]> Git Repo - qemu.git/blame - linux-user/elfload.c
linux-user: init_guest_space: Clean up if we can't initialize the commpage
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
83fb7adf
FB
81/* this flag is uneffective under linux too, should be deleted */
82#ifndef MAP_DENYWRITE
83#define MAP_DENYWRITE 0
84#endif
85
86/* should probably go in elf.h */
87#ifndef ELIBBAD
88#define ELIBBAD 80
89#endif
90
28490231
RH
91#ifdef TARGET_WORDS_BIGENDIAN
92#define ELF_DATA ELFDATA2MSB
93#else
94#define ELF_DATA ELFDATA2LSB
95#endif
96
a29f998d 97#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
98typedef abi_ullong target_elf_greg_t;
99#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
100#else
101typedef abi_ulong target_elf_greg_t;
102#define tswapreg(ptr) tswapal(ptr)
103#endif
104
21e807fa 105#ifdef USE_UID16
1ddd592f
PB
106typedef abi_ushort target_uid_t;
107typedef abi_ushort target_gid_t;
21e807fa 108#else
f8fd4fc4
PB
109typedef abi_uint target_uid_t;
110typedef abi_uint target_gid_t;
21e807fa 111#endif
f8fd4fc4 112typedef abi_int target_pid_t;
21e807fa 113
30ac07d4
FB
114#ifdef TARGET_I386
115
15338fd7
FB
116#define ELF_PLATFORM get_elf_platform()
117
118static const char *get_elf_platform(void)
119{
120 static char elf_platform[] = "i386";
a2247f8e 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
127}
128
129#define ELF_HWCAP get_elf_hwcap()
130
131static uint32_t get_elf_hwcap(void)
132{
a2247f8e
AF
133 X86CPU *cpu = X86_CPU(thread_cpu);
134
135 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
136}
137
84409ddb
JM
138#ifdef TARGET_X86_64
139#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
140
141#define ELF_CLASS ELFCLASS64
84409ddb
JM
142#define ELF_ARCH EM_X86_64
143
144static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145{
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
149}
150
9edc5d79 151#define ELF_NREG 27
c227f099 152typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
153
154/*
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
158 *
159 * See linux kernel: arch/x86/include/asm/elf.h
160 */
05390248 161static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
162{
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190}
191
84409ddb
JM
192#else
193
30ac07d4
FB
194#define ELF_START_MMAP 0x80000000
195
30ac07d4
FB
196/*
197 * This is used to ensure we don't load something for the wrong architecture.
198 */
199#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200
201/*
202 * These are used to set parameters in the core dumps.
203 */
d97ef72e 204#define ELF_CLASS ELFCLASS32
d97ef72e 205#define ELF_ARCH EM_386
30ac07d4 206
d97ef72e
RH
207static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
b346ff46
FB
209{
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
e5fe0c52
PB
212
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
218
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
b346ff46 221}
9edc5d79 222
9edc5d79 223#define ELF_NREG 17
c227f099 224typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
225
226/*
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
230 *
231 * See linux kernel: arch/x86/include/asm/elf.h
232 */
05390248 233static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
234{
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252}
84409ddb 253#endif
b346ff46 254
9edc5d79 255#define USE_ELF_CORE_DUMP
d97ef72e 256#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
257
258#endif
259
260#ifdef TARGET_ARM
261
24e76ff0
PM
262#ifndef TARGET_AARCH64
263/* 32 bit ARM definitions */
264
b346ff46
FB
265#define ELF_START_MMAP 0x80000000
266
b597c3f7 267#define ELF_ARCH EM_ARM
d97ef72e 268#define ELF_CLASS ELFCLASS32
b346ff46 269
d97ef72e
RH
270static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
b346ff46 272{
992f48a0 273 abi_long stack = infop->start_stack;
b346ff46 274 memset(regs, 0, sizeof(*regs));
99033cae 275
167e4cdc
PM
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
279 }
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
2f619698 282 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 285 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 286 regs->uregs[0] = 0;
e5fe0c52 287 /* For uClinux PIC binaries. */
863cf0b7 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 289 regs->uregs[10] = infop->start_data;
b346ff46
FB
290}
291
edf8e2af 292#define ELF_NREG 18
c227f099 293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 294
05390248 295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 296{
86cd7b2d
PB
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
313
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
316}
317
30ac07d4 318#define USE_ELF_CORE_DUMP
d97ef72e 319#define ELF_EXEC_PAGESIZE 4096
30ac07d4 320
afce2927
FB
321enum
322{
d97ef72e
RH
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
345};
346
ad6919dc
PM
347enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
353};
354
6b1275ff
PM
355/* The commpage only exists for 32 bit kernels */
356
806d1021
MI
357/* Return 1 if the proposed guest space is suitable for the guest.
358 * Return 0 if the proposed guest space isn't suitable, but another
359 * address space should be tried.
360 * Return -1 if there is no way the proposed guest space can be
361 * valid regardless of the base.
362 * The guest code may leave a page mapped and populate it if the
363 * address is suitable.
364 */
c3637eaf
LS
365static int init_guest_commpage(unsigned long guest_base,
366 unsigned long guest_size)
97cc7560
DDAG
367{
368 unsigned long real_start, test_page_addr;
369
370 /* We need to check that we can force a fault on access to the
371 * commpage at 0xffff0fxx
372 */
373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
374
375 /* If the commpage lies within the already allocated guest space,
376 * then there is no way we can allocate it.
377 */
378 if (test_page_addr >= guest_base
e568f9df 379 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
380 return -1;
381 }
382
97cc7560
DDAG
383 /* Note it needs to be writeable to let us initialise it */
384 real_start = (unsigned long)
385 mmap((void *)test_page_addr, qemu_host_page_size,
386 PROT_READ | PROT_WRITE,
387 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
388
389 /* If we can't map it then try another address */
390 if (real_start == -1ul) {
391 return 0;
392 }
393
394 if (real_start != test_page_addr) {
395 /* OS didn't put the page where we asked - unmap and reject */
396 munmap((void *)real_start, qemu_host_page_size);
397 return 0;
398 }
399
400 /* Leave the page mapped
401 * Populate it (mmap should have left it all 0'd)
402 */
403
404 /* Kernel helper versions */
405 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
406
407 /* Now it's populated make it RO */
408 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
409 perror("Protecting guest commpage");
410 exit(-1);
411 }
412
413 return 1; /* All good */
414}
adf050b1
BC
415
416#define ELF_HWCAP get_elf_hwcap()
ad6919dc 417#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
418
419static uint32_t get_elf_hwcap(void)
420{
a2247f8e 421 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
422 uint32_t hwcaps = 0;
423
424 hwcaps |= ARM_HWCAP_ARM_SWP;
425 hwcaps |= ARM_HWCAP_ARM_HALF;
426 hwcaps |= ARM_HWCAP_ARM_THUMB;
427 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
428
429 /* probe for the extra features */
430#define GET_FEATURE(feat, hwcap) \
a2247f8e 431 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
434 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
435 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
436 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
437 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
438 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
441 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
442 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
443 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
444 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
445 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
446 * to our VFP_FP16 feature bit.
447 */
448 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
449 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
450
451 return hwcaps;
452}
afce2927 453
ad6919dc
PM
454static uint32_t get_elf_hwcap2(void)
455{
456 ARMCPU *cpu = ARM_CPU(thread_cpu);
457 uint32_t hwcaps = 0;
458
459 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 460 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
461 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
462 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
463 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
464 return hwcaps;
465}
466
467#undef GET_FEATURE
468
24e76ff0
PM
469#else
470/* 64 bit ARM definitions */
471#define ELF_START_MMAP 0x80000000
472
b597c3f7 473#define ELF_ARCH EM_AARCH64
24e76ff0
PM
474#define ELF_CLASS ELFCLASS64
475#define ELF_PLATFORM "aarch64"
476
477static inline void init_thread(struct target_pt_regs *regs,
478 struct image_info *infop)
479{
480 abi_long stack = infop->start_stack;
481 memset(regs, 0, sizeof(*regs));
482
483 regs->pc = infop->entry & ~0x3ULL;
484 regs->sp = stack;
485}
486
487#define ELF_NREG 34
488typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
489
490static void elf_core_copy_regs(target_elf_gregset_t *regs,
491 const CPUARMState *env)
492{
493 int i;
494
495 for (i = 0; i < 32; i++) {
496 (*regs)[i] = tswapreg(env->xregs[i]);
497 }
498 (*regs)[32] = tswapreg(env->pc);
499 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
500}
501
502#define USE_ELF_CORE_DUMP
503#define ELF_EXEC_PAGESIZE 4096
504
505enum {
506 ARM_HWCAP_A64_FP = 1 << 0,
507 ARM_HWCAP_A64_ASIMD = 1 << 1,
508 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
509 ARM_HWCAP_A64_AES = 1 << 3,
510 ARM_HWCAP_A64_PMULL = 1 << 4,
511 ARM_HWCAP_A64_SHA1 = 1 << 5,
512 ARM_HWCAP_A64_SHA2 = 1 << 6,
513 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
514 ARM_HWCAP_A64_ATOMICS = 1 << 8,
515 ARM_HWCAP_A64_FPHP = 1 << 9,
516 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
517 ARM_HWCAP_A64_CPUID = 1 << 11,
518 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
519 ARM_HWCAP_A64_JSCVT = 1 << 13,
520 ARM_HWCAP_A64_FCMA = 1 << 14,
521 ARM_HWCAP_A64_LRCPC = 1 << 15,
522 ARM_HWCAP_A64_DCPOP = 1 << 16,
523 ARM_HWCAP_A64_SHA3 = 1 << 17,
524 ARM_HWCAP_A64_SM3 = 1 << 18,
525 ARM_HWCAP_A64_SM4 = 1 << 19,
526 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
527 ARM_HWCAP_A64_SHA512 = 1 << 21,
528 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
529};
530
531#define ELF_HWCAP get_elf_hwcap()
532
533static uint32_t get_elf_hwcap(void)
534{
535 ARMCPU *cpu = ARM_CPU(thread_cpu);
536 uint32_t hwcaps = 0;
537
538 hwcaps |= ARM_HWCAP_A64_FP;
539 hwcaps |= ARM_HWCAP_A64_ASIMD;
540
541 /* probe for the extra features */
542#define GET_FEATURE(feat, hwcap) \
543 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 544 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 545 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
546 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
547 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 548 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
549 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
550 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
551 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
552 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
553 GET_FEATURE(ARM_FEATURE_V8_FP16,
554 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
1dc81c15 555 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
0438f037 556 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
24e76ff0
PM
557#undef GET_FEATURE
558
559 return hwcaps;
560}
561
562#endif /* not TARGET_AARCH64 */
563#endif /* TARGET_ARM */
30ac07d4 564
853d6f7a 565#ifdef TARGET_SPARC
a315a145 566#ifdef TARGET_SPARC64
853d6f7a
FB
567
568#define ELF_START_MMAP 0x80000000
cf973e46
AT
569#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
570 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 571#ifndef TARGET_ABI32
cb33da57 572#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
573#else
574#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
575#endif
853d6f7a 576
a315a145 577#define ELF_CLASS ELFCLASS64
5ef54116
FB
578#define ELF_ARCH EM_SPARCV9
579
d97ef72e 580#define STACK_BIAS 2047
a315a145 581
d97ef72e
RH
582static inline void init_thread(struct target_pt_regs *regs,
583 struct image_info *infop)
a315a145 584{
992f48a0 585#ifndef TARGET_ABI32
a315a145 586 regs->tstate = 0;
992f48a0 587#endif
a315a145
FB
588 regs->pc = infop->entry;
589 regs->npc = regs->pc + 4;
590 regs->y = 0;
992f48a0
BS
591#ifdef TARGET_ABI32
592 regs->u_regs[14] = infop->start_stack - 16 * 4;
593#else
cb33da57
BS
594 if (personality(infop->personality) == PER_LINUX32)
595 regs->u_regs[14] = infop->start_stack - 16 * 4;
596 else
597 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 598#endif
a315a145
FB
599}
600
601#else
602#define ELF_START_MMAP 0x80000000
cf973e46
AT
603#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
604 | HWCAP_SPARC_MULDIV)
a315a145 605
853d6f7a 606#define ELF_CLASS ELFCLASS32
853d6f7a
FB
607#define ELF_ARCH EM_SPARC
608
d97ef72e
RH
609static inline void init_thread(struct target_pt_regs *regs,
610 struct image_info *infop)
853d6f7a 611{
f5155289
FB
612 regs->psr = 0;
613 regs->pc = infop->entry;
614 regs->npc = regs->pc + 4;
615 regs->y = 0;
616 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
617}
618
a315a145 619#endif
853d6f7a
FB
620#endif
621
67867308
FB
622#ifdef TARGET_PPC
623
4ecd4d16 624#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
625#define ELF_START_MMAP 0x80000000
626
e85e7c6e 627#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
628
629#define elf_check_arch(x) ( (x) == EM_PPC64 )
630
d97ef72e 631#define ELF_CLASS ELFCLASS64
84409ddb
JM
632
633#else
634
d97ef72e 635#define ELF_CLASS ELFCLASS32
84409ddb
JM
636
637#endif
638
d97ef72e 639#define ELF_ARCH EM_PPC
67867308 640
df84e4f3
NF
641/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
642 See arch/powerpc/include/asm/cputable.h. */
643enum {
3efa9a67 644 QEMU_PPC_FEATURE_32 = 0x80000000,
645 QEMU_PPC_FEATURE_64 = 0x40000000,
646 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
647 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
648 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
649 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
650 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
651 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
652 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
653 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
654 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
655 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
656 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
657 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
658 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
659 QEMU_PPC_FEATURE_CELL = 0x00010000,
660 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
661 QEMU_PPC_FEATURE_SMT = 0x00004000,
662 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
663 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
664 QEMU_PPC_FEATURE_PA6T = 0x00000800,
665 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
666 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
667 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
668 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
669 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
670
671 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
672 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
673
674 /* Feature definitions in AT_HWCAP2. */
675 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
676 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
677 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
678 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
679 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
680 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
681};
682
683#define ELF_HWCAP get_elf_hwcap()
684
685static uint32_t get_elf_hwcap(void)
686{
a2247f8e 687 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
688 uint32_t features = 0;
689
690 /* We don't have to be terribly complete here; the high points are
691 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 692#define GET_FEATURE(flag, feature) \
a2247f8e 693 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
694#define GET_FEATURE2(flags, feature) \
695 do { \
696 if ((cpu->env.insns_flags2 & flags) == flags) { \
697 features |= feature; \
698 } \
699 } while (0)
3efa9a67 700 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
701 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
702 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
703 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
704 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
705 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
706 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
707 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
708 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
709 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
710 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
711 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
712 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 713#undef GET_FEATURE
0e019746 714#undef GET_FEATURE2
df84e4f3
NF
715
716 return features;
717}
718
a60438dd
TM
719#define ELF_HWCAP2 get_elf_hwcap2()
720
721static uint32_t get_elf_hwcap2(void)
722{
723 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
724 uint32_t features = 0;
725
726#define GET_FEATURE(flag, feature) \
727 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
728#define GET_FEATURE2(flag, feature) \
729 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
730
731 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
732 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
733 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
734 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
735
736#undef GET_FEATURE
737#undef GET_FEATURE2
738
739 return features;
740}
741
f5155289
FB
742/*
743 * The requirements here are:
744 * - keep the final alignment of sp (sp & 0xf)
745 * - make sure the 32-bit value at the first 16 byte aligned position of
746 * AUXV is greater than 16 for glibc compatibility.
747 * AT_IGNOREPPC is used for that.
748 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
749 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
750 */
0bccf03d 751#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
752#define ARCH_DLINFO \
753 do { \
623e250a 754 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 755 /* \
82991bed
PM
756 * Handle glibc compatibility: these magic entries must \
757 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
758 */ \
759 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
760 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
761 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
762 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
763 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 764 } while (0)
f5155289 765
67867308
FB
766static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
767{
67867308 768 _regs->gpr[1] = infop->start_stack;
e85e7c6e 769#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 770 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
771 uint64_t val;
772 get_user_u64(val, infop->entry + 8);
773 _regs->gpr[2] = val + infop->load_bias;
774 get_user_u64(val, infop->entry);
775 infop->entry = val + infop->load_bias;
d90b94cd
DK
776 } else {
777 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
778 }
84409ddb 779#endif
67867308
FB
780 _regs->nip = infop->entry;
781}
782
e2f3e741
NF
783/* See linux kernel: arch/powerpc/include/asm/elf.h. */
784#define ELF_NREG 48
785typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
786
05390248 787static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
788{
789 int i;
790 target_ulong ccr = 0;
791
792 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 793 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
794 }
795
86cd7b2d
PB
796 (*regs)[32] = tswapreg(env->nip);
797 (*regs)[33] = tswapreg(env->msr);
798 (*regs)[35] = tswapreg(env->ctr);
799 (*regs)[36] = tswapreg(env->lr);
800 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
801
802 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
803 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
804 }
86cd7b2d 805 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
806}
807
808#define USE_ELF_CORE_DUMP
d97ef72e 809#define ELF_EXEC_PAGESIZE 4096
67867308
FB
810
811#endif
812
048f6b4d
FB
813#ifdef TARGET_MIPS
814
815#define ELF_START_MMAP 0x80000000
816
388bb21a
TS
817#ifdef TARGET_MIPS64
818#define ELF_CLASS ELFCLASS64
819#else
048f6b4d 820#define ELF_CLASS ELFCLASS32
388bb21a 821#endif
048f6b4d
FB
822#define ELF_ARCH EM_MIPS
823
d97ef72e
RH
824static inline void init_thread(struct target_pt_regs *regs,
825 struct image_info *infop)
048f6b4d 826{
623a930e 827 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
828 regs->cp0_epc = infop->entry;
829 regs->regs[29] = infop->start_stack;
830}
831
51e52606
NF
832/* See linux kernel: arch/mips/include/asm/elf.h. */
833#define ELF_NREG 45
834typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
835
836/* See linux kernel: arch/mips/include/asm/reg.h. */
837enum {
838#ifdef TARGET_MIPS64
839 TARGET_EF_R0 = 0,
840#else
841 TARGET_EF_R0 = 6,
842#endif
843 TARGET_EF_R26 = TARGET_EF_R0 + 26,
844 TARGET_EF_R27 = TARGET_EF_R0 + 27,
845 TARGET_EF_LO = TARGET_EF_R0 + 32,
846 TARGET_EF_HI = TARGET_EF_R0 + 33,
847 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
848 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
849 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
850 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
851};
852
853/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 854static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
855{
856 int i;
857
858 for (i = 0; i < TARGET_EF_R0; i++) {
859 (*regs)[i] = 0;
860 }
861 (*regs)[TARGET_EF_R0] = 0;
862
863 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 864 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
865 }
866
867 (*regs)[TARGET_EF_R26] = 0;
868 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
869 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
870 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
871 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
872 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
873 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
874 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
875}
876
877#define USE_ELF_CORE_DUMP
388bb21a
TS
878#define ELF_EXEC_PAGESIZE 4096
879
048f6b4d
FB
880#endif /* TARGET_MIPS */
881
b779e29e
EI
882#ifdef TARGET_MICROBLAZE
883
884#define ELF_START_MMAP 0x80000000
885
0d5d4699 886#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
887
888#define ELF_CLASS ELFCLASS32
0d5d4699 889#define ELF_ARCH EM_MICROBLAZE
b779e29e 890
d97ef72e
RH
891static inline void init_thread(struct target_pt_regs *regs,
892 struct image_info *infop)
b779e29e
EI
893{
894 regs->pc = infop->entry;
895 regs->r1 = infop->start_stack;
896
897}
898
b779e29e
EI
899#define ELF_EXEC_PAGESIZE 4096
900
e4cbd44d
EI
901#define USE_ELF_CORE_DUMP
902#define ELF_NREG 38
903typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
904
905/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 906static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
907{
908 int i, pos = 0;
909
910 for (i = 0; i < 32; i++) {
86cd7b2d 911 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
912 }
913
914 for (i = 0; i < 6; i++) {
86cd7b2d 915 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
916 }
917}
918
b779e29e
EI
919#endif /* TARGET_MICROBLAZE */
920
a0a839b6
MV
921#ifdef TARGET_NIOS2
922
923#define ELF_START_MMAP 0x80000000
924
925#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
926
927#define ELF_CLASS ELFCLASS32
928#define ELF_ARCH EM_ALTERA_NIOS2
929
930static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
931{
932 regs->ea = infop->entry;
933 regs->sp = infop->start_stack;
934 regs->estatus = 0x3;
935}
936
937#define ELF_EXEC_PAGESIZE 4096
938
939#define USE_ELF_CORE_DUMP
940#define ELF_NREG 49
941typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
942
943/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
944static void elf_core_copy_regs(target_elf_gregset_t *regs,
945 const CPUNios2State *env)
946{
947 int i;
948
949 (*regs)[0] = -1;
950 for (i = 1; i < 8; i++) /* r0-r7 */
951 (*regs)[i] = tswapreg(env->regs[i + 7]);
952
953 for (i = 8; i < 16; i++) /* r8-r15 */
954 (*regs)[i] = tswapreg(env->regs[i - 8]);
955
956 for (i = 16; i < 24; i++) /* r16-r23 */
957 (*regs)[i] = tswapreg(env->regs[i + 7]);
958 (*regs)[24] = -1; /* R_ET */
959 (*regs)[25] = -1; /* R_BT */
960 (*regs)[26] = tswapreg(env->regs[R_GP]);
961 (*regs)[27] = tswapreg(env->regs[R_SP]);
962 (*regs)[28] = tswapreg(env->regs[R_FP]);
963 (*regs)[29] = tswapreg(env->regs[R_EA]);
964 (*regs)[30] = -1; /* R_SSTATUS */
965 (*regs)[31] = tswapreg(env->regs[R_RA]);
966
967 (*regs)[32] = tswapreg(env->regs[R_PC]);
968
969 (*regs)[33] = -1; /* R_STATUS */
970 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
971
972 for (i = 35; i < 49; i++) /* ... */
973 (*regs)[i] = -1;
974}
975
976#endif /* TARGET_NIOS2 */
977
d962783e
JL
978#ifdef TARGET_OPENRISC
979
980#define ELF_START_MMAP 0x08000000
981
d962783e
JL
982#define ELF_ARCH EM_OPENRISC
983#define ELF_CLASS ELFCLASS32
984#define ELF_DATA ELFDATA2MSB
985
986static inline void init_thread(struct target_pt_regs *regs,
987 struct image_info *infop)
988{
989 regs->pc = infop->entry;
990 regs->gpr[1] = infop->start_stack;
991}
992
993#define USE_ELF_CORE_DUMP
994#define ELF_EXEC_PAGESIZE 8192
995
996/* See linux kernel arch/openrisc/include/asm/elf.h. */
997#define ELF_NREG 34 /* gprs and pc, sr */
998typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
999
1000static void elf_core_copy_regs(target_elf_gregset_t *regs,
1001 const CPUOpenRISCState *env)
1002{
1003 int i;
1004
1005 for (i = 0; i < 32; i++) {
d89e71e8 1006 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1007 }
86cd7b2d 1008 (*regs)[32] = tswapreg(env->pc);
84775c43 1009 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1010}
1011#define ELF_HWCAP 0
1012#define ELF_PLATFORM NULL
1013
1014#endif /* TARGET_OPENRISC */
1015
fdf9b3e8
FB
1016#ifdef TARGET_SH4
1017
1018#define ELF_START_MMAP 0x80000000
1019
fdf9b3e8 1020#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1021#define ELF_ARCH EM_SH
1022
d97ef72e
RH
1023static inline void init_thread(struct target_pt_regs *regs,
1024 struct image_info *infop)
fdf9b3e8 1025{
d97ef72e
RH
1026 /* Check other registers XXXXX */
1027 regs->pc = infop->entry;
1028 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1029}
1030
7631c97e
NF
1031/* See linux kernel: arch/sh/include/asm/elf.h. */
1032#define ELF_NREG 23
1033typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1034
1035/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1036enum {
1037 TARGET_REG_PC = 16,
1038 TARGET_REG_PR = 17,
1039 TARGET_REG_SR = 18,
1040 TARGET_REG_GBR = 19,
1041 TARGET_REG_MACH = 20,
1042 TARGET_REG_MACL = 21,
1043 TARGET_REG_SYSCALL = 22
1044};
1045
d97ef72e 1046static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1047 const CPUSH4State *env)
7631c97e
NF
1048{
1049 int i;
1050
1051 for (i = 0; i < 16; i++) {
72cd500b 1052 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1053 }
1054
86cd7b2d
PB
1055 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1056 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1057 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1058 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1059 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1060 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1061 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1062}
1063
1064#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1065#define ELF_EXEC_PAGESIZE 4096
1066
e42fd944
RH
1067enum {
1068 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1069 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1070 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1071 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1072 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1073 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1074 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1075 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1076 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1077 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1078};
1079
1080#define ELF_HWCAP get_elf_hwcap()
1081
1082static uint32_t get_elf_hwcap(void)
1083{
1084 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1085 uint32_t hwcap = 0;
1086
1087 hwcap |= SH_CPU_HAS_FPU;
1088
1089 if (cpu->env.features & SH_FEATURE_SH4A) {
1090 hwcap |= SH_CPU_HAS_LLSC;
1091 }
1092
1093 return hwcap;
1094}
1095
fdf9b3e8
FB
1096#endif
1097
48733d19
TS
1098#ifdef TARGET_CRIS
1099
1100#define ELF_START_MMAP 0x80000000
1101
48733d19 1102#define ELF_CLASS ELFCLASS32
48733d19
TS
1103#define ELF_ARCH EM_CRIS
1104
d97ef72e
RH
1105static inline void init_thread(struct target_pt_regs *regs,
1106 struct image_info *infop)
48733d19 1107{
d97ef72e 1108 regs->erp = infop->entry;
48733d19
TS
1109}
1110
48733d19
TS
1111#define ELF_EXEC_PAGESIZE 8192
1112
1113#endif
1114
e6e5906b
PB
1115#ifdef TARGET_M68K
1116
1117#define ELF_START_MMAP 0x80000000
1118
d97ef72e 1119#define ELF_CLASS ELFCLASS32
d97ef72e 1120#define ELF_ARCH EM_68K
e6e5906b
PB
1121
1122/* ??? Does this need to do anything?
d97ef72e 1123 #define ELF_PLAT_INIT(_r) */
e6e5906b 1124
d97ef72e
RH
1125static inline void init_thread(struct target_pt_regs *regs,
1126 struct image_info *infop)
e6e5906b
PB
1127{
1128 regs->usp = infop->start_stack;
1129 regs->sr = 0;
1130 regs->pc = infop->entry;
1131}
1132
7a93cc55
NF
1133/* See linux kernel: arch/m68k/include/asm/elf.h. */
1134#define ELF_NREG 20
1135typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1136
05390248 1137static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1138{
86cd7b2d
PB
1139 (*regs)[0] = tswapreg(env->dregs[1]);
1140 (*regs)[1] = tswapreg(env->dregs[2]);
1141 (*regs)[2] = tswapreg(env->dregs[3]);
1142 (*regs)[3] = tswapreg(env->dregs[4]);
1143 (*regs)[4] = tswapreg(env->dregs[5]);
1144 (*regs)[5] = tswapreg(env->dregs[6]);
1145 (*regs)[6] = tswapreg(env->dregs[7]);
1146 (*regs)[7] = tswapreg(env->aregs[0]);
1147 (*regs)[8] = tswapreg(env->aregs[1]);
1148 (*regs)[9] = tswapreg(env->aregs[2]);
1149 (*regs)[10] = tswapreg(env->aregs[3]);
1150 (*regs)[11] = tswapreg(env->aregs[4]);
1151 (*regs)[12] = tswapreg(env->aregs[5]);
1152 (*regs)[13] = tswapreg(env->aregs[6]);
1153 (*regs)[14] = tswapreg(env->dregs[0]);
1154 (*regs)[15] = tswapreg(env->aregs[7]);
1155 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1156 (*regs)[17] = tswapreg(env->sr);
1157 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1158 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1159}
1160
1161#define USE_ELF_CORE_DUMP
d97ef72e 1162#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1163
1164#endif
1165
7a3148a9
JM
1166#ifdef TARGET_ALPHA
1167
1168#define ELF_START_MMAP (0x30000000000ULL)
1169
7a3148a9 1170#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1171#define ELF_ARCH EM_ALPHA
1172
d97ef72e
RH
1173static inline void init_thread(struct target_pt_regs *regs,
1174 struct image_info *infop)
7a3148a9
JM
1175{
1176 regs->pc = infop->entry;
1177 regs->ps = 8;
1178 regs->usp = infop->start_stack;
7a3148a9
JM
1179}
1180
7a3148a9
JM
1181#define ELF_EXEC_PAGESIZE 8192
1182
1183#endif /* TARGET_ALPHA */
1184
a4c075f1
UH
1185#ifdef TARGET_S390X
1186
1187#define ELF_START_MMAP (0x20000000000ULL)
1188
a4c075f1
UH
1189#define ELF_CLASS ELFCLASS64
1190#define ELF_DATA ELFDATA2MSB
1191#define ELF_ARCH EM_S390
1192
1193static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1194{
1195 regs->psw.addr = infop->entry;
1196 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1197 regs->gprs[15] = infop->start_stack;
1198}
1199
1200#endif /* TARGET_S390X */
1201
b16189b2
CG
1202#ifdef TARGET_TILEGX
1203
1204/* 42 bits real used address, a half for user mode */
1205#define ELF_START_MMAP (0x00000020000000000ULL)
1206
1207#define elf_check_arch(x) ((x) == EM_TILEGX)
1208
1209#define ELF_CLASS ELFCLASS64
1210#define ELF_DATA ELFDATA2LSB
1211#define ELF_ARCH EM_TILEGX
1212
1213static inline void init_thread(struct target_pt_regs *regs,
1214 struct image_info *infop)
1215{
1216 regs->pc = infop->entry;
1217 regs->sp = infop->start_stack;
1218
1219}
1220
1221#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1222
1223#endif /* TARGET_TILEGX */
1224
47ae93cd
MC
1225#ifdef TARGET_RISCV
1226
1227#define ELF_START_MMAP 0x80000000
1228#define ELF_ARCH EM_RISCV
1229
1230#ifdef TARGET_RISCV32
1231#define ELF_CLASS ELFCLASS32
1232#else
1233#define ELF_CLASS ELFCLASS64
1234#endif
1235
1236static inline void init_thread(struct target_pt_regs *regs,
1237 struct image_info *infop)
1238{
1239 regs->sepc = infop->entry;
1240 regs->sp = infop->start_stack;
1241}
1242
1243#define ELF_EXEC_PAGESIZE 4096
1244
1245#endif /* TARGET_RISCV */
1246
7c248bcd
RH
1247#ifdef TARGET_HPPA
1248
1249#define ELF_START_MMAP 0x80000000
1250#define ELF_CLASS ELFCLASS32
1251#define ELF_ARCH EM_PARISC
1252#define ELF_PLATFORM "PARISC"
1253#define STACK_GROWS_DOWN 0
1254#define STACK_ALIGNMENT 64
1255
1256static inline void init_thread(struct target_pt_regs *regs,
1257 struct image_info *infop)
1258{
1259 regs->iaoq[0] = infop->entry;
1260 regs->iaoq[1] = infop->entry + 4;
1261 regs->gr[23] = 0;
1262 regs->gr[24] = infop->arg_start;
1263 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1264 /* The top-of-stack contains a linkage buffer. */
1265 regs->gr[30] = infop->start_stack + 64;
1266 regs->gr[31] = infop->entry;
1267}
1268
1269#endif /* TARGET_HPPA */
1270
15338fd7
FB
1271#ifndef ELF_PLATFORM
1272#define ELF_PLATFORM (NULL)
1273#endif
1274
75be901c
PC
1275#ifndef ELF_MACHINE
1276#define ELF_MACHINE ELF_ARCH
1277#endif
1278
d276a604
PC
1279#ifndef elf_check_arch
1280#define elf_check_arch(x) ((x) == ELF_ARCH)
1281#endif
1282
15338fd7
FB
1283#ifndef ELF_HWCAP
1284#define ELF_HWCAP 0
1285#endif
1286
7c4ee5bc
RH
1287#ifndef STACK_GROWS_DOWN
1288#define STACK_GROWS_DOWN 1
1289#endif
1290
1291#ifndef STACK_ALIGNMENT
1292#define STACK_ALIGNMENT 16
1293#endif
1294
992f48a0 1295#ifdef TARGET_ABI32
cb33da57 1296#undef ELF_CLASS
992f48a0 1297#define ELF_CLASS ELFCLASS32
cb33da57
BS
1298#undef bswaptls
1299#define bswaptls(ptr) bswap32s(ptr)
1300#endif
1301
31e31b8a 1302#include "elf.h"
09bfb054 1303
09bfb054
FB
1304struct exec
1305{
d97ef72e
RH
1306 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1307 unsigned int a_text; /* length of text, in bytes */
1308 unsigned int a_data; /* length of data, in bytes */
1309 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1310 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1311 unsigned int a_entry; /* start address */
1312 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1313 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1314};
1315
1316
1317#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1318#define OMAGIC 0407
1319#define NMAGIC 0410
1320#define ZMAGIC 0413
1321#define QMAGIC 0314
1322
31e31b8a 1323/* Necessary parameters */
54936004 1324#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1325#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1326 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1327#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1328
444cd5c3 1329#define DLINFO_ITEMS 15
31e31b8a 1330
09bfb054
FB
1331static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1332{
d97ef72e 1333 memcpy(to, from, n);
09bfb054 1334}
d691f669 1335
31e31b8a 1336#ifdef BSWAP_NEEDED
92a31b1f 1337static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1338{
d97ef72e
RH
1339 bswap16s(&ehdr->e_type); /* Object file type */
1340 bswap16s(&ehdr->e_machine); /* Architecture */
1341 bswap32s(&ehdr->e_version); /* Object file version */
1342 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1343 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1344 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1345 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1346 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1347 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1348 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1349 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1350 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1351 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1352}
1353
991f8f0c 1354static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1355{
991f8f0c
RH
1356 int i;
1357 for (i = 0; i < phnum; ++i, ++phdr) {
1358 bswap32s(&phdr->p_type); /* Segment type */
1359 bswap32s(&phdr->p_flags); /* Segment flags */
1360 bswaptls(&phdr->p_offset); /* Segment file offset */
1361 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1362 bswaptls(&phdr->p_paddr); /* Segment physical address */
1363 bswaptls(&phdr->p_filesz); /* Segment size in file */
1364 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1365 bswaptls(&phdr->p_align); /* Segment alignment */
1366 }
31e31b8a 1367}
689f936f 1368
991f8f0c 1369static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1370{
991f8f0c
RH
1371 int i;
1372 for (i = 0; i < shnum; ++i, ++shdr) {
1373 bswap32s(&shdr->sh_name);
1374 bswap32s(&shdr->sh_type);
1375 bswaptls(&shdr->sh_flags);
1376 bswaptls(&shdr->sh_addr);
1377 bswaptls(&shdr->sh_offset);
1378 bswaptls(&shdr->sh_size);
1379 bswap32s(&shdr->sh_link);
1380 bswap32s(&shdr->sh_info);
1381 bswaptls(&shdr->sh_addralign);
1382 bswaptls(&shdr->sh_entsize);
1383 }
689f936f
FB
1384}
1385
7a3148a9 1386static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1387{
1388 bswap32s(&sym->st_name);
7a3148a9
JM
1389 bswaptls(&sym->st_value);
1390 bswaptls(&sym->st_size);
689f936f
FB
1391 bswap16s(&sym->st_shndx);
1392}
991f8f0c
RH
1393#else
1394static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1395static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1396static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1397static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1398#endif
1399
edf8e2af 1400#ifdef USE_ELF_CORE_DUMP
9349b4f9 1401static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1402#endif /* USE_ELF_CORE_DUMP */
682674b8 1403static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1404
9058abdd
RH
1405/* Verify the portions of EHDR within E_IDENT for the target.
1406 This can be performed before bswapping the entire header. */
1407static bool elf_check_ident(struct elfhdr *ehdr)
1408{
1409 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1410 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1411 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1412 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1413 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1414 && ehdr->e_ident[EI_DATA] == ELF_DATA
1415 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1416}
1417
1418/* Verify the portions of EHDR outside of E_IDENT for the target.
1419 This has to wait until after bswapping the header. */
1420static bool elf_check_ehdr(struct elfhdr *ehdr)
1421{
1422 return (elf_check_arch(ehdr->e_machine)
1423 && ehdr->e_ehsize == sizeof(struct elfhdr)
1424 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1425 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1426}
1427
31e31b8a 1428/*
e5fe0c52 1429 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1430 * memory to free pages in kernel mem. These are in a format ready
1431 * to be put directly into the top of new user memory.
1432 *
1433 */
59baae9a
SB
1434static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1435 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1436{
59baae9a 1437 char *tmp;
7c4ee5bc 1438 int len, i;
59baae9a 1439 abi_ulong top = p;
31e31b8a
FB
1440
1441 if (!p) {
d97ef72e 1442 return 0; /* bullet-proofing */
31e31b8a 1443 }
59baae9a 1444
7c4ee5bc
RH
1445 if (STACK_GROWS_DOWN) {
1446 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1447 for (i = argc - 1; i >= 0; --i) {
1448 tmp = argv[i];
1449 if (!tmp) {
1450 fprintf(stderr, "VFS: argc is wrong");
1451 exit(-1);
1452 }
1453 len = strlen(tmp) + 1;
1454 tmp += len;
59baae9a 1455
7c4ee5bc
RH
1456 if (len > (p - stack_limit)) {
1457 return 0;
1458 }
1459 while (len) {
1460 int bytes_to_copy = (len > offset) ? offset : len;
1461 tmp -= bytes_to_copy;
1462 p -= bytes_to_copy;
1463 offset -= bytes_to_copy;
1464 len -= bytes_to_copy;
1465
1466 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1467
1468 if (offset == 0) {
1469 memcpy_to_target(p, scratch, top - p);
1470 top = p;
1471 offset = TARGET_PAGE_SIZE;
1472 }
1473 }
d97ef72e 1474 }
7c4ee5bc
RH
1475 if (p != top) {
1476 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1477 }
7c4ee5bc
RH
1478 } else {
1479 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1480 for (i = 0; i < argc; ++i) {
1481 tmp = argv[i];
1482 if (!tmp) {
1483 fprintf(stderr, "VFS: argc is wrong");
1484 exit(-1);
1485 }
1486 len = strlen(tmp) + 1;
1487 if (len > (stack_limit - p)) {
1488 return 0;
1489 }
1490 while (len) {
1491 int bytes_to_copy = (len > remaining) ? remaining : len;
1492
1493 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1494
1495 tmp += bytes_to_copy;
1496 remaining -= bytes_to_copy;
1497 p += bytes_to_copy;
1498 len -= bytes_to_copy;
1499
1500 if (remaining == 0) {
1501 memcpy_to_target(top, scratch, p - top);
1502 top = p;
1503 remaining = TARGET_PAGE_SIZE;
1504 }
d97ef72e
RH
1505 }
1506 }
7c4ee5bc
RH
1507 if (p != top) {
1508 memcpy_to_target(top, scratch, p - top);
1509 }
59baae9a
SB
1510 }
1511
31e31b8a
FB
1512 return p;
1513}
1514
59baae9a
SB
1515/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1516 * argument/environment space. Newer kernels (>2.6.33) allow more,
1517 * dependent on stack size, but guarantee at least 32 pages for
1518 * backwards compatibility.
1519 */
1520#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1521
1522static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1523 struct image_info *info)
53a5960a 1524{
59baae9a 1525 abi_ulong size, error, guard;
31e31b8a 1526
703e0e89 1527 size = guest_stack_size;
59baae9a
SB
1528 if (size < STACK_LOWER_LIMIT) {
1529 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1530 }
1531 guard = TARGET_PAGE_SIZE;
1532 if (guard < qemu_real_host_page_size) {
1533 guard = qemu_real_host_page_size;
1534 }
1535
1536 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1537 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1538 if (error == -1) {
60dcbcb5 1539 perror("mmap stack");
09bfb054
FB
1540 exit(-1);
1541 }
31e31b8a 1542
60dcbcb5 1543 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1544 if (STACK_GROWS_DOWN) {
1545 target_mprotect(error, guard, PROT_NONE);
1546 info->stack_limit = error + guard;
1547 return info->stack_limit + size - sizeof(void *);
1548 } else {
1549 target_mprotect(error + size, guard, PROT_NONE);
1550 info->stack_limit = error + size;
1551 return error;
1552 }
31e31b8a
FB
1553}
1554
cf129f3a
RH
1555/* Map and zero the bss. We need to explicitly zero any fractional pages
1556 after the data section (i.e. bss). */
1557static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1558{
cf129f3a
RH
1559 uintptr_t host_start, host_map_start, host_end;
1560
1561 last_bss = TARGET_PAGE_ALIGN(last_bss);
1562
1563 /* ??? There is confusion between qemu_real_host_page_size and
1564 qemu_host_page_size here and elsewhere in target_mmap, which
1565 may lead to the end of the data section mapping from the file
1566 not being mapped. At least there was an explicit test and
1567 comment for that here, suggesting that "the file size must
1568 be known". The comment probably pre-dates the introduction
1569 of the fstat system call in target_mmap which does in fact
1570 find out the size. What isn't clear is if the workaround
1571 here is still actually needed. For now, continue with it,
1572 but merge it with the "normal" mmap that would allocate the bss. */
1573
1574 host_start = (uintptr_t) g2h(elf_bss);
1575 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1576 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1577
1578 if (host_map_start < host_end) {
1579 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1580 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1581 if (p == MAP_FAILED) {
1582 perror("cannot mmap brk");
1583 exit(-1);
853d6f7a 1584 }
f46e9a0b 1585 }
853d6f7a 1586
f46e9a0b
TM
1587 /* Ensure that the bss page(s) are valid */
1588 if ((page_get_flags(last_bss-1) & prot) != prot) {
1589 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1590 }
31e31b8a 1591
cf129f3a
RH
1592 if (host_start < host_map_start) {
1593 memset((void *)host_start, 0, host_map_start - host_start);
1594 }
1595}
53a5960a 1596
1af02e83
MF
1597#ifdef CONFIG_USE_FDPIC
1598static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1599{
1600 uint16_t n;
1601 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1602
1603 /* elf32_fdpic_loadseg */
1604 n = info->nsegs;
1605 while (n--) {
1606 sp -= 12;
1607 put_user_u32(loadsegs[n].addr, sp+0);
1608 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1609 put_user_u32(loadsegs[n].p_memsz, sp+8);
1610 }
1611
1612 /* elf32_fdpic_loadmap */
1613 sp -= 4;
1614 put_user_u16(0, sp+0); /* version */
1615 put_user_u16(info->nsegs, sp+2); /* nsegs */
1616
1617 info->personality = PER_LINUX_FDPIC;
1618 info->loadmap_addr = sp;
1619
1620 return sp;
1621}
1622#endif
1623
992f48a0 1624static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1625 struct elfhdr *exec,
1626 struct image_info *info,
1627 struct image_info *interp_info)
31e31b8a 1628{
d97ef72e 1629 abi_ulong sp;
7c4ee5bc 1630 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1631 int size;
14322bad
LA
1632 int i;
1633 abi_ulong u_rand_bytes;
1634 uint8_t k_rand_bytes[16];
d97ef72e
RH
1635 abi_ulong u_platform;
1636 const char *k_platform;
1637 const int n = sizeof(elf_addr_t);
1638
1639 sp = p;
1af02e83
MF
1640
1641#ifdef CONFIG_USE_FDPIC
1642 /* Needs to be before we load the env/argc/... */
1643 if (elf_is_fdpic(exec)) {
1644 /* Need 4 byte alignment for these structs */
1645 sp &= ~3;
1646 sp = loader_build_fdpic_loadmap(info, sp);
1647 info->other_info = interp_info;
1648 if (interp_info) {
1649 interp_info->other_info = info;
1650 sp = loader_build_fdpic_loadmap(interp_info, sp);
1651 }
1652 }
1653#endif
1654
d97ef72e
RH
1655 u_platform = 0;
1656 k_platform = ELF_PLATFORM;
1657 if (k_platform) {
1658 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1659 if (STACK_GROWS_DOWN) {
1660 sp -= (len + n - 1) & ~(n - 1);
1661 u_platform = sp;
1662 /* FIXME - check return value of memcpy_to_target() for failure */
1663 memcpy_to_target(sp, k_platform, len);
1664 } else {
1665 memcpy_to_target(sp, k_platform, len);
1666 u_platform = sp;
1667 sp += len + 1;
1668 }
1669 }
1670
1671 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1672 * the argv and envp pointers.
1673 */
1674 if (STACK_GROWS_DOWN) {
1675 sp = QEMU_ALIGN_DOWN(sp, 16);
1676 } else {
1677 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1678 }
14322bad
LA
1679
1680 /*
1681 * Generate 16 random bytes for userspace PRNG seeding (not
1682 * cryptically secure but it's not the aim of QEMU).
1683 */
14322bad
LA
1684 for (i = 0; i < 16; i++) {
1685 k_rand_bytes[i] = rand();
1686 }
7c4ee5bc
RH
1687 if (STACK_GROWS_DOWN) {
1688 sp -= 16;
1689 u_rand_bytes = sp;
1690 /* FIXME - check return value of memcpy_to_target() for failure */
1691 memcpy_to_target(sp, k_rand_bytes, 16);
1692 } else {
1693 memcpy_to_target(sp, k_rand_bytes, 16);
1694 u_rand_bytes = sp;
1695 sp += 16;
1696 }
14322bad 1697
d97ef72e
RH
1698 size = (DLINFO_ITEMS + 1) * 2;
1699 if (k_platform)
1700 size += 2;
f5155289 1701#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1702 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1703#endif
1704#ifdef ELF_HWCAP2
1705 size += 2;
f5155289 1706#endif
f516511e
PM
1707 info->auxv_len = size * n;
1708
d97ef72e 1709 size += envc + argc + 2;
b9329d4b 1710 size += 1; /* argc itself */
d97ef72e 1711 size *= n;
7c4ee5bc
RH
1712
1713 /* Allocate space and finalize stack alignment for entry now. */
1714 if (STACK_GROWS_DOWN) {
1715 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1716 sp = u_argc;
1717 } else {
1718 u_argc = sp;
1719 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1720 }
1721
1722 u_argv = u_argc + n;
1723 u_envp = u_argv + (argc + 1) * n;
1724 u_auxv = u_envp + (envc + 1) * n;
1725 info->saved_auxv = u_auxv;
1726 info->arg_start = u_argv;
1727 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1728
1729 /* This is correct because Linux defines
1730 * elf_addr_t as Elf32_Off / Elf64_Off
1731 */
1732#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1733 put_user_ual(id, u_auxv); u_auxv += n; \
1734 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1735 } while(0)
1736
82991bed
PM
1737#ifdef ARCH_DLINFO
1738 /*
1739 * ARCH_DLINFO must come first so platform specific code can enforce
1740 * special alignment requirements on the AUXV if necessary (eg. PPC).
1741 */
1742 ARCH_DLINFO;
1743#endif
f516511e
PM
1744 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1745 * on info->auxv_len will trigger.
1746 */
8e62a717 1747 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1748 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1749 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1750 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1751 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1752 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1753 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1754 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1755 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1756 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1757 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1758 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1759 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1760 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1761 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1762
ad6919dc
PM
1763#ifdef ELF_HWCAP2
1764 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1765#endif
1766
7c4ee5bc 1767 if (u_platform) {
d97ef72e 1768 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1769 }
7c4ee5bc 1770 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1771#undef NEW_AUX_ENT
1772
f516511e
PM
1773 /* Check that our initial calculation of the auxv length matches how much
1774 * we actually put into it.
1775 */
1776 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1777
1778 put_user_ual(argc, u_argc);
1779
1780 p = info->arg_strings;
1781 for (i = 0; i < argc; ++i) {
1782 put_user_ual(p, u_argv);
1783 u_argv += n;
1784 p += target_strlen(p) + 1;
1785 }
1786 put_user_ual(0, u_argv);
1787
1788 p = info->env_strings;
1789 for (i = 0; i < envc; ++i) {
1790 put_user_ual(p, u_envp);
1791 u_envp += n;
1792 p += target_strlen(p) + 1;
1793 }
1794 put_user_ual(0, u_envp);
edf8e2af 1795
d97ef72e 1796 return sp;
31e31b8a
FB
1797}
1798
dce10401
MI
1799unsigned long init_guest_space(unsigned long host_start,
1800 unsigned long host_size,
1801 unsigned long guest_start,
1802 bool fixed)
1803{
1804 unsigned long current_start, real_start;
1805 int flags;
1806
1807 assert(host_start || host_size);
1808
1809 /* If just a starting address is given, then just verify that
1810 * address. */
1811 if (host_start && !host_size) {
8756e136 1812#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1813 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1814 return (unsigned long)-1;
1815 }
8756e136
LS
1816#endif
1817 return host_start;
dce10401
MI
1818 }
1819
1820 /* Setup the initial flags and start address. */
1821 current_start = host_start & qemu_host_page_mask;
1822 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1823 if (fixed) {
1824 flags |= MAP_FIXED;
1825 }
1826
1827 /* Otherwise, a non-zero size region of memory needs to be mapped
1828 * and validated. */
1829 while (1) {
806d1021
MI
1830 unsigned long real_size = host_size;
1831
dce10401
MI
1832 /* Do not use mmap_find_vma here because that is limited to the
1833 * guest address space. We are going to make the
1834 * guest address space fit whatever we're given.
1835 */
1836 real_start = (unsigned long)
1837 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1838 if (real_start == (unsigned long)-1) {
1839 return (unsigned long)-1;
1840 }
1841
806d1021
MI
1842 /* Ensure the address is properly aligned. */
1843 if (real_start & ~qemu_host_page_mask) {
1844 munmap((void *)real_start, host_size);
1845 real_size = host_size + qemu_host_page_size;
1846 real_start = (unsigned long)
1847 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1848 if (real_start == (unsigned long)-1) {
1849 return (unsigned long)-1;
1850 }
1851 real_start = HOST_PAGE_ALIGN(real_start);
1852 }
1853
1854 /* Check to see if the address is valid. */
1855 if (!host_start || real_start == current_start) {
8756e136
LS
1856#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1857 /* On 32-bit ARM, we need to also be able to map the commpage. */
c3637eaf
LS
1858 int valid = init_guest_commpage(real_start - guest_start,
1859 real_size);
806d1021
MI
1860 if (valid == 1) {
1861 break;
1862 } else if (valid == -1) {
f2024817 1863 munmap((void *)real_start, host_size);
806d1021
MI
1864 return (unsigned long)-1;
1865 }
1866 /* valid == 0, so try again. */
8756e136
LS
1867#else
1868 /* On other architectures, whatever we have here is fine. */
1869 break;
1870#endif
dce10401
MI
1871 }
1872
1873 /* That address didn't work. Unmap and try a different one.
1874 * The address the host picked because is typically right at
1875 * the top of the host address space and leaves the guest with
1876 * no usable address space. Resort to a linear search. We
1877 * already compensated for mmap_min_addr, so this should not
1878 * happen often. Probably means we got unlucky and host
1879 * address space randomization put a shared library somewhere
1880 * inconvenient.
1881 */
1882 munmap((void *)real_start, host_size);
1883 current_start += qemu_host_page_size;
1884 if (host_start == current_start) {
1885 /* Theoretically possible if host doesn't have any suitably
1886 * aligned areas. Normally the first mmap will fail.
1887 */
1888 return (unsigned long)-1;
1889 }
1890 }
1891
13829020 1892 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 1893
dce10401
MI
1894 return real_start;
1895}
1896
f3ed1f5d
PM
1897static void probe_guest_base(const char *image_name,
1898 abi_ulong loaddr, abi_ulong hiaddr)
1899{
1900 /* Probe for a suitable guest base address, if the user has not set
1901 * it explicitly, and set guest_base appropriately.
1902 * In case of error we will print a suitable message and exit.
1903 */
f3ed1f5d
PM
1904 const char *errmsg;
1905 if (!have_guest_base && !reserved_va) {
1906 unsigned long host_start, real_start, host_size;
1907
1908 /* Round addresses to page boundaries. */
1909 loaddr &= qemu_host_page_mask;
1910 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1911
1912 if (loaddr < mmap_min_addr) {
1913 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1914 } else {
1915 host_start = loaddr;
1916 if (host_start != loaddr) {
1917 errmsg = "Address overflow loading ELF binary";
1918 goto exit_errmsg;
1919 }
1920 }
1921 host_size = hiaddr - loaddr;
dce10401
MI
1922
1923 /* Setup the initial guest memory space with ranges gleaned from
1924 * the ELF image that is being loaded.
1925 */
1926 real_start = init_guest_space(host_start, host_size, loaddr, false);
1927 if (real_start == (unsigned long)-1) {
1928 errmsg = "Unable to find space for application";
1929 goto exit_errmsg;
f3ed1f5d 1930 }
dce10401
MI
1931 guest_base = real_start - loaddr;
1932
13829020
PB
1933 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1934 TARGET_ABI_FMT_lx " to 0x%lx\n",
1935 loaddr, real_start);
f3ed1f5d
PM
1936 }
1937 return;
1938
f3ed1f5d
PM
1939exit_errmsg:
1940 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1941 exit(-1);
f3ed1f5d
PM
1942}
1943
1944
8e62a717 1945/* Load an ELF image into the address space.
31e31b8a 1946
8e62a717
RH
1947 IMAGE_NAME is the filename of the image, to use in error messages.
1948 IMAGE_FD is the open file descriptor for the image.
1949
1950 BPRM_BUF is a copy of the beginning of the file; this of course
1951 contains the elf file header at offset 0. It is assumed that this
1952 buffer is sufficiently aligned to present no problems to the host
1953 in accessing data at aligned offsets within the buffer.
1954
1955 On return: INFO values will be filled in, as necessary or available. */
1956
1957static void load_elf_image(const char *image_name, int image_fd,
bf858897 1958 struct image_info *info, char **pinterp_name,
8e62a717 1959 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1960{
8e62a717
RH
1961 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1962 struct elf_phdr *phdr;
1963 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1964 int i, retval;
1965 const char *errmsg;
5fafdf24 1966
8e62a717
RH
1967 /* First of all, some simple consistency checks */
1968 errmsg = "Invalid ELF image for this architecture";
1969 if (!elf_check_ident(ehdr)) {
1970 goto exit_errmsg;
1971 }
1972 bswap_ehdr(ehdr);
1973 if (!elf_check_ehdr(ehdr)) {
1974 goto exit_errmsg;
d97ef72e 1975 }
5fafdf24 1976
8e62a717
RH
1977 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1978 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1979 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1980 } else {
8e62a717
RH
1981 phdr = (struct elf_phdr *) alloca(i);
1982 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1983 if (retval != i) {
8e62a717 1984 goto exit_read;
9955ffac 1985 }
d97ef72e 1986 }
8e62a717 1987 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1988
1af02e83
MF
1989#ifdef CONFIG_USE_FDPIC
1990 info->nsegs = 0;
1991 info->pt_dynamic_addr = 0;
1992#endif
1993
98c1076c
AB
1994 mmap_lock();
1995
682674b8
RH
1996 /* Find the maximum size of the image and allocate an appropriate
1997 amount of memory to handle that. */
1998 loaddr = -1, hiaddr = 0;
8e62a717
RH
1999 for (i = 0; i < ehdr->e_phnum; ++i) {
2000 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2001 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2002 if (a < loaddr) {
2003 loaddr = a;
2004 }
ccf661f8 2005 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2006 if (a > hiaddr) {
2007 hiaddr = a;
2008 }
1af02e83
MF
2009#ifdef CONFIG_USE_FDPIC
2010 ++info->nsegs;
2011#endif
682674b8
RH
2012 }
2013 }
2014
2015 load_addr = loaddr;
8e62a717 2016 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2017 /* The image indicates that it can be loaded anywhere. Find a
2018 location that can hold the memory space required. If the
2019 image is pre-linked, LOADDR will be non-zero. Since we do
2020 not supply MAP_FIXED here we'll use that address if and
2021 only if it remains available. */
2022 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2023 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2024 -1, 0);
2025 if (load_addr == -1) {
8e62a717 2026 goto exit_perror;
d97ef72e 2027 }
bf858897
RH
2028 } else if (pinterp_name != NULL) {
2029 /* This is the main executable. Make sure that the low
2030 address does not conflict with MMAP_MIN_ADDR or the
2031 QEMU application itself. */
f3ed1f5d 2032 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2033 }
682674b8 2034 load_bias = load_addr - loaddr;
d97ef72e 2035
1af02e83
MF
2036#ifdef CONFIG_USE_FDPIC
2037 {
2038 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2039 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2040
2041 for (i = 0; i < ehdr->e_phnum; ++i) {
2042 switch (phdr[i].p_type) {
2043 case PT_DYNAMIC:
2044 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2045 break;
2046 case PT_LOAD:
2047 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2048 loadsegs->p_vaddr = phdr[i].p_vaddr;
2049 loadsegs->p_memsz = phdr[i].p_memsz;
2050 ++loadsegs;
2051 break;
2052 }
2053 }
2054 }
2055#endif
2056
8e62a717
RH
2057 info->load_bias = load_bias;
2058 info->load_addr = load_addr;
2059 info->entry = ehdr->e_entry + load_bias;
2060 info->start_code = -1;
2061 info->end_code = 0;
2062 info->start_data = -1;
2063 info->end_data = 0;
2064 info->brk = 0;
d8fd2954 2065 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2066
2067 for (i = 0; i < ehdr->e_phnum; i++) {
2068 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2069 if (eppnt->p_type == PT_LOAD) {
682674b8 2070 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2071 int elf_prot = 0;
d97ef72e
RH
2072
2073 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2074 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2075 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2076
682674b8
RH
2077 vaddr = load_bias + eppnt->p_vaddr;
2078 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2079 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2080
2081 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2082 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2083 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2084 if (error == -1) {
8e62a717 2085 goto exit_perror;
09bfb054 2086 }
09bfb054 2087
682674b8
RH
2088 vaddr_ef = vaddr + eppnt->p_filesz;
2089 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2090
cf129f3a 2091 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2092 if (vaddr_ef < vaddr_em) {
2093 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2094 }
8e62a717
RH
2095
2096 /* Find the full program boundaries. */
2097 if (elf_prot & PROT_EXEC) {
2098 if (vaddr < info->start_code) {
2099 info->start_code = vaddr;
2100 }
2101 if (vaddr_ef > info->end_code) {
2102 info->end_code = vaddr_ef;
2103 }
2104 }
2105 if (elf_prot & PROT_WRITE) {
2106 if (vaddr < info->start_data) {
2107 info->start_data = vaddr;
2108 }
2109 if (vaddr_ef > info->end_data) {
2110 info->end_data = vaddr_ef;
2111 }
2112 if (vaddr_em > info->brk) {
2113 info->brk = vaddr_em;
2114 }
2115 }
bf858897
RH
2116 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2117 char *interp_name;
2118
2119 if (*pinterp_name) {
2120 errmsg = "Multiple PT_INTERP entries";
2121 goto exit_errmsg;
2122 }
2123 interp_name = malloc(eppnt->p_filesz);
2124 if (!interp_name) {
2125 goto exit_perror;
2126 }
2127
2128 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2129 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2130 eppnt->p_filesz);
2131 } else {
2132 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2133 eppnt->p_offset);
2134 if (retval != eppnt->p_filesz) {
2135 goto exit_perror;
2136 }
2137 }
2138 if (interp_name[eppnt->p_filesz - 1] != 0) {
2139 errmsg = "Invalid PT_INTERP entry";
2140 goto exit_errmsg;
2141 }
2142 *pinterp_name = interp_name;
d97ef72e 2143 }
682674b8 2144 }
5fafdf24 2145
8e62a717
RH
2146 if (info->end_data == 0) {
2147 info->start_data = info->end_code;
2148 info->end_data = info->end_code;
2149 info->brk = info->end_code;
2150 }
2151
682674b8 2152 if (qemu_log_enabled()) {
8e62a717 2153 load_symbols(ehdr, image_fd, load_bias);
682674b8 2154 }
31e31b8a 2155
98c1076c
AB
2156 mmap_unlock();
2157
8e62a717
RH
2158 close(image_fd);
2159 return;
2160
2161 exit_read:
2162 if (retval >= 0) {
2163 errmsg = "Incomplete read of file header";
2164 goto exit_errmsg;
2165 }
2166 exit_perror:
2167 errmsg = strerror(errno);
2168 exit_errmsg:
2169 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2170 exit(-1);
2171}
2172
2173static void load_elf_interp(const char *filename, struct image_info *info,
2174 char bprm_buf[BPRM_BUF_SIZE])
2175{
2176 int fd, retval;
2177
2178 fd = open(path(filename), O_RDONLY);
2179 if (fd < 0) {
2180 goto exit_perror;
2181 }
31e31b8a 2182
8e62a717
RH
2183 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2184 if (retval < 0) {
2185 goto exit_perror;
2186 }
2187 if (retval < BPRM_BUF_SIZE) {
2188 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2189 }
2190
bf858897 2191 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2192 return;
2193
2194 exit_perror:
2195 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2196 exit(-1);
31e31b8a
FB
2197}
2198
49918a75
PB
2199static int symfind(const void *s0, const void *s1)
2200{
c7c530cd 2201 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2202 struct elf_sym *sym = (struct elf_sym *)s1;
2203 int result = 0;
c7c530cd 2204 if (addr < sym->st_value) {
49918a75 2205 result = -1;
c7c530cd 2206 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2207 result = 1;
2208 }
2209 return result;
2210}
2211
2212static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2213{
2214#if ELF_CLASS == ELFCLASS32
2215 struct elf_sym *syms = s->disas_symtab.elf32;
2216#else
2217 struct elf_sym *syms = s->disas_symtab.elf64;
2218#endif
2219
2220 // binary search
49918a75
PB
2221 struct elf_sym *sym;
2222
c7c530cd 2223 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2224 if (sym != NULL) {
49918a75
PB
2225 return s->disas_strtab + sym->st_name;
2226 }
2227
2228 return "";
2229}
2230
2231/* FIXME: This should use elf_ops.h */
2232static int symcmp(const void *s0, const void *s1)
2233{
2234 struct elf_sym *sym0 = (struct elf_sym *)s0;
2235 struct elf_sym *sym1 = (struct elf_sym *)s1;
2236 return (sym0->st_value < sym1->st_value)
2237 ? -1
2238 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2239}
2240
689f936f 2241/* Best attempt to load symbols from this ELF object. */
682674b8 2242static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2243{
682674b8 2244 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2245 uint64_t segsz;
682674b8 2246 struct elf_shdr *shdr;
b9475279
CV
2247 char *strings = NULL;
2248 struct syminfo *s = NULL;
2249 struct elf_sym *new_syms, *syms = NULL;
689f936f 2250
682674b8
RH
2251 shnum = hdr->e_shnum;
2252 i = shnum * sizeof(struct elf_shdr);
2253 shdr = (struct elf_shdr *)alloca(i);
2254 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2255 return;
2256 }
2257
2258 bswap_shdr(shdr, shnum);
2259 for (i = 0; i < shnum; ++i) {
2260 if (shdr[i].sh_type == SHT_SYMTAB) {
2261 sym_idx = i;
2262 str_idx = shdr[i].sh_link;
49918a75
PB
2263 goto found;
2264 }
689f936f 2265 }
682674b8
RH
2266
2267 /* There will be no symbol table if the file was stripped. */
2268 return;
689f936f
FB
2269
2270 found:
682674b8 2271 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2272 s = g_try_new(struct syminfo, 1);
682674b8 2273 if (!s) {
b9475279 2274 goto give_up;
682674b8 2275 }
5fafdf24 2276
1e06262d
PM
2277 segsz = shdr[str_idx].sh_size;
2278 s->disas_strtab = strings = g_try_malloc(segsz);
2279 if (!strings ||
2280 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2281 goto give_up;
682674b8 2282 }
49918a75 2283
1e06262d
PM
2284 segsz = shdr[sym_idx].sh_size;
2285 syms = g_try_malloc(segsz);
2286 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2287 goto give_up;
682674b8 2288 }
31e31b8a 2289
1e06262d
PM
2290 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2291 /* Implausibly large symbol table: give up rather than ploughing
2292 * on with the number of symbols calculation overflowing
2293 */
2294 goto give_up;
2295 }
2296 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2297 for (i = 0; i < nsyms; ) {
49918a75 2298 bswap_sym(syms + i);
682674b8
RH
2299 /* Throw away entries which we do not need. */
2300 if (syms[i].st_shndx == SHN_UNDEF
2301 || syms[i].st_shndx >= SHN_LORESERVE
2302 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2303 if (i < --nsyms) {
49918a75
PB
2304 syms[i] = syms[nsyms];
2305 }
682674b8 2306 } else {
49918a75 2307#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2308 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2309 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2310#endif
682674b8
RH
2311 syms[i].st_value += load_bias;
2312 i++;
2313 }
0774bed1 2314 }
49918a75 2315
b9475279
CV
2316 /* No "useful" symbol. */
2317 if (nsyms == 0) {
2318 goto give_up;
2319 }
2320
5d5c9930
RH
2321 /* Attempt to free the storage associated with the local symbols
2322 that we threw away. Whether or not this has any effect on the
2323 memory allocation depends on the malloc implementation and how
2324 many symbols we managed to discard. */
0ef9ea29 2325 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2326 if (new_syms == NULL) {
b9475279 2327 goto give_up;
5d5c9930 2328 }
8d79de6e 2329 syms = new_syms;
5d5c9930 2330
49918a75 2331 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2332
49918a75
PB
2333 s->disas_num_syms = nsyms;
2334#if ELF_CLASS == ELFCLASS32
2335 s->disas_symtab.elf32 = syms;
49918a75
PB
2336#else
2337 s->disas_symtab.elf64 = syms;
49918a75 2338#endif
682674b8 2339 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2340 s->next = syminfos;
2341 syminfos = s;
b9475279
CV
2342
2343 return;
2344
2345give_up:
0ef9ea29
PM
2346 g_free(s);
2347 g_free(strings);
2348 g_free(syms);
689f936f 2349}
31e31b8a 2350
768fe76e
YS
2351uint32_t get_elf_eflags(int fd)
2352{
2353 struct elfhdr ehdr;
2354 off_t offset;
2355 int ret;
2356
2357 /* Read ELF header */
2358 offset = lseek(fd, 0, SEEK_SET);
2359 if (offset == (off_t) -1) {
2360 return 0;
2361 }
2362 ret = read(fd, &ehdr, sizeof(ehdr));
2363 if (ret < sizeof(ehdr)) {
2364 return 0;
2365 }
2366 offset = lseek(fd, offset, SEEK_SET);
2367 if (offset == (off_t) -1) {
2368 return 0;
2369 }
2370
2371 /* Check ELF signature */
2372 if (!elf_check_ident(&ehdr)) {
2373 return 0;
2374 }
2375
2376 /* check header */
2377 bswap_ehdr(&ehdr);
2378 if (!elf_check_ehdr(&ehdr)) {
2379 return 0;
2380 }
2381
2382 /* return architecture id */
2383 return ehdr.e_flags;
2384}
2385
f0116c54 2386int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2387{
8e62a717 2388 struct image_info interp_info;
31e31b8a 2389 struct elfhdr elf_ex;
8e62a717 2390 char *elf_interpreter = NULL;
59baae9a 2391 char *scratch;
31e31b8a 2392
bf858897 2393 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2394
2395 load_elf_image(bprm->filename, bprm->fd, info,
2396 &elf_interpreter, bprm->buf);
31e31b8a 2397
bf858897
RH
2398 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2399 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2400 when we load the interpreter. */
2401 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2402
59baae9a
SB
2403 /* Do this so that we can load the interpreter, if need be. We will
2404 change some of these later */
2405 bprm->p = setup_arg_pages(bprm, info);
2406
2407 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2408 if (STACK_GROWS_DOWN) {
2409 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2410 bprm->p, info->stack_limit);
2411 info->file_string = bprm->p;
2412 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2413 bprm->p, info->stack_limit);
2414 info->env_strings = bprm->p;
2415 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2416 bprm->p, info->stack_limit);
2417 info->arg_strings = bprm->p;
2418 } else {
2419 info->arg_strings = bprm->p;
2420 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2421 bprm->p, info->stack_limit);
2422 info->env_strings = bprm->p;
2423 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2424 bprm->p, info->stack_limit);
2425 info->file_string = bprm->p;
2426 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2427 bprm->p, info->stack_limit);
2428 }
2429
59baae9a
SB
2430 g_free(scratch);
2431
e5fe0c52 2432 if (!bprm->p) {
bf858897
RH
2433 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2434 exit(-1);
379f6698 2435 }
379f6698 2436
8e62a717
RH
2437 if (elf_interpreter) {
2438 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2439
8e62a717
RH
2440 /* If the program interpreter is one of these two, then assume
2441 an iBCS2 image. Otherwise assume a native linux image. */
2442
2443 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2444 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2445 info->personality = PER_SVR4;
31e31b8a 2446
8e62a717
RH
2447 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2448 and some applications "depend" upon this behavior. Since
2449 we do not have the power to recompile these, we emulate
2450 the SVr4 behavior. Sigh. */
2451 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2452 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2453 }
31e31b8a
FB
2454 }
2455
8e62a717
RH
2456 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2457 info, (elf_interpreter ? &interp_info : NULL));
2458 info->start_stack = bprm->p;
2459
2460 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2461 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2462 point as a function descriptor. Do this after creating elf tables
2463 so that we copy the original program entry point into the AUXV. */
2464 if (elf_interpreter) {
8e78064e 2465 info->load_bias = interp_info.load_bias;
8e62a717 2466 info->entry = interp_info.entry;
bf858897 2467 free(elf_interpreter);
8e62a717 2468 }
31e31b8a 2469
edf8e2af
MW
2470#ifdef USE_ELF_CORE_DUMP
2471 bprm->core_dump = &elf_core_dump;
2472#endif
2473
31e31b8a
FB
2474 return 0;
2475}
2476
edf8e2af 2477#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2478/*
2479 * Definitions to generate Intel SVR4-like core files.
a2547a13 2480 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2481 * tacked on the front to prevent clashes with linux definitions,
2482 * and the typedef forms have been avoided. This is mostly like
2483 * the SVR4 structure, but more Linuxy, with things that Linux does
2484 * not support and which gdb doesn't really use excluded.
2485 *
2486 * Fields we don't dump (their contents is zero) in linux-user qemu
2487 * are marked with XXX.
2488 *
2489 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2490 *
2491 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2492 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2493 * the target resides):
2494 *
2495 * #define USE_ELF_CORE_DUMP
2496 *
2497 * Next you define type of register set used for dumping. ELF specification
2498 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2499 *
c227f099 2500 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2501 * #define ELF_NREG <number of registers>
c227f099 2502 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2503 *
edf8e2af
MW
2504 * Last step is to implement target specific function that copies registers
2505 * from given cpu into just specified register set. Prototype is:
2506 *
c227f099 2507 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2508 * const CPUArchState *env);
edf8e2af
MW
2509 *
2510 * Parameters:
2511 * regs - copy register values into here (allocated and zeroed by caller)
2512 * env - copy registers from here
2513 *
2514 * Example for ARM target is provided in this file.
2515 */
2516
2517/* An ELF note in memory */
2518struct memelfnote {
2519 const char *name;
2520 size_t namesz;
2521 size_t namesz_rounded;
2522 int type;
2523 size_t datasz;
80f5ce75 2524 size_t datasz_rounded;
edf8e2af
MW
2525 void *data;
2526 size_t notesz;
2527};
2528
a2547a13 2529struct target_elf_siginfo {
f8fd4fc4
PB
2530 abi_int si_signo; /* signal number */
2531 abi_int si_code; /* extra code */
2532 abi_int si_errno; /* errno */
edf8e2af
MW
2533};
2534
a2547a13
LD
2535struct target_elf_prstatus {
2536 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2537 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2538 abi_ulong pr_sigpend; /* XXX */
2539 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2540 target_pid_t pr_pid;
2541 target_pid_t pr_ppid;
2542 target_pid_t pr_pgrp;
2543 target_pid_t pr_sid;
edf8e2af
MW
2544 struct target_timeval pr_utime; /* XXX User time */
2545 struct target_timeval pr_stime; /* XXX System time */
2546 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2547 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2548 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2549 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2550};
2551
2552#define ELF_PRARGSZ (80) /* Number of chars for args */
2553
a2547a13 2554struct target_elf_prpsinfo {
edf8e2af
MW
2555 char pr_state; /* numeric process state */
2556 char pr_sname; /* char for pr_state */
2557 char pr_zomb; /* zombie */
2558 char pr_nice; /* nice val */
ca98ac83 2559 abi_ulong pr_flag; /* flags */
c227f099
AL
2560 target_uid_t pr_uid;
2561 target_gid_t pr_gid;
2562 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2563 /* Lots missing */
2564 char pr_fname[16]; /* filename of executable */
2565 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2566};
2567
2568/* Here is the structure in which status of each thread is captured. */
2569struct elf_thread_status {
72cf2d4f 2570 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2571 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2572#if 0
2573 elf_fpregset_t fpu; /* NT_PRFPREG */
2574 struct task_struct *thread;
2575 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2576#endif
2577 struct memelfnote notes[1];
2578 int num_notes;
2579};
2580
2581struct elf_note_info {
2582 struct memelfnote *notes;
a2547a13
LD
2583 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2584 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2585
72cf2d4f 2586 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2587#if 0
2588 /*
2589 * Current version of ELF coredump doesn't support
2590 * dumping fp regs etc.
2591 */
2592 elf_fpregset_t *fpu;
2593 elf_fpxregset_t *xfpu;
2594 int thread_status_size;
2595#endif
2596 int notes_size;
2597 int numnote;
2598};
2599
2600struct vm_area_struct {
1a1c4db9
MI
2601 target_ulong vma_start; /* start vaddr of memory region */
2602 target_ulong vma_end; /* end vaddr of memory region */
2603 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2604 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2605};
2606
2607struct mm_struct {
72cf2d4f 2608 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2609 int mm_count; /* number of mappings */
2610};
2611
2612static struct mm_struct *vma_init(void);
2613static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2614static int vma_add_mapping(struct mm_struct *, target_ulong,
2615 target_ulong, abi_ulong);
edf8e2af
MW
2616static int vma_get_mapping_count(const struct mm_struct *);
2617static struct vm_area_struct *vma_first(const struct mm_struct *);
2618static struct vm_area_struct *vma_next(struct vm_area_struct *);
2619static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2620static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2621 unsigned long flags);
edf8e2af
MW
2622
2623static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2624static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2625 unsigned int, void *);
a2547a13
LD
2626static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2627static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2628static void fill_auxv_note(struct memelfnote *, const TaskState *);
2629static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2630static size_t note_size(const struct memelfnote *);
2631static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2632static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2633static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2634static int core_dump_filename(const TaskState *, char *, size_t);
2635
2636static int dump_write(int, const void *, size_t);
2637static int write_note(struct memelfnote *, int);
2638static int write_note_info(struct elf_note_info *, int);
2639
2640#ifdef BSWAP_NEEDED
a2547a13 2641static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2642{
ca98ac83
PB
2643 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2644 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2645 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2646 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2647 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2648 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2649 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2650 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2651 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2652 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2653 /* cpu times are not filled, so we skip them */
2654 /* regs should be in correct format already */
2655 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2656}
2657
a2547a13 2658static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2659{
ca98ac83 2660 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2661 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2662 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2663 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2664 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2665 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2666 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2667}
991f8f0c
RH
2668
2669static void bswap_note(struct elf_note *en)
2670{
2671 bswap32s(&en->n_namesz);
2672 bswap32s(&en->n_descsz);
2673 bswap32s(&en->n_type);
2674}
2675#else
2676static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2677static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2678static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2679#endif /* BSWAP_NEEDED */
2680
2681/*
2682 * Minimal support for linux memory regions. These are needed
2683 * when we are finding out what memory exactly belongs to
2684 * emulated process. No locks needed here, as long as
2685 * thread that received the signal is stopped.
2686 */
2687
2688static struct mm_struct *vma_init(void)
2689{
2690 struct mm_struct *mm;
2691
7267c094 2692 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2693 return (NULL);
2694
2695 mm->mm_count = 0;
72cf2d4f 2696 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2697
2698 return (mm);
2699}
2700
2701static void vma_delete(struct mm_struct *mm)
2702{
2703 struct vm_area_struct *vma;
2704
2705 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2706 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2707 g_free(vma);
edf8e2af 2708 }
7267c094 2709 g_free(mm);
edf8e2af
MW
2710}
2711
1a1c4db9
MI
2712static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2713 target_ulong end, abi_ulong flags)
edf8e2af
MW
2714{
2715 struct vm_area_struct *vma;
2716
7267c094 2717 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2718 return (-1);
2719
2720 vma->vma_start = start;
2721 vma->vma_end = end;
2722 vma->vma_flags = flags;
2723
72cf2d4f 2724 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2725 mm->mm_count++;
2726
2727 return (0);
2728}
2729
2730static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2731{
72cf2d4f 2732 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2733}
2734
2735static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2736{
72cf2d4f 2737 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2738}
2739
2740static int vma_get_mapping_count(const struct mm_struct *mm)
2741{
2742 return (mm->mm_count);
2743}
2744
2745/*
2746 * Calculate file (dump) size of given memory region.
2747 */
2748static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2749{
2750 /* if we cannot even read the first page, skip it */
2751 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2752 return (0);
2753
2754 /*
2755 * Usually we don't dump executable pages as they contain
2756 * non-writable code that debugger can read directly from
2757 * target library etc. However, thread stacks are marked
2758 * also executable so we read in first page of given region
2759 * and check whether it contains elf header. If there is
2760 * no elf header, we dump it.
2761 */
2762 if (vma->vma_flags & PROT_EXEC) {
2763 char page[TARGET_PAGE_SIZE];
2764
2765 copy_from_user(page, vma->vma_start, sizeof (page));
2766 if ((page[EI_MAG0] == ELFMAG0) &&
2767 (page[EI_MAG1] == ELFMAG1) &&
2768 (page[EI_MAG2] == ELFMAG2) &&
2769 (page[EI_MAG3] == ELFMAG3)) {
2770 /*
2771 * Mappings are possibly from ELF binary. Don't dump
2772 * them.
2773 */
2774 return (0);
2775 }
2776 }
2777
2778 return (vma->vma_end - vma->vma_start);
2779}
2780
1a1c4db9 2781static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2782 unsigned long flags)
edf8e2af
MW
2783{
2784 struct mm_struct *mm = (struct mm_struct *)priv;
2785
edf8e2af
MW
2786 vma_add_mapping(mm, start, end, flags);
2787 return (0);
2788}
2789
2790static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2791 unsigned int sz, void *data)
edf8e2af
MW
2792{
2793 unsigned int namesz;
2794
2795 namesz = strlen(name) + 1;
2796 note->name = name;
2797 note->namesz = namesz;
2798 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2799 note->type = type;
80f5ce75
LV
2800 note->datasz = sz;
2801 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2802
edf8e2af
MW
2803 note->data = data;
2804
2805 /*
2806 * We calculate rounded up note size here as specified by
2807 * ELF document.
2808 */
2809 note->notesz = sizeof (struct elf_note) +
80f5ce75 2810 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2811}
2812
2813static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2814 uint32_t flags)
edf8e2af
MW
2815{
2816 (void) memset(elf, 0, sizeof(*elf));
2817
2818 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2819 elf->e_ident[EI_CLASS] = ELF_CLASS;
2820 elf->e_ident[EI_DATA] = ELF_DATA;
2821 elf->e_ident[EI_VERSION] = EV_CURRENT;
2822 elf->e_ident[EI_OSABI] = ELF_OSABI;
2823
2824 elf->e_type = ET_CORE;
2825 elf->e_machine = machine;
2826 elf->e_version = EV_CURRENT;
2827 elf->e_phoff = sizeof(struct elfhdr);
2828 elf->e_flags = flags;
2829 elf->e_ehsize = sizeof(struct elfhdr);
2830 elf->e_phentsize = sizeof(struct elf_phdr);
2831 elf->e_phnum = segs;
2832
edf8e2af 2833 bswap_ehdr(elf);
edf8e2af
MW
2834}
2835
2836static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2837{
2838 phdr->p_type = PT_NOTE;
2839 phdr->p_offset = offset;
2840 phdr->p_vaddr = 0;
2841 phdr->p_paddr = 0;
2842 phdr->p_filesz = sz;
2843 phdr->p_memsz = 0;
2844 phdr->p_flags = 0;
2845 phdr->p_align = 0;
2846
991f8f0c 2847 bswap_phdr(phdr, 1);
edf8e2af
MW
2848}
2849
2850static size_t note_size(const struct memelfnote *note)
2851{
2852 return (note->notesz);
2853}
2854
a2547a13 2855static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2856 const TaskState *ts, int signr)
edf8e2af
MW
2857{
2858 (void) memset(prstatus, 0, sizeof (*prstatus));
2859 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2860 prstatus->pr_pid = ts->ts_tid;
2861 prstatus->pr_ppid = getppid();
2862 prstatus->pr_pgrp = getpgrp();
2863 prstatus->pr_sid = getsid(0);
2864
edf8e2af 2865 bswap_prstatus(prstatus);
edf8e2af
MW
2866}
2867
a2547a13 2868static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2869{
900cfbca 2870 char *base_filename;
edf8e2af
MW
2871 unsigned int i, len;
2872
2873 (void) memset(psinfo, 0, sizeof (*psinfo));
2874
2875 len = ts->info->arg_end - ts->info->arg_start;
2876 if (len >= ELF_PRARGSZ)
2877 len = ELF_PRARGSZ - 1;
2878 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2879 return -EFAULT;
2880 for (i = 0; i < len; i++)
2881 if (psinfo->pr_psargs[i] == 0)
2882 psinfo->pr_psargs[i] = ' ';
2883 psinfo->pr_psargs[len] = 0;
2884
2885 psinfo->pr_pid = getpid();
2886 psinfo->pr_ppid = getppid();
2887 psinfo->pr_pgrp = getpgrp();
2888 psinfo->pr_sid = getsid(0);
2889 psinfo->pr_uid = getuid();
2890 psinfo->pr_gid = getgid();
2891
900cfbca
JM
2892 base_filename = g_path_get_basename(ts->bprm->filename);
2893 /*
2894 * Using strncpy here is fine: at max-length,
2895 * this field is not NUL-terminated.
2896 */
edf8e2af 2897 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2898 sizeof(psinfo->pr_fname));
edf8e2af 2899
900cfbca 2900 g_free(base_filename);
edf8e2af 2901 bswap_psinfo(psinfo);
edf8e2af
MW
2902 return (0);
2903}
2904
2905static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2906{
2907 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2908 elf_addr_t orig_auxv = auxv;
edf8e2af 2909 void *ptr;
125b0f55 2910 int len = ts->info->auxv_len;
edf8e2af
MW
2911
2912 /*
2913 * Auxiliary vector is stored in target process stack. It contains
2914 * {type, value} pairs that we need to dump into note. This is not
2915 * strictly necessary but we do it here for sake of completeness.
2916 */
2917
edf8e2af
MW
2918 /* read in whole auxv vector and copy it to memelfnote */
2919 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2920 if (ptr != NULL) {
2921 fill_note(note, "CORE", NT_AUXV, len, ptr);
2922 unlock_user(ptr, auxv, len);
2923 }
2924}
2925
2926/*
2927 * Constructs name of coredump file. We have following convention
2928 * for the name:
2929 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2930 *
2931 * Returns 0 in case of success, -1 otherwise (errno is set).
2932 */
2933static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2934 size_t bufsize)
edf8e2af
MW
2935{
2936 char timestamp[64];
edf8e2af
MW
2937 char *base_filename = NULL;
2938 struct timeval tv;
2939 struct tm tm;
2940
2941 assert(bufsize >= PATH_MAX);
2942
2943 if (gettimeofday(&tv, NULL) < 0) {
2944 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2945 strerror(errno));
edf8e2af
MW
2946 return (-1);
2947 }
2948
b8da57fa 2949 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 2950 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2951 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2952 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2953 base_filename, timestamp, (int)getpid());
b8da57fa 2954 g_free(base_filename);
edf8e2af
MW
2955
2956 return (0);
2957}
2958
2959static int dump_write(int fd, const void *ptr, size_t size)
2960{
2961 const char *bufp = (const char *)ptr;
2962 ssize_t bytes_written, bytes_left;
2963 struct rlimit dumpsize;
2964 off_t pos;
2965
2966 bytes_written = 0;
2967 getrlimit(RLIMIT_CORE, &dumpsize);
2968 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2969 if (errno == ESPIPE) { /* not a seekable stream */
2970 bytes_left = size;
2971 } else {
2972 return pos;
2973 }
2974 } else {
2975 if (dumpsize.rlim_cur <= pos) {
2976 return -1;
2977 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2978 bytes_left = size;
2979 } else {
2980 size_t limit_left=dumpsize.rlim_cur - pos;
2981 bytes_left = limit_left >= size ? size : limit_left ;
2982 }
2983 }
2984
2985 /*
2986 * In normal conditions, single write(2) should do but
2987 * in case of socket etc. this mechanism is more portable.
2988 */
2989 do {
2990 bytes_written = write(fd, bufp, bytes_left);
2991 if (bytes_written < 0) {
2992 if (errno == EINTR)
2993 continue;
2994 return (-1);
2995 } else if (bytes_written == 0) { /* eof */
2996 return (-1);
2997 }
2998 bufp += bytes_written;
2999 bytes_left -= bytes_written;
3000 } while (bytes_left > 0);
3001
3002 return (0);
3003}
3004
3005static int write_note(struct memelfnote *men, int fd)
3006{
3007 struct elf_note en;
3008
3009 en.n_namesz = men->namesz;
3010 en.n_type = men->type;
3011 en.n_descsz = men->datasz;
3012
edf8e2af 3013 bswap_note(&en);
edf8e2af
MW
3014
3015 if (dump_write(fd, &en, sizeof(en)) != 0)
3016 return (-1);
3017 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3018 return (-1);
80f5ce75 3019 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3020 return (-1);
3021
3022 return (0);
3023}
3024
9349b4f9 3025static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3026{
0429a971
AF
3027 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3028 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3029 struct elf_thread_status *ets;
3030
7267c094 3031 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3032 ets->num_notes = 1; /* only prstatus is dumped */
3033 fill_prstatus(&ets->prstatus, ts, 0);
3034 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3035 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3036 &ets->prstatus);
edf8e2af 3037
72cf2d4f 3038 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3039
3040 info->notes_size += note_size(&ets->notes[0]);
3041}
3042
6afafa86
PM
3043static void init_note_info(struct elf_note_info *info)
3044{
3045 /* Initialize the elf_note_info structure so that it is at
3046 * least safe to call free_note_info() on it. Must be
3047 * called before calling fill_note_info().
3048 */
3049 memset(info, 0, sizeof (*info));
3050 QTAILQ_INIT(&info->thread_list);
3051}
3052
edf8e2af 3053static int fill_note_info(struct elf_note_info *info,
9349b4f9 3054 long signr, const CPUArchState *env)
edf8e2af
MW
3055{
3056#define NUMNOTES 3
0429a971
AF
3057 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3058 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3059 int i;
3060
c78d65e8 3061 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3062 if (info->notes == NULL)
3063 return (-ENOMEM);
7267c094 3064 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3065 if (info->prstatus == NULL)
3066 return (-ENOMEM);
7267c094 3067 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3068 if (info->prstatus == NULL)
3069 return (-ENOMEM);
3070
3071 /*
3072 * First fill in status (and registers) of current thread
3073 * including process info & aux vector.
3074 */
3075 fill_prstatus(info->prstatus, ts, signr);
3076 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3077 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3078 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3079 fill_psinfo(info->psinfo, ts);
3080 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3081 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3082 fill_auxv_note(&info->notes[2], ts);
3083 info->numnote = 3;
3084
3085 info->notes_size = 0;
3086 for (i = 0; i < info->numnote; i++)
3087 info->notes_size += note_size(&info->notes[i]);
3088
3089 /* read and fill status of all threads */
3090 cpu_list_lock();
bdc44640 3091 CPU_FOREACH(cpu) {
a2247f8e 3092 if (cpu == thread_cpu) {
edf8e2af 3093 continue;
182735ef
AF
3094 }
3095 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3096 }
3097 cpu_list_unlock();
3098
3099 return (0);
3100}
3101
3102static void free_note_info(struct elf_note_info *info)
3103{
3104 struct elf_thread_status *ets;
3105
72cf2d4f
BS
3106 while (!QTAILQ_EMPTY(&info->thread_list)) {
3107 ets = QTAILQ_FIRST(&info->thread_list);
3108 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3109 g_free(ets);
edf8e2af
MW
3110 }
3111
7267c094
AL
3112 g_free(info->prstatus);
3113 g_free(info->psinfo);
3114 g_free(info->notes);
edf8e2af
MW
3115}
3116
3117static int write_note_info(struct elf_note_info *info, int fd)
3118{
3119 struct elf_thread_status *ets;
3120 int i, error = 0;
3121
3122 /* write prstatus, psinfo and auxv for current thread */
3123 for (i = 0; i < info->numnote; i++)
3124 if ((error = write_note(&info->notes[i], fd)) != 0)
3125 return (error);
3126
3127 /* write prstatus for each thread */
52a53afe 3128 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3129 if ((error = write_note(&ets->notes[0], fd)) != 0)
3130 return (error);
3131 }
3132
3133 return (0);
3134}
3135
3136/*
3137 * Write out ELF coredump.
3138 *
3139 * See documentation of ELF object file format in:
3140 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3141 *
3142 * Coredump format in linux is following:
3143 *
3144 * 0 +----------------------+ \
3145 * | ELF header | ET_CORE |
3146 * +----------------------+ |
3147 * | ELF program headers | |--- headers
3148 * | - NOTE section | |
3149 * | - PT_LOAD sections | |
3150 * +----------------------+ /
3151 * | NOTEs: |
3152 * | - NT_PRSTATUS |
3153 * | - NT_PRSINFO |
3154 * | - NT_AUXV |
3155 * +----------------------+ <-- aligned to target page
3156 * | Process memory dump |
3157 * : :
3158 * . .
3159 * : :
3160 * | |
3161 * +----------------------+
3162 *
3163 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3164 * NT_PRSINFO -> struct elf_prpsinfo
3165 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3166 *
3167 * Format follows System V format as close as possible. Current
3168 * version limitations are as follows:
3169 * - no floating point registers are dumped
3170 *
3171 * Function returns 0 in case of success, negative errno otherwise.
3172 *
3173 * TODO: make this work also during runtime: it should be
3174 * possible to force coredump from running process and then
3175 * continue processing. For example qemu could set up SIGUSR2
3176 * handler (provided that target process haven't registered
3177 * handler for that) that does the dump when signal is received.
3178 */
9349b4f9 3179static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3180{
0429a971
AF
3181 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3182 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3183 struct vm_area_struct *vma = NULL;
3184 char corefile[PATH_MAX];
3185 struct elf_note_info info;
3186 struct elfhdr elf;
3187 struct elf_phdr phdr;
3188 struct rlimit dumpsize;
3189 struct mm_struct *mm = NULL;
3190 off_t offset = 0, data_offset = 0;
3191 int segs = 0;
3192 int fd = -1;
3193
6afafa86
PM
3194 init_note_info(&info);
3195
edf8e2af
MW
3196 errno = 0;
3197 getrlimit(RLIMIT_CORE, &dumpsize);
3198 if (dumpsize.rlim_cur == 0)
d97ef72e 3199 return 0;
edf8e2af
MW
3200
3201 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3202 return (-errno);
3203
3204 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3205 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3206 return (-errno);
3207
3208 /*
3209 * Walk through target process memory mappings and
3210 * set up structure containing this information. After
3211 * this point vma_xxx functions can be used.
3212 */
3213 if ((mm = vma_init()) == NULL)
3214 goto out;
3215
3216 walk_memory_regions(mm, vma_walker);
3217 segs = vma_get_mapping_count(mm);
3218
3219 /*
3220 * Construct valid coredump ELF header. We also
3221 * add one more segment for notes.
3222 */
3223 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3224 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3225 goto out;
3226
b6af0975 3227 /* fill in the in-memory version of notes */
edf8e2af
MW
3228 if (fill_note_info(&info, signr, env) < 0)
3229 goto out;
3230
3231 offset += sizeof (elf); /* elf header */
3232 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3233
3234 /* write out notes program header */
3235 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3236
3237 offset += info.notes_size;
3238 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3239 goto out;
3240
3241 /*
3242 * ELF specification wants data to start at page boundary so
3243 * we align it here.
3244 */
80f5ce75 3245 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3246
3247 /*
3248 * Write program headers for memory regions mapped in
3249 * the target process.
3250 */
3251 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3252 (void) memset(&phdr, 0, sizeof (phdr));
3253
3254 phdr.p_type = PT_LOAD;
3255 phdr.p_offset = offset;
3256 phdr.p_vaddr = vma->vma_start;
3257 phdr.p_paddr = 0;
3258 phdr.p_filesz = vma_dump_size(vma);
3259 offset += phdr.p_filesz;
3260 phdr.p_memsz = vma->vma_end - vma->vma_start;
3261 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3262 if (vma->vma_flags & PROT_WRITE)
3263 phdr.p_flags |= PF_W;
3264 if (vma->vma_flags & PROT_EXEC)
3265 phdr.p_flags |= PF_X;
3266 phdr.p_align = ELF_EXEC_PAGESIZE;
3267
80f5ce75 3268 bswap_phdr(&phdr, 1);
772034b6
PM
3269 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3270 goto out;
3271 }
edf8e2af
MW
3272 }
3273
3274 /*
3275 * Next we write notes just after program headers. No
3276 * alignment needed here.
3277 */
3278 if (write_note_info(&info, fd) < 0)
3279 goto out;
3280
3281 /* align data to page boundary */
edf8e2af
MW
3282 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3283 goto out;
3284
3285 /*
3286 * Finally we can dump process memory into corefile as well.
3287 */
3288 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3289 abi_ulong addr;
3290 abi_ulong end;
3291
3292 end = vma->vma_start + vma_dump_size(vma);
3293
3294 for (addr = vma->vma_start; addr < end;
d97ef72e 3295 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3296 char page[TARGET_PAGE_SIZE];
3297 int error;
3298
3299 /*
3300 * Read in page from target process memory and
3301 * write it to coredump file.
3302 */
3303 error = copy_from_user(page, addr, sizeof (page));
3304 if (error != 0) {
49995e17 3305 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3306 addr);
edf8e2af
MW
3307 errno = -error;
3308 goto out;
3309 }
3310 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3311 goto out;
3312 }
3313 }
3314
d97ef72e 3315 out:
edf8e2af
MW
3316 free_note_info(&info);
3317 if (mm != NULL)
3318 vma_delete(mm);
3319 (void) close(fd);
3320
3321 if (errno != 0)
3322 return (-errno);
3323 return (0);
3324}
edf8e2af
MW
3325#endif /* USE_ELF_CORE_DUMP */
3326
e5fe0c52
PB
3327void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3328{
3329 init_thread(regs, infop);
3330}
This page took 1.369367 seconds and 4 git commands to generate.