]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
74c21bd0 | 11 | #include "qemu/osdep.h" |
494b00c7 | 12 | #include <sys/ioctl.h> |
494b00c7 CD |
13 | |
14 | #include <linux/kvm.h> | |
15 | ||
16 | #include "qemu-common.h" | |
17 | #include "qemu/timer.h" | |
2ecb2027 | 18 | #include "qemu/error-report.h" |
494b00c7 CD |
19 | #include "sysemu/sysemu.h" |
20 | #include "sysemu/kvm.h" | |
eb035b48 | 21 | #include "kvm_arm.h" |
494b00c7 | 22 | #include "cpu.h" |
38df27c8 | 23 | #include "internals.h" |
bd2be150 | 24 | #include "hw/arm/arm.h" |
4c663752 | 25 | #include "exec/memattrs.h" |
4344af65 | 26 | #include "exec/address-spaces.h" |
15eafc2e | 27 | #include "hw/boards.h" |
03dd024f | 28 | #include "qemu/log.h" |
494b00c7 CD |
29 | |
30 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
31 | KVM_CAP_LAST_INFO | |
32 | }; | |
33 | ||
1a1753f7 AB |
34 | static bool cap_has_mp_state; |
35 | ||
c4487d76 PM |
36 | static ARMHostCPUFeatures arm_host_cpu_features; |
37 | ||
228d5e04 PS |
38 | int kvm_arm_vcpu_init(CPUState *cs) |
39 | { | |
40 | ARMCPU *cpu = ARM_CPU(cs); | |
41 | struct kvm_vcpu_init init; | |
42 | ||
43 | init.target = cpu->kvm_target; | |
44 | memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); | |
45 | ||
46 | return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); | |
47 | } | |
48 | ||
a96c0514 PM |
49 | bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
50 | int *fdarray, | |
51 | struct kvm_vcpu_init *init) | |
52 | { | |
53 | int ret, kvmfd = -1, vmfd = -1, cpufd = -1; | |
54 | ||
55 | kvmfd = qemu_open("/dev/kvm", O_RDWR); | |
56 | if (kvmfd < 0) { | |
57 | goto err; | |
58 | } | |
59 | vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); | |
60 | if (vmfd < 0) { | |
61 | goto err; | |
62 | } | |
63 | cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); | |
64 | if (cpufd < 0) { | |
65 | goto err; | |
66 | } | |
67 | ||
2f340e9c PX |
68 | if (!init) { |
69 | /* Caller doesn't want the VCPU to be initialized, so skip it */ | |
70 | goto finish; | |
71 | } | |
72 | ||
a96c0514 PM |
73 | ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); |
74 | if (ret >= 0) { | |
75 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
76 | if (ret < 0) { | |
77 | goto err; | |
78 | } | |
2f340e9c | 79 | } else if (cpus_to_try) { |
a96c0514 PM |
80 | /* Old kernel which doesn't know about the |
81 | * PREFERRED_TARGET ioctl: we know it will only support | |
82 | * creating one kind of guest CPU which is its preferred | |
83 | * CPU type. | |
84 | */ | |
85 | while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { | |
86 | init->target = *cpus_to_try++; | |
87 | memset(init->features, 0, sizeof(init->features)); | |
88 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
89 | if (ret >= 0) { | |
90 | break; | |
91 | } | |
92 | } | |
93 | if (ret < 0) { | |
94 | goto err; | |
95 | } | |
2f340e9c PX |
96 | } else { |
97 | /* Treat a NULL cpus_to_try argument the same as an empty | |
98 | * list, which means we will fail the call since this must | |
99 | * be an old kernel which doesn't support PREFERRED_TARGET. | |
100 | */ | |
101 | goto err; | |
a96c0514 PM |
102 | } |
103 | ||
2f340e9c | 104 | finish: |
a96c0514 PM |
105 | fdarray[0] = kvmfd; |
106 | fdarray[1] = vmfd; | |
107 | fdarray[2] = cpufd; | |
108 | ||
109 | return true; | |
110 | ||
111 | err: | |
112 | if (cpufd >= 0) { | |
113 | close(cpufd); | |
114 | } | |
115 | if (vmfd >= 0) { | |
116 | close(vmfd); | |
117 | } | |
118 | if (kvmfd >= 0) { | |
119 | close(kvmfd); | |
120 | } | |
121 | ||
122 | return false; | |
123 | } | |
124 | ||
125 | void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) | |
126 | { | |
127 | int i; | |
128 | ||
129 | for (i = 2; i >= 0; i--) { | |
130 | close(fdarray[i]); | |
131 | } | |
132 | } | |
133 | ||
c4487d76 | 134 | void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) |
a96c0514 | 135 | { |
c4487d76 | 136 | CPUARMState *env = &cpu->env; |
a96c0514 | 137 | |
c4487d76 PM |
138 | if (!arm_host_cpu_features.dtb_compatible) { |
139 | if (!kvm_enabled() || | |
140 | !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { | |
141 | /* We can't report this error yet, so flag that we need to | |
142 | * in arm_cpu_realizefn(). | |
143 | */ | |
144 | cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; | |
145 | cpu->host_cpu_probe_failed = true; | |
146 | return; | |
147 | } | |
a96c0514 | 148 | } |
c4487d76 PM |
149 | |
150 | cpu->kvm_target = arm_host_cpu_features.target; | |
151 | cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; | |
152 | env->features = arm_host_cpu_features.features; | |
a96c0514 PM |
153 | } |
154 | ||
b16565b3 | 155 | int kvm_arch_init(MachineState *ms, KVMState *s) |
494b00c7 CD |
156 | { |
157 | /* For ARM interrupt delivery is always asynchronous, | |
158 | * whether we are using an in-kernel VGIC or not. | |
159 | */ | |
160 | kvm_async_interrupts_allowed = true; | |
a96c0514 | 161 | |
5d721b78 AG |
162 | /* |
163 | * PSCI wakes up secondary cores, so we always need to | |
164 | * have vCPUs waiting in kernel space | |
165 | */ | |
166 | kvm_halt_in_kernel_allowed = true; | |
167 | ||
1a1753f7 AB |
168 | cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
169 | ||
494b00c7 CD |
170 | return 0; |
171 | } | |
172 | ||
173 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
174 | { | |
175 | return cpu->cpu_index; | |
176 | } | |
177 | ||
eb035b48 PM |
178 | /* We track all the KVM devices which need their memory addresses |
179 | * passing to the kernel in a list of these structures. | |
180 | * When board init is complete we run through the list and | |
181 | * tell the kernel the base addresses of the memory regions. | |
182 | * We use a MemoryListener to track mapping and unmapping of | |
183 | * the regions during board creation, so the board models don't | |
184 | * need to do anything special for the KVM case. | |
185 | */ | |
186 | typedef struct KVMDevice { | |
187 | struct kvm_arm_device_addr kda; | |
1da41cc1 | 188 | struct kvm_device_attr kdattr; |
eb035b48 PM |
189 | MemoryRegion *mr; |
190 | QSLIST_ENTRY(KVMDevice) entries; | |
1da41cc1 | 191 | int dev_fd; |
eb035b48 PM |
192 | } KVMDevice; |
193 | ||
194 | static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; | |
195 | ||
196 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
197 | MemoryRegionSection *section) | |
198 | { | |
199 | KVMDevice *kd; | |
200 | ||
201 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
202 | if (section->mr == kd->mr) { | |
203 | kd->kda.addr = section->offset_within_address_space; | |
204 | } | |
205 | } | |
206 | } | |
207 | ||
208 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
209 | MemoryRegionSection *section) | |
210 | { | |
211 | KVMDevice *kd; | |
212 | ||
213 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
214 | if (section->mr == kd->mr) { | |
215 | kd->kda.addr = -1; | |
216 | } | |
217 | } | |
218 | } | |
219 | ||
220 | static MemoryListener devlistener = { | |
221 | .region_add = kvm_arm_devlistener_add, | |
222 | .region_del = kvm_arm_devlistener_del, | |
223 | }; | |
224 | ||
1da41cc1 CD |
225 | static void kvm_arm_set_device_addr(KVMDevice *kd) |
226 | { | |
227 | struct kvm_device_attr *attr = &kd->kdattr; | |
228 | int ret; | |
229 | ||
230 | /* If the device control API is available and we have a device fd on the | |
231 | * KVMDevice struct, let's use the newer API | |
232 | */ | |
233 | if (kd->dev_fd >= 0) { | |
234 | uint64_t addr = kd->kda.addr; | |
235 | attr->addr = (uintptr_t)&addr; | |
236 | ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); | |
237 | } else { | |
238 | ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); | |
239 | } | |
240 | ||
241 | if (ret < 0) { | |
242 | fprintf(stderr, "Failed to set device address: %s\n", | |
243 | strerror(-ret)); | |
244 | abort(); | |
245 | } | |
246 | } | |
247 | ||
eb035b48 PM |
248 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
249 | { | |
250 | KVMDevice *kd, *tkd; | |
251 | ||
eb035b48 PM |
252 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { |
253 | if (kd->kda.addr != -1) { | |
1da41cc1 | 254 | kvm_arm_set_device_addr(kd); |
eb035b48 | 255 | } |
dfde4e6e | 256 | memory_region_unref(kd->mr); |
eb035b48 PM |
257 | g_free(kd); |
258 | } | |
0bbe4354 | 259 | memory_listener_unregister(&devlistener); |
eb035b48 PM |
260 | } |
261 | ||
262 | static Notifier notify = { | |
263 | .notify = kvm_arm_machine_init_done, | |
264 | }; | |
265 | ||
1da41cc1 CD |
266 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
267 | uint64_t attr, int dev_fd) | |
eb035b48 PM |
268 | { |
269 | KVMDevice *kd; | |
270 | ||
271 | if (!kvm_irqchip_in_kernel()) { | |
272 | return; | |
273 | } | |
274 | ||
275 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
4344af65 | 276 | memory_listener_register(&devlistener, &address_space_memory); |
eb035b48 PM |
277 | qemu_add_machine_init_done_notifier(¬ify); |
278 | } | |
279 | kd = g_new0(KVMDevice, 1); | |
280 | kd->mr = mr; | |
281 | kd->kda.id = devid; | |
282 | kd->kda.addr = -1; | |
1da41cc1 CD |
283 | kd->kdattr.flags = 0; |
284 | kd->kdattr.group = group; | |
285 | kd->kdattr.attr = attr; | |
286 | kd->dev_fd = dev_fd; | |
eb035b48 | 287 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
dfde4e6e | 288 | memory_region_ref(kd->mr); |
eb035b48 PM |
289 | } |
290 | ||
38df27c8 AB |
291 | static int compare_u64(const void *a, const void *b) |
292 | { | |
293 | if (*(uint64_t *)a > *(uint64_t *)b) { | |
294 | return 1; | |
295 | } | |
296 | if (*(uint64_t *)a < *(uint64_t *)b) { | |
297 | return -1; | |
298 | } | |
299 | return 0; | |
300 | } | |
301 | ||
302 | /* Initialize the CPUState's cpreg list according to the kernel's | |
303 | * definition of what CPU registers it knows about (and throw away | |
304 | * the previous TCG-created cpreg list). | |
305 | */ | |
306 | int kvm_arm_init_cpreg_list(ARMCPU *cpu) | |
307 | { | |
308 | struct kvm_reg_list rl; | |
309 | struct kvm_reg_list *rlp; | |
310 | int i, ret, arraylen; | |
311 | CPUState *cs = CPU(cpu); | |
312 | ||
313 | rl.n = 0; | |
314 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); | |
315 | if (ret != -E2BIG) { | |
316 | return ret; | |
317 | } | |
318 | rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); | |
319 | rlp->n = rl.n; | |
320 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); | |
321 | if (ret) { | |
322 | goto out; | |
323 | } | |
324 | /* Sort the list we get back from the kernel, since cpreg_tuples | |
325 | * must be in strictly ascending order. | |
326 | */ | |
327 | qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); | |
328 | ||
329 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
330 | if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { | |
331 | continue; | |
332 | } | |
333 | switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { | |
334 | case KVM_REG_SIZE_U32: | |
335 | case KVM_REG_SIZE_U64: | |
336 | break; | |
337 | default: | |
338 | fprintf(stderr, "Can't handle size of register in kernel list\n"); | |
339 | ret = -EINVAL; | |
340 | goto out; | |
341 | } | |
342 | ||
343 | arraylen++; | |
344 | } | |
345 | ||
346 | cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); | |
347 | cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); | |
348 | cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, | |
349 | arraylen); | |
350 | cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, | |
351 | arraylen); | |
352 | cpu->cpreg_array_len = arraylen; | |
353 | cpu->cpreg_vmstate_array_len = arraylen; | |
354 | ||
355 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
356 | uint64_t regidx = rlp->reg[i]; | |
357 | if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { | |
358 | continue; | |
359 | } | |
360 | cpu->cpreg_indexes[arraylen] = regidx; | |
361 | arraylen++; | |
362 | } | |
363 | assert(cpu->cpreg_array_len == arraylen); | |
364 | ||
365 | if (!write_kvmstate_to_list(cpu)) { | |
366 | /* Shouldn't happen unless kernel is inconsistent about | |
367 | * what registers exist. | |
368 | */ | |
369 | fprintf(stderr, "Initial read of kernel register state failed\n"); | |
370 | ret = -EINVAL; | |
371 | goto out; | |
372 | } | |
373 | ||
374 | out: | |
375 | g_free(rlp); | |
376 | return ret; | |
377 | } | |
378 | ||
ff047453 PM |
379 | bool write_kvmstate_to_list(ARMCPU *cpu) |
380 | { | |
381 | CPUState *cs = CPU(cpu); | |
382 | int i; | |
383 | bool ok = true; | |
384 | ||
385 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
386 | struct kvm_one_reg r; | |
387 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
388 | uint32_t v32; | |
389 | int ret; | |
390 | ||
391 | r.id = regidx; | |
392 | ||
393 | switch (regidx & KVM_REG_SIZE_MASK) { | |
394 | case KVM_REG_SIZE_U32: | |
395 | r.addr = (uintptr_t)&v32; | |
396 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
397 | if (!ret) { | |
398 | cpu->cpreg_values[i] = v32; | |
399 | } | |
400 | break; | |
401 | case KVM_REG_SIZE_U64: | |
402 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
403 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
404 | break; | |
405 | default: | |
406 | abort(); | |
407 | } | |
408 | if (ret) { | |
409 | ok = false; | |
410 | } | |
411 | } | |
412 | return ok; | |
413 | } | |
414 | ||
4b7a6bf4 | 415 | bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
ff047453 PM |
416 | { |
417 | CPUState *cs = CPU(cpu); | |
418 | int i; | |
419 | bool ok = true; | |
420 | ||
421 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
422 | struct kvm_one_reg r; | |
423 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
424 | uint32_t v32; | |
425 | int ret; | |
426 | ||
4b7a6bf4 CD |
427 | if (kvm_arm_cpreg_level(regidx) > level) { |
428 | continue; | |
429 | } | |
430 | ||
ff047453 PM |
431 | r.id = regidx; |
432 | switch (regidx & KVM_REG_SIZE_MASK) { | |
433 | case KVM_REG_SIZE_U32: | |
434 | v32 = cpu->cpreg_values[i]; | |
435 | r.addr = (uintptr_t)&v32; | |
436 | break; | |
437 | case KVM_REG_SIZE_U64: | |
438 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
439 | break; | |
440 | default: | |
441 | abort(); | |
442 | } | |
443 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
444 | if (ret) { | |
445 | /* We might fail for "unknown register" and also for | |
446 | * "you tried to set a register which is constant with | |
447 | * a different value from what it actually contains". | |
448 | */ | |
449 | ok = false; | |
450 | } | |
451 | } | |
452 | return ok; | |
453 | } | |
454 | ||
38df27c8 AB |
455 | void kvm_arm_reset_vcpu(ARMCPU *cpu) |
456 | { | |
25f2895e CD |
457 | int ret; |
458 | ||
38df27c8 AB |
459 | /* Re-init VCPU so that all registers are set to |
460 | * their respective reset values. | |
461 | */ | |
25f2895e CD |
462 | ret = kvm_arm_vcpu_init(CPU(cpu)); |
463 | if (ret < 0) { | |
464 | fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); | |
465 | abort(); | |
466 | } | |
467 | if (!write_kvmstate_to_list(cpu)) { | |
468 | fprintf(stderr, "write_kvmstate_to_list failed\n"); | |
469 | abort(); | |
470 | } | |
38df27c8 AB |
471 | } |
472 | ||
1a1753f7 AB |
473 | /* |
474 | * Update KVM's MP_STATE based on what QEMU thinks it is | |
475 | */ | |
476 | int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) | |
477 | { | |
478 | if (cap_has_mp_state) { | |
479 | struct kvm_mp_state mp_state = { | |
062ba099 AB |
480 | .mp_state = (cpu->power_state == PSCI_OFF) ? |
481 | KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE | |
1a1753f7 AB |
482 | }; |
483 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); | |
484 | if (ret) { | |
485 | fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", | |
486 | __func__, ret, strerror(-ret)); | |
487 | return -1; | |
488 | } | |
489 | } | |
490 | ||
491 | return 0; | |
492 | } | |
493 | ||
494 | /* | |
495 | * Sync the KVM MP_STATE into QEMU | |
496 | */ | |
497 | int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) | |
498 | { | |
499 | if (cap_has_mp_state) { | |
500 | struct kvm_mp_state mp_state; | |
501 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); | |
502 | if (ret) { | |
503 | fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", | |
504 | __func__, ret, strerror(-ret)); | |
505 | abort(); | |
506 | } | |
062ba099 AB |
507 | cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? |
508 | PSCI_OFF : PSCI_ON; | |
1a1753f7 AB |
509 | } |
510 | ||
511 | return 0; | |
512 | } | |
513 | ||
494b00c7 CD |
514 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
515 | { | |
516 | } | |
517 | ||
4c663752 | 518 | MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
494b00c7 | 519 | { |
5d721b78 AG |
520 | ARMCPU *cpu; |
521 | uint32_t switched_level; | |
522 | ||
523 | if (kvm_irqchip_in_kernel()) { | |
524 | /* | |
525 | * We only need to sync timer states with user-space interrupt | |
526 | * controllers, so return early and save cycles if we don't. | |
527 | */ | |
528 | return MEMTXATTRS_UNSPECIFIED; | |
529 | } | |
530 | ||
531 | cpu = ARM_CPU(cs); | |
532 | ||
533 | /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ | |
534 | if (run->s.regs.device_irq_level != cpu->device_irq_level) { | |
535 | switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; | |
536 | ||
537 | qemu_mutex_lock_iothread(); | |
538 | ||
539 | if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { | |
540 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], | |
541 | !!(run->s.regs.device_irq_level & | |
542 | KVM_ARM_DEV_EL1_VTIMER)); | |
543 | switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; | |
544 | } | |
545 | ||
546 | if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { | |
547 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], | |
548 | !!(run->s.regs.device_irq_level & | |
549 | KVM_ARM_DEV_EL1_PTIMER)); | |
550 | switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; | |
551 | } | |
552 | ||
b1659527 AJ |
553 | if (switched_level & KVM_ARM_DEV_PMU) { |
554 | qemu_set_irq(cpu->pmu_interrupt, | |
555 | !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); | |
556 | switched_level &= ~KVM_ARM_DEV_PMU; | |
557 | } | |
5d721b78 AG |
558 | |
559 | if (switched_level) { | |
560 | qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", | |
561 | __func__, switched_level); | |
562 | } | |
563 | ||
564 | /* We also mark unknown levels as processed to not waste cycles */ | |
565 | cpu->device_irq_level = run->s.regs.device_irq_level; | |
566 | qemu_mutex_unlock_iothread(); | |
567 | } | |
568 | ||
4c663752 | 569 | return MEMTXATTRS_UNSPECIFIED; |
494b00c7 CD |
570 | } |
571 | ||
2ecb2027 | 572 | |
494b00c7 CD |
573 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
574 | { | |
2ecb2027 AB |
575 | int ret = 0; |
576 | ||
577 | switch (run->exit_reason) { | |
578 | case KVM_EXIT_DEBUG: | |
579 | if (kvm_arm_handle_debug(cs, &run->debug.arch)) { | |
580 | ret = EXCP_DEBUG; | |
581 | } /* otherwise return to guest */ | |
582 | break; | |
583 | default: | |
584 | qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", | |
585 | __func__, run->exit_reason); | |
586 | break; | |
587 | } | |
588 | return ret; | |
494b00c7 CD |
589 | } |
590 | ||
494b00c7 CD |
591 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
592 | { | |
593 | return true; | |
594 | } | |
595 | ||
596 | int kvm_arch_process_async_events(CPUState *cs) | |
597 | { | |
598 | return 0; | |
599 | } | |
600 | ||
2ecb2027 AB |
601 | /* The #ifdef protections are until 32bit headers are imported and can |
602 | * be removed once both 32 and 64 bit reach feature parity. | |
603 | */ | |
494b00c7 CD |
604 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
605 | { | |
2ecb2027 AB |
606 | #ifdef KVM_GUESTDBG_USE_SW_BP |
607 | if (kvm_sw_breakpoints_active(cs)) { | |
608 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
609 | } | |
610 | #endif | |
e4482ab7 AB |
611 | #ifdef KVM_GUESTDBG_USE_HW |
612 | if (kvm_arm_hw_debug_active(cs)) { | |
613 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; | |
614 | kvm_arm_copy_hw_debug_data(&dbg->arch); | |
615 | } | |
616 | #endif | |
494b00c7 | 617 | } |
b3a1c626 AK |
618 | |
619 | void kvm_arch_init_irq_routing(KVMState *s) | |
620 | { | |
621 | } | |
1da41cc1 | 622 | |
15eafc2e | 623 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) |
1da41cc1 | 624 | { |
15eafc2e PB |
625 | if (machine_kernel_irqchip_split(ms)) { |
626 | perror("-machine kernel_irqchip=split is not supported on ARM."); | |
627 | exit(1); | |
628 | } | |
629 | ||
1da41cc1 CD |
630 | /* If we can create the VGIC using the newer device control API, we |
631 | * let the device do this when it initializes itself, otherwise we | |
632 | * fall back to the old API */ | |
34e85cd9 PF |
633 | return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
634 | } | |
1da41cc1 | 635 | |
34e85cd9 PF |
636 | int kvm_arm_vgic_probe(void) |
637 | { | |
638 | if (kvm_create_device(kvm_state, | |
639 | KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { | |
640 | return 3; | |
641 | } else if (kvm_create_device(kvm_state, | |
642 | KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { | |
643 | return 2; | |
644 | } else { | |
645 | return 0; | |
1da41cc1 | 646 | } |
1da41cc1 | 647 | } |
9e03a040 FB |
648 | |
649 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 650 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 FB |
651 | { |
652 | return 0; | |
653 | } | |
1850b6b7 | 654 | |
38d87493 PX |
655 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
656 | int vector, PCIDevice *dev) | |
657 | { | |
658 | return 0; | |
659 | } | |
660 | ||
661 | int kvm_arch_release_virq_post(int virq) | |
662 | { | |
663 | return 0; | |
664 | } | |
665 | ||
1850b6b7 EA |
666 | int kvm_arch_msi_data_to_gsi(uint32_t data) |
667 | { | |
668 | return (data - 32) & 0xffff; | |
669 | } |