)
424{
e86da3cb 425 CadenceUARTState *s = opaque;
35548b06
PC
426 uint32_t c = 0;
427
428 offset >>= 2;
e86da3cb 429 if (offset >= CADENCE_UART_R_MAX) {
2ddef11b 430 c = 0;
35548b06
PC
431 } else if (offset == R_TX_RX) {
432 uart_read_rx_fifo(s, &c);
2ddef11b
PC
433 } else {
434 c = s->r[offset];
35548b06 435 }
2ddef11b
PC
436
437 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
438 return c;
35548b06
PC
439}
440
441static const MemoryRegionOps uart_ops = {
442 .read = uart_read,
443 .write = uart_write,
444 .endianness = DEVICE_NATIVE_ENDIAN,
445};
446
823dd487 447static void cadence_uart_reset(DeviceState *dev)
35548b06 448{
e86da3cb 449 CadenceUARTState *s = CADENCE_UART(dev);
823dd487 450
35548b06
PC
451 s->r[R_CR] = 0x00000128;
452 s->r[R_IMR] = 0;
453 s->r[R_CISR] = 0;
454 s->r[R_RTRIG] = 0x00000020;
455 s->r[R_BRGR] = 0x0000000F;
456 s->r[R_TTRIG] = 0x00000020;
457
458 uart_rx_reset(s);
459 uart_tx_reset(s);
460
676f4c09 461 uart_update_status(s);
35548b06
PC
462}
463
96f20926 464static void cadence_uart_realize(DeviceState *dev, Error **errp)
35548b06 465{
e86da3cb 466 CadenceUARTState *s = CADENCE_UART(dev);
35548b06 467
bc72ad67 468 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
96f20926 469 fifo_trigger_update, s);
35548b06 470
35548b06
PC
471 if (s->chr) {
472 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
473 uart_event, s);
474 }
96f20926 475}
35548b06 476
96f20926
AF
477static void cadence_uart_init(Object *obj)
478{
479 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
e86da3cb 480 CadenceUARTState *s = CADENCE_UART(obj);
96f20926
AF
481
482 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
483 sysbus_init_mmio(sbd, &s->iomem);
484 sysbus_init_irq(sbd, &s->irq);
485
73bcb24d 486 s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
35548b06
PC
487}
488
489static int cadence_uart_post_load(void *opaque, int version_id)
490{
e86da3cb 491 CadenceUARTState *s = opaque;
35548b06
PC
492
493 uart_parameters_setup(s);
494 uart_update_status(s);
495 return 0;
496}
497
498static const VMStateDescription vmstate_cadence_uart = {
499 .name = "cadence_uart",
2152e08a
PC
500 .version_id = 2,
501 .minimum_version_id = 2,
35548b06
PC
502 .post_load = cadence_uart_post_load,
503 .fields = (VMStateField[]) {
e86da3cb
PC
504 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
505 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
506 CADENCE_UART_RX_FIFO_SIZE),
507 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
508 CADENCE_UART_TX_FIFO_SIZE),
509 VMSTATE_UINT32(rx_count, CadenceUARTState),
510 VMSTATE_UINT32(tx_count, CadenceUARTState),
511 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
512 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
35548b06
PC
513 VMSTATE_END_OF_LIST()
514 }
515};
516
4be12ea0
XZ
517static Property cadence_uart_properties[] = {
518 DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
519 DEFINE_PROP_END_OF_LIST(),
520};
521
35548b06
PC
522static void cadence_uart_class_init(ObjectClass *klass, void *data)
523{
524 DeviceClass *dc = DEVICE_CLASS(klass);
35548b06 525
96f20926 526 dc->realize = cadence_uart_realize;
35548b06 527 dc->vmsd = &vmstate_cadence_uart;
823dd487 528 dc->reset = cadence_uart_reset;
4be12ea0
XZ
529 dc->props = cadence_uart_properties;
530 }
35548b06 531
8c43a6f0 532static const TypeInfo cadence_uart_info = {
534f6ff9 533 .name = TYPE_CADENCE_UART,
35548b06 534 .parent = TYPE_SYS_BUS_DEVICE,
e86da3cb 535 .instance_size = sizeof(CadenceUARTState),
96f20926 536 .instance_init = cadence_uart_init,
35548b06
PC
537 .class_init = cadence_uart_class_init,
538};
539
540static void cadence_uart_register_types(void)
541{
542 type_register_static(&cadence_uart_info);
543}
544
545type_init(cadence_uart_register_types)
This page took 0.371935 seconds and 4 git commands to generate.