]>
Commit | Line | Data |
---|---|---|
b92e5a22 FB |
1 | /* |
2 | * Software MMU support | |
5fafdf24 | 3 | * |
efbf29b6 BS |
4 | * Generate helpers used by TCG for qemu_ld/st ops and code load |
5 | * functions. | |
6 | * | |
7 | * Included from target op helpers and exec.c. | |
8 | * | |
b92e5a22 FB |
9 | * Copyright (c) 2003 Fabrice Bellard |
10 | * | |
11 | * This library is free software; you can redistribute it and/or | |
12 | * modify it under the terms of the GNU Lesser General Public | |
13 | * License as published by the Free Software Foundation; either | |
14 | * version 2 of the License, or (at your option) any later version. | |
15 | * | |
16 | * This library is distributed in the hope that it will be useful, | |
17 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |
19 | * Lesser General Public License for more details. | |
20 | * | |
21 | * You should have received a copy of the GNU Lesser General Public | |
8167ee88 | 22 | * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
b92e5a22 | 23 | */ |
1de7afc9 | 24 | #include "qemu/timer.h" |
77717094 | 25 | #include "exec/address-spaces.h" |
022c62cb | 26 | #include "exec/memory.h" |
29e922b6 | 27 | |
b92e5a22 FB |
28 | #define DATA_SIZE (1 << SHIFT) |
29 | ||
30 | #if DATA_SIZE == 8 | |
31 | #define SUFFIX q | |
701e3a5c | 32 | #define LSUFFIX q |
c8f94df5 | 33 | #define SDATA_TYPE int64_t |
dc9a353c | 34 | #define DATA_TYPE uint64_t |
b92e5a22 FB |
35 | #elif DATA_SIZE == 4 |
36 | #define SUFFIX l | |
701e3a5c | 37 | #define LSUFFIX l |
c8f94df5 | 38 | #define SDATA_TYPE int32_t |
dc9a353c | 39 | #define DATA_TYPE uint32_t |
b92e5a22 FB |
40 | #elif DATA_SIZE == 2 |
41 | #define SUFFIX w | |
701e3a5c | 42 | #define LSUFFIX uw |
c8f94df5 | 43 | #define SDATA_TYPE int16_t |
dc9a353c | 44 | #define DATA_TYPE uint16_t |
b92e5a22 FB |
45 | #elif DATA_SIZE == 1 |
46 | #define SUFFIX b | |
701e3a5c | 47 | #define LSUFFIX ub |
c8f94df5 | 48 | #define SDATA_TYPE int8_t |
dc9a353c | 49 | #define DATA_TYPE uint8_t |
b92e5a22 FB |
50 | #else |
51 | #error unsupported data size | |
52 | #endif | |
53 | ||
c8f94df5 RH |
54 | |
55 | /* For the benefit of TCG generated code, we want to avoid the complication | |
56 | of ABI-specific return type promotion and always return a value extended | |
57 | to the register size of the host. This is tcg_target_long, except in the | |
58 | case of a 32-bit host and 64-bit data, and for that we always have | |
59 | uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */ | |
60 | #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8 | |
61 | # define WORD_TYPE DATA_TYPE | |
62 | # define USUFFIX SUFFIX | |
63 | #else | |
64 | # define WORD_TYPE tcg_target_ulong | |
65 | # define USUFFIX glue(u, SUFFIX) | |
66 | # define SSUFFIX glue(s, SUFFIX) | |
67 | #endif | |
68 | ||
b769d8fe | 69 | #ifdef SOFTMMU_CODE_ACCESS |
55e94093 | 70 | #define READ_ACCESS_TYPE MMU_INST_FETCH |
84b7b8e7 | 71 | #define ADDR_READ addr_code |
b769d8fe | 72 | #else |
55e94093 | 73 | #define READ_ACCESS_TYPE MMU_DATA_LOAD |
84b7b8e7 | 74 | #define ADDR_READ addr_read |
b769d8fe FB |
75 | #endif |
76 | ||
867b3201 RH |
77 | #if DATA_SIZE == 8 |
78 | # define BSWAP(X) bswap64(X) | |
79 | #elif DATA_SIZE == 4 | |
80 | # define BSWAP(X) bswap32(X) | |
81 | #elif DATA_SIZE == 2 | |
82 | # define BSWAP(X) bswap16(X) | |
83 | #else | |
84 | # define BSWAP(X) (X) | |
85 | #endif | |
86 | ||
87 | #ifdef TARGET_WORDS_BIGENDIAN | |
88 | # define TGT_BE(X) (X) | |
89 | # define TGT_LE(X) BSWAP(X) | |
90 | #else | |
91 | # define TGT_BE(X) BSWAP(X) | |
92 | # define TGT_LE(X) (X) | |
93 | #endif | |
94 | ||
95 | #if DATA_SIZE == 1 | |
96 | # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX) | |
97 | # define helper_be_ld_name helper_le_ld_name | |
98 | # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX) | |
99 | # define helper_be_lds_name helper_le_lds_name | |
100 | # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX) | |
101 | # define helper_be_st_name helper_le_st_name | |
102 | #else | |
103 | # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX) | |
104 | # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX) | |
105 | # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX) | |
106 | # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX) | |
107 | # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX) | |
108 | # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX) | |
109 | #endif | |
110 | ||
111 | #ifdef TARGET_WORDS_BIGENDIAN | |
112 | # define helper_te_ld_name helper_be_ld_name | |
113 | # define helper_te_st_name helper_be_st_name | |
114 | #else | |
115 | # define helper_te_ld_name helper_le_ld_name | |
116 | # define helper_te_st_name helper_le_st_name | |
117 | #endif | |
118 | ||
88e89a57 XT |
119 | /* macro to check the victim tlb */ |
120 | #define VICTIM_TLB_HIT(ty) \ | |
121 | ({ \ | |
122 | /* we are about to do a page table walk. our last hope is the \ | |
123 | * victim tlb. try to refill from the victim tlb before walking the \ | |
124 | * page table. */ \ | |
125 | int vidx; \ | |
e469b22f | 126 | CPUIOTLBEntry tmpiotlb; \ |
88e89a57 XT |
127 | CPUTLBEntry tmptlb; \ |
128 | for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \ | |
129 | if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\ | |
130 | /* found entry in victim tlb, swap tlb and iotlb */ \ | |
131 | tmptlb = env->tlb_table[mmu_idx][index]; \ | |
132 | env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \ | |
133 | env->tlb_v_table[mmu_idx][vidx] = tmptlb; \ | |
134 | tmpiotlb = env->iotlb[mmu_idx][index]; \ | |
135 | env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \ | |
136 | env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \ | |
137 | break; \ | |
138 | } \ | |
139 | } \ | |
140 | /* return true when there is a vtlb hit, i.e. vidx >=0 */ \ | |
141 | vidx >= 0; \ | |
142 | }) | |
143 | ||
0f590e74 | 144 | #ifndef SOFTMMU_CODE_ACCESS |
89c33337 | 145 | static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env, |
e469b22f | 146 | CPUIOTLBEntry *iotlbentry, |
2e70f6ef | 147 | target_ulong addr, |
20503968 | 148 | uintptr_t retaddr) |
b92e5a22 | 149 | { |
791af8c8 | 150 | uint64_t val; |
09daed84 | 151 | CPUState *cpu = ENV_GET_CPU(env); |
e469b22f | 152 | hwaddr physaddr = iotlbentry->addr; |
9d82b5a7 | 153 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr); |
37ec01d4 | 154 | |
0f459d16 | 155 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
93afeade | 156 | cpu->mem_io_pc = retaddr; |
99df7dce | 157 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { |
90b40a69 | 158 | cpu_io_recompile(cpu, retaddr); |
2e70f6ef | 159 | } |
b92e5a22 | 160 | |
93afeade | 161 | cpu->mem_io_vaddr = addr; |
3b643495 | 162 | memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT, |
fadc1cbe | 163 | iotlbentry->attrs); |
791af8c8 | 164 | return val; |
b92e5a22 | 165 | } |
0f590e74 | 166 | #endif |
b92e5a22 | 167 | |
e25c3887 | 168 | #ifdef SOFTMMU_CODE_ACCESS |
867b3201 | 169 | static __attribute__((unused)) |
e25c3887 | 170 | #endif |
867b3201 RH |
171 | WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx, |
172 | uintptr_t retaddr) | |
b92e5a22 | 173 | { |
aac1fb05 RH |
174 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
175 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
176 | uintptr_t haddr; | |
867b3201 | 177 | DATA_TYPE res; |
3b46e624 | 178 | |
0f842f8a RH |
179 | /* Adjust the given return address. */ |
180 | retaddr -= GETPC_ADJ; | |
181 | ||
aac1fb05 RH |
182 | /* If the TLB entry is for a different page, reload and try again. */ |
183 | if ((addr & TARGET_PAGE_MASK) | |
184 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a64d4718 | 185 | #ifdef ALIGNED_ONLY |
aac1fb05 | 186 | if ((addr & (DATA_SIZE - 1)) != 0) { |
93e22326 PB |
187 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
188 | mmu_idx, retaddr); | |
aac1fb05 | 189 | } |
a64d4718 | 190 | #endif |
88e89a57 XT |
191 | if (!VICTIM_TLB_HIT(ADDR_READ)) { |
192 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
193 | mmu_idx, retaddr); | |
194 | } | |
aac1fb05 RH |
195 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
196 | } | |
197 | ||
198 | /* Handle an IO access. */ | |
199 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 200 | CPUIOTLBEntry *iotlbentry; |
aac1fb05 RH |
201 | if ((addr & (DATA_SIZE - 1)) != 0) { |
202 | goto do_unaligned_access; | |
b92e5a22 | 203 | } |
e469b22f | 204 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
205 | |
206 | /* ??? Note that the io helpers always read data in the target | |
207 | byte ordering. We should push the LE/BE request down into io. */ | |
e469b22f | 208 | res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); |
867b3201 RH |
209 | res = TGT_LE(res); |
210 | return res; | |
aac1fb05 RH |
211 | } |
212 | ||
213 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
214 | if (DATA_SIZE > 1 | |
215 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
216 | >= TARGET_PAGE_SIZE)) { | |
217 | target_ulong addr1, addr2; | |
867b3201 | 218 | DATA_TYPE res1, res2; |
aac1fb05 RH |
219 | unsigned shift; |
220 | do_unaligned_access: | |
a64d4718 | 221 | #ifdef ALIGNED_ONLY |
93e22326 PB |
222 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
223 | mmu_idx, retaddr); | |
a64d4718 | 224 | #endif |
aac1fb05 RH |
225 | addr1 = addr & ~(DATA_SIZE - 1); |
226 | addr2 = addr1 + DATA_SIZE; | |
0f842f8a RH |
227 | /* Note the adjustment at the beginning of the function. |
228 | Undo that for the recursion. */ | |
867b3201 RH |
229 | res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ); |
230 | res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ); | |
aac1fb05 | 231 | shift = (addr & (DATA_SIZE - 1)) * 8; |
867b3201 RH |
232 | |
233 | /* Little-endian combine. */ | |
aac1fb05 | 234 | res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); |
867b3201 RH |
235 | return res; |
236 | } | |
237 | ||
238 | /* Handle aligned access or unaligned access in the same page. */ | |
239 | #ifdef ALIGNED_ONLY | |
240 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
93e22326 PB |
241 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
242 | mmu_idx, retaddr); | |
867b3201 RH |
243 | } |
244 | #endif | |
245 | ||
246 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
247 | #if DATA_SIZE == 1 | |
248 | res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); | |
249 | #else | |
250 | res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); | |
251 | #endif | |
252 | return res; | |
253 | } | |
254 | ||
255 | #if DATA_SIZE > 1 | |
256 | #ifdef SOFTMMU_CODE_ACCESS | |
257 | static __attribute__((unused)) | |
258 | #endif | |
259 | WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx, | |
260 | uintptr_t retaddr) | |
261 | { | |
262 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
263 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; | |
264 | uintptr_t haddr; | |
265 | DATA_TYPE res; | |
266 | ||
267 | /* Adjust the given return address. */ | |
268 | retaddr -= GETPC_ADJ; | |
269 | ||
270 | /* If the TLB entry is for a different page, reload and try again. */ | |
271 | if ((addr & TARGET_PAGE_MASK) | |
272 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
273 | #ifdef ALIGNED_ONLY | |
274 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
93e22326 PB |
275 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
276 | mmu_idx, retaddr); | |
867b3201 RH |
277 | } |
278 | #endif | |
88e89a57 XT |
279 | if (!VICTIM_TLB_HIT(ADDR_READ)) { |
280 | tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, | |
281 | mmu_idx, retaddr); | |
282 | } | |
867b3201 RH |
283 | tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; |
284 | } | |
285 | ||
286 | /* Handle an IO access. */ | |
287 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 288 | CPUIOTLBEntry *iotlbentry; |
867b3201 RH |
289 | if ((addr & (DATA_SIZE - 1)) != 0) { |
290 | goto do_unaligned_access; | |
291 | } | |
e469b22f | 292 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
293 | |
294 | /* ??? Note that the io helpers always read data in the target | |
295 | byte ordering. We should push the LE/BE request down into io. */ | |
e469b22f | 296 | res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); |
867b3201 RH |
297 | res = TGT_BE(res); |
298 | return res; | |
299 | } | |
300 | ||
301 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
302 | if (DATA_SIZE > 1 | |
303 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
304 | >= TARGET_PAGE_SIZE)) { | |
305 | target_ulong addr1, addr2; | |
306 | DATA_TYPE res1, res2; | |
307 | unsigned shift; | |
308 | do_unaligned_access: | |
309 | #ifdef ALIGNED_ONLY | |
93e22326 PB |
310 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
311 | mmu_idx, retaddr); | |
aac1fb05 | 312 | #endif |
867b3201 RH |
313 | addr1 = addr & ~(DATA_SIZE - 1); |
314 | addr2 = addr1 + DATA_SIZE; | |
315 | /* Note the adjustment at the beginning of the function. | |
316 | Undo that for the recursion. */ | |
317 | res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ); | |
318 | res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ); | |
319 | shift = (addr & (DATA_SIZE - 1)) * 8; | |
320 | ||
321 | /* Big-endian combine. */ | |
322 | res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); | |
aac1fb05 RH |
323 | return res; |
324 | } | |
325 | ||
326 | /* Handle aligned access or unaligned access in the same page. */ | |
327 | #ifdef ALIGNED_ONLY | |
328 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
93e22326 PB |
329 | cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, |
330 | mmu_idx, retaddr); | |
b92e5a22 | 331 | } |
aac1fb05 RH |
332 | #endif |
333 | ||
334 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
867b3201 RH |
335 | res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); |
336 | return res; | |
b92e5a22 | 337 | } |
867b3201 | 338 | #endif /* DATA_SIZE > 1 */ |
b92e5a22 | 339 | |
e25c3887 RH |
340 | DATA_TYPE |
341 | glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, | |
342 | int mmu_idx) | |
343 | { | |
867b3201 | 344 | return helper_te_ld_name (env, addr, mmu_idx, GETRA()); |
e25c3887 RH |
345 | } |
346 | ||
b769d8fe FB |
347 | #ifndef SOFTMMU_CODE_ACCESS |
348 | ||
c8f94df5 RH |
349 | /* Provide signed versions of the load routines as well. We can of course |
350 | avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ | |
351 | #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS | |
867b3201 RH |
352 | WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr, |
353 | int mmu_idx, uintptr_t retaddr) | |
354 | { | |
355 | return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr); | |
356 | } | |
357 | ||
358 | # if DATA_SIZE > 1 | |
359 | WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr, | |
360 | int mmu_idx, uintptr_t retaddr) | |
c8f94df5 | 361 | { |
867b3201 | 362 | return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr); |
c8f94df5 | 363 | } |
867b3201 | 364 | # endif |
c8f94df5 RH |
365 | #endif |
366 | ||
89c33337 | 367 | static inline void glue(io_write, SUFFIX)(CPUArchState *env, |
e469b22f | 368 | CPUIOTLBEntry *iotlbentry, |
b769d8fe | 369 | DATA_TYPE val, |
0f459d16 | 370 | target_ulong addr, |
20503968 | 371 | uintptr_t retaddr) |
b769d8fe | 372 | { |
09daed84 | 373 | CPUState *cpu = ENV_GET_CPU(env); |
e469b22f | 374 | hwaddr physaddr = iotlbentry->addr; |
9d82b5a7 | 375 | MemoryRegion *mr = iotlb_to_region(cpu, physaddr); |
37ec01d4 | 376 | |
0f459d16 | 377 | physaddr = (physaddr & TARGET_PAGE_MASK) + addr; |
99df7dce | 378 | if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) { |
90b40a69 | 379 | cpu_io_recompile(cpu, retaddr); |
2e70f6ef | 380 | } |
b769d8fe | 381 | |
93afeade AF |
382 | cpu->mem_io_vaddr = addr; |
383 | cpu->mem_io_pc = retaddr; | |
3b643495 | 384 | memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT, |
fadc1cbe | 385 | iotlbentry->attrs); |
b769d8fe | 386 | } |
b92e5a22 | 387 | |
867b3201 RH |
388 | void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, |
389 | int mmu_idx, uintptr_t retaddr) | |
b92e5a22 | 390 | { |
aac1fb05 RH |
391 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
392 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
393 | uintptr_t haddr; | |
3b46e624 | 394 | |
0f842f8a RH |
395 | /* Adjust the given return address. */ |
396 | retaddr -= GETPC_ADJ; | |
397 | ||
aac1fb05 RH |
398 | /* If the TLB entry is for a different page, reload and try again. */ |
399 | if ((addr & TARGET_PAGE_MASK) | |
400 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
a64d4718 | 401 | #ifdef ALIGNED_ONLY |
aac1fb05 | 402 | if ((addr & (DATA_SIZE - 1)) != 0) { |
55e94093 LA |
403 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
404 | mmu_idx, retaddr); | |
aac1fb05 | 405 | } |
a64d4718 | 406 | #endif |
88e89a57 | 407 | if (!VICTIM_TLB_HIT(addr_write)) { |
55e94093 | 408 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
88e89a57 | 409 | } |
aac1fb05 RH |
410 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
411 | } | |
412 | ||
413 | /* Handle an IO access. */ | |
414 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 415 | CPUIOTLBEntry *iotlbentry; |
aac1fb05 RH |
416 | if ((addr & (DATA_SIZE - 1)) != 0) { |
417 | goto do_unaligned_access; | |
418 | } | |
e469b22f | 419 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
420 | |
421 | /* ??? Note that the io helpers always read data in the target | |
422 | byte ordering. We should push the LE/BE request down into io. */ | |
423 | val = TGT_LE(val); | |
e469b22f | 424 | glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); |
aac1fb05 RH |
425 | return; |
426 | } | |
427 | ||
428 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
429 | if (DATA_SIZE > 1 | |
430 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
431 | >= TARGET_PAGE_SIZE)) { | |
432 | int i; | |
433 | do_unaligned_access: | |
a64d4718 | 434 | #ifdef ALIGNED_ONLY |
55e94093 LA |
435 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
436 | mmu_idx, retaddr); | |
aac1fb05 RH |
437 | #endif |
438 | /* XXX: not efficient, but simple */ | |
439 | /* Note: relies on the fact that tlb_fill() does not remove the | |
440 | * previous page from the TLB cache. */ | |
441 | for (i = DATA_SIZE - 1; i >= 0; i--) { | |
867b3201 | 442 | /* Little-endian extract. */ |
aac1fb05 | 443 | uint8_t val8 = val >> (i * 8); |
867b3201 RH |
444 | /* Note the adjustment at the beginning of the function. |
445 | Undo that for the recursion. */ | |
446 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, | |
447 | mmu_idx, retaddr + GETPC_ADJ); | |
448 | } | |
449 | return; | |
450 | } | |
451 | ||
452 | /* Handle aligned access or unaligned access in the same page. */ | |
453 | #ifdef ALIGNED_ONLY | |
454 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
55e94093 LA |
455 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
456 | mmu_idx, retaddr); | |
867b3201 RH |
457 | } |
458 | #endif | |
459 | ||
460 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
461 | #if DATA_SIZE == 1 | |
462 | glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); | |
463 | #else | |
464 | glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); | |
a64d4718 | 465 | #endif |
867b3201 RH |
466 | } |
467 | ||
468 | #if DATA_SIZE > 1 | |
469 | void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, | |
470 | int mmu_idx, uintptr_t retaddr) | |
471 | { | |
472 | int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); | |
473 | target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write; | |
474 | uintptr_t haddr; | |
475 | ||
476 | /* Adjust the given return address. */ | |
477 | retaddr -= GETPC_ADJ; | |
478 | ||
479 | /* If the TLB entry is for a different page, reload and try again. */ | |
480 | if ((addr & TARGET_PAGE_MASK) | |
481 | != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { | |
482 | #ifdef ALIGNED_ONLY | |
483 | if ((addr & (DATA_SIZE - 1)) != 0) { | |
55e94093 LA |
484 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
485 | mmu_idx, retaddr); | |
867b3201 RH |
486 | } |
487 | #endif | |
88e89a57 | 488 | if (!VICTIM_TLB_HIT(addr_write)) { |
55e94093 | 489 | tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); |
88e89a57 | 490 | } |
867b3201 RH |
491 | tlb_addr = env->tlb_table[mmu_idx][index].addr_write; |
492 | } | |
493 | ||
494 | /* Handle an IO access. */ | |
495 | if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { | |
e469b22f | 496 | CPUIOTLBEntry *iotlbentry; |
867b3201 RH |
497 | if ((addr & (DATA_SIZE - 1)) != 0) { |
498 | goto do_unaligned_access; | |
499 | } | |
e469b22f | 500 | iotlbentry = &env->iotlb[mmu_idx][index]; |
867b3201 RH |
501 | |
502 | /* ??? Note that the io helpers always read data in the target | |
503 | byte ordering. We should push the LE/BE request down into io. */ | |
504 | val = TGT_BE(val); | |
e469b22f | 505 | glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); |
867b3201 RH |
506 | return; |
507 | } | |
508 | ||
509 | /* Handle slow unaligned access (it spans two pages or IO). */ | |
510 | if (DATA_SIZE > 1 | |
511 | && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 | |
512 | >= TARGET_PAGE_SIZE)) { | |
513 | int i; | |
514 | do_unaligned_access: | |
515 | #ifdef ALIGNED_ONLY | |
55e94093 LA |
516 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
517 | mmu_idx, retaddr); | |
867b3201 RH |
518 | #endif |
519 | /* XXX: not efficient, but simple */ | |
520 | /* Note: relies on the fact that tlb_fill() does not remove the | |
521 | * previous page from the TLB cache. */ | |
522 | for (i = DATA_SIZE - 1; i >= 0; i--) { | |
523 | /* Big-endian extract. */ | |
524 | uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); | |
0f842f8a RH |
525 | /* Note the adjustment at the beginning of the function. |
526 | Undo that for the recursion. */ | |
aac1fb05 | 527 | glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, |
0f842f8a | 528 | mmu_idx, retaddr + GETPC_ADJ); |
b92e5a22 | 529 | } |
aac1fb05 RH |
530 | return; |
531 | } | |
532 | ||
533 | /* Handle aligned access or unaligned access in the same page. */ | |
a64d4718 | 534 | #ifdef ALIGNED_ONLY |
aac1fb05 | 535 | if ((addr & (DATA_SIZE - 1)) != 0) { |
55e94093 LA |
536 | cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, |
537 | mmu_idx, retaddr); | |
b92e5a22 | 538 | } |
aac1fb05 RH |
539 | #endif |
540 | ||
541 | haddr = addr + env->tlb_table[mmu_idx][index].addend; | |
867b3201 | 542 | glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); |
b92e5a22 | 543 | } |
867b3201 | 544 | #endif /* DATA_SIZE > 1 */ |
b92e5a22 | 545 | |
e25c3887 RH |
546 | void |
547 | glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr, | |
548 | DATA_TYPE val, int mmu_idx) | |
549 | { | |
867b3201 | 550 | helper_te_st_name(env, addr, val, mmu_idx, GETRA()); |
e25c3887 RH |
551 | } |
552 | ||
b769d8fe FB |
553 | #endif /* !defined(SOFTMMU_CODE_ACCESS) */ |
554 | ||
555 | #undef READ_ACCESS_TYPE | |
b92e5a22 FB |
556 | #undef SHIFT |
557 | #undef DATA_TYPE | |
558 | #undef SUFFIX | |
701e3a5c | 559 | #undef LSUFFIX |
b92e5a22 | 560 | #undef DATA_SIZE |
84b7b8e7 | 561 | #undef ADDR_READ |
c8f94df5 RH |
562 | #undef WORD_TYPE |
563 | #undef SDATA_TYPE | |
564 | #undef USUFFIX | |
565 | #undef SSUFFIX | |
867b3201 RH |
566 | #undef BSWAP |
567 | #undef TGT_BE | |
568 | #undef TGT_LE | |
569 | #undef CPU_BE | |
570 | #undef CPU_LE | |
571 | #undef helper_le_ld_name | |
572 | #undef helper_be_ld_name | |
573 | #undef helper_le_lds_name | |
574 | #undef helper_be_lds_name | |
575 | #undef helper_le_st_name | |
576 | #undef helper_be_st_name | |
577 | #undef helper_te_ld_name | |
578 | #undef helper_te_st_name |