softmmu: move definition of CPU_MMU_INDEX to inclusion site, drop ACCESS_TYPE
[qemu.git] / include / exec / softmmu_template.h
CommitLineData
b92e5a22
FB
1/*
2 * Software MMU support
5fafdf24 3 *
efbf29b6
BS
4 * Generate helpers used by TCG for qemu_ld/st ops and code load
5 * functions.
6 *
7 * Included from target op helpers and exec.c.
8 *
b92e5a22
FB
9 * Copyright (c) 2003 Fabrice Bellard
10 *
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
15 *
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
8167ee88 22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
b92e5a22 23 */
1de7afc9 24#include "qemu/timer.h"
77717094 25#include "exec/address-spaces.h"
022c62cb 26#include "exec/memory.h"
29e922b6 27
b92e5a22
FB
28#define DATA_SIZE (1 << SHIFT)
29
30#if DATA_SIZE == 8
31#define SUFFIX q
701e3a5c 32#define LSUFFIX q
c8f94df5 33#define SDATA_TYPE int64_t
dc9a353c 34#define DATA_TYPE uint64_t
b92e5a22
FB
35#elif DATA_SIZE == 4
36#define SUFFIX l
701e3a5c 37#define LSUFFIX l
c8f94df5 38#define SDATA_TYPE int32_t
dc9a353c 39#define DATA_TYPE uint32_t
b92e5a22
FB
40#elif DATA_SIZE == 2
41#define SUFFIX w
701e3a5c 42#define LSUFFIX uw
c8f94df5 43#define SDATA_TYPE int16_t
dc9a353c 44#define DATA_TYPE uint16_t
b92e5a22
FB
45#elif DATA_SIZE == 1
46#define SUFFIX b
701e3a5c 47#define LSUFFIX ub
c8f94df5 48#define SDATA_TYPE int8_t
dc9a353c 49#define DATA_TYPE uint8_t
b92e5a22
FB
50#else
51#error unsupported data size
52#endif
53
c8f94df5
RH
54
55/* For the benefit of TCG generated code, we want to avoid the complication
56 of ABI-specific return type promotion and always return a value extended
57 to the register size of the host. This is tcg_target_long, except in the
58 case of a 32-bit host and 64-bit data, and for that we always have
59 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
60#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
61# define WORD_TYPE DATA_TYPE
62# define USUFFIX SUFFIX
63#else
64# define WORD_TYPE tcg_target_ulong
65# define USUFFIX glue(u, SUFFIX)
66# define SSUFFIX glue(s, SUFFIX)
67#endif
68
b769d8fe
FB
69#ifdef SOFTMMU_CODE_ACCESS
70#define READ_ACCESS_TYPE 2
84b7b8e7 71#define ADDR_READ addr_code
b769d8fe
FB
72#else
73#define READ_ACCESS_TYPE 0
84b7b8e7 74#define ADDR_READ addr_read
b769d8fe
FB
75#endif
76
867b3201
RH
77#if DATA_SIZE == 8
78# define BSWAP(X) bswap64(X)
79#elif DATA_SIZE == 4
80# define BSWAP(X) bswap32(X)
81#elif DATA_SIZE == 2
82# define BSWAP(X) bswap16(X)
83#else
84# define BSWAP(X) (X)
85#endif
86
87#ifdef TARGET_WORDS_BIGENDIAN
88# define TGT_BE(X) (X)
89# define TGT_LE(X) BSWAP(X)
90#else
91# define TGT_BE(X) BSWAP(X)
92# define TGT_LE(X) (X)
93#endif
94
95#if DATA_SIZE == 1
96# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
97# define helper_be_ld_name helper_le_ld_name
98# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
99# define helper_be_lds_name helper_le_lds_name
100# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
101# define helper_be_st_name helper_le_st_name
102#else
103# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
104# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
105# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
106# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
107# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
108# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
109#endif
110
111#ifdef TARGET_WORDS_BIGENDIAN
112# define helper_te_ld_name helper_be_ld_name
113# define helper_te_st_name helper_be_st_name
114#else
115# define helper_te_ld_name helper_le_ld_name
116# define helper_te_st_name helper_le_st_name
117#endif
118
89c33337 119static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
a8170e5e 120 hwaddr physaddr,
2e70f6ef 121 target_ulong addr,
20503968 122 uintptr_t retaddr)
b92e5a22 123{
791af8c8 124 uint64_t val;
09daed84
EI
125 CPUState *cpu = ENV_GET_CPU(env);
126 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
37ec01d4 127
0f459d16 128 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
93afeade 129 cpu->mem_io_pc = retaddr;
99df7dce 130 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
90b40a69 131 cpu_io_recompile(cpu, retaddr);
2e70f6ef 132 }
b92e5a22 133
93afeade 134 cpu->mem_io_vaddr = addr;
791af8c8
PB
135 io_mem_read(mr, physaddr, &val, 1 << SHIFT);
136 return val;
b92e5a22
FB
137}
138
e25c3887 139#ifdef SOFTMMU_CODE_ACCESS
867b3201 140static __attribute__((unused))
e25c3887 141#endif
867b3201
RH
142WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
143 uintptr_t retaddr)
b92e5a22 144{
aac1fb05
RH
145 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
146 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
147 uintptr_t haddr;
867b3201 148 DATA_TYPE res;
3b46e624 149
0f842f8a
RH
150 /* Adjust the given return address. */
151 retaddr -= GETPC_ADJ;
152
aac1fb05
RH
153 /* If the TLB entry is for a different page, reload and try again. */
154 if ((addr & TARGET_PAGE_MASK)
155 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
a64d4718 156#ifdef ALIGNED_ONLY
aac1fb05 157 if ((addr & (DATA_SIZE - 1)) != 0) {
89c33337 158 do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
aac1fb05 159 }
a64d4718 160#endif
d5a11fef 161 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
aac1fb05
RH
162 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
163 }
164
165 /* Handle an IO access. */
166 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
167 hwaddr ioaddr;
168 if ((addr & (DATA_SIZE - 1)) != 0) {
169 goto do_unaligned_access;
b92e5a22 170 }
aac1fb05 171 ioaddr = env->iotlb[mmu_idx][index];
867b3201
RH
172
173 /* ??? Note that the io helpers always read data in the target
174 byte ordering. We should push the LE/BE request down into io. */
175 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
176 res = TGT_LE(res);
177 return res;
aac1fb05
RH
178 }
179
180 /* Handle slow unaligned access (it spans two pages or IO). */
181 if (DATA_SIZE > 1
182 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
183 >= TARGET_PAGE_SIZE)) {
184 target_ulong addr1, addr2;
867b3201 185 DATA_TYPE res1, res2;
aac1fb05
RH
186 unsigned shift;
187 do_unaligned_access:
a64d4718 188#ifdef ALIGNED_ONLY
aac1fb05 189 do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
a64d4718 190#endif
aac1fb05
RH
191 addr1 = addr & ~(DATA_SIZE - 1);
192 addr2 = addr1 + DATA_SIZE;
0f842f8a
RH
193 /* Note the adjustment at the beginning of the function.
194 Undo that for the recursion. */
867b3201
RH
195 res1 = helper_le_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
196 res2 = helper_le_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
aac1fb05 197 shift = (addr & (DATA_SIZE - 1)) * 8;
867b3201
RH
198
199 /* Little-endian combine. */
aac1fb05 200 res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
867b3201
RH
201 return res;
202 }
203
204 /* Handle aligned access or unaligned access in the same page. */
205#ifdef ALIGNED_ONLY
206 if ((addr & (DATA_SIZE - 1)) != 0) {
207 do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
208 }
209#endif
210
211 haddr = addr + env->tlb_table[mmu_idx][index].addend;
212#if DATA_SIZE == 1
213 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
214#else
215 res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
216#endif
217 return res;
218}
219
220#if DATA_SIZE > 1
221#ifdef SOFTMMU_CODE_ACCESS
222static __attribute__((unused))
223#endif
224WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr, int mmu_idx,
225 uintptr_t retaddr)
226{
227 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
228 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
229 uintptr_t haddr;
230 DATA_TYPE res;
231
232 /* Adjust the given return address. */
233 retaddr -= GETPC_ADJ;
234
235 /* If the TLB entry is for a different page, reload and try again. */
236 if ((addr & TARGET_PAGE_MASK)
237 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
238#ifdef ALIGNED_ONLY
239 if ((addr & (DATA_SIZE - 1)) != 0) {
240 do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
241 }
242#endif
d5a11fef 243 tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
867b3201
RH
244 tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
245 }
246
247 /* Handle an IO access. */
248 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
249 hwaddr ioaddr;
250 if ((addr & (DATA_SIZE - 1)) != 0) {
251 goto do_unaligned_access;
252 }
253 ioaddr = env->iotlb[mmu_idx][index];
254
255 /* ??? Note that the io helpers always read data in the target
256 byte ordering. We should push the LE/BE request down into io. */
257 res = glue(io_read, SUFFIX)(env, ioaddr, addr, retaddr);
258 res = TGT_BE(res);
259 return res;
260 }
261
262 /* Handle slow unaligned access (it spans two pages or IO). */
263 if (DATA_SIZE > 1
264 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
265 >= TARGET_PAGE_SIZE)) {
266 target_ulong addr1, addr2;
267 DATA_TYPE res1, res2;
268 unsigned shift;
269 do_unaligned_access:
270#ifdef ALIGNED_ONLY
271 do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
aac1fb05 272#endif
867b3201
RH
273 addr1 = addr & ~(DATA_SIZE - 1);
274 addr2 = addr1 + DATA_SIZE;
275 /* Note the adjustment at the beginning of the function.
276 Undo that for the recursion. */
277 res1 = helper_be_ld_name(env, addr1, mmu_idx, retaddr + GETPC_ADJ);
278 res2 = helper_be_ld_name(env, addr2, mmu_idx, retaddr + GETPC_ADJ);
279 shift = (addr & (DATA_SIZE - 1)) * 8;
280
281 /* Big-endian combine. */
282 res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
aac1fb05
RH
283 return res;
284 }
285
286 /* Handle aligned access or unaligned access in the same page. */
287#ifdef ALIGNED_ONLY
288 if ((addr & (DATA_SIZE - 1)) != 0) {
289 do_unaligned_access(env, addr, READ_ACCESS_TYPE, mmu_idx, retaddr);
b92e5a22 290 }
aac1fb05
RH
291#endif
292
293 haddr = addr + env->tlb_table[mmu_idx][index].addend;
867b3201
RH
294 res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
295 return res;
b92e5a22 296}
867b3201 297#endif /* DATA_SIZE > 1 */
b92e5a22 298
e25c3887
RH
299DATA_TYPE
300glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
301 int mmu_idx)
302{
867b3201 303 return helper_te_ld_name (env, addr, mmu_idx, GETRA());
e25c3887
RH
304}
305
b769d8fe
FB
306#ifndef SOFTMMU_CODE_ACCESS
307
c8f94df5
RH
308/* Provide signed versions of the load routines as well. We can of course
309 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
310#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
867b3201
RH
311WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
312 int mmu_idx, uintptr_t retaddr)
313{
314 return (SDATA_TYPE)helper_le_ld_name(env, addr, mmu_idx, retaddr);
315}
316
317# if DATA_SIZE > 1
318WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
319 int mmu_idx, uintptr_t retaddr)
c8f94df5 320{
867b3201 321 return (SDATA_TYPE)helper_be_ld_name(env, addr, mmu_idx, retaddr);
c8f94df5 322}
867b3201 323# endif
c8f94df5
RH
324#endif
325
89c33337 326static inline void glue(io_write, SUFFIX)(CPUArchState *env,
a8170e5e 327 hwaddr physaddr,
b769d8fe 328 DATA_TYPE val,
0f459d16 329 target_ulong addr,
20503968 330 uintptr_t retaddr)
b769d8fe 331{
09daed84
EI
332 CPUState *cpu = ENV_GET_CPU(env);
333 MemoryRegion *mr = iotlb_to_region(cpu->as, physaddr);
37ec01d4 334
0f459d16 335 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
99df7dce 336 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu_can_do_io(cpu)) {
90b40a69 337 cpu_io_recompile(cpu, retaddr);
2e70f6ef 338 }
b769d8fe 339
93afeade
AF
340 cpu->mem_io_vaddr = addr;
341 cpu->mem_io_pc = retaddr;
37ec01d4 342 io_mem_write(mr, physaddr, val, 1 << SHIFT);
b769d8fe 343}
b92e5a22 344
867b3201
RH
345void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
346 int mmu_idx, uintptr_t retaddr)
b92e5a22 347{
aac1fb05
RH
348 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
349 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
350 uintptr_t haddr;
3b46e624 351
0f842f8a
RH
352 /* Adjust the given return address. */
353 retaddr -= GETPC_ADJ;
354
aac1fb05
RH
355 /* If the TLB entry is for a different page, reload and try again. */
356 if ((addr & TARGET_PAGE_MASK)
357 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
a64d4718 358#ifdef ALIGNED_ONLY
aac1fb05 359 if ((addr & (DATA_SIZE - 1)) != 0) {
89c33337 360 do_unaligned_access(env, addr, 1, mmu_idx, retaddr);
aac1fb05 361 }
a64d4718 362#endif
d5a11fef 363 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
aac1fb05
RH
364 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
365 }
366
367 /* Handle an IO access. */
368 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
369 hwaddr ioaddr;
370 if ((addr & (DATA_SIZE - 1)) != 0) {
371 goto do_unaligned_access;
372 }
373 ioaddr = env->iotlb[mmu_idx][index];
867b3201
RH
374
375 /* ??? Note that the io helpers always read data in the target
376 byte ordering. We should push the LE/BE request down into io. */
377 val = TGT_LE(val);
aac1fb05
RH
378 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
379 return;
380 }
381
382 /* Handle slow unaligned access (it spans two pages or IO). */
383 if (DATA_SIZE > 1
384 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
385 >= TARGET_PAGE_SIZE)) {
386 int i;
387 do_unaligned_access:
a64d4718 388#ifdef ALIGNED_ONLY
aac1fb05
RH
389 do_unaligned_access(env, addr, 1, mmu_idx, retaddr);
390#endif
391 /* XXX: not efficient, but simple */
392 /* Note: relies on the fact that tlb_fill() does not remove the
393 * previous page from the TLB cache. */
394 for (i = DATA_SIZE - 1; i >= 0; i--) {
867b3201 395 /* Little-endian extract. */
aac1fb05 396 uint8_t val8 = val >> (i * 8);
867b3201
RH
397 /* Note the adjustment at the beginning of the function.
398 Undo that for the recursion. */
399 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
400 mmu_idx, retaddr + GETPC_ADJ);
401 }
402 return;
403 }
404
405 /* Handle aligned access or unaligned access in the same page. */
406#ifdef ALIGNED_ONLY
407 if ((addr & (DATA_SIZE - 1)) != 0) {
408 do_unaligned_access(env, addr, 1, mmu_idx, retaddr);
409 }
410#endif
411
412 haddr = addr + env->tlb_table[mmu_idx][index].addend;
413#if DATA_SIZE == 1
414 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
415#else
416 glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
a64d4718 417#endif
867b3201
RH
418}
419
420#if DATA_SIZE > 1
421void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
422 int mmu_idx, uintptr_t retaddr)
423{
424 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
425 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
426 uintptr_t haddr;
427
428 /* Adjust the given return address. */
429 retaddr -= GETPC_ADJ;
430
431 /* If the TLB entry is for a different page, reload and try again. */
432 if ((addr & TARGET_PAGE_MASK)
433 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
434#ifdef ALIGNED_ONLY
435 if ((addr & (DATA_SIZE - 1)) != 0) {
436 do_unaligned_access(env, addr, 1, mmu_idx, retaddr);
437 }
438#endif
d5a11fef 439 tlb_fill(ENV_GET_CPU(env), addr, 1, mmu_idx, retaddr);
867b3201
RH
440 tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
441 }
442
443 /* Handle an IO access. */
444 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
445 hwaddr ioaddr;
446 if ((addr & (DATA_SIZE - 1)) != 0) {
447 goto do_unaligned_access;
448 }
449 ioaddr = env->iotlb[mmu_idx][index];
450
451 /* ??? Note that the io helpers always read data in the target
452 byte ordering. We should push the LE/BE request down into io. */
453 val = TGT_BE(val);
454 glue(io_write, SUFFIX)(env, ioaddr, val, addr, retaddr);
455 return;
456 }
457
458 /* Handle slow unaligned access (it spans two pages or IO). */
459 if (DATA_SIZE > 1
460 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
461 >= TARGET_PAGE_SIZE)) {
462 int i;
463 do_unaligned_access:
464#ifdef ALIGNED_ONLY
465 do_unaligned_access(env, addr, 1, mmu_idx, retaddr);
466#endif
467 /* XXX: not efficient, but simple */
468 /* Note: relies on the fact that tlb_fill() does not remove the
469 * previous page from the TLB cache. */
470 for (i = DATA_SIZE - 1; i >= 0; i--) {
471 /* Big-endian extract. */
472 uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
0f842f8a
RH
473 /* Note the adjustment at the beginning of the function.
474 Undo that for the recursion. */
aac1fb05 475 glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
0f842f8a 476 mmu_idx, retaddr + GETPC_ADJ);
b92e5a22 477 }
aac1fb05
RH
478 return;
479 }
480
481 /* Handle aligned access or unaligned access in the same page. */
a64d4718 482#ifdef ALIGNED_ONLY
aac1fb05
RH
483 if ((addr & (DATA_SIZE - 1)) != 0) {
484 do_unaligned_access(env, addr, 1, mmu_idx, retaddr);
b92e5a22 485 }
aac1fb05
RH
486#endif
487
488 haddr = addr + env->tlb_table[mmu_idx][index].addend;
867b3201 489 glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
b92e5a22 490}
867b3201 491#endif /* DATA_SIZE > 1 */
b92e5a22 492
e25c3887
RH
493void
494glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
495 DATA_TYPE val, int mmu_idx)
496{
867b3201 497 helper_te_st_name(env, addr, val, mmu_idx, GETRA());
e25c3887
RH
498}
499
b769d8fe
FB
500#endif /* !defined(SOFTMMU_CODE_ACCESS) */
501
502#undef READ_ACCESS_TYPE
b92e5a22
FB
503#undef SHIFT
504#undef DATA_TYPE
505#undef SUFFIX
701e3a5c 506#undef LSUFFIX
b92e5a22 507#undef DATA_SIZE
84b7b8e7 508#undef ADDR_READ
c8f94df5
RH
509#undef WORD_TYPE
510#undef SDATA_TYPE
511#undef USUFFIX
512#undef SSUFFIX
867b3201
RH
513#undef BSWAP
514#undef TGT_BE
515#undef TGT_LE
516#undef CPU_BE
517#undef CPU_LE
518#undef helper_le_ld_name
519#undef helper_be_ld_name
520#undef helper_le_lds_name
521#undef helper_be_lds_name
522#undef helper_le_st_name
523#undef helper_be_st_name
524#undef helper_te_ld_name
525#undef helper_te_st_name
This page took 0.918715 seconds and 4 git commands to generate.