]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
74c21bd0 | 11 | #include "qemu/osdep.h" |
494b00c7 | 12 | #include <sys/ioctl.h> |
494b00c7 CD |
13 | |
14 | #include <linux/kvm.h> | |
15 | ||
16 | #include "qemu-common.h" | |
17 | #include "qemu/timer.h" | |
2ecb2027 | 18 | #include "qemu/error-report.h" |
494b00c7 CD |
19 | #include "sysemu/sysemu.h" |
20 | #include "sysemu/kvm.h" | |
eb035b48 | 21 | #include "kvm_arm.h" |
494b00c7 | 22 | #include "cpu.h" |
b05c81d2 | 23 | #include "trace.h" |
38df27c8 | 24 | #include "internals.h" |
bd2be150 | 25 | #include "hw/arm/arm.h" |
b05c81d2 | 26 | #include "hw/pci/pci.h" |
4c663752 | 27 | #include "exec/memattrs.h" |
4344af65 | 28 | #include "exec/address-spaces.h" |
15eafc2e | 29 | #include "hw/boards.h" |
03dd024f | 30 | #include "qemu/log.h" |
494b00c7 CD |
31 | |
32 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
33 | KVM_CAP_LAST_INFO | |
34 | }; | |
35 | ||
1a1753f7 | 36 | static bool cap_has_mp_state; |
202ccb6b | 37 | static bool cap_has_inject_serror_esr; |
1a1753f7 | 38 | |
c4487d76 PM |
39 | static ARMHostCPUFeatures arm_host_cpu_features; |
40 | ||
228d5e04 PS |
41 | int kvm_arm_vcpu_init(CPUState *cs) |
42 | { | |
43 | ARMCPU *cpu = ARM_CPU(cs); | |
44 | struct kvm_vcpu_init init; | |
45 | ||
46 | init.target = cpu->kvm_target; | |
47 | memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); | |
48 | ||
49 | return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); | |
50 | } | |
51 | ||
202ccb6b DG |
52 | void kvm_arm_init_serror_injection(CPUState *cs) |
53 | { | |
54 | cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state, | |
55 | KVM_CAP_ARM_INJECT_SERROR_ESR); | |
56 | } | |
57 | ||
a96c0514 PM |
58 | bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
59 | int *fdarray, | |
60 | struct kvm_vcpu_init *init) | |
61 | { | |
62 | int ret, kvmfd = -1, vmfd = -1, cpufd = -1; | |
63 | ||
64 | kvmfd = qemu_open("/dev/kvm", O_RDWR); | |
65 | if (kvmfd < 0) { | |
66 | goto err; | |
67 | } | |
68 | vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); | |
69 | if (vmfd < 0) { | |
70 | goto err; | |
71 | } | |
72 | cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); | |
73 | if (cpufd < 0) { | |
74 | goto err; | |
75 | } | |
76 | ||
2f340e9c PX |
77 | if (!init) { |
78 | /* Caller doesn't want the VCPU to be initialized, so skip it */ | |
79 | goto finish; | |
80 | } | |
81 | ||
a96c0514 PM |
82 | ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); |
83 | if (ret >= 0) { | |
84 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
85 | if (ret < 0) { | |
86 | goto err; | |
87 | } | |
2f340e9c | 88 | } else if (cpus_to_try) { |
a96c0514 PM |
89 | /* Old kernel which doesn't know about the |
90 | * PREFERRED_TARGET ioctl: we know it will only support | |
91 | * creating one kind of guest CPU which is its preferred | |
92 | * CPU type. | |
93 | */ | |
94 | while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { | |
95 | init->target = *cpus_to_try++; | |
96 | memset(init->features, 0, sizeof(init->features)); | |
97 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
98 | if (ret >= 0) { | |
99 | break; | |
100 | } | |
101 | } | |
102 | if (ret < 0) { | |
103 | goto err; | |
104 | } | |
2f340e9c PX |
105 | } else { |
106 | /* Treat a NULL cpus_to_try argument the same as an empty | |
107 | * list, which means we will fail the call since this must | |
108 | * be an old kernel which doesn't support PREFERRED_TARGET. | |
109 | */ | |
110 | goto err; | |
a96c0514 PM |
111 | } |
112 | ||
2f340e9c | 113 | finish: |
a96c0514 PM |
114 | fdarray[0] = kvmfd; |
115 | fdarray[1] = vmfd; | |
116 | fdarray[2] = cpufd; | |
117 | ||
118 | return true; | |
119 | ||
120 | err: | |
121 | if (cpufd >= 0) { | |
122 | close(cpufd); | |
123 | } | |
124 | if (vmfd >= 0) { | |
125 | close(vmfd); | |
126 | } | |
127 | if (kvmfd >= 0) { | |
128 | close(kvmfd); | |
129 | } | |
130 | ||
131 | return false; | |
132 | } | |
133 | ||
134 | void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) | |
135 | { | |
136 | int i; | |
137 | ||
138 | for (i = 2; i >= 0; i--) { | |
139 | close(fdarray[i]); | |
140 | } | |
141 | } | |
142 | ||
c4487d76 | 143 | void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) |
a96c0514 | 144 | { |
c4487d76 | 145 | CPUARMState *env = &cpu->env; |
a96c0514 | 146 | |
c4487d76 PM |
147 | if (!arm_host_cpu_features.dtb_compatible) { |
148 | if (!kvm_enabled() || | |
149 | !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { | |
150 | /* We can't report this error yet, so flag that we need to | |
151 | * in arm_cpu_realizefn(). | |
152 | */ | |
153 | cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; | |
154 | cpu->host_cpu_probe_failed = true; | |
155 | return; | |
156 | } | |
a96c0514 | 157 | } |
c4487d76 PM |
158 | |
159 | cpu->kvm_target = arm_host_cpu_features.target; | |
160 | cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; | |
4674097c | 161 | cpu->isar = arm_host_cpu_features.isar; |
c4487d76 | 162 | env->features = arm_host_cpu_features.features; |
a96c0514 PM |
163 | } |
164 | ||
b16565b3 | 165 | int kvm_arch_init(MachineState *ms, KVMState *s) |
494b00c7 CD |
166 | { |
167 | /* For ARM interrupt delivery is always asynchronous, | |
168 | * whether we are using an in-kernel VGIC or not. | |
169 | */ | |
170 | kvm_async_interrupts_allowed = true; | |
a96c0514 | 171 | |
5d721b78 AG |
172 | /* |
173 | * PSCI wakes up secondary cores, so we always need to | |
174 | * have vCPUs waiting in kernel space | |
175 | */ | |
176 | kvm_halt_in_kernel_allowed = true; | |
177 | ||
1a1753f7 AB |
178 | cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
179 | ||
494b00c7 CD |
180 | return 0; |
181 | } | |
182 | ||
183 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
184 | { | |
185 | return cpu->cpu_index; | |
186 | } | |
187 | ||
eb035b48 PM |
188 | /* We track all the KVM devices which need their memory addresses |
189 | * passing to the kernel in a list of these structures. | |
190 | * When board init is complete we run through the list and | |
191 | * tell the kernel the base addresses of the memory regions. | |
192 | * We use a MemoryListener to track mapping and unmapping of | |
193 | * the regions during board creation, so the board models don't | |
194 | * need to do anything special for the KVM case. | |
19d1bd0b EA |
195 | * |
196 | * Sometimes the address must be OR'ed with some other fields | |
197 | * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). | |
198 | * @kda_addr_ormask aims at storing the value of those fields. | |
eb035b48 PM |
199 | */ |
200 | typedef struct KVMDevice { | |
201 | struct kvm_arm_device_addr kda; | |
1da41cc1 | 202 | struct kvm_device_attr kdattr; |
19d1bd0b | 203 | uint64_t kda_addr_ormask; |
eb035b48 PM |
204 | MemoryRegion *mr; |
205 | QSLIST_ENTRY(KVMDevice) entries; | |
1da41cc1 | 206 | int dev_fd; |
eb035b48 PM |
207 | } KVMDevice; |
208 | ||
b58deb34 | 209 | static QSLIST_HEAD(, KVMDevice) kvm_devices_head; |
eb035b48 PM |
210 | |
211 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
212 | MemoryRegionSection *section) | |
213 | { | |
214 | KVMDevice *kd; | |
215 | ||
216 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
217 | if (section->mr == kd->mr) { | |
218 | kd->kda.addr = section->offset_within_address_space; | |
219 | } | |
220 | } | |
221 | } | |
222 | ||
223 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
224 | MemoryRegionSection *section) | |
225 | { | |
226 | KVMDevice *kd; | |
227 | ||
228 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
229 | if (section->mr == kd->mr) { | |
230 | kd->kda.addr = -1; | |
231 | } | |
232 | } | |
233 | } | |
234 | ||
235 | static MemoryListener devlistener = { | |
236 | .region_add = kvm_arm_devlistener_add, | |
237 | .region_del = kvm_arm_devlistener_del, | |
238 | }; | |
239 | ||
1da41cc1 CD |
240 | static void kvm_arm_set_device_addr(KVMDevice *kd) |
241 | { | |
242 | struct kvm_device_attr *attr = &kd->kdattr; | |
243 | int ret; | |
244 | ||
245 | /* If the device control API is available and we have a device fd on the | |
246 | * KVMDevice struct, let's use the newer API | |
247 | */ | |
248 | if (kd->dev_fd >= 0) { | |
249 | uint64_t addr = kd->kda.addr; | |
19d1bd0b EA |
250 | |
251 | addr |= kd->kda_addr_ormask; | |
1da41cc1 CD |
252 | attr->addr = (uintptr_t)&addr; |
253 | ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); | |
254 | } else { | |
255 | ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); | |
256 | } | |
257 | ||
258 | if (ret < 0) { | |
259 | fprintf(stderr, "Failed to set device address: %s\n", | |
260 | strerror(-ret)); | |
261 | abort(); | |
262 | } | |
263 | } | |
264 | ||
eb035b48 PM |
265 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
266 | { | |
267 | KVMDevice *kd, *tkd; | |
268 | ||
eb035b48 PM |
269 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { |
270 | if (kd->kda.addr != -1) { | |
1da41cc1 | 271 | kvm_arm_set_device_addr(kd); |
eb035b48 | 272 | } |
dfde4e6e | 273 | memory_region_unref(kd->mr); |
5ff9aaab | 274 | QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); |
eb035b48 PM |
275 | g_free(kd); |
276 | } | |
0bbe4354 | 277 | memory_listener_unregister(&devlistener); |
eb035b48 PM |
278 | } |
279 | ||
280 | static Notifier notify = { | |
281 | .notify = kvm_arm_machine_init_done, | |
282 | }; | |
283 | ||
1da41cc1 | 284 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
19d1bd0b | 285 | uint64_t attr, int dev_fd, uint64_t addr_ormask) |
eb035b48 PM |
286 | { |
287 | KVMDevice *kd; | |
288 | ||
289 | if (!kvm_irqchip_in_kernel()) { | |
290 | return; | |
291 | } | |
292 | ||
293 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
4344af65 | 294 | memory_listener_register(&devlistener, &address_space_memory); |
eb035b48 PM |
295 | qemu_add_machine_init_done_notifier(¬ify); |
296 | } | |
297 | kd = g_new0(KVMDevice, 1); | |
298 | kd->mr = mr; | |
299 | kd->kda.id = devid; | |
300 | kd->kda.addr = -1; | |
1da41cc1 CD |
301 | kd->kdattr.flags = 0; |
302 | kd->kdattr.group = group; | |
303 | kd->kdattr.attr = attr; | |
304 | kd->dev_fd = dev_fd; | |
19d1bd0b | 305 | kd->kda_addr_ormask = addr_ormask; |
eb035b48 | 306 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
dfde4e6e | 307 | memory_region_ref(kd->mr); |
eb035b48 PM |
308 | } |
309 | ||
38df27c8 AB |
310 | static int compare_u64(const void *a, const void *b) |
311 | { | |
312 | if (*(uint64_t *)a > *(uint64_t *)b) { | |
313 | return 1; | |
314 | } | |
315 | if (*(uint64_t *)a < *(uint64_t *)b) { | |
316 | return -1; | |
317 | } | |
318 | return 0; | |
319 | } | |
320 | ||
c8a44709 | 321 | /* Initialize the ARMCPU cpreg list according to the kernel's |
38df27c8 AB |
322 | * definition of what CPU registers it knows about (and throw away |
323 | * the previous TCG-created cpreg list). | |
324 | */ | |
325 | int kvm_arm_init_cpreg_list(ARMCPU *cpu) | |
326 | { | |
327 | struct kvm_reg_list rl; | |
328 | struct kvm_reg_list *rlp; | |
329 | int i, ret, arraylen; | |
330 | CPUState *cs = CPU(cpu); | |
331 | ||
332 | rl.n = 0; | |
333 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); | |
334 | if (ret != -E2BIG) { | |
335 | return ret; | |
336 | } | |
337 | rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); | |
338 | rlp->n = rl.n; | |
339 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); | |
340 | if (ret) { | |
341 | goto out; | |
342 | } | |
343 | /* Sort the list we get back from the kernel, since cpreg_tuples | |
344 | * must be in strictly ascending order. | |
345 | */ | |
346 | qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); | |
347 | ||
348 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
349 | if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { | |
350 | continue; | |
351 | } | |
352 | switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { | |
353 | case KVM_REG_SIZE_U32: | |
354 | case KVM_REG_SIZE_U64: | |
355 | break; | |
356 | default: | |
357 | fprintf(stderr, "Can't handle size of register in kernel list\n"); | |
358 | ret = -EINVAL; | |
359 | goto out; | |
360 | } | |
361 | ||
362 | arraylen++; | |
363 | } | |
364 | ||
365 | cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); | |
366 | cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); | |
367 | cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, | |
368 | arraylen); | |
369 | cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, | |
370 | arraylen); | |
371 | cpu->cpreg_array_len = arraylen; | |
372 | cpu->cpreg_vmstate_array_len = arraylen; | |
373 | ||
374 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
375 | uint64_t regidx = rlp->reg[i]; | |
376 | if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { | |
377 | continue; | |
378 | } | |
379 | cpu->cpreg_indexes[arraylen] = regidx; | |
380 | arraylen++; | |
381 | } | |
382 | assert(cpu->cpreg_array_len == arraylen); | |
383 | ||
384 | if (!write_kvmstate_to_list(cpu)) { | |
385 | /* Shouldn't happen unless kernel is inconsistent about | |
386 | * what registers exist. | |
387 | */ | |
388 | fprintf(stderr, "Initial read of kernel register state failed\n"); | |
389 | ret = -EINVAL; | |
390 | goto out; | |
391 | } | |
392 | ||
393 | out: | |
394 | g_free(rlp); | |
395 | return ret; | |
396 | } | |
397 | ||
ff047453 PM |
398 | bool write_kvmstate_to_list(ARMCPU *cpu) |
399 | { | |
400 | CPUState *cs = CPU(cpu); | |
401 | int i; | |
402 | bool ok = true; | |
403 | ||
404 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
405 | struct kvm_one_reg r; | |
406 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
407 | uint32_t v32; | |
408 | int ret; | |
409 | ||
410 | r.id = regidx; | |
411 | ||
412 | switch (regidx & KVM_REG_SIZE_MASK) { | |
413 | case KVM_REG_SIZE_U32: | |
414 | r.addr = (uintptr_t)&v32; | |
415 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
416 | if (!ret) { | |
417 | cpu->cpreg_values[i] = v32; | |
418 | } | |
419 | break; | |
420 | case KVM_REG_SIZE_U64: | |
421 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
422 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
423 | break; | |
424 | default: | |
425 | abort(); | |
426 | } | |
427 | if (ret) { | |
428 | ok = false; | |
429 | } | |
430 | } | |
431 | return ok; | |
432 | } | |
433 | ||
4b7a6bf4 | 434 | bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
ff047453 PM |
435 | { |
436 | CPUState *cs = CPU(cpu); | |
437 | int i; | |
438 | bool ok = true; | |
439 | ||
440 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
441 | struct kvm_one_reg r; | |
442 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
443 | uint32_t v32; | |
444 | int ret; | |
445 | ||
4b7a6bf4 CD |
446 | if (kvm_arm_cpreg_level(regidx) > level) { |
447 | continue; | |
448 | } | |
449 | ||
ff047453 PM |
450 | r.id = regidx; |
451 | switch (regidx & KVM_REG_SIZE_MASK) { | |
452 | case KVM_REG_SIZE_U32: | |
453 | v32 = cpu->cpreg_values[i]; | |
454 | r.addr = (uintptr_t)&v32; | |
455 | break; | |
456 | case KVM_REG_SIZE_U64: | |
457 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
458 | break; | |
459 | default: | |
460 | abort(); | |
461 | } | |
462 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
463 | if (ret) { | |
464 | /* We might fail for "unknown register" and also for | |
465 | * "you tried to set a register which is constant with | |
466 | * a different value from what it actually contains". | |
467 | */ | |
468 | ok = false; | |
469 | } | |
470 | } | |
471 | return ok; | |
472 | } | |
473 | ||
38df27c8 AB |
474 | void kvm_arm_reset_vcpu(ARMCPU *cpu) |
475 | { | |
25f2895e CD |
476 | int ret; |
477 | ||
38df27c8 AB |
478 | /* Re-init VCPU so that all registers are set to |
479 | * their respective reset values. | |
480 | */ | |
25f2895e CD |
481 | ret = kvm_arm_vcpu_init(CPU(cpu)); |
482 | if (ret < 0) { | |
483 | fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); | |
484 | abort(); | |
485 | } | |
486 | if (!write_kvmstate_to_list(cpu)) { | |
487 | fprintf(stderr, "write_kvmstate_to_list failed\n"); | |
488 | abort(); | |
489 | } | |
38df27c8 AB |
490 | } |
491 | ||
1a1753f7 AB |
492 | /* |
493 | * Update KVM's MP_STATE based on what QEMU thinks it is | |
494 | */ | |
495 | int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) | |
496 | { | |
497 | if (cap_has_mp_state) { | |
498 | struct kvm_mp_state mp_state = { | |
062ba099 AB |
499 | .mp_state = (cpu->power_state == PSCI_OFF) ? |
500 | KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE | |
1a1753f7 AB |
501 | }; |
502 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); | |
503 | if (ret) { | |
504 | fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", | |
505 | __func__, ret, strerror(-ret)); | |
506 | return -1; | |
507 | } | |
508 | } | |
509 | ||
510 | return 0; | |
511 | } | |
512 | ||
513 | /* | |
514 | * Sync the KVM MP_STATE into QEMU | |
515 | */ | |
516 | int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) | |
517 | { | |
518 | if (cap_has_mp_state) { | |
519 | struct kvm_mp_state mp_state; | |
520 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); | |
521 | if (ret) { | |
522 | fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", | |
523 | __func__, ret, strerror(-ret)); | |
524 | abort(); | |
525 | } | |
062ba099 AB |
526 | cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? |
527 | PSCI_OFF : PSCI_ON; | |
1a1753f7 AB |
528 | } |
529 | ||
530 | return 0; | |
531 | } | |
532 | ||
202ccb6b DG |
533 | int kvm_put_vcpu_events(ARMCPU *cpu) |
534 | { | |
535 | CPUARMState *env = &cpu->env; | |
536 | struct kvm_vcpu_events events; | |
537 | int ret; | |
538 | ||
539 | if (!kvm_has_vcpu_events()) { | |
540 | return 0; | |
541 | } | |
542 | ||
543 | memset(&events, 0, sizeof(events)); | |
544 | events.exception.serror_pending = env->serror.pending; | |
545 | ||
546 | /* Inject SError to guest with specified syndrome if host kernel | |
547 | * supports it, otherwise inject SError without syndrome. | |
548 | */ | |
549 | if (cap_has_inject_serror_esr) { | |
550 | events.exception.serror_has_esr = env->serror.has_esr; | |
551 | events.exception.serror_esr = env->serror.esr; | |
552 | } | |
553 | ||
554 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); | |
555 | if (ret) { | |
556 | error_report("failed to put vcpu events"); | |
557 | } | |
558 | ||
559 | return ret; | |
560 | } | |
561 | ||
562 | int kvm_get_vcpu_events(ARMCPU *cpu) | |
563 | { | |
564 | CPUARMState *env = &cpu->env; | |
565 | struct kvm_vcpu_events events; | |
566 | int ret; | |
567 | ||
568 | if (!kvm_has_vcpu_events()) { | |
569 | return 0; | |
570 | } | |
571 | ||
572 | memset(&events, 0, sizeof(events)); | |
573 | ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); | |
574 | if (ret) { | |
575 | error_report("failed to get vcpu events"); | |
576 | return ret; | |
577 | } | |
578 | ||
579 | env->serror.pending = events.exception.serror_pending; | |
580 | env->serror.has_esr = events.exception.serror_has_esr; | |
581 | env->serror.esr = events.exception.serror_esr; | |
582 | ||
583 | return 0; | |
584 | } | |
585 | ||
494b00c7 CD |
586 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
587 | { | |
588 | } | |
589 | ||
4c663752 | 590 | MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
494b00c7 | 591 | { |
5d721b78 AG |
592 | ARMCPU *cpu; |
593 | uint32_t switched_level; | |
594 | ||
595 | if (kvm_irqchip_in_kernel()) { | |
596 | /* | |
597 | * We only need to sync timer states with user-space interrupt | |
598 | * controllers, so return early and save cycles if we don't. | |
599 | */ | |
600 | return MEMTXATTRS_UNSPECIFIED; | |
601 | } | |
602 | ||
603 | cpu = ARM_CPU(cs); | |
604 | ||
605 | /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ | |
606 | if (run->s.regs.device_irq_level != cpu->device_irq_level) { | |
607 | switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; | |
608 | ||
609 | qemu_mutex_lock_iothread(); | |
610 | ||
611 | if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { | |
612 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], | |
613 | !!(run->s.regs.device_irq_level & | |
614 | KVM_ARM_DEV_EL1_VTIMER)); | |
615 | switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; | |
616 | } | |
617 | ||
618 | if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { | |
619 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], | |
620 | !!(run->s.regs.device_irq_level & | |
621 | KVM_ARM_DEV_EL1_PTIMER)); | |
622 | switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; | |
623 | } | |
624 | ||
b1659527 AJ |
625 | if (switched_level & KVM_ARM_DEV_PMU) { |
626 | qemu_set_irq(cpu->pmu_interrupt, | |
627 | !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); | |
628 | switched_level &= ~KVM_ARM_DEV_PMU; | |
629 | } | |
5d721b78 AG |
630 | |
631 | if (switched_level) { | |
632 | qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", | |
633 | __func__, switched_level); | |
634 | } | |
635 | ||
636 | /* We also mark unknown levels as processed to not waste cycles */ | |
637 | cpu->device_irq_level = run->s.regs.device_irq_level; | |
638 | qemu_mutex_unlock_iothread(); | |
639 | } | |
640 | ||
4c663752 | 641 | return MEMTXATTRS_UNSPECIFIED; |
494b00c7 CD |
642 | } |
643 | ||
2ecb2027 | 644 | |
494b00c7 CD |
645 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
646 | { | |
2ecb2027 AB |
647 | int ret = 0; |
648 | ||
649 | switch (run->exit_reason) { | |
650 | case KVM_EXIT_DEBUG: | |
651 | if (kvm_arm_handle_debug(cs, &run->debug.arch)) { | |
652 | ret = EXCP_DEBUG; | |
653 | } /* otherwise return to guest */ | |
654 | break; | |
655 | default: | |
656 | qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", | |
657 | __func__, run->exit_reason); | |
658 | break; | |
659 | } | |
660 | return ret; | |
494b00c7 CD |
661 | } |
662 | ||
494b00c7 CD |
663 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
664 | { | |
665 | return true; | |
666 | } | |
667 | ||
668 | int kvm_arch_process_async_events(CPUState *cs) | |
669 | { | |
670 | return 0; | |
671 | } | |
672 | ||
2ecb2027 AB |
673 | /* The #ifdef protections are until 32bit headers are imported and can |
674 | * be removed once both 32 and 64 bit reach feature parity. | |
675 | */ | |
494b00c7 CD |
676 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
677 | { | |
2ecb2027 AB |
678 | #ifdef KVM_GUESTDBG_USE_SW_BP |
679 | if (kvm_sw_breakpoints_active(cs)) { | |
680 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
681 | } | |
682 | #endif | |
e4482ab7 AB |
683 | #ifdef KVM_GUESTDBG_USE_HW |
684 | if (kvm_arm_hw_debug_active(cs)) { | |
685 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; | |
686 | kvm_arm_copy_hw_debug_data(&dbg->arch); | |
687 | } | |
688 | #endif | |
494b00c7 | 689 | } |
b3a1c626 AK |
690 | |
691 | void kvm_arch_init_irq_routing(KVMState *s) | |
692 | { | |
693 | } | |
1da41cc1 | 694 | |
15eafc2e | 695 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) |
1da41cc1 | 696 | { |
15eafc2e PB |
697 | if (machine_kernel_irqchip_split(ms)) { |
698 | perror("-machine kernel_irqchip=split is not supported on ARM."); | |
699 | exit(1); | |
700 | } | |
701 | ||
1da41cc1 CD |
702 | /* If we can create the VGIC using the newer device control API, we |
703 | * let the device do this when it initializes itself, otherwise we | |
704 | * fall back to the old API */ | |
34e85cd9 PF |
705 | return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
706 | } | |
1da41cc1 | 707 | |
34e85cd9 PF |
708 | int kvm_arm_vgic_probe(void) |
709 | { | |
710 | if (kvm_create_device(kvm_state, | |
711 | KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { | |
712 | return 3; | |
713 | } else if (kvm_create_device(kvm_state, | |
714 | KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { | |
715 | return 2; | |
716 | } else { | |
717 | return 0; | |
1da41cc1 | 718 | } |
1da41cc1 | 719 | } |
9e03a040 FB |
720 | |
721 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 722 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 723 | { |
b05c81d2 EA |
724 | AddressSpace *as = pci_device_iommu_address_space(dev); |
725 | hwaddr xlat, len, doorbell_gpa; | |
726 | MemoryRegionSection mrs; | |
727 | MemoryRegion *mr; | |
728 | int ret = 1; | |
729 | ||
730 | if (as == &address_space_memory) { | |
731 | return 0; | |
732 | } | |
733 | ||
734 | /* MSI doorbell address is translated by an IOMMU */ | |
735 | ||
736 | rcu_read_lock(); | |
bc6b1cec PM |
737 | mr = address_space_translate(as, address, &xlat, &len, true, |
738 | MEMTXATTRS_UNSPECIFIED); | |
b05c81d2 EA |
739 | if (!mr) { |
740 | goto unlock; | |
741 | } | |
742 | mrs = memory_region_find(mr, xlat, 1); | |
743 | if (!mrs.mr) { | |
744 | goto unlock; | |
745 | } | |
746 | ||
747 | doorbell_gpa = mrs.offset_within_address_space; | |
748 | memory_region_unref(mrs.mr); | |
749 | ||
750 | route->u.msi.address_lo = doorbell_gpa; | |
751 | route->u.msi.address_hi = doorbell_gpa >> 32; | |
752 | ||
753 | trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); | |
754 | ||
755 | ret = 0; | |
756 | ||
757 | unlock: | |
758 | rcu_read_unlock(); | |
759 | return ret; | |
9e03a040 | 760 | } |
1850b6b7 | 761 | |
38d87493 PX |
762 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
763 | int vector, PCIDevice *dev) | |
764 | { | |
765 | return 0; | |
766 | } | |
767 | ||
768 | int kvm_arch_release_virq_post(int virq) | |
769 | { | |
770 | return 0; | |
771 | } | |
772 | ||
1850b6b7 EA |
773 | int kvm_arch_msi_data_to_gsi(uint32_t data) |
774 | { | |
775 | return (data - 32) & 0xffff; | |
776 | } |