]> Git Repo - qemu.git/blame - migration/ram.c
migration/xbzrle: update cache and current_data in one place
[qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <[email protected]>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6 586/* This value needs to be a multiple of qemu_target_page_size() */
4b0c7264 587#define MULTIFD_PACKET_SIZE (512 * 1024)
efd1a1d6 588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
5fbd8b4b
JQ
594 uint8_t unused1[7]; /* Reserved for future use */
595 uint64_t unused2[4]; /* Reserved for future use */
af8b7d2b
JQ
596} __attribute__((packed)) MultiFDInit_t;
597
2a26c979
JQ
598typedef struct {
599 uint32_t magic;
600 uint32_t version;
601 uint32_t flags;
6f862692
JQ
602 /* maximum number of allocated pages */
603 uint32_t pages_alloc;
604 uint32_t pages_used;
2a34ee59
JQ
605 /* size of the next packet that contains pages */
606 uint32_t next_packet_size;
2a26c979 607 uint64_t packet_num;
5fbd8b4b 608 uint64_t unused[4]; /* Reserved for future use */
2a26c979
JQ
609 char ramblock[256];
610 uint64_t offset[];
611} __attribute__((packed)) MultiFDPacket_t;
612
34c55a94
JQ
613typedef struct {
614 /* number of used pages */
615 uint32_t used;
616 /* number of allocated pages */
617 uint32_t allocated;
618 /* global number of generated multifd packets */
619 uint64_t packet_num;
620 /* offset of each page */
621 ram_addr_t *offset;
622 /* pointer to each page */
623 struct iovec *iov;
624 RAMBlock *block;
625} MultiFDPages_t;
626
8c4598f2
JQ
627typedef struct {
628 /* this fields are not changed once the thread is created */
629 /* channel number */
f986c3d2 630 uint8_t id;
8c4598f2 631 /* channel thread name */
f986c3d2 632 char *name;
8c4598f2 633 /* channel thread id */
f986c3d2 634 QemuThread thread;
8c4598f2 635 /* communication channel */
60df2d4a 636 QIOChannel *c;
8c4598f2 637 /* sem where to wait for more work */
f986c3d2 638 QemuSemaphore sem;
8c4598f2 639 /* this mutex protects the following parameters */
f986c3d2 640 QemuMutex mutex;
8c4598f2 641 /* is this channel thread running */
66770707 642 bool running;
8c4598f2 643 /* should this thread finish */
f986c3d2 644 bool quit;
0beb5ed3
JQ
645 /* thread has work to do */
646 int pending_job;
34c55a94
JQ
647 /* array of pages to sent */
648 MultiFDPages_t *pages;
2a26c979
JQ
649 /* packet allocated len */
650 uint32_t packet_len;
651 /* pointer to the packet */
652 MultiFDPacket_t *packet;
653 /* multifd flags for each packet */
654 uint32_t flags;
2a34ee59
JQ
655 /* size of the next packet that contains pages */
656 uint32_t next_packet_size;
2a26c979
JQ
657 /* global number of generated multifd packets */
658 uint64_t packet_num;
408ea6ae
JQ
659 /* thread local variables */
660 /* packets sent through this channel */
661 uint64_t num_packets;
662 /* pages sent through this channel */
663 uint64_t num_pages;
8c4598f2
JQ
664} MultiFDSendParams;
665
666typedef struct {
667 /* this fields are not changed once the thread is created */
668 /* channel number */
669 uint8_t id;
670 /* channel thread name */
671 char *name;
672 /* channel thread id */
673 QemuThread thread;
674 /* communication channel */
675 QIOChannel *c;
8c4598f2
JQ
676 /* this mutex protects the following parameters */
677 QemuMutex mutex;
678 /* is this channel thread running */
679 bool running;
34c55a94
JQ
680 /* array of pages to receive */
681 MultiFDPages_t *pages;
2a26c979
JQ
682 /* packet allocated len */
683 uint32_t packet_len;
684 /* pointer to the packet */
685 MultiFDPacket_t *packet;
686 /* multifd flags for each packet */
687 uint32_t flags;
688 /* global number of generated multifd packets */
689 uint64_t packet_num;
408ea6ae 690 /* thread local variables */
2a34ee59
JQ
691 /* size of the next packet that contains pages */
692 uint32_t next_packet_size;
408ea6ae
JQ
693 /* packets sent through this channel */
694 uint64_t num_packets;
695 /* pages sent through this channel */
696 uint64_t num_pages;
6df264ac
JQ
697 /* syncs main thread and channels */
698 QemuSemaphore sem_sync;
8c4598f2 699} MultiFDRecvParams;
f986c3d2 700
af8b7d2b
JQ
701static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
702{
703 MultiFDInit_t msg;
704 int ret;
705
706 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
707 msg.version = cpu_to_be32(MULTIFD_VERSION);
708 msg.id = p->id;
709 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
710
711 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
712 if (ret != 0) {
713 return -1;
714 }
715 return 0;
716}
717
718static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
719{
720 MultiFDInit_t msg;
721 int ret;
722
723 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
724 if (ret != 0) {
725 return -1;
726 }
727
341ba0df
PM
728 msg.magic = be32_to_cpu(msg.magic);
729 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
730
731 if (msg.magic != MULTIFD_MAGIC) {
732 error_setg(errp, "multifd: received packet magic %x "
733 "expected %x", msg.magic, MULTIFD_MAGIC);
734 return -1;
735 }
736
737 if (msg.version != MULTIFD_VERSION) {
738 error_setg(errp, "multifd: received packet version %d "
739 "expected %d", msg.version, MULTIFD_VERSION);
740 return -1;
741 }
742
743 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
744 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
745 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
746
747 error_setg(errp, "multifd: received uuid '%s' and expected "
748 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
749 g_free(uuid);
750 g_free(msg_uuid);
751 return -1;
752 }
753
754 if (msg.id > migrate_multifd_channels()) {
755 error_setg(errp, "multifd: received channel version %d "
756 "expected %d", msg.version, MULTIFD_VERSION);
757 return -1;
758 }
759
760 return msg.id;
761}
762
34c55a94
JQ
763static MultiFDPages_t *multifd_pages_init(size_t size)
764{
765 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
766
767 pages->allocated = size;
768 pages->iov = g_new0(struct iovec, size);
769 pages->offset = g_new0(ram_addr_t, size);
770
771 return pages;
772}
773
774static void multifd_pages_clear(MultiFDPages_t *pages)
775{
776 pages->used = 0;
777 pages->allocated = 0;
778 pages->packet_num = 0;
779 pages->block = NULL;
780 g_free(pages->iov);
781 pages->iov = NULL;
782 g_free(pages->offset);
783 pages->offset = NULL;
784 g_free(pages);
785}
786
2a26c979
JQ
787static void multifd_send_fill_packet(MultiFDSendParams *p)
788{
789 MultiFDPacket_t *packet = p->packet;
7ed379b2 790 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
791 int i;
792
793 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
794 packet->version = cpu_to_be32(MULTIFD_VERSION);
795 packet->flags = cpu_to_be32(p->flags);
7ed379b2 796 packet->pages_alloc = cpu_to_be32(page_max);
6f862692 797 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
799 packet->packet_num = cpu_to_be64(p->packet_num);
800
801 if (p->pages->block) {
802 strncpy(packet->ramblock, p->pages->block->idstr, 256);
803 }
804
805 for (i = 0; i < p->pages->used; i++) {
806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
807 }
808}
809
810static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
811{
812 MultiFDPacket_t *packet = p->packet;
7ed379b2 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
814 RAMBlock *block;
815 int i;
816
341ba0df 817 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
818 if (packet->magic != MULTIFD_MAGIC) {
819 error_setg(errp, "multifd: received packet "
820 "magic %x and expected magic %x",
821 packet->magic, MULTIFD_MAGIC);
822 return -1;
823 }
824
341ba0df 825 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
826 if (packet->version != MULTIFD_VERSION) {
827 error_setg(errp, "multifd: received packet "
828 "version %d and expected version %d",
829 packet->version, MULTIFD_VERSION);
830 return -1;
831 }
832
833 p->flags = be32_to_cpu(packet->flags);
834
6f862692 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
7ed379b2
JQ
836 /*
837 * If we recevied a packet that is 100 times bigger than expected
838 * just stop migration. It is a magic number.
839 */
840 if (packet->pages_alloc > pages_max * 100) {
2a26c979 841 error_setg(errp, "multifd: received packet "
7ed379b2
JQ
842 "with size %d and expected a maximum size of %d",
843 packet->pages_alloc, pages_max * 100) ;
2a26c979
JQ
844 return -1;
845 }
7ed379b2
JQ
846 /*
847 * We received a packet that is bigger than expected but inside
848 * reasonable limits (see previous comment). Just reallocate.
849 */
850 if (packet->pages_alloc > p->pages->allocated) {
851 multifd_pages_clear(p->pages);
f151f8ac 852 p->pages = multifd_pages_init(packet->pages_alloc);
7ed379b2 853 }
2a26c979 854
6f862692
JQ
855 p->pages->used = be32_to_cpu(packet->pages_used);
856 if (p->pages->used > packet->pages_alloc) {
2a26c979 857 error_setg(errp, "multifd: received packet "
6f862692
JQ
858 "with %d pages and expected maximum pages are %d",
859 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
860 return -1;
861 }
862
2a34ee59 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
864 p->packet_num = be64_to_cpu(packet->packet_num);
865
866 if (p->pages->used) {
867 /* make sure that ramblock is 0 terminated */
868 packet->ramblock[255] = 0;
869 block = qemu_ram_block_by_name(packet->ramblock);
870 if (!block) {
871 error_setg(errp, "multifd: unknown ram block %s",
872 packet->ramblock);
873 return -1;
874 }
875 }
876
877 for (i = 0; i < p->pages->used; i++) {
878 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
879
880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
882 " (max " RAM_ADDR_FMT ")",
883 offset, block->max_length);
884 return -1;
885 }
886 p->pages->iov[i].iov_base = block->host + offset;
887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
888 }
889
890 return 0;
891}
892
f986c3d2
JQ
893struct {
894 MultiFDSendParams *params;
34c55a94
JQ
895 /* array of pages to sent */
896 MultiFDPages_t *pages;
6df264ac
JQ
897 /* syncs main thread and channels */
898 QemuSemaphore sem_sync;
899 /* global number of generated multifd packets */
900 uint64_t packet_num;
b9ee2f7d
JQ
901 /* send channels ready */
902 QemuSemaphore channels_ready;
f986c3d2
JQ
903} *multifd_send_state;
904
b9ee2f7d
JQ
905/*
906 * How we use multifd_send_state->pages and channel->pages?
907 *
908 * We create a pages for each channel, and a main one. Each time that
909 * we need to send a batch of pages we interchange the ones between
910 * multifd_send_state and the channel that is sending it. There are
911 * two reasons for that:
912 * - to not have to do so many mallocs during migration
913 * - to make easier to know what to free at the end of migration
914 *
915 * This way we always know who is the owner of each "pages" struct,
a5f7b1a6 916 * and we don't need any locking. It belongs to the migration thread
b9ee2f7d
JQ
917 * or to the channel thread. Switching is safe because the migration
918 * thread is using the channel mutex when changing it, and the channel
919 * have to had finish with its own, otherwise pending_job can't be
920 * false.
921 */
922
923static void multifd_send_pages(void)
924{
925 int i;
926 static int next_channel;
927 MultiFDSendParams *p = NULL; /* make happy gcc */
928 MultiFDPages_t *pages = multifd_send_state->pages;
929 uint64_t transferred;
930
931 qemu_sem_wait(&multifd_send_state->channels_ready);
932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
933 p = &multifd_send_state->params[i];
934
935 qemu_mutex_lock(&p->mutex);
936 if (!p->pending_job) {
937 p->pending_job++;
938 next_channel = (i + 1) % migrate_multifd_channels();
939 break;
940 }
941 qemu_mutex_unlock(&p->mutex);
942 }
943 p->pages->used = 0;
944
945 p->packet_num = multifd_send_state->packet_num++;
946 p->pages->block = NULL;
947 multifd_send_state->pages = p->pages;
948 p->pages = pages;
4fcefd44 949 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
950 ram_counters.multifd_bytes += transferred;
951 ram_counters.transferred += transferred;;
952 qemu_mutex_unlock(&p->mutex);
953 qemu_sem_post(&p->sem);
954}
955
956static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
957{
958 MultiFDPages_t *pages = multifd_send_state->pages;
959
960 if (!pages->block) {
961 pages->block = block;
962 }
963
964 if (pages->block == block) {
965 pages->offset[pages->used] = offset;
966 pages->iov[pages->used].iov_base = block->host + offset;
967 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
968 pages->used++;
969
970 if (pages->used < pages->allocated) {
971 return;
972 }
973 }
974
975 multifd_send_pages();
976
977 if (pages->block != block) {
978 multifd_queue_page(block, offset);
979 }
980}
981
66770707 982static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
983{
984 int i;
985
7a169d74
JQ
986 if (err) {
987 MigrationState *s = migrate_get_current();
988 migrate_set_error(s, err);
989 if (s->state == MIGRATION_STATUS_SETUP ||
990 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
991 s->state == MIGRATION_STATUS_DEVICE ||
992 s->state == MIGRATION_STATUS_ACTIVE) {
993 migrate_set_state(&s->state, s->state,
994 MIGRATION_STATUS_FAILED);
995 }
996 }
997
66770707 998 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
999 MultiFDSendParams *p = &multifd_send_state->params[i];
1000
1001 qemu_mutex_lock(&p->mutex);
1002 p->quit = true;
1003 qemu_sem_post(&p->sem);
1004 qemu_mutex_unlock(&p->mutex);
1005 }
1006}
1007
1398b2e3 1008void multifd_save_cleanup(void)
f986c3d2
JQ
1009{
1010 int i;
f986c3d2
JQ
1011
1012 if (!migrate_use_multifd()) {
1398b2e3 1013 return;
f986c3d2 1014 }
66770707
JQ
1015 multifd_send_terminate_threads(NULL);
1016 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1017 MultiFDSendParams *p = &multifd_send_state->params[i];
1018
66770707
JQ
1019 if (p->running) {
1020 qemu_thread_join(&p->thread);
1021 }
60df2d4a
JQ
1022 socket_send_channel_destroy(p->c);
1023 p->c = NULL;
f986c3d2
JQ
1024 qemu_mutex_destroy(&p->mutex);
1025 qemu_sem_destroy(&p->sem);
1026 g_free(p->name);
1027 p->name = NULL;
34c55a94
JQ
1028 multifd_pages_clear(p->pages);
1029 p->pages = NULL;
2a26c979
JQ
1030 p->packet_len = 0;
1031 g_free(p->packet);
1032 p->packet = NULL;
f986c3d2 1033 }
b9ee2f7d 1034 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1035 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1036 g_free(multifd_send_state->params);
1037 multifd_send_state->params = NULL;
34c55a94
JQ
1038 multifd_pages_clear(multifd_send_state->pages);
1039 multifd_send_state->pages = NULL;
f986c3d2
JQ
1040 g_free(multifd_send_state);
1041 multifd_send_state = NULL;
f986c3d2
JQ
1042}
1043
6df264ac
JQ
1044static void multifd_send_sync_main(void)
1045{
1046 int i;
1047
1048 if (!migrate_use_multifd()) {
1049 return;
1050 }
b9ee2f7d
JQ
1051 if (multifd_send_state->pages->used) {
1052 multifd_send_pages();
1053 }
6df264ac
JQ
1054 for (i = 0; i < migrate_multifd_channels(); i++) {
1055 MultiFDSendParams *p = &multifd_send_state->params[i];
1056
1057 trace_multifd_send_sync_main_signal(p->id);
1058
1059 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
1060
1061 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1062 p->flags |= MULTIFD_FLAG_SYNC;
1063 p->pending_job++;
1064 qemu_mutex_unlock(&p->mutex);
1065 qemu_sem_post(&p->sem);
1066 }
1067 for (i = 0; i < migrate_multifd_channels(); i++) {
1068 MultiFDSendParams *p = &multifd_send_state->params[i];
1069
1070 trace_multifd_send_sync_main_wait(p->id);
1071 qemu_sem_wait(&multifd_send_state->sem_sync);
1072 }
1073 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1074}
1075
f986c3d2
JQ
1076static void *multifd_send_thread(void *opaque)
1077{
1078 MultiFDSendParams *p = opaque;
af8b7d2b 1079 Error *local_err = NULL;
8b2db7f5 1080 int ret;
af8b7d2b 1081
408ea6ae 1082 trace_multifd_send_thread_start(p->id);
74637e6f 1083 rcu_register_thread();
408ea6ae 1084
af8b7d2b
JQ
1085 if (multifd_send_initial_packet(p, &local_err) < 0) {
1086 goto out;
1087 }
408ea6ae
JQ
1088 /* initial packet */
1089 p->num_packets = 1;
f986c3d2
JQ
1090
1091 while (true) {
d82628e4 1092 qemu_sem_wait(&p->sem);
f986c3d2 1093 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1094
1095 if (p->pending_job) {
1096 uint32_t used = p->pages->used;
1097 uint64_t packet_num = p->packet_num;
1098 uint32_t flags = p->flags;
1099
2a34ee59 1100 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1101 multifd_send_fill_packet(p);
1102 p->flags = 0;
1103 p->num_packets++;
1104 p->num_pages += used;
1105 p->pages->used = 0;
1106 qemu_mutex_unlock(&p->mutex);
1107
2a34ee59
JQ
1108 trace_multifd_send(p->id, packet_num, used, flags,
1109 p->next_packet_size);
0beb5ed3 1110
8b2db7f5
JQ
1111 ret = qio_channel_write_all(p->c, (void *)p->packet,
1112 p->packet_len, &local_err);
1113 if (ret != 0) {
1114 break;
1115 }
1116
ad24c7cb
JQ
1117 if (used) {
1118 ret = qio_channel_writev_all(p->c, p->pages->iov,
1119 used, &local_err);
1120 if (ret != 0) {
1121 break;
1122 }
8b2db7f5 1123 }
0beb5ed3
JQ
1124
1125 qemu_mutex_lock(&p->mutex);
1126 p->pending_job--;
1127 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1128
1129 if (flags & MULTIFD_FLAG_SYNC) {
1130 qemu_sem_post(&multifd_send_state->sem_sync);
1131 }
b9ee2f7d 1132 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1133 } else if (p->quit) {
f986c3d2
JQ
1134 qemu_mutex_unlock(&p->mutex);
1135 break;
6df264ac
JQ
1136 } else {
1137 qemu_mutex_unlock(&p->mutex);
1138 /* sometimes there are spurious wakeups */
f986c3d2 1139 }
f986c3d2
JQ
1140 }
1141
af8b7d2b
JQ
1142out:
1143 if (local_err) {
1144 multifd_send_terminate_threads(local_err);
1145 }
1146
66770707
JQ
1147 qemu_mutex_lock(&p->mutex);
1148 p->running = false;
1149 qemu_mutex_unlock(&p->mutex);
1150
74637e6f 1151 rcu_unregister_thread();
408ea6ae
JQ
1152 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1153
f986c3d2
JQ
1154 return NULL;
1155}
1156
60df2d4a
JQ
1157static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1158{
1159 MultiFDSendParams *p = opaque;
1160 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1161 Error *local_err = NULL;
1162
1163 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1164 migrate_set_error(migrate_get_current(), local_err);
1165 multifd_save_cleanup();
60df2d4a
JQ
1166 } else {
1167 p->c = QIO_CHANNEL(sioc);
1168 qio_channel_set_delay(p->c, false);
1169 p->running = true;
1170 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1171 QEMU_THREAD_JOINABLE);
60df2d4a
JQ
1172 }
1173}
1174
f986c3d2
JQ
1175int multifd_save_setup(void)
1176{
1177 int thread_count;
efd1a1d6 1178 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1179 uint8_t i;
1180
1181 if (!migrate_use_multifd()) {
1182 return 0;
1183 }
1184 thread_count = migrate_multifd_channels();
1185 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1186 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
34c55a94 1187 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1188 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1189 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1190
f986c3d2
JQ
1191 for (i = 0; i < thread_count; i++) {
1192 MultiFDSendParams *p = &multifd_send_state->params[i];
1193
1194 qemu_mutex_init(&p->mutex);
1195 qemu_sem_init(&p->sem, 0);
1196 p->quit = false;
0beb5ed3 1197 p->pending_job = 0;
f986c3d2 1198 p->id = i;
34c55a94 1199 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1200 p->packet_len = sizeof(MultiFDPacket_t)
1201 + sizeof(ram_addr_t) * page_count;
1202 p->packet = g_malloc0(p->packet_len);
f986c3d2 1203 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1204 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1205 }
1206 return 0;
1207}
1208
f986c3d2
JQ
1209struct {
1210 MultiFDRecvParams *params;
1211 /* number of created threads */
1212 int count;
6df264ac
JQ
1213 /* syncs main thread and channels */
1214 QemuSemaphore sem_sync;
1215 /* global number of generated multifd packets */
1216 uint64_t packet_num;
f986c3d2
JQ
1217} *multifd_recv_state;
1218
66770707 1219static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1220{
1221 int i;
1222
7a169d74
JQ
1223 if (err) {
1224 MigrationState *s = migrate_get_current();
1225 migrate_set_error(s, err);
1226 if (s->state == MIGRATION_STATUS_SETUP ||
1227 s->state == MIGRATION_STATUS_ACTIVE) {
1228 migrate_set_state(&s->state, s->state,
1229 MIGRATION_STATUS_FAILED);
1230 }
1231 }
1232
66770707 1233 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1234 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1235
1236 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1237 /* We could arrive here for two reasons:
1238 - normal quit, i.e. everything went fine, just finished
1239 - error quit: We close the channels so the channel threads
1240 finish the qio_channel_read_all_eof() */
1241 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1242 qemu_mutex_unlock(&p->mutex);
1243 }
1244}
1245
1246int multifd_load_cleanup(Error **errp)
1247{
1248 int i;
1249 int ret = 0;
1250
1251 if (!migrate_use_multifd()) {
1252 return 0;
1253 }
66770707
JQ
1254 multifd_recv_terminate_threads(NULL);
1255 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1256 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1257
66770707
JQ
1258 if (p->running) {
1259 qemu_thread_join(&p->thread);
1260 }
60df2d4a
JQ
1261 object_unref(OBJECT(p->c));
1262 p->c = NULL;
f986c3d2 1263 qemu_mutex_destroy(&p->mutex);
6df264ac 1264 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1265 g_free(p->name);
1266 p->name = NULL;
34c55a94
JQ
1267 multifd_pages_clear(p->pages);
1268 p->pages = NULL;
2a26c979
JQ
1269 p->packet_len = 0;
1270 g_free(p->packet);
1271 p->packet = NULL;
f986c3d2 1272 }
6df264ac 1273 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1274 g_free(multifd_recv_state->params);
1275 multifd_recv_state->params = NULL;
1276 g_free(multifd_recv_state);
1277 multifd_recv_state = NULL;
1278
1279 return ret;
1280}
1281
6df264ac
JQ
1282static void multifd_recv_sync_main(void)
1283{
1284 int i;
1285
1286 if (!migrate_use_multifd()) {
1287 return;
1288 }
1289 for (i = 0; i < migrate_multifd_channels(); i++) {
1290 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1291
6df264ac
JQ
1292 trace_multifd_recv_sync_main_wait(p->id);
1293 qemu_sem_wait(&multifd_recv_state->sem_sync);
1294 qemu_mutex_lock(&p->mutex);
1295 if (multifd_recv_state->packet_num < p->packet_num) {
1296 multifd_recv_state->packet_num = p->packet_num;
1297 }
1298 qemu_mutex_unlock(&p->mutex);
1299 }
1300 for (i = 0; i < migrate_multifd_channels(); i++) {
1301 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1302
1303 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1304 qemu_sem_post(&p->sem_sync);
1305 }
1306 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1307}
1308
f986c3d2
JQ
1309static void *multifd_recv_thread(void *opaque)
1310{
1311 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1312 Error *local_err = NULL;
1313 int ret;
f986c3d2 1314
408ea6ae 1315 trace_multifd_recv_thread_start(p->id);
74637e6f 1316 rcu_register_thread();
408ea6ae 1317
f986c3d2 1318 while (true) {
6df264ac
JQ
1319 uint32_t used;
1320 uint32_t flags;
0beb5ed3 1321
8b2db7f5
JQ
1322 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1323 p->packet_len, &local_err);
1324 if (ret == 0) { /* EOF */
1325 break;
1326 }
1327 if (ret == -1) { /* Error */
1328 break;
1329 }
2a26c979 1330
6df264ac
JQ
1331 qemu_mutex_lock(&p->mutex);
1332 ret = multifd_recv_unfill_packet(p, &local_err);
1333 if (ret) {
f986c3d2
JQ
1334 qemu_mutex_unlock(&p->mutex);
1335 break;
1336 }
6df264ac
JQ
1337
1338 used = p->pages->used;
1339 flags = p->flags;
2a34ee59
JQ
1340 trace_multifd_recv(p->id, p->packet_num, used, flags,
1341 p->next_packet_size);
6df264ac
JQ
1342 p->num_packets++;
1343 p->num_pages += used;
f986c3d2 1344 qemu_mutex_unlock(&p->mutex);
6df264ac 1345
ad24c7cb
JQ
1346 if (used) {
1347 ret = qio_channel_readv_all(p->c, p->pages->iov,
1348 used, &local_err);
1349 if (ret != 0) {
1350 break;
1351 }
8b2db7f5
JQ
1352 }
1353
6df264ac
JQ
1354 if (flags & MULTIFD_FLAG_SYNC) {
1355 qemu_sem_post(&multifd_recv_state->sem_sync);
1356 qemu_sem_wait(&p->sem_sync);
1357 }
f986c3d2
JQ
1358 }
1359
d82628e4
JQ
1360 if (local_err) {
1361 multifd_recv_terminate_threads(local_err);
1362 }
66770707
JQ
1363 qemu_mutex_lock(&p->mutex);
1364 p->running = false;
1365 qemu_mutex_unlock(&p->mutex);
1366
74637e6f 1367 rcu_unregister_thread();
408ea6ae
JQ
1368 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1369
f986c3d2
JQ
1370 return NULL;
1371}
1372
1373int multifd_load_setup(void)
1374{
1375 int thread_count;
efd1a1d6 1376 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1377 uint8_t i;
1378
1379 if (!migrate_use_multifd()) {
1380 return 0;
1381 }
1382 thread_count = migrate_multifd_channels();
1383 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1384 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1385 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1386 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1387
f986c3d2
JQ
1388 for (i = 0; i < thread_count; i++) {
1389 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1390
1391 qemu_mutex_init(&p->mutex);
6df264ac 1392 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1393 p->id = i;
34c55a94 1394 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1395 p->packet_len = sizeof(MultiFDPacket_t)
1396 + sizeof(ram_addr_t) * page_count;
1397 p->packet = g_malloc0(p->packet_len);
f986c3d2 1398 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1399 }
1400 return 0;
1401}
1402
62c1e0ca
JQ
1403bool multifd_recv_all_channels_created(void)
1404{
1405 int thread_count = migrate_multifd_channels();
1406
1407 if (!migrate_use_multifd()) {
1408 return true;
1409 }
1410
1411 return thread_count == atomic_read(&multifd_recv_state->count);
1412}
1413
49ed0d24
FL
1414/*
1415 * Try to receive all multifd channels to get ready for the migration.
1416 * - Return true and do not set @errp when correctly receving all channels;
1417 * - Return false and do not set @errp when correctly receiving the current one;
1418 * - Return false and set @errp when failing to receive the current channel.
1419 */
1420bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1421{
60df2d4a 1422 MultiFDRecvParams *p;
af8b7d2b
JQ
1423 Error *local_err = NULL;
1424 int id;
60df2d4a 1425
af8b7d2b
JQ
1426 id = multifd_recv_initial_packet(ioc, &local_err);
1427 if (id < 0) {
1428 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1429 error_propagate_prepend(errp, local_err,
1430 "failed to receive packet"
1431 " via multifd channel %d: ",
1432 atomic_read(&multifd_recv_state->count));
81e62053 1433 return false;
af8b7d2b
JQ
1434 }
1435
1436 p = &multifd_recv_state->params[id];
1437 if (p->c != NULL) {
1438 error_setg(&local_err, "multifd: received id '%d' already setup'",
1439 id);
1440 multifd_recv_terminate_threads(local_err);
49ed0d24 1441 error_propagate(errp, local_err);
81e62053 1442 return false;
af8b7d2b 1443 }
60df2d4a
JQ
1444 p->c = ioc;
1445 object_ref(OBJECT(ioc));
408ea6ae
JQ
1446 /* initial packet */
1447 p->num_packets = 1;
60df2d4a
JQ
1448
1449 p->running = true;
1450 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1451 QEMU_THREAD_JOINABLE);
1452 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1453 return atomic_read(&multifd_recv_state->count) ==
1454 migrate_multifd_channels();
71bb07db
JQ
1455}
1456
56e93d26 1457/**
3d0684b2 1458 * save_page_header: write page header to wire
56e93d26
JQ
1459 *
1460 * If this is the 1st block, it also writes the block identification
1461 *
3d0684b2 1462 * Returns the number of bytes written
56e93d26
JQ
1463 *
1464 * @f: QEMUFile where to send the data
1465 * @block: block that contains the page we want to send
1466 * @offset: offset inside the block for the page
1467 * in the lower bits, it contains flags
1468 */
2bf3aa85
JQ
1469static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1470 ram_addr_t offset)
56e93d26 1471{
9f5f380b 1472 size_t size, len;
56e93d26 1473
24795694
JQ
1474 if (block == rs->last_sent_block) {
1475 offset |= RAM_SAVE_FLAG_CONTINUE;
1476 }
2bf3aa85 1477 qemu_put_be64(f, offset);
56e93d26
JQ
1478 size = 8;
1479
1480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1481 len = strlen(block->idstr);
2bf3aa85
JQ
1482 qemu_put_byte(f, len);
1483 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1484 size += 1 + len;
24795694 1485 rs->last_sent_block = block;
56e93d26
JQ
1486 }
1487 return size;
1488}
1489
3d0684b2
JQ
1490/**
1491 * mig_throttle_guest_down: throotle down the guest
1492 *
1493 * Reduce amount of guest cpu execution to hopefully slow down memory
1494 * writes. If guest dirty memory rate is reduced below the rate at
1495 * which we can transfer pages to the destination then we should be
1496 * able to complete migration. Some workloads dirty memory way too
1497 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1498 */
1499static void mig_throttle_guest_down(void)
1500{
1501 MigrationState *s = migrate_get_current();
2594f56d
DB
1502 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1503 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1504 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1505
1506 /* We have not started throttling yet. Let's start it. */
1507 if (!cpu_throttle_active()) {
1508 cpu_throttle_set(pct_initial);
1509 } else {
1510 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1511 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1512 pct_max));
070afca2
JH
1513 }
1514}
1515
3d0684b2
JQ
1516/**
1517 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1518 *
6f37bb8b 1519 * @rs: current RAM state
3d0684b2
JQ
1520 * @current_addr: address for the zero page
1521 *
1522 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1523 * The important thing is that a stale (not-yet-0'd) page be replaced
1524 * by the new data.
1525 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1526 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1527 */
6f37bb8b 1528static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1529{
6f37bb8b 1530 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1531 return;
1532 }
1533
1534 /* We don't care if this fails to allocate a new cache page
1535 * as long as it updated an old one */
c00e0928 1536 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1537 ram_counters.dirty_sync_count);
56e93d26
JQ
1538}
1539
1540#define ENCODING_FLAG_XBZRLE 0x1
1541
1542/**
1543 * save_xbzrle_page: compress and send current page
1544 *
1545 * Returns: 1 means that we wrote the page
1546 * 0 means that page is identical to the one already sent
1547 * -1 means that xbzrle would be longer than normal
1548 *
5a987738 1549 * @rs: current RAM state
3d0684b2
JQ
1550 * @current_data: pointer to the address of the page contents
1551 * @current_addr: addr of the page
56e93d26
JQ
1552 * @block: block that contains the page we want to send
1553 * @offset: offset inside the block for the page
1554 * @last_stage: if we are at the completion stage
56e93d26 1555 */
204b88b8 1556static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1557 ram_addr_t current_addr, RAMBlock *block,
072c2511 1558 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1559{
1560 int encoded_len = 0, bytes_xbzrle;
1561 uint8_t *prev_cached_page;
1562
9360447d
JQ
1563 if (!cache_is_cached(XBZRLE.cache, current_addr,
1564 ram_counters.dirty_sync_count)) {
1565 xbzrle_counters.cache_miss++;
56e93d26
JQ
1566 if (!last_stage) {
1567 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1568 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1569 return -1;
1570 } else {
1571 /* update *current_data when the page has been
1572 inserted into cache */
1573 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1574 }
1575 }
1576 return -1;
1577 }
1578
1579 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1580
1581 /* save current buffer into memory */
1582 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1583
1584 /* XBZRLE encoding (if there is no overflow) */
1585 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1586 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1587 TARGET_PAGE_SIZE);
ca353803
WY
1588
1589 /*
1590 * Update the cache contents, so that it corresponds to the data
1591 * sent, in all cases except where we skip the page.
1592 */
1593 if (!last_stage && encoded_len != 0) {
1594 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1595 /*
1596 * In the case where we couldn't compress, ensure that the caller
1597 * sends the data from the cache, since the guest might have
1598 * changed the RAM since we copied it.
1599 */
1600 *current_data = prev_cached_page;
1601 }
1602
56e93d26 1603 if (encoded_len == 0) {
55c4446b 1604 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1605 return 0;
1606 } else if (encoded_len == -1) {
55c4446b 1607 trace_save_xbzrle_page_overflow();
9360447d 1608 xbzrle_counters.overflow++;
56e93d26
JQ
1609 return -1;
1610 }
1611
56e93d26 1612 /* Send XBZRLE based compressed page */
2bf3aa85 1613 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1614 offset | RAM_SAVE_FLAG_XBZRLE);
1615 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1616 qemu_put_be16(rs->f, encoded_len);
1617 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1618 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1619 xbzrle_counters.pages++;
1620 xbzrle_counters.bytes += bytes_xbzrle;
1621 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1622
1623 return 1;
1624}
1625
3d0684b2
JQ
1626/**
1627 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1628 *
a5f7b1a6 1629 * Returns the page offset within memory region of the start of a dirty page
3d0684b2 1630 *
6f37bb8b 1631 * @rs: current RAM state
3d0684b2 1632 * @rb: RAMBlock where to search for dirty pages
a935e30f 1633 * @start: page where we start the search
f3f491fc 1634 */
56e93d26 1635static inline
a935e30f 1636unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1637 unsigned long start)
56e93d26 1638{
6b6712ef
JQ
1639 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1640 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1641 unsigned long next;
1642
fbd162e6 1643 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1644 return size;
1645 }
1646
6eeb63f7
WW
1647 /*
1648 * When the free page optimization is enabled, we need to check the bitmap
1649 * to send the non-free pages rather than all the pages in the bulk stage.
1650 */
1651 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1652 next = start + 1;
56e93d26 1653 } else {
6b6712ef 1654 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1655 }
1656
6b6712ef 1657 return next;
56e93d26
JQ
1658}
1659
06b10688 1660static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1661 RAMBlock *rb,
1662 unsigned long page)
a82d593b
DDAG
1663{
1664 bool ret;
a82d593b 1665
386a907b 1666 qemu_mutex_lock(&rs->bitmap_mutex);
6b6712ef 1667 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1668
1669 if (ret) {
0d8ec885 1670 rs->migration_dirty_pages--;
a82d593b 1671 }
386a907b
WW
1672 qemu_mutex_unlock(&rs->bitmap_mutex);
1673
a82d593b
DDAG
1674 return ret;
1675}
1676
15440dd5 1677static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
bf212979 1678 ram_addr_t length)
56e93d26 1679{
0d8ec885 1680 rs->migration_dirty_pages +=
bf212979 1681 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length,
0d8ec885 1682 &rs->num_dirty_pages_period);
56e93d26
JQ
1683}
1684
3d0684b2
JQ
1685/**
1686 * ram_pagesize_summary: calculate all the pagesizes of a VM
1687 *
1688 * Returns a summary bitmap of the page sizes of all RAMBlocks
1689 *
1690 * For VMs with just normal pages this is equivalent to the host page
1691 * size. If it's got some huge pages then it's the OR of all the
1692 * different page sizes.
e8ca1db2
DDAG
1693 */
1694uint64_t ram_pagesize_summary(void)
1695{
1696 RAMBlock *block;
1697 uint64_t summary = 0;
1698
fbd162e6 1699 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1700 summary |= block->page_size;
1701 }
1702
1703 return summary;
1704}
1705
aecbfe9c
XG
1706uint64_t ram_get_total_transferred_pages(void)
1707{
1708 return ram_counters.normal + ram_counters.duplicate +
1709 compression_counters.pages + xbzrle_counters.pages;
1710}
1711
b734035b
XG
1712static void migration_update_rates(RAMState *rs, int64_t end_time)
1713{
be8b02ed 1714 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1715 double compressed_size;
b734035b
XG
1716
1717 /* calculate period counters */
1718 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1719 / (end_time - rs->time_last_bitmap_sync);
1720
be8b02ed 1721 if (!page_count) {
b734035b
XG
1722 return;
1723 }
1724
1725 if (migrate_use_xbzrle()) {
1726 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1727 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1728 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1729 }
76e03000
XG
1730
1731 if (migrate_use_compression()) {
1732 compression_counters.busy_rate = (double)(compression_counters.busy -
1733 rs->compress_thread_busy_prev) / page_count;
1734 rs->compress_thread_busy_prev = compression_counters.busy;
1735
1736 compressed_size = compression_counters.compressed_size -
1737 rs->compressed_size_prev;
1738 if (compressed_size) {
1739 double uncompressed_size = (compression_counters.pages -
1740 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1741
1742 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1743 compression_counters.compression_rate =
1744 uncompressed_size / compressed_size;
1745
1746 rs->compress_pages_prev = compression_counters.pages;
1747 rs->compressed_size_prev = compression_counters.compressed_size;
1748 }
1749 }
b734035b
XG
1750}
1751
8d820d6f 1752static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1753{
1754 RAMBlock *block;
56e93d26 1755 int64_t end_time;
c4bdf0cf 1756 uint64_t bytes_xfer_now;
56e93d26 1757
9360447d 1758 ram_counters.dirty_sync_count++;
56e93d26 1759
f664da80
JQ
1760 if (!rs->time_last_bitmap_sync) {
1761 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1762 }
1763
1764 trace_migration_bitmap_sync_start();
9c1f8f44 1765 memory_global_dirty_log_sync();
56e93d26 1766
108cfae0 1767 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1768 rcu_read_lock();
fbd162e6 1769 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 1770 migration_bitmap_sync_range(rs, block, block->used_length);
56e93d26 1771 }
650af890 1772 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1773 rcu_read_unlock();
108cfae0 1774 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1775
a66cd90c 1776 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1777
56e93d26
JQ
1778 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1779
1780 /* more than 1 second = 1000 millisecons */
f664da80 1781 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1782 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1783
9ac78b61
PL
1784 /* During block migration the auto-converge logic incorrectly detects
1785 * that ram migration makes no progress. Avoid this by disabling the
1786 * throttling logic during the bulk phase of block migration. */
1787 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1788 /* The following detection logic can be refined later. For now:
1789 Check to see if the dirtied bytes is 50% more than the approx.
1790 amount of bytes that just got transferred since the last time we
070afca2
JH
1791 were in this routine. If that happens twice, start or increase
1792 throttling */
070afca2 1793
d693c6f1 1794 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1795 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1796 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1797 trace_migration_throttle();
8d820d6f 1798 rs->dirty_rate_high_cnt = 0;
070afca2 1799 mig_throttle_guest_down();
d693c6f1 1800 }
56e93d26 1801 }
070afca2 1802
b734035b
XG
1803 migration_update_rates(rs, end_time);
1804
be8b02ed 1805 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1806
1807 /* reset period counters */
f664da80 1808 rs->time_last_bitmap_sync = end_time;
a66cd90c 1809 rs->num_dirty_pages_period = 0;
d2a4d85a 1810 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1811 }
4addcd4f 1812 if (migrate_use_events()) {
3ab72385 1813 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1814 }
56e93d26
JQ
1815}
1816
bd227060
WW
1817static void migration_bitmap_sync_precopy(RAMState *rs)
1818{
1819 Error *local_err = NULL;
1820
1821 /*
1822 * The current notifier usage is just an optimization to migration, so we
1823 * don't stop the normal migration process in the error case.
1824 */
1825 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1826 error_report_err(local_err);
1827 }
1828
1829 migration_bitmap_sync(rs);
1830
1831 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1832 error_report_err(local_err);
1833 }
1834}
1835
6c97ec5f
XG
1836/**
1837 * save_zero_page_to_file: send the zero page to the file
1838 *
1839 * Returns the size of data written to the file, 0 means the page is not
1840 * a zero page
1841 *
1842 * @rs: current RAM state
1843 * @file: the file where the data is saved
1844 * @block: block that contains the page we want to send
1845 * @offset: offset inside the block for the page
1846 */
1847static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1848 RAMBlock *block, ram_addr_t offset)
1849{
1850 uint8_t *p = block->host + offset;
1851 int len = 0;
1852
1853 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1854 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1855 qemu_put_byte(file, 0);
1856 len += 1;
1857 }
1858 return len;
1859}
1860
56e93d26 1861/**
3d0684b2 1862 * save_zero_page: send the zero page to the stream
56e93d26 1863 *
3d0684b2 1864 * Returns the number of pages written.
56e93d26 1865 *
f7ccd61b 1866 * @rs: current RAM state
56e93d26
JQ
1867 * @block: block that contains the page we want to send
1868 * @offset: offset inside the block for the page
56e93d26 1869 */
7faccdc3 1870static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1871{
6c97ec5f 1872 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1873
6c97ec5f 1874 if (len) {
9360447d 1875 ram_counters.duplicate++;
6c97ec5f
XG
1876 ram_counters.transferred += len;
1877 return 1;
56e93d26 1878 }
6c97ec5f 1879 return -1;
56e93d26
JQ
1880}
1881
5727309d 1882static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1883{
5727309d 1884 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1885 return;
1886 }
1887
aaa2064c 1888 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1889}
1890
059ff0fb
XG
1891/*
1892 * @pages: the number of pages written by the control path,
1893 * < 0 - error
1894 * > 0 - number of pages written
1895 *
1896 * Return true if the pages has been saved, otherwise false is returned.
1897 */
1898static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1899 int *pages)
1900{
1901 uint64_t bytes_xmit = 0;
1902 int ret;
1903
1904 *pages = -1;
1905 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1906 &bytes_xmit);
1907 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1908 return false;
1909 }
1910
1911 if (bytes_xmit) {
1912 ram_counters.transferred += bytes_xmit;
1913 *pages = 1;
1914 }
1915
1916 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1917 return true;
1918 }
1919
1920 if (bytes_xmit > 0) {
1921 ram_counters.normal++;
1922 } else if (bytes_xmit == 0) {
1923 ram_counters.duplicate++;
1924 }
1925
1926 return true;
1927}
1928
65dacaa0
XG
1929/*
1930 * directly send the page to the stream
1931 *
1932 * Returns the number of pages written.
1933 *
1934 * @rs: current RAM state
1935 * @block: block that contains the page we want to send
1936 * @offset: offset inside the block for the page
1937 * @buf: the page to be sent
1938 * @async: send to page asyncly
1939 */
1940static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1941 uint8_t *buf, bool async)
1942{
1943 ram_counters.transferred += save_page_header(rs, rs->f, block,
1944 offset | RAM_SAVE_FLAG_PAGE);
1945 if (async) {
1946 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1947 migrate_release_ram() &
1948 migration_in_postcopy());
1949 } else {
1950 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1951 }
1952 ram_counters.transferred += TARGET_PAGE_SIZE;
1953 ram_counters.normal++;
1954 return 1;
1955}
1956
56e93d26 1957/**
3d0684b2 1958 * ram_save_page: send the given page to the stream
56e93d26 1959 *
3d0684b2 1960 * Returns the number of pages written.
3fd3c4b3
DDAG
1961 * < 0 - error
1962 * >=0 - Number of pages written - this might legally be 0
1963 * if xbzrle noticed the page was the same.
56e93d26 1964 *
6f37bb8b 1965 * @rs: current RAM state
56e93d26
JQ
1966 * @block: block that contains the page we want to send
1967 * @offset: offset inside the block for the page
1968 * @last_stage: if we are at the completion stage
56e93d26 1969 */
a0a8aa14 1970static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1971{
1972 int pages = -1;
56e93d26 1973 uint8_t *p;
56e93d26 1974 bool send_async = true;
a08f6890 1975 RAMBlock *block = pss->block;
a935e30f 1976 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1977 ram_addr_t current_addr = block->offset + offset;
56e93d26 1978
2f68e399 1979 p = block->host + offset;
1db9d8e5 1980 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1981
56e93d26 1982 XBZRLE_cache_lock();
d7400a34
XG
1983 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1984 migrate_use_xbzrle()) {
059ff0fb
XG
1985 pages = save_xbzrle_page(rs, &p, current_addr, block,
1986 offset, last_stage);
1987 if (!last_stage) {
1988 /* Can't send this cached data async, since the cache page
1989 * might get updated before it gets to the wire
56e93d26 1990 */
059ff0fb 1991 send_async = false;
56e93d26
JQ
1992 }
1993 }
1994
1995 /* XBZRLE overflow or normal page */
1996 if (pages == -1) {
65dacaa0 1997 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1998 }
1999
2000 XBZRLE_cache_unlock();
2001
2002 return pages;
2003}
2004
b9ee2f7d
JQ
2005static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
2006 ram_addr_t offset)
2007{
b9ee2f7d 2008 multifd_queue_page(block, offset);
b9ee2f7d
JQ
2009 ram_counters.normal++;
2010
2011 return 1;
2012}
2013
5e5fdcff 2014static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2015 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2016{
53518d94 2017 RAMState *rs = ram_state;
a7a9a88f 2018 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2019 bool zero_page = false;
6ef3771c 2020 int ret;
56e93d26 2021
5e5fdcff
XG
2022 if (save_zero_page_to_file(rs, f, block, offset)) {
2023 zero_page = true;
2024 goto exit;
2025 }
2026
6ef3771c 2027 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2028
2029 /*
2030 * copy it to a internal buffer to avoid it being modified by VM
2031 * so that we can catch up the error during compression and
2032 * decompression
2033 */
2034 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2035 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2036 if (ret < 0) {
2037 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2038 error_report("compressed data failed!");
5e5fdcff 2039 return false;
b3be2896 2040 }
56e93d26 2041
5e5fdcff 2042exit:
6ef3771c 2043 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2044 return zero_page;
2045}
2046
2047static void
2048update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2049{
76e03000
XG
2050 ram_counters.transferred += bytes_xmit;
2051
5e5fdcff
XG
2052 if (param->zero_page) {
2053 ram_counters.duplicate++;
76e03000 2054 return;
5e5fdcff 2055 }
76e03000
XG
2056
2057 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2058 compression_counters.compressed_size += bytes_xmit - 8;
2059 compression_counters.pages++;
56e93d26
JQ
2060}
2061
32b05495
XG
2062static bool save_page_use_compression(RAMState *rs);
2063
ce25d337 2064static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2065{
2066 int idx, len, thread_count;
2067
32b05495 2068 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2069 return;
2070 }
2071 thread_count = migrate_compress_threads();
a7a9a88f 2072
0d9f9a5c 2073 qemu_mutex_lock(&comp_done_lock);
56e93d26 2074 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2075 while (!comp_param[idx].done) {
0d9f9a5c 2076 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2077 }
a7a9a88f 2078 }
0d9f9a5c 2079 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2080
2081 for (idx = 0; idx < thread_count; idx++) {
2082 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2083 if (!comp_param[idx].quit) {
ce25d337 2084 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2085 /*
2086 * it's safe to fetch zero_page without holding comp_done_lock
2087 * as there is no further request submitted to the thread,
2088 * i.e, the thread should be waiting for a request at this point.
2089 */
2090 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2091 }
a7a9a88f 2092 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2093 }
2094}
2095
2096static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2097 ram_addr_t offset)
2098{
2099 param->block = block;
2100 param->offset = offset;
2101}
2102
ce25d337
JQ
2103static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2104 ram_addr_t offset)
56e93d26
JQ
2105{
2106 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2107 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2108
2109 thread_count = migrate_compress_threads();
0d9f9a5c 2110 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2111retry:
2112 for (idx = 0; idx < thread_count; idx++) {
2113 if (comp_param[idx].done) {
2114 comp_param[idx].done = false;
2115 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2116 qemu_mutex_lock(&comp_param[idx].mutex);
2117 set_compress_params(&comp_param[idx], block, offset);
2118 qemu_cond_signal(&comp_param[idx].cond);
2119 qemu_mutex_unlock(&comp_param[idx].mutex);
2120 pages = 1;
5e5fdcff 2121 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2122 break;
56e93d26
JQ
2123 }
2124 }
1d58872a
XG
2125
2126 /*
2127 * wait for the free thread if the user specifies 'compress-wait-thread',
2128 * otherwise we will post the page out in the main thread as normal page.
2129 */
2130 if (pages < 0 && wait) {
2131 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2132 goto retry;
2133 }
0d9f9a5c 2134 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2135
2136 return pages;
2137}
2138
3d0684b2
JQ
2139/**
2140 * find_dirty_block: find the next dirty page and update any state
2141 * associated with the search process.
b9e60928 2142 *
a5f7b1a6 2143 * Returns true if a page is found
b9e60928 2144 *
6f37bb8b 2145 * @rs: current RAM state
3d0684b2
JQ
2146 * @pss: data about the state of the current dirty page scan
2147 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2148 */
f20e2865 2149static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2150{
f20e2865 2151 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2152 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2153 pss->page >= rs->last_page) {
b9e60928
DDAG
2154 /*
2155 * We've been once around the RAM and haven't found anything.
2156 * Give up.
2157 */
2158 *again = false;
2159 return false;
2160 }
a935e30f 2161 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2162 /* Didn't find anything in this RAM Block */
a935e30f 2163 pss->page = 0;
b9e60928
DDAG
2164 pss->block = QLIST_NEXT_RCU(pss->block, next);
2165 if (!pss->block) {
48df9d80
XG
2166 /*
2167 * If memory migration starts over, we will meet a dirtied page
2168 * which may still exists in compression threads's ring, so we
2169 * should flush the compressed data to make sure the new page
2170 * is not overwritten by the old one in the destination.
2171 *
2172 * Also If xbzrle is on, stop using the data compression at this
2173 * point. In theory, xbzrle can do better than compression.
2174 */
2175 flush_compressed_data(rs);
2176
b9e60928
DDAG
2177 /* Hit the end of the list */
2178 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2179 /* Flag that we've looped */
2180 pss->complete_round = true;
6f37bb8b 2181 rs->ram_bulk_stage = false;
b9e60928
DDAG
2182 }
2183 /* Didn't find anything this time, but try again on the new block */
2184 *again = true;
2185 return false;
2186 } else {
2187 /* Can go around again, but... */
2188 *again = true;
2189 /* We've found something so probably don't need to */
2190 return true;
2191 }
2192}
2193
3d0684b2
JQ
2194/**
2195 * unqueue_page: gets a page of the queue
2196 *
a82d593b 2197 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2198 *
3d0684b2
JQ
2199 * Returns the block of the page (or NULL if none available)
2200 *
ec481c6c 2201 * @rs: current RAM state
3d0684b2 2202 * @offset: used to return the offset within the RAMBlock
a82d593b 2203 */
f20e2865 2204static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2205{
2206 RAMBlock *block = NULL;
2207
ae526e32
XG
2208 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2209 return NULL;
2210 }
2211
ec481c6c
JQ
2212 qemu_mutex_lock(&rs->src_page_req_mutex);
2213 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2214 struct RAMSrcPageRequest *entry =
2215 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2216 block = entry->rb;
2217 *offset = entry->offset;
a82d593b
DDAG
2218
2219 if (entry->len > TARGET_PAGE_SIZE) {
2220 entry->len -= TARGET_PAGE_SIZE;
2221 entry->offset += TARGET_PAGE_SIZE;
2222 } else {
2223 memory_region_unref(block->mr);
ec481c6c 2224 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2225 g_free(entry);
e03a34f8 2226 migration_consume_urgent_request();
a82d593b
DDAG
2227 }
2228 }
ec481c6c 2229 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2230
2231 return block;
2232}
2233
3d0684b2 2234/**
ff1543af 2235 * get_queued_page: unqueue a page from the postcopy requests
3d0684b2
JQ
2236 *
2237 * Skips pages that are already sent (!dirty)
a82d593b 2238 *
a5f7b1a6 2239 * Returns true if a queued page is found
a82d593b 2240 *
6f37bb8b 2241 * @rs: current RAM state
3d0684b2 2242 * @pss: data about the state of the current dirty page scan
a82d593b 2243 */
f20e2865 2244static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2245{
2246 RAMBlock *block;
2247 ram_addr_t offset;
2248 bool dirty;
2249
2250 do {
f20e2865 2251 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2252 /*
2253 * We're sending this page, and since it's postcopy nothing else
2254 * will dirty it, and we must make sure it doesn't get sent again
2255 * even if this queue request was received after the background
2256 * search already sent it.
2257 */
2258 if (block) {
f20e2865
JQ
2259 unsigned long page;
2260
6b6712ef
JQ
2261 page = offset >> TARGET_PAGE_BITS;
2262 dirty = test_bit(page, block->bmap);
a82d593b 2263 if (!dirty) {
06b10688 2264 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2265 page, test_bit(page, block->unsentmap));
a82d593b 2266 } else {
f20e2865 2267 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2268 }
2269 }
2270
2271 } while (block && !dirty);
2272
2273 if (block) {
2274 /*
2275 * As soon as we start servicing pages out of order, then we have
2276 * to kill the bulk stage, since the bulk stage assumes
2277 * in (migration_bitmap_find_and_reset_dirty) that every page is
2278 * dirty, that's no longer true.
2279 */
6f37bb8b 2280 rs->ram_bulk_stage = false;
a82d593b
DDAG
2281
2282 /*
2283 * We want the background search to continue from the queued page
2284 * since the guest is likely to want other pages near to the page
2285 * it just requested.
2286 */
2287 pss->block = block;
a935e30f 2288 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
2289 }
2290
2291 return !!block;
2292}
2293
6c595cde 2294/**
5e58f968
JQ
2295 * migration_page_queue_free: drop any remaining pages in the ram
2296 * request queue
6c595cde 2297 *
3d0684b2
JQ
2298 * It should be empty at the end anyway, but in error cases there may
2299 * be some left. in case that there is any page left, we drop it.
2300 *
6c595cde 2301 */
83c13382 2302static void migration_page_queue_free(RAMState *rs)
6c595cde 2303{
ec481c6c 2304 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2305 /* This queue generally should be empty - but in the case of a failed
2306 * migration might have some droppings in.
2307 */
2308 rcu_read_lock();
ec481c6c 2309 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2310 memory_region_unref(mspr->rb->mr);
ec481c6c 2311 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2312 g_free(mspr);
2313 }
2314 rcu_read_unlock();
2315}
2316
2317/**
3d0684b2
JQ
2318 * ram_save_queue_pages: queue the page for transmission
2319 *
2320 * A request from postcopy destination for example.
2321 *
2322 * Returns zero on success or negative on error
2323 *
3d0684b2
JQ
2324 * @rbname: Name of the RAMBLock of the request. NULL means the
2325 * same that last one.
2326 * @start: starting address from the start of the RAMBlock
2327 * @len: length (in bytes) to send
6c595cde 2328 */
96506894 2329int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2330{
2331 RAMBlock *ramblock;
53518d94 2332 RAMState *rs = ram_state;
6c595cde 2333
9360447d 2334 ram_counters.postcopy_requests++;
6c595cde
DDAG
2335 rcu_read_lock();
2336 if (!rbname) {
2337 /* Reuse last RAMBlock */
68a098f3 2338 ramblock = rs->last_req_rb;
6c595cde
DDAG
2339
2340 if (!ramblock) {
2341 /*
2342 * Shouldn't happen, we can't reuse the last RAMBlock if
2343 * it's the 1st request.
2344 */
2345 error_report("ram_save_queue_pages no previous block");
2346 goto err;
2347 }
2348 } else {
2349 ramblock = qemu_ram_block_by_name(rbname);
2350
2351 if (!ramblock) {
2352 /* We shouldn't be asked for a non-existent RAMBlock */
2353 error_report("ram_save_queue_pages no block '%s'", rbname);
2354 goto err;
2355 }
68a098f3 2356 rs->last_req_rb = ramblock;
6c595cde
DDAG
2357 }
2358 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2359 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2360 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2361 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2362 __func__, start, len, ramblock->used_length);
2363 goto err;
2364 }
2365
ec481c6c
JQ
2366 struct RAMSrcPageRequest *new_entry =
2367 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2368 new_entry->rb = ramblock;
2369 new_entry->offset = start;
2370 new_entry->len = len;
2371
2372 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2373 qemu_mutex_lock(&rs->src_page_req_mutex);
2374 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2375 migration_make_urgent_request();
ec481c6c 2376 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2377 rcu_read_unlock();
2378
2379 return 0;
2380
2381err:
2382 rcu_read_unlock();
2383 return -1;
2384}
2385
d7400a34
XG
2386static bool save_page_use_compression(RAMState *rs)
2387{
2388 if (!migrate_use_compression()) {
2389 return false;
2390 }
2391
2392 /*
2393 * If xbzrle is on, stop using the data compression after first
2394 * round of migration even if compression is enabled. In theory,
2395 * xbzrle can do better than compression.
2396 */
2397 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2398 return true;
2399 }
2400
2401 return false;
2402}
2403
5e5fdcff
XG
2404/*
2405 * try to compress the page before posting it out, return true if the page
2406 * has been properly handled by compression, otherwise needs other
2407 * paths to handle it
2408 */
2409static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2410{
2411 if (!save_page_use_compression(rs)) {
2412 return false;
2413 }
2414
2415 /*
2416 * When starting the process of a new block, the first page of
2417 * the block should be sent out before other pages in the same
2418 * block, and all the pages in last block should have been sent
2419 * out, keeping this order is important, because the 'cont' flag
2420 * is used to avoid resending the block name.
2421 *
2422 * We post the fist page as normal page as compression will take
2423 * much CPU resource.
2424 */
2425 if (block != rs->last_sent_block) {
2426 flush_compressed_data(rs);
2427 return false;
2428 }
2429
2430 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2431 return true;
2432 }
2433
76e03000 2434 compression_counters.busy++;
5e5fdcff
XG
2435 return false;
2436}
2437
a82d593b 2438/**
3d0684b2 2439 * ram_save_target_page: save one target page
a82d593b 2440 *
3d0684b2 2441 * Returns the number of pages written
a82d593b 2442 *
6f37bb8b 2443 * @rs: current RAM state
3d0684b2 2444 * @pss: data about the page we want to send
a82d593b 2445 * @last_stage: if we are at the completion stage
a82d593b 2446 */
a0a8aa14 2447static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2448 bool last_stage)
a82d593b 2449{
a8ec91f9
XG
2450 RAMBlock *block = pss->block;
2451 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2452 int res;
2453
2454 if (control_save_page(rs, block, offset, &res)) {
2455 return res;
2456 }
2457
5e5fdcff
XG
2458 if (save_compress_page(rs, block, offset)) {
2459 return 1;
d7400a34
XG
2460 }
2461
2462 res = save_zero_page(rs, block, offset);
2463 if (res > 0) {
2464 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2465 * page would be stale
2466 */
2467 if (!save_page_use_compression(rs)) {
2468 XBZRLE_cache_lock();
2469 xbzrle_cache_zero_page(rs, block->offset + offset);
2470 XBZRLE_cache_unlock();
2471 }
2472 ram_release_pages(block->idstr, offset, res);
2473 return res;
2474 }
2475
da3f56cb 2476 /*
5e5fdcff
XG
2477 * do not use multifd for compression as the first page in the new
2478 * block should be posted out before sending the compressed page
da3f56cb 2479 */
5e5fdcff 2480 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2481 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2482 }
2483
1faa5665 2484 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2485}
2486
2487/**
3d0684b2 2488 * ram_save_host_page: save a whole host page
a82d593b 2489 *
3d0684b2
JQ
2490 * Starting at *offset send pages up to the end of the current host
2491 * page. It's valid for the initial offset to point into the middle of
2492 * a host page in which case the remainder of the hostpage is sent.
2493 * Only dirty target pages are sent. Note that the host page size may
2494 * be a huge page for this block.
1eb3fc0a
DDAG
2495 * The saving stops at the boundary of the used_length of the block
2496 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2497 *
3d0684b2
JQ
2498 * Returns the number of pages written or negative on error
2499 *
6f37bb8b 2500 * @rs: current RAM state
3d0684b2 2501 * @ms: current migration state
3d0684b2 2502 * @pss: data about the page we want to send
a82d593b 2503 * @last_stage: if we are at the completion stage
a82d593b 2504 */
a0a8aa14 2505static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2506 bool last_stage)
a82d593b
DDAG
2507{
2508 int tmppages, pages = 0;
a935e30f
JQ
2509 size_t pagesize_bits =
2510 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2511
fbd162e6 2512 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2513 error_report("block %s should not be migrated !", pss->block->idstr);
2514 return 0;
2515 }
2516
a82d593b 2517 do {
1faa5665
XG
2518 /* Check the pages is dirty and if it is send it */
2519 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2520 pss->page++;
2521 continue;
2522 }
2523
f20e2865 2524 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2525 if (tmppages < 0) {
2526 return tmppages;
2527 }
2528
2529 pages += tmppages;
1faa5665
XG
2530 if (pss->block->unsentmap) {
2531 clear_bit(pss->page, pss->block->unsentmap);
2532 }
2533
a935e30f 2534 pss->page++;
1eb3fc0a
DDAG
2535 } while ((pss->page & (pagesize_bits - 1)) &&
2536 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2537
2538 /* The offset we leave with is the last one we looked at */
a935e30f 2539 pss->page--;
a82d593b
DDAG
2540 return pages;
2541}
6c595cde 2542
56e93d26 2543/**
3d0684b2 2544 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2545 *
2546 * Called within an RCU critical section.
2547 *
e8f3735f
XG
2548 * Returns the number of pages written where zero means no dirty pages,
2549 * or negative on error
56e93d26 2550 *
6f37bb8b 2551 * @rs: current RAM state
56e93d26 2552 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2553 *
2554 * On systems where host-page-size > target-page-size it will send all the
2555 * pages in a host page that are dirty.
56e93d26
JQ
2556 */
2557
ce25d337 2558static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2559{
b8fb8cb7 2560 PageSearchStatus pss;
56e93d26 2561 int pages = 0;
b9e60928 2562 bool again, found;
56e93d26 2563
0827b9e9
AA
2564 /* No dirty page as there is zero RAM */
2565 if (!ram_bytes_total()) {
2566 return pages;
2567 }
2568
6f37bb8b 2569 pss.block = rs->last_seen_block;
a935e30f 2570 pss.page = rs->last_page;
b8fb8cb7
DDAG
2571 pss.complete_round = false;
2572
2573 if (!pss.block) {
2574 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2575 }
56e93d26 2576
b9e60928 2577 do {
a82d593b 2578 again = true;
f20e2865 2579 found = get_queued_page(rs, &pss);
b9e60928 2580
a82d593b
DDAG
2581 if (!found) {
2582 /* priority queue empty, so just search for something dirty */
f20e2865 2583 found = find_dirty_block(rs, &pss, &again);
a82d593b 2584 }
f3f491fc 2585
a82d593b 2586 if (found) {
f20e2865 2587 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2588 }
b9e60928 2589 } while (!pages && again);
56e93d26 2590
6f37bb8b 2591 rs->last_seen_block = pss.block;
a935e30f 2592 rs->last_page = pss.page;
56e93d26
JQ
2593
2594 return pages;
2595}
2596
2597void acct_update_position(QEMUFile *f, size_t size, bool zero)
2598{
2599 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2600
56e93d26 2601 if (zero) {
9360447d 2602 ram_counters.duplicate += pages;
56e93d26 2603 } else {
9360447d
JQ
2604 ram_counters.normal += pages;
2605 ram_counters.transferred += size;
56e93d26
JQ
2606 qemu_update_position(f, size);
2607 }
2608}
2609
fbd162e6 2610static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2611{
2612 RAMBlock *block;
2613 uint64_t total = 0;
2614
2615 rcu_read_lock();
fbd162e6
YK
2616 if (count_ignored) {
2617 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2618 total += block->used_length;
2619 }
2620 } else {
2621 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2622 total += block->used_length;
2623 }
99e15582 2624 }
56e93d26
JQ
2625 rcu_read_unlock();
2626 return total;
2627}
2628
fbd162e6
YK
2629uint64_t ram_bytes_total(void)
2630{
2631 return ram_bytes_total_common(false);
2632}
2633
f265e0e4 2634static void xbzrle_load_setup(void)
56e93d26 2635{
f265e0e4 2636 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2637}
2638
f265e0e4
JQ
2639static void xbzrle_load_cleanup(void)
2640{
2641 g_free(XBZRLE.decoded_buf);
2642 XBZRLE.decoded_buf = NULL;
2643}
2644
7d7c96be
PX
2645static void ram_state_cleanup(RAMState **rsp)
2646{
b9ccaf6d
DDAG
2647 if (*rsp) {
2648 migration_page_queue_free(*rsp);
2649 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2650 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2651 g_free(*rsp);
2652 *rsp = NULL;
2653 }
7d7c96be
PX
2654}
2655
84593a08
PX
2656static void xbzrle_cleanup(void)
2657{
2658 XBZRLE_cache_lock();
2659 if (XBZRLE.cache) {
2660 cache_fini(XBZRLE.cache);
2661 g_free(XBZRLE.encoded_buf);
2662 g_free(XBZRLE.current_buf);
2663 g_free(XBZRLE.zero_target_page);
2664 XBZRLE.cache = NULL;
2665 XBZRLE.encoded_buf = NULL;
2666 XBZRLE.current_buf = NULL;
2667 XBZRLE.zero_target_page = NULL;
2668 }
2669 XBZRLE_cache_unlock();
2670}
2671
f265e0e4 2672static void ram_save_cleanup(void *opaque)
56e93d26 2673{
53518d94 2674 RAMState **rsp = opaque;
6b6712ef 2675 RAMBlock *block;
eb859c53 2676
2ff64038 2677 /* caller have hold iothread lock or is in a bh, so there is
4633456c 2678 * no writing race against the migration bitmap
2ff64038 2679 */
6b6712ef
JQ
2680 memory_global_dirty_log_stop();
2681
fbd162e6 2682 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2683 g_free(block->bmap);
2684 block->bmap = NULL;
2685 g_free(block->unsentmap);
2686 block->unsentmap = NULL;
56e93d26
JQ
2687 }
2688
84593a08 2689 xbzrle_cleanup();
f0afa331 2690 compress_threads_save_cleanup();
7d7c96be 2691 ram_state_cleanup(rsp);
56e93d26
JQ
2692}
2693
6f37bb8b 2694static void ram_state_reset(RAMState *rs)
56e93d26 2695{
6f37bb8b
JQ
2696 rs->last_seen_block = NULL;
2697 rs->last_sent_block = NULL;
269ace29 2698 rs->last_page = 0;
6f37bb8b
JQ
2699 rs->last_version = ram_list.version;
2700 rs->ram_bulk_stage = true;
6eeb63f7 2701 rs->fpo_enabled = false;
56e93d26
JQ
2702}
2703
2704#define MAX_WAIT 50 /* ms, half buffered_file limit */
2705
4f2e4252
DDAG
2706/*
2707 * 'expected' is the value you expect the bitmap mostly to be full
2708 * of; it won't bother printing lines that are all this value.
2709 * If 'todump' is null the migration bitmap is dumped.
2710 */
6b6712ef
JQ
2711void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2712 unsigned long pages)
4f2e4252 2713{
4f2e4252
DDAG
2714 int64_t cur;
2715 int64_t linelen = 128;
2716 char linebuf[129];
2717
6b6712ef 2718 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2719 int64_t curb;
2720 bool found = false;
2721 /*
2722 * Last line; catch the case where the line length
2723 * is longer than remaining ram
2724 */
6b6712ef
JQ
2725 if (cur + linelen > pages) {
2726 linelen = pages - cur;
4f2e4252
DDAG
2727 }
2728 for (curb = 0; curb < linelen; curb++) {
2729 bool thisbit = test_bit(cur + curb, todump);
2730 linebuf[curb] = thisbit ? '1' : '.';
2731 found = found || (thisbit != expected);
2732 }
2733 if (found) {
2734 linebuf[curb] = '\0';
2735 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2736 }
2737 }
2738}
2739
e0b266f0
DDAG
2740/* **** functions for postcopy ***** */
2741
ced1c616
PB
2742void ram_postcopy_migrated_memory_release(MigrationState *ms)
2743{
2744 struct RAMBlock *block;
ced1c616 2745
fbd162e6 2746 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2747 unsigned long *bitmap = block->bmap;
2748 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2749 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2750
2751 while (run_start < range) {
2752 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2753 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2754 (run_end - run_start) << TARGET_PAGE_BITS);
2755 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2756 }
2757 }
2758}
2759
3d0684b2
JQ
2760/**
2761 * postcopy_send_discard_bm_ram: discard a RAMBlock
2762 *
2763 * Returns zero on success
2764 *
e0b266f0
DDAG
2765 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2766 * Note: At this point the 'unsentmap' is the processed bitmap combined
2767 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2768 *
2769 * @ms: current migration state
2770 * @pds: state for postcopy
2771 * @start: RAMBlock starting page
2772 * @length: RAMBlock size
e0b266f0
DDAG
2773 */
2774static int postcopy_send_discard_bm_ram(MigrationState *ms,
2775 PostcopyDiscardState *pds,
6b6712ef 2776 RAMBlock *block)
e0b266f0 2777{
6b6712ef 2778 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2779 unsigned long current;
6b6712ef 2780 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2781
6b6712ef 2782 for (current = 0; current < end; ) {
e0b266f0
DDAG
2783 unsigned long one = find_next_bit(unsentmap, end, current);
2784
2785 if (one <= end) {
2786 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2787 unsigned long discard_length;
2788
2789 if (zero >= end) {
2790 discard_length = end - one;
2791 } else {
2792 discard_length = zero - one;
2793 }
d688c62d
DDAG
2794 if (discard_length) {
2795 postcopy_discard_send_range(ms, pds, one, discard_length);
2796 }
e0b266f0
DDAG
2797 current = one + discard_length;
2798 } else {
2799 current = one;
2800 }
2801 }
2802
2803 return 0;
2804}
2805
3d0684b2
JQ
2806/**
2807 * postcopy_each_ram_send_discard: discard all RAMBlocks
2808 *
2809 * Returns 0 for success or negative for error
2810 *
e0b266f0
DDAG
2811 * Utility for the outgoing postcopy code.
2812 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2813 * passing it bitmap indexes and name.
e0b266f0
DDAG
2814 * (qemu_ram_foreach_block ends up passing unscaled lengths
2815 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2816 *
2817 * @ms: current migration state
e0b266f0
DDAG
2818 */
2819static int postcopy_each_ram_send_discard(MigrationState *ms)
2820{
2821 struct RAMBlock *block;
2822 int ret;
2823
fbd162e6 2824 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2825 PostcopyDiscardState *pds =
2826 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2827
2828 /*
2829 * Postcopy sends chunks of bitmap over the wire, but it
2830 * just needs indexes at this point, avoids it having
2831 * target page specific code.
2832 */
6b6712ef 2833 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2834 postcopy_discard_send_finish(ms, pds);
2835 if (ret) {
2836 return ret;
2837 }
2838 }
2839
2840 return 0;
2841}
2842
3d0684b2
JQ
2843/**
2844 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2845 *
2846 * Helper for postcopy_chunk_hostpages; it's called twice to
2847 * canonicalize the two bitmaps, that are similar, but one is
2848 * inverted.
99e314eb 2849 *
3d0684b2
JQ
2850 * Postcopy requires that all target pages in a hostpage are dirty or
2851 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2852 *
3d0684b2
JQ
2853 * @ms: current migration state
2854 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2855 * otherwise we need to canonicalize partially dirty host pages
2856 * @block: block that contains the page we want to canonicalize
2857 * @pds: state for postcopy
99e314eb
DDAG
2858 */
2859static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2860 RAMBlock *block,
2861 PostcopyDiscardState *pds)
2862{
53518d94 2863 RAMState *rs = ram_state;
6b6712ef
JQ
2864 unsigned long *bitmap = block->bmap;
2865 unsigned long *unsentmap = block->unsentmap;
29c59172 2866 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2867 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2868 unsigned long run_start;
2869
29c59172
DDAG
2870 if (block->page_size == TARGET_PAGE_SIZE) {
2871 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2872 return;
2873 }
2874
99e314eb
DDAG
2875 if (unsent_pass) {
2876 /* Find a sent page */
6b6712ef 2877 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2878 } else {
2879 /* Find a dirty page */
6b6712ef 2880 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2881 }
2882
6b6712ef 2883 while (run_start < pages) {
99e314eb
DDAG
2884 bool do_fixup = false;
2885 unsigned long fixup_start_addr;
2886 unsigned long host_offset;
2887
2888 /*
2889 * If the start of this run of pages is in the middle of a host
2890 * page, then we need to fixup this host page.
2891 */
2892 host_offset = run_start % host_ratio;
2893 if (host_offset) {
2894 do_fixup = true;
2895 run_start -= host_offset;
2896 fixup_start_addr = run_start;
2897 /* For the next pass */
2898 run_start = run_start + host_ratio;
2899 } else {
2900 /* Find the end of this run */
2901 unsigned long run_end;
2902 if (unsent_pass) {
6b6712ef 2903 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2904 } else {
6b6712ef 2905 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2906 }
2907 /*
2908 * If the end isn't at the start of a host page, then the
2909 * run doesn't finish at the end of a host page
2910 * and we need to discard.
2911 */
2912 host_offset = run_end % host_ratio;
2913 if (host_offset) {
2914 do_fixup = true;
2915 fixup_start_addr = run_end - host_offset;
2916 /*
2917 * This host page has gone, the next loop iteration starts
2918 * from after the fixup
2919 */
2920 run_start = fixup_start_addr + host_ratio;
2921 } else {
2922 /*
2923 * No discards on this iteration, next loop starts from
2924 * next sent/dirty page
2925 */
2926 run_start = run_end + 1;
2927 }
2928 }
2929
2930 if (do_fixup) {
2931 unsigned long page;
2932
2933 /* Tell the destination to discard this page */
2934 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2935 /* For the unsent_pass we:
2936 * discard partially sent pages
2937 * For the !unsent_pass (dirty) we:
2938 * discard partially dirty pages that were sent
2939 * (any partially sent pages were already discarded
2940 * by the previous unsent_pass)
2941 */
2942 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2943 host_ratio);
2944 }
2945
2946 /* Clean up the bitmap */
2947 for (page = fixup_start_addr;
2948 page < fixup_start_addr + host_ratio; page++) {
2949 /* All pages in this host page are now not sent */
2950 set_bit(page, unsentmap);
2951
2952 /*
2953 * Remark them as dirty, updating the count for any pages
2954 * that weren't previously dirty.
2955 */
0d8ec885 2956 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2957 }
2958 }
2959
2960 if (unsent_pass) {
2961 /* Find the next sent page for the next iteration */
6b6712ef 2962 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2963 } else {
2964 /* Find the next dirty page for the next iteration */
6b6712ef 2965 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2966 }
2967 }
2968}
2969
3d0684b2
JQ
2970/**
2971 * postcopy_chuck_hostpages: discrad any partially sent host page
2972 *
99e314eb
DDAG
2973 * Utility for the outgoing postcopy code.
2974 *
2975 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2976 * dirty host-page size chunks as all dirty. In this case the host-page
2977 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2978 *
3d0684b2
JQ
2979 * Returns zero on success
2980 *
2981 * @ms: current migration state
6b6712ef 2982 * @block: block we want to work with
99e314eb 2983 */
6b6712ef 2984static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2985{
6b6712ef
JQ
2986 PostcopyDiscardState *pds =
2987 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2988
6b6712ef
JQ
2989 /* First pass: Discard all partially sent host pages */
2990 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2991 /*
2992 * Second pass: Ensure that all partially dirty host pages are made
2993 * fully dirty.
2994 */
2995 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 2996
6b6712ef 2997 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
2998 return 0;
2999}
3000
3d0684b2
JQ
3001/**
3002 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
3003 *
3004 * Returns zero on success
3005 *
e0b266f0
DDAG
3006 * Transmit the set of pages to be discarded after precopy to the target
3007 * these are pages that:
3008 * a) Have been previously transmitted but are now dirty again
3009 * b) Pages that have never been transmitted, this ensures that
3010 * any pages on the destination that have been mapped by background
3011 * tasks get discarded (transparent huge pages is the specific concern)
3012 * Hopefully this is pretty sparse
3d0684b2
JQ
3013 *
3014 * @ms: current migration state
e0b266f0
DDAG
3015 */
3016int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3017{
53518d94 3018 RAMState *rs = ram_state;
6b6712ef 3019 RAMBlock *block;
e0b266f0 3020 int ret;
e0b266f0
DDAG
3021
3022 rcu_read_lock();
3023
3024 /* This should be our last sync, the src is now paused */
eb859c53 3025 migration_bitmap_sync(rs);
e0b266f0 3026
6b6712ef
JQ
3027 /* Easiest way to make sure we don't resume in the middle of a host-page */
3028 rs->last_seen_block = NULL;
3029 rs->last_sent_block = NULL;
3030 rs->last_page = 0;
e0b266f0 3031
fbd162e6 3032 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3033 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3034 unsigned long *bitmap = block->bmap;
3035 unsigned long *unsentmap = block->unsentmap;
3036
3037 if (!unsentmap) {
3038 /* We don't have a safe way to resize the sentmap, so
3039 * if the bitmap was resized it will be NULL at this
3040 * point.
3041 */
3042 error_report("migration ram resized during precopy phase");
3043 rcu_read_unlock();
3044 return -EINVAL;
3045 }
3046 /* Deal with TPS != HPS and huge pages */
3047 ret = postcopy_chunk_hostpages(ms, block);
3048 if (ret) {
3049 rcu_read_unlock();
3050 return ret;
3051 }
e0b266f0 3052
6b6712ef
JQ
3053 /*
3054 * Update the unsentmap to be unsentmap = unsentmap | dirty
3055 */
3056 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3057#ifdef DEBUG_POSTCOPY
6b6712ef 3058 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3059#endif
6b6712ef
JQ
3060 }
3061 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3062
3063 ret = postcopy_each_ram_send_discard(ms);
3064 rcu_read_unlock();
3065
3066 return ret;
3067}
3068
3d0684b2
JQ
3069/**
3070 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3071 *
3d0684b2 3072 * Returns zero on success
e0b266f0 3073 *
36449157
JQ
3074 * @rbname: name of the RAMBlock of the request. NULL means the
3075 * same that last one.
3d0684b2
JQ
3076 * @start: RAMBlock starting page
3077 * @length: RAMBlock size
e0b266f0 3078 */
aaa2064c 3079int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3080{
3081 int ret = -1;
3082
36449157 3083 trace_ram_discard_range(rbname, start, length);
d3a5038c 3084
e0b266f0 3085 rcu_read_lock();
36449157 3086 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3087
3088 if (!rb) {
36449157 3089 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3090 goto err;
3091 }
3092
814bb08f
PX
3093 /*
3094 * On source VM, we don't need to update the received bitmap since
3095 * we don't even have one.
3096 */
3097 if (rb->receivedmap) {
3098 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3099 length >> qemu_target_page_bits());
3100 }
3101
d3a5038c 3102 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3103
3104err:
3105 rcu_read_unlock();
3106
3107 return ret;
3108}
3109
84593a08
PX
3110/*
3111 * For every allocation, we will try not to crash the VM if the
3112 * allocation failed.
3113 */
3114static int xbzrle_init(void)
3115{
3116 Error *local_err = NULL;
3117
3118 if (!migrate_use_xbzrle()) {
3119 return 0;
3120 }
3121
3122 XBZRLE_cache_lock();
3123
3124 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3125 if (!XBZRLE.zero_target_page) {
3126 error_report("%s: Error allocating zero page", __func__);
3127 goto err_out;
3128 }
3129
3130 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3131 TARGET_PAGE_SIZE, &local_err);
3132 if (!XBZRLE.cache) {
3133 error_report_err(local_err);
3134 goto free_zero_page;
3135 }
3136
3137 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3138 if (!XBZRLE.encoded_buf) {
3139 error_report("%s: Error allocating encoded_buf", __func__);
3140 goto free_cache;
3141 }
3142
3143 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3144 if (!XBZRLE.current_buf) {
3145 error_report("%s: Error allocating current_buf", __func__);
3146 goto free_encoded_buf;
3147 }
3148
3149 /* We are all good */
3150 XBZRLE_cache_unlock();
3151 return 0;
3152
3153free_encoded_buf:
3154 g_free(XBZRLE.encoded_buf);
3155 XBZRLE.encoded_buf = NULL;
3156free_cache:
3157 cache_fini(XBZRLE.cache);
3158 XBZRLE.cache = NULL;
3159free_zero_page:
3160 g_free(XBZRLE.zero_target_page);
3161 XBZRLE.zero_target_page = NULL;
3162err_out:
3163 XBZRLE_cache_unlock();
3164 return -ENOMEM;
3165}
3166
53518d94 3167static int ram_state_init(RAMState **rsp)
56e93d26 3168{
7d00ee6a
PX
3169 *rsp = g_try_new0(RAMState, 1);
3170
3171 if (!*rsp) {
3172 error_report("%s: Init ramstate fail", __func__);
3173 return -1;
3174 }
53518d94
JQ
3175
3176 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3177 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3178 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3179
7d00ee6a 3180 /*
03158519
WY
3181 * This must match with the initial values of dirty bitmap.
3182 * Currently we initialize the dirty bitmap to all zeros so
3183 * here the total dirty page count is zero.
7d00ee6a 3184 */
03158519 3185 (*rsp)->migration_dirty_pages = 0;
7d00ee6a
PX
3186 ram_state_reset(*rsp);
3187
3188 return 0;
3189}
3190
d6eff5d7 3191static void ram_list_init_bitmaps(void)
7d00ee6a 3192{
d6eff5d7
PX
3193 RAMBlock *block;
3194 unsigned long pages;
56e93d26 3195
0827b9e9
AA
3196 /* Skip setting bitmap if there is no RAM */
3197 if (ram_bytes_total()) {
fbd162e6 3198 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3199 pages = block->max_length >> TARGET_PAGE_BITS;
03158519
WY
3200 /*
3201 * The initial dirty bitmap for migration must be set with all
3202 * ones to make sure we'll migrate every guest RAM page to
3203 * destination.
3204 * Here we didn't set RAMBlock.bmap simply because it is already
3205 * set in ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION] in
3206 * ram_block_add, and that's where we'll sync the dirty bitmaps.
3207 * Here setting RAMBlock.bmap would be fine too but not necessary.
3208 */
6b6712ef 3209 block->bmap = bitmap_new(pages);
6b6712ef
JQ
3210 if (migrate_postcopy_ram()) {
3211 block->unsentmap = bitmap_new(pages);
3212 bitmap_set(block->unsentmap, 0, pages);
3213 }
0827b9e9 3214 }
f3f491fc 3215 }
d6eff5d7
PX
3216}
3217
3218static void ram_init_bitmaps(RAMState *rs)
3219{
3220 /* For memory_global_dirty_log_start below. */
3221 qemu_mutex_lock_iothread();
3222 qemu_mutex_lock_ramlist();
3223 rcu_read_lock();
f3f491fc 3224
d6eff5d7 3225 ram_list_init_bitmaps();
56e93d26 3226 memory_global_dirty_log_start();
bd227060 3227 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3228
3229 rcu_read_unlock();
56e93d26 3230 qemu_mutex_unlock_ramlist();
49877834 3231 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3232}
3233
3234static int ram_init_all(RAMState **rsp)
3235{
3236 if (ram_state_init(rsp)) {
3237 return -1;
3238 }
3239
3240 if (xbzrle_init()) {
3241 ram_state_cleanup(rsp);
3242 return -1;
3243 }
3244
3245 ram_init_bitmaps(*rsp);
a91246c9
HZ
3246
3247 return 0;
3248}
3249
08614f34
PX
3250static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3251{
3252 RAMBlock *block;
3253 uint64_t pages = 0;
3254
3255 /*
3256 * Postcopy is not using xbzrle/compression, so no need for that.
3257 * Also, since source are already halted, we don't need to care
3258 * about dirty page logging as well.
3259 */
3260
fbd162e6 3261 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3262 pages += bitmap_count_one(block->bmap,
3263 block->used_length >> TARGET_PAGE_BITS);
3264 }
3265
3266 /* This may not be aligned with current bitmaps. Recalculate. */
3267 rs->migration_dirty_pages = pages;
3268
3269 rs->last_seen_block = NULL;
3270 rs->last_sent_block = NULL;
3271 rs->last_page = 0;
3272 rs->last_version = ram_list.version;
3273 /*
3274 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3275 * matter what we have sent.
3276 */
3277 rs->ram_bulk_stage = false;
3278
3279 /* Update RAMState cache of output QEMUFile */
3280 rs->f = out;
3281
3282 trace_ram_state_resume_prepare(pages);
3283}
3284
6bcb05fc
WW
3285/*
3286 * This function clears bits of the free pages reported by the caller from the
3287 * migration dirty bitmap. @addr is the host address corresponding to the
3288 * start of the continuous guest free pages, and @len is the total bytes of
3289 * those pages.
3290 */
3291void qemu_guest_free_page_hint(void *addr, size_t len)
3292{
3293 RAMBlock *block;
3294 ram_addr_t offset;
3295 size_t used_len, start, npages;
3296 MigrationState *s = migrate_get_current();
3297
3298 /* This function is currently expected to be used during live migration */
3299 if (!migration_is_setup_or_active(s->state)) {
3300 return;
3301 }
3302
3303 for (; len > 0; len -= used_len, addr += used_len) {
3304 block = qemu_ram_block_from_host(addr, false, &offset);
3305 if (unlikely(!block || offset >= block->used_length)) {
3306 /*
3307 * The implementation might not support RAMBlock resize during
3308 * live migration, but it could happen in theory with future
3309 * updates. So we add a check here to capture that case.
3310 */
3311 error_report_once("%s unexpected error", __func__);
3312 return;
3313 }
3314
3315 if (len <= block->used_length - offset) {
3316 used_len = len;
3317 } else {
3318 used_len = block->used_length - offset;
3319 }
3320
3321 start = offset >> TARGET_PAGE_BITS;
3322 npages = used_len >> TARGET_PAGE_BITS;
3323
3324 qemu_mutex_lock(&ram_state->bitmap_mutex);
3325 ram_state->migration_dirty_pages -=
3326 bitmap_count_one_with_offset(block->bmap, start, npages);
3327 bitmap_clear(block->bmap, start, npages);
3328 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3329 }
3330}
3331
3d0684b2
JQ
3332/*
3333 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3334 * long-running RCU critical section. When rcu-reclaims in the code
3335 * start to become numerous it will be necessary to reduce the
3336 * granularity of these critical sections.
3337 */
3338
3d0684b2
JQ
3339/**
3340 * ram_save_setup: Setup RAM for migration
3341 *
3342 * Returns zero to indicate success and negative for error
3343 *
3344 * @f: QEMUFile where to send the data
3345 * @opaque: RAMState pointer
3346 */
a91246c9
HZ
3347static int ram_save_setup(QEMUFile *f, void *opaque)
3348{
53518d94 3349 RAMState **rsp = opaque;
a91246c9
HZ
3350 RAMBlock *block;
3351
dcaf446e
XG
3352 if (compress_threads_save_setup()) {
3353 return -1;
3354 }
3355
a91246c9
HZ
3356 /* migration has already setup the bitmap, reuse it. */
3357 if (!migration_in_colo_state()) {
7d00ee6a 3358 if (ram_init_all(rsp) != 0) {
dcaf446e 3359 compress_threads_save_cleanup();
a91246c9 3360 return -1;
53518d94 3361 }
a91246c9 3362 }
53518d94 3363 (*rsp)->f = f;
a91246c9
HZ
3364
3365 rcu_read_lock();
56e93d26 3366
fbd162e6 3367 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3368
b895de50 3369 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3370 qemu_put_byte(f, strlen(block->idstr));
3371 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3372 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3373 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3374 qemu_put_be64(f, block->page_size);
3375 }
fbd162e6
YK
3376 if (migrate_ignore_shared()) {
3377 qemu_put_be64(f, block->mr->addr);
3378 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3379 }
56e93d26
JQ
3380 }
3381
3382 rcu_read_unlock();
3383
3384 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3385 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3386
6df264ac 3387 multifd_send_sync_main();
56e93d26 3388 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3389 qemu_fflush(f);
56e93d26
JQ
3390
3391 return 0;
3392}
3393
3d0684b2
JQ
3394/**
3395 * ram_save_iterate: iterative stage for migration
3396 *
3397 * Returns zero to indicate success and negative for error
3398 *
3399 * @f: QEMUFile where to send the data
3400 * @opaque: RAMState pointer
3401 */
56e93d26
JQ
3402static int ram_save_iterate(QEMUFile *f, void *opaque)
3403{
53518d94
JQ
3404 RAMState **temp = opaque;
3405 RAMState *rs = *temp;
56e93d26
JQ
3406 int ret;
3407 int i;
3408 int64_t t0;
5c90308f 3409 int done = 0;
56e93d26 3410
b2557345
PL
3411 if (blk_mig_bulk_active()) {
3412 /* Avoid transferring ram during bulk phase of block migration as
3413 * the bulk phase will usually take a long time and transferring
3414 * ram updates during that time is pointless. */
3415 goto out;
3416 }
3417
56e93d26 3418 rcu_read_lock();
6f37bb8b
JQ
3419 if (ram_list.version != rs->last_version) {
3420 ram_state_reset(rs);
56e93d26
JQ
3421 }
3422
3423 /* Read version before ram_list.blocks */
3424 smp_rmb();
3425
3426 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3427
3428 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3429 i = 0;
e03a34f8
DDAG
3430 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3431 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3432 int pages;
3433
e03a34f8
DDAG
3434 if (qemu_file_get_error(f)) {
3435 break;
3436 }
3437
ce25d337 3438 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3439 /* no more pages to sent */
3440 if (pages == 0) {
5c90308f 3441 done = 1;
56e93d26
JQ
3442 break;
3443 }
e8f3735f
XG
3444
3445 if (pages < 0) {
3446 qemu_file_set_error(f, pages);
3447 break;
3448 }
3449
be8b02ed 3450 rs->target_page_count += pages;
070afca2 3451
56e93d26
JQ
3452 /* we want to check in the 1st loop, just in case it was the 1st time
3453 and we had to sync the dirty bitmap.
a5f7b1a6 3454 qemu_clock_get_ns() is a bit expensive, so we only check each some
56e93d26
JQ
3455 iterations
3456 */
3457 if ((i & 63) == 0) {
3458 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3459 if (t1 > MAX_WAIT) {
55c4446b 3460 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3461 break;
3462 }
3463 }
3464 i++;
3465 }
56e93d26
JQ
3466 rcu_read_unlock();
3467
3468 /*
3469 * Must occur before EOS (or any QEMUFile operation)
3470 * because of RDMA protocol.
3471 */
3472 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3473
b2557345 3474out:
b6526c4b 3475 multifd_send_sync_main();
56e93d26 3476 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3477 qemu_fflush(f);
9360447d 3478 ram_counters.transferred += 8;
56e93d26
JQ
3479
3480 ret = qemu_file_get_error(f);
3481 if (ret < 0) {
3482 return ret;
3483 }
3484
5c90308f 3485 return done;
56e93d26
JQ
3486}
3487
3d0684b2
JQ
3488/**
3489 * ram_save_complete: function called to send the remaining amount of ram
3490 *
e8f3735f 3491 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3492 *
3493 * Called with iothread lock
3494 *
3495 * @f: QEMUFile where to send the data
3496 * @opaque: RAMState pointer
3497 */
56e93d26
JQ
3498static int ram_save_complete(QEMUFile *f, void *opaque)
3499{
53518d94
JQ
3500 RAMState **temp = opaque;
3501 RAMState *rs = *temp;
e8f3735f 3502 int ret = 0;
6f37bb8b 3503
56e93d26
JQ
3504 rcu_read_lock();
3505
5727309d 3506 if (!migration_in_postcopy()) {
bd227060 3507 migration_bitmap_sync_precopy(rs);
663e6c1d 3508 }
56e93d26
JQ
3509
3510 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3511
3512 /* try transferring iterative blocks of memory */
3513
3514 /* flush all remaining blocks regardless of rate limiting */
3515 while (true) {
3516 int pages;
3517
ce25d337 3518 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3519 /* no more blocks to sent */
3520 if (pages == 0) {
3521 break;
3522 }
e8f3735f
XG
3523 if (pages < 0) {
3524 ret = pages;
3525 break;
3526 }
56e93d26
JQ
3527 }
3528
ce25d337 3529 flush_compressed_data(rs);
56e93d26 3530 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3531
3532 rcu_read_unlock();
d09a6fde 3533
6df264ac 3534 multifd_send_sync_main();
56e93d26 3535 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3536 qemu_fflush(f);
56e93d26 3537
e8f3735f 3538 return ret;
56e93d26
JQ
3539}
3540
c31b098f 3541static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3542 uint64_t *res_precopy_only,
3543 uint64_t *res_compatible,
3544 uint64_t *res_postcopy_only)
56e93d26 3545{
53518d94
JQ
3546 RAMState **temp = opaque;
3547 RAMState *rs = *temp;
56e93d26
JQ
3548 uint64_t remaining_size;
3549
9edabd4d 3550 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3551
5727309d 3552 if (!migration_in_postcopy() &&
663e6c1d 3553 remaining_size < max_size) {
56e93d26
JQ
3554 qemu_mutex_lock_iothread();
3555 rcu_read_lock();
bd227060 3556 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3557 rcu_read_unlock();
3558 qemu_mutex_unlock_iothread();
9edabd4d 3559 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3560 }
c31b098f 3561
86e1167e
VSO
3562 if (migrate_postcopy_ram()) {
3563 /* We can do postcopy, and all the data is postcopiable */
47995026 3564 *res_compatible += remaining_size;
86e1167e 3565 } else {
47995026 3566 *res_precopy_only += remaining_size;
86e1167e 3567 }
56e93d26
JQ
3568}
3569
3570static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3571{
3572 unsigned int xh_len;
3573 int xh_flags;
063e760a 3574 uint8_t *loaded_data;
56e93d26 3575
56e93d26
JQ
3576 /* extract RLE header */
3577 xh_flags = qemu_get_byte(f);
3578 xh_len = qemu_get_be16(f);
3579
3580 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3581 error_report("Failed to load XBZRLE page - wrong compression!");
3582 return -1;
3583 }
3584
3585 if (xh_len > TARGET_PAGE_SIZE) {
3586 error_report("Failed to load XBZRLE page - len overflow!");
3587 return -1;
3588 }
f265e0e4 3589 loaded_data = XBZRLE.decoded_buf;
56e93d26 3590 /* load data and decode */
f265e0e4 3591 /* it can change loaded_data to point to an internal buffer */
063e760a 3592 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3593
3594 /* decode RLE */
063e760a 3595 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3596 TARGET_PAGE_SIZE) == -1) {
3597 error_report("Failed to load XBZRLE page - decode error!");
3598 return -1;
3599 }
3600
3601 return 0;
3602}
3603
3d0684b2
JQ
3604/**
3605 * ram_block_from_stream: read a RAMBlock id from the migration stream
3606 *
3607 * Must be called from within a rcu critical section.
3608 *
56e93d26 3609 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3610 *
3d0684b2
JQ
3611 * @f: QEMUFile where to read the data from
3612 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3613 */
3d0684b2 3614static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3615{
3616 static RAMBlock *block = NULL;
3617 char id[256];
3618 uint8_t len;
3619
3620 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3621 if (!block) {
56e93d26
JQ
3622 error_report("Ack, bad migration stream!");
3623 return NULL;
3624 }
4c4bad48 3625 return block;
56e93d26
JQ
3626 }
3627
3628 len = qemu_get_byte(f);
3629 qemu_get_buffer(f, (uint8_t *)id, len);
3630 id[len] = 0;
3631
e3dd7493 3632 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3633 if (!block) {
3634 error_report("Can't find block %s", id);
3635 return NULL;
56e93d26
JQ
3636 }
3637
fbd162e6 3638 if (ramblock_is_ignored(block)) {
b895de50
CLG
3639 error_report("block %s should not be migrated !", id);
3640 return NULL;
3641 }
3642
4c4bad48
HZ
3643 return block;
3644}
3645
3646static inline void *host_from_ram_block_offset(RAMBlock *block,
3647 ram_addr_t offset)
3648{
3649 if (!offset_in_ramblock(block, offset)) {
3650 return NULL;
3651 }
3652
3653 return block->host + offset;
56e93d26
JQ
3654}
3655
13af18f2
ZC
3656static inline void *colo_cache_from_block_offset(RAMBlock *block,
3657 ram_addr_t offset)
3658{
3659 if (!offset_in_ramblock(block, offset)) {
3660 return NULL;
3661 }
3662 if (!block->colo_cache) {
3663 error_report("%s: colo_cache is NULL in block :%s",
3664 __func__, block->idstr);
3665 return NULL;
3666 }
7d9acafa
ZC
3667
3668 /*
3669 * During colo checkpoint, we need bitmap of these migrated pages.
3670 * It help us to decide which pages in ram cache should be flushed
3671 * into VM's RAM later.
3672 */
3673 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3674 ram_state->migration_dirty_pages++;
3675 }
13af18f2
ZC
3676 return block->colo_cache + offset;
3677}
3678
3d0684b2
JQ
3679/**
3680 * ram_handle_compressed: handle the zero page case
3681 *
56e93d26
JQ
3682 * If a page (or a whole RDMA chunk) has been
3683 * determined to be zero, then zap it.
3d0684b2
JQ
3684 *
3685 * @host: host address for the zero page
3686 * @ch: what the page is filled from. We only support zero
3687 * @size: size of the zero page
56e93d26
JQ
3688 */
3689void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3690{
3691 if (ch != 0 || !is_zero_range(host, size)) {
3692 memset(host, ch, size);
3693 }
3694}
3695
797ca154
XG
3696/* return the size after decompression, or negative value on error */
3697static int
3698qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3699 const uint8_t *source, size_t source_len)
3700{
3701 int err;
3702
3703 err = inflateReset(stream);
3704 if (err != Z_OK) {
3705 return -1;
3706 }
3707
3708 stream->avail_in = source_len;
3709 stream->next_in = (uint8_t *)source;
3710 stream->avail_out = dest_len;
3711 stream->next_out = dest;
3712
3713 err = inflate(stream, Z_NO_FLUSH);
3714 if (err != Z_STREAM_END) {
3715 return -1;
3716 }
3717
3718 return stream->total_out;
3719}
3720
56e93d26
JQ
3721static void *do_data_decompress(void *opaque)
3722{
3723 DecompressParam *param = opaque;
3724 unsigned long pagesize;
33d151f4 3725 uint8_t *des;
34ab9e97 3726 int len, ret;
56e93d26 3727
33d151f4 3728 qemu_mutex_lock(&param->mutex);
90e56fb4 3729 while (!param->quit) {
33d151f4
LL
3730 if (param->des) {
3731 des = param->des;
3732 len = param->len;
3733 param->des = 0;
3734 qemu_mutex_unlock(&param->mutex);
3735
56e93d26 3736 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3737
3738 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3739 param->compbuf, len);
f548222c 3740 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3741 error_report("decompress data failed");
3742 qemu_file_set_error(decomp_file, ret);
3743 }
73a8912b 3744
33d151f4
LL
3745 qemu_mutex_lock(&decomp_done_lock);
3746 param->done = true;
3747 qemu_cond_signal(&decomp_done_cond);
3748 qemu_mutex_unlock(&decomp_done_lock);
3749
3750 qemu_mutex_lock(&param->mutex);
3751 } else {
3752 qemu_cond_wait(&param->cond, &param->mutex);
3753 }
56e93d26 3754 }
33d151f4 3755 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3756
3757 return NULL;
3758}
3759
34ab9e97 3760static int wait_for_decompress_done(void)
5533b2e9
LL
3761{
3762 int idx, thread_count;
3763
3764 if (!migrate_use_compression()) {
34ab9e97 3765 return 0;
5533b2e9
LL
3766 }
3767
3768 thread_count = migrate_decompress_threads();
3769 qemu_mutex_lock(&decomp_done_lock);
3770 for (idx = 0; idx < thread_count; idx++) {
3771 while (!decomp_param[idx].done) {
3772 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3773 }
3774 }
3775 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3776 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3777}
3778
f0afa331 3779static void compress_threads_load_cleanup(void)
56e93d26
JQ
3780{
3781 int i, thread_count;
3782
3416ab5b
JQ
3783 if (!migrate_use_compression()) {
3784 return;
3785 }
56e93d26
JQ
3786 thread_count = migrate_decompress_threads();
3787 for (i = 0; i < thread_count; i++) {
797ca154
XG
3788 /*
3789 * we use it as a indicator which shows if the thread is
3790 * properly init'd or not
3791 */
3792 if (!decomp_param[i].compbuf) {
3793 break;
3794 }
3795
56e93d26 3796 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3797 decomp_param[i].quit = true;
56e93d26
JQ
3798 qemu_cond_signal(&decomp_param[i].cond);
3799 qemu_mutex_unlock(&decomp_param[i].mutex);
3800 }
3801 for (i = 0; i < thread_count; i++) {
797ca154
XG
3802 if (!decomp_param[i].compbuf) {
3803 break;
3804 }
3805
56e93d26
JQ
3806 qemu_thread_join(decompress_threads + i);
3807 qemu_mutex_destroy(&decomp_param[i].mutex);
3808 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3809 inflateEnd(&decomp_param[i].stream);
56e93d26 3810 g_free(decomp_param[i].compbuf);
797ca154 3811 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3812 }
3813 g_free(decompress_threads);
3814 g_free(decomp_param);
56e93d26
JQ
3815 decompress_threads = NULL;
3816 decomp_param = NULL;
34ab9e97 3817 decomp_file = NULL;
56e93d26
JQ
3818}
3819
34ab9e97 3820static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3821{
3822 int i, thread_count;
3823
3824 if (!migrate_use_compression()) {
3825 return 0;
3826 }
3827
3828 thread_count = migrate_decompress_threads();
3829 decompress_threads = g_new0(QemuThread, thread_count);
3830 decomp_param = g_new0(DecompressParam, thread_count);
3831 qemu_mutex_init(&decomp_done_lock);
3832 qemu_cond_init(&decomp_done_cond);
34ab9e97 3833 decomp_file = f;
797ca154
XG
3834 for (i = 0; i < thread_count; i++) {
3835 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3836 goto exit;
3837 }
3838
3839 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3840 qemu_mutex_init(&decomp_param[i].mutex);
3841 qemu_cond_init(&decomp_param[i].cond);
3842 decomp_param[i].done = true;
3843 decomp_param[i].quit = false;
3844 qemu_thread_create(decompress_threads + i, "decompress",
3845 do_data_decompress, decomp_param + i,
3846 QEMU_THREAD_JOINABLE);
3847 }
3848 return 0;
3849exit:
3850 compress_threads_load_cleanup();
3851 return -1;
3852}
3853
c1bc6626 3854static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3855 void *host, int len)
3856{
3857 int idx, thread_count;
3858
3859 thread_count = migrate_decompress_threads();
73a8912b 3860 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3861 while (true) {
3862 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3863 if (decomp_param[idx].done) {
33d151f4
LL
3864 decomp_param[idx].done = false;
3865 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3866 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3867 decomp_param[idx].des = host;
3868 decomp_param[idx].len = len;
33d151f4
LL
3869 qemu_cond_signal(&decomp_param[idx].cond);
3870 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3871 break;
3872 }
3873 }
3874 if (idx < thread_count) {
3875 break;
73a8912b
LL
3876 } else {
3877 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3878 }
3879 }
73a8912b 3880 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3881}
3882
13af18f2
ZC
3883/*
3884 * colo cache: this is for secondary VM, we cache the whole
3885 * memory of the secondary VM, it is need to hold the global lock
3886 * to call this helper.
3887 */
3888int colo_init_ram_cache(void)
3889{
3890 RAMBlock *block;
3891
3892 rcu_read_lock();
fbd162e6 3893 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3894 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3895 NULL,
3896 false);
3897 if (!block->colo_cache) {
3898 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3899 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3900 block->used_length);
3901 goto out_locked;
3902 }
3903 memcpy(block->colo_cache, block->host, block->used_length);
3904 }
3905 rcu_read_unlock();
7d9acafa
ZC
3906 /*
3907 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3908 * with to decide which page in cache should be flushed into SVM's RAM. Here
3909 * we use the same name 'ram_bitmap' as for migration.
3910 */
3911 if (ram_bytes_total()) {
3912 RAMBlock *block;
3913
fbd162e6 3914 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3915 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3916
3917 block->bmap = bitmap_new(pages);
3918 bitmap_set(block->bmap, 0, pages);
3919 }
3920 }
3921 ram_state = g_new0(RAMState, 1);
3922 ram_state->migration_dirty_pages = 0;
c6e5bafb 3923 qemu_mutex_init(&ram_state->bitmap_mutex);
d1955d22 3924 memory_global_dirty_log_start();
7d9acafa 3925
13af18f2
ZC
3926 return 0;
3927
3928out_locked:
7d9acafa 3929
fbd162e6 3930 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3931 if (block->colo_cache) {
3932 qemu_anon_ram_free(block->colo_cache, block->used_length);
3933 block->colo_cache = NULL;
3934 }
3935 }
3936
3937 rcu_read_unlock();
3938 return -errno;
3939}
3940
3941/* It is need to hold the global lock to call this helper */
3942void colo_release_ram_cache(void)
3943{
3944 RAMBlock *block;
3945
d1955d22 3946 memory_global_dirty_log_stop();
fbd162e6 3947 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3948 g_free(block->bmap);
3949 block->bmap = NULL;
3950 }
3951
13af18f2 3952 rcu_read_lock();
7d9acafa 3953
fbd162e6 3954 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3955 if (block->colo_cache) {
3956 qemu_anon_ram_free(block->colo_cache, block->used_length);
3957 block->colo_cache = NULL;
3958 }
3959 }
7d9acafa 3960
13af18f2 3961 rcu_read_unlock();
c6e5bafb 3962 qemu_mutex_destroy(&ram_state->bitmap_mutex);
7d9acafa
ZC
3963 g_free(ram_state);
3964 ram_state = NULL;
13af18f2
ZC
3965}
3966
f265e0e4
JQ
3967/**
3968 * ram_load_setup: Setup RAM for migration incoming side
3969 *
3970 * Returns zero to indicate success and negative for error
3971 *
3972 * @f: QEMUFile where to receive the data
3973 * @opaque: RAMState pointer
3974 */
3975static int ram_load_setup(QEMUFile *f, void *opaque)
3976{
34ab9e97 3977 if (compress_threads_load_setup(f)) {
797ca154
XG
3978 return -1;
3979 }
3980
f265e0e4 3981 xbzrle_load_setup();
f9494614 3982 ramblock_recv_map_init();
13af18f2 3983
f265e0e4
JQ
3984 return 0;
3985}
3986
3987static int ram_load_cleanup(void *opaque)
3988{
f9494614 3989 RAMBlock *rb;
56eb90af 3990
fbd162e6 3991 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
3992 if (ramblock_is_pmem(rb)) {
3993 pmem_persist(rb->host, rb->used_length);
3994 }
3995 }
3996
f265e0e4 3997 xbzrle_load_cleanup();
f0afa331 3998 compress_threads_load_cleanup();
f9494614 3999
fbd162e6 4000 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
4001 g_free(rb->receivedmap);
4002 rb->receivedmap = NULL;
4003 }
13af18f2 4004
f265e0e4
JQ
4005 return 0;
4006}
4007
3d0684b2
JQ
4008/**
4009 * ram_postcopy_incoming_init: allocate postcopy data structures
4010 *
4011 * Returns 0 for success and negative if there was one error
4012 *
4013 * @mis: current migration incoming state
4014 *
4015 * Allocate data structures etc needed by incoming migration with
4016 * postcopy-ram. postcopy-ram's similarly names
4017 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
4018 */
4019int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4020{
c136180c 4021 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4022}
4023
3d0684b2
JQ
4024/**
4025 * ram_load_postcopy: load a page in postcopy case
4026 *
4027 * Returns 0 for success or -errno in case of error
4028 *
a7180877
DDAG
4029 * Called in postcopy mode by ram_load().
4030 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4031 *
4032 * @f: QEMUFile where to send the data
a7180877
DDAG
4033 */
4034static int ram_load_postcopy(QEMUFile *f)
4035{
4036 int flags = 0, ret = 0;
4037 bool place_needed = false;
1aa83678 4038 bool matches_target_page_size = false;
a7180877
DDAG
4039 MigrationIncomingState *mis = migration_incoming_get_current();
4040 /* Temporary page that is later 'placed' */
4041 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4042 void *last_host = NULL;
a3b6ff6d 4043 bool all_zero = false;
a7180877
DDAG
4044
4045 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4046 ram_addr_t addr;
4047 void *host = NULL;
4048 void *page_buffer = NULL;
4049 void *place_source = NULL;
df9ff5e1 4050 RAMBlock *block = NULL;
a7180877 4051 uint8_t ch;
a7180877
DDAG
4052
4053 addr = qemu_get_be64(f);
7a9ddfbf
PX
4054
4055 /*
4056 * If qemu file error, we should stop here, and then "addr"
4057 * may be invalid
4058 */
4059 ret = qemu_file_get_error(f);
4060 if (ret) {
4061 break;
4062 }
4063
a7180877
DDAG
4064 flags = addr & ~TARGET_PAGE_MASK;
4065 addr &= TARGET_PAGE_MASK;
4066
4067 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4068 place_needed = false;
bb890ed5 4069 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4070 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4071
4072 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4073 if (!host) {
4074 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4075 ret = -EINVAL;
4076 break;
4077 }
1aa83678 4078 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4079 /*
28abd200
DDAG
4080 * Postcopy requires that we place whole host pages atomically;
4081 * these may be huge pages for RAMBlocks that are backed by
4082 * hugetlbfs.
a7180877
DDAG
4083 * To make it atomic, the data is read into a temporary page
4084 * that's moved into place later.
4085 * The migration protocol uses, possibly smaller, target-pages
4086 * however the source ensures it always sends all the components
4087 * of a host page in order.
4088 */
4089 page_buffer = postcopy_host_page +
28abd200 4090 ((uintptr_t)host & (block->page_size - 1));
a7180877 4091 /* If all TP are zero then we can optimise the place */
28abd200 4092 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4093 all_zero = true;
c53b7ddc
DDAG
4094 } else {
4095 /* not the 1st TP within the HP */
4096 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4097 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4098 host, last_host);
4099 ret = -EINVAL;
4100 break;
4101 }
a7180877
DDAG
4102 }
4103
c53b7ddc 4104
a7180877
DDAG
4105 /*
4106 * If it's the last part of a host page then we place the host
4107 * page
4108 */
4109 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4110 (block->page_size - 1)) == 0;
a7180877
DDAG
4111 place_source = postcopy_host_page;
4112 }
c53b7ddc 4113 last_host = host;
a7180877
DDAG
4114
4115 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4116 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4117 ch = qemu_get_byte(f);
4118 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4119 if (ch) {
4120 all_zero = false;
4121 }
4122 break;
4123
4124 case RAM_SAVE_FLAG_PAGE:
4125 all_zero = false;
1aa83678
PX
4126 if (!matches_target_page_size) {
4127 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4128 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4129 } else {
1aa83678
PX
4130 /*
4131 * For small pages that matches target page size, we
4132 * avoid the qemu_file copy. Instead we directly use
4133 * the buffer of QEMUFile to place the page. Note: we
4134 * cannot do any QEMUFile operation before using that
4135 * buffer to make sure the buffer is valid when
4136 * placing the page.
a7180877
DDAG
4137 */
4138 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4139 TARGET_PAGE_SIZE);
4140 }
4141 break;
4142 case RAM_SAVE_FLAG_EOS:
4143 /* normal exit */
6df264ac 4144 multifd_recv_sync_main();
a7180877
DDAG
4145 break;
4146 default:
4147 error_report("Unknown combination of migration flags: %#x"
4148 " (postcopy mode)", flags);
4149 ret = -EINVAL;
7a9ddfbf
PX
4150 break;
4151 }
4152
4153 /* Detect for any possible file errors */
4154 if (!ret && qemu_file_get_error(f)) {
4155 ret = qemu_file_get_error(f);
a7180877
DDAG
4156 }
4157
7a9ddfbf 4158 if (!ret && place_needed) {
a7180877 4159 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4160 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4161
a7180877 4162 if (all_zero) {
df9ff5e1 4163 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4164 block);
a7180877 4165 } else {
df9ff5e1 4166 ret = postcopy_place_page(mis, place_dest,
8be4620b 4167 place_source, block);
a7180877
DDAG
4168 }
4169 }
a7180877
DDAG
4170 }
4171
4172 return ret;
4173}
4174
acab30b8
DHB
4175static bool postcopy_is_advised(void)
4176{
4177 PostcopyState ps = postcopy_state_get();
4178 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4179}
4180
4181static bool postcopy_is_running(void)
4182{
4183 PostcopyState ps = postcopy_state_get();
4184 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4185}
4186
e6f4aa18
ZC
4187/*
4188 * Flush content of RAM cache into SVM's memory.
4189 * Only flush the pages that be dirtied by PVM or SVM or both.
4190 */
4191static void colo_flush_ram_cache(void)
4192{
4193 RAMBlock *block = NULL;
4194 void *dst_host;
4195 void *src_host;
4196 unsigned long offset = 0;
4197
d1955d22
HZ
4198 memory_global_dirty_log_sync();
4199 rcu_read_lock();
fbd162e6 4200 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
bf212979 4201 migration_bitmap_sync_range(ram_state, block, block->used_length);
d1955d22
HZ
4202 }
4203 rcu_read_unlock();
4204
e6f4aa18
ZC
4205 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4206 rcu_read_lock();
4207 block = QLIST_FIRST_RCU(&ram_list.blocks);
4208
4209 while (block) {
4210 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4211
4212 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4213 offset = 0;
4214 block = QLIST_NEXT_RCU(block, next);
4215 } else {
4216 migration_bitmap_clear_dirty(ram_state, block, offset);
4217 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4218 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4219 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4220 }
4221 }
4222
4223 rcu_read_unlock();
4224 trace_colo_flush_ram_cache_end();
4225}
4226
56e93d26
JQ
4227static int ram_load(QEMUFile *f, void *opaque, int version_id)
4228{
edc60127 4229 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4230 static uint64_t seq_iter;
4231 int len = 0;
a7180877
DDAG
4232 /*
4233 * If system is running in postcopy mode, page inserts to host memory must
4234 * be atomic
4235 */
acab30b8 4236 bool postcopy_running = postcopy_is_running();
ef08fb38 4237 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4238 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4239
4240 seq_iter++;
4241
4242 if (version_id != 4) {
4243 ret = -EINVAL;
4244 }
4245
edc60127
JQ
4246 if (!migrate_use_compression()) {
4247 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4248 }
56e93d26
JQ
4249 /* This RCU critical section can be very long running.
4250 * When RCU reclaims in the code start to become numerous,
4251 * it will be necessary to reduce the granularity of this
4252 * critical section.
4253 */
4254 rcu_read_lock();
a7180877
DDAG
4255
4256 if (postcopy_running) {
4257 ret = ram_load_postcopy(f);
4258 }
4259
4260 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4261 ram_addr_t addr, total_ram_bytes;
a776aa15 4262 void *host = NULL;
56e93d26
JQ
4263 uint8_t ch;
4264
4265 addr = qemu_get_be64(f);
4266 flags = addr & ~TARGET_PAGE_MASK;
4267 addr &= TARGET_PAGE_MASK;
4268
edc60127
JQ
4269 if (flags & invalid_flags) {
4270 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4271 error_report("Received an unexpected compressed page");
4272 }
4273
4274 ret = -EINVAL;
4275 break;
4276 }
4277
bb890ed5 4278 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4279 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4280 RAMBlock *block = ram_block_from_stream(f, flags);
4281
13af18f2
ZC
4282 /*
4283 * After going into COLO, we should load the Page into colo_cache.
4284 */
4285 if (migration_incoming_in_colo_state()) {
4286 host = colo_cache_from_block_offset(block, addr);
4287 } else {
4288 host = host_from_ram_block_offset(block, addr);
4289 }
a776aa15
DDAG
4290 if (!host) {
4291 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4292 ret = -EINVAL;
4293 break;
4294 }
13af18f2
ZC
4295
4296 if (!migration_incoming_in_colo_state()) {
4297 ramblock_recv_bitmap_set(block, host);
4298 }
4299
1db9d8e5 4300 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4301 }
4302
56e93d26
JQ
4303 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4304 case RAM_SAVE_FLAG_MEM_SIZE:
4305 /* Synchronize RAM block list */
4306 total_ram_bytes = addr;
4307 while (!ret && total_ram_bytes) {
4308 RAMBlock *block;
56e93d26
JQ
4309 char id[256];
4310 ram_addr_t length;
4311
4312 len = qemu_get_byte(f);
4313 qemu_get_buffer(f, (uint8_t *)id, len);
4314 id[len] = 0;
4315 length = qemu_get_be64(f);
4316
e3dd7493 4317 block = qemu_ram_block_by_name(id);
b895de50
CLG
4318 if (block && !qemu_ram_is_migratable(block)) {
4319 error_report("block %s should not be migrated !", id);
4320 ret = -EINVAL;
4321 } else if (block) {
e3dd7493
DDAG
4322 if (length != block->used_length) {
4323 Error *local_err = NULL;
56e93d26 4324
fa53a0e5 4325 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4326 &local_err);
4327 if (local_err) {
4328 error_report_err(local_err);
56e93d26 4329 }
56e93d26 4330 }
ef08fb38
DDAG
4331 /* For postcopy we need to check hugepage sizes match */
4332 if (postcopy_advised &&
4333 block->page_size != qemu_host_page_size) {
4334 uint64_t remote_page_size = qemu_get_be64(f);
4335 if (remote_page_size != block->page_size) {
4336 error_report("Mismatched RAM page size %s "
4337 "(local) %zd != %" PRId64,
4338 id, block->page_size,
4339 remote_page_size);
4340 ret = -EINVAL;
4341 }
4342 }
fbd162e6
YK
4343 if (migrate_ignore_shared()) {
4344 hwaddr addr = qemu_get_be64(f);
4345 bool ignored = qemu_get_byte(f);
4346 if (ignored != ramblock_is_ignored(block)) {
4347 error_report("RAM block %s should %s be migrated",
4348 id, ignored ? "" : "not");
4349 ret = -EINVAL;
4350 }
4351 if (ramblock_is_ignored(block) &&
4352 block->mr->addr != addr) {
4353 error_report("Mismatched GPAs for block %s "
4354 "%" PRId64 "!= %" PRId64,
4355 id, (uint64_t)addr,
4356 (uint64_t)block->mr->addr);
4357 ret = -EINVAL;
4358 }
4359 }
e3dd7493
DDAG
4360 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4361 block->idstr);
4362 } else {
56e93d26
JQ
4363 error_report("Unknown ramblock \"%s\", cannot "
4364 "accept migration", id);
4365 ret = -EINVAL;
4366 }
4367
4368 total_ram_bytes -= length;
4369 }
4370 break;
a776aa15 4371
bb890ed5 4372 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4373 ch = qemu_get_byte(f);
4374 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4375 break;
a776aa15 4376
56e93d26 4377 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4378 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4379 break;
56e93d26 4380
a776aa15 4381 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4382 len = qemu_get_be32(f);
4383 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4384 error_report("Invalid compressed data length: %d", len);
4385 ret = -EINVAL;
4386 break;
4387 }
c1bc6626 4388 decompress_data_with_multi_threads(f, host, len);
56e93d26 4389 break;
a776aa15 4390
56e93d26 4391 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4392 if (load_xbzrle(f, addr, host) < 0) {
4393 error_report("Failed to decompress XBZRLE page at "
4394 RAM_ADDR_FMT, addr);
4395 ret = -EINVAL;
4396 break;
4397 }
4398 break;
4399 case RAM_SAVE_FLAG_EOS:
4400 /* normal exit */
6df264ac 4401 multifd_recv_sync_main();
56e93d26
JQ
4402 break;
4403 default:
4404 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4405 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4406 } else {
4407 error_report("Unknown combination of migration flags: %#x",
4408 flags);
4409 ret = -EINVAL;
4410 }
4411 }
4412 if (!ret) {
4413 ret = qemu_file_get_error(f);
4414 }
4415 }
4416
34ab9e97 4417 ret |= wait_for_decompress_done();
56e93d26 4418 rcu_read_unlock();
55c4446b 4419 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4420
4421 if (!ret && migration_incoming_in_colo_state()) {
4422 colo_flush_ram_cache();
4423 }
56e93d26
JQ
4424 return ret;
4425}
4426
c6467627
VSO
4427static bool ram_has_postcopy(void *opaque)
4428{
469dd51b 4429 RAMBlock *rb;
fbd162e6 4430 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4431 if (ramblock_is_pmem(rb)) {
4432 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4433 "is not supported now!", rb->idstr, rb->host);
4434 return false;
4435 }
4436 }
4437
c6467627
VSO
4438 return migrate_postcopy_ram();
4439}
4440
edd090c7
PX
4441/* Sync all the dirty bitmap with destination VM. */
4442static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4443{
4444 RAMBlock *block;
4445 QEMUFile *file = s->to_dst_file;
4446 int ramblock_count = 0;
4447
4448 trace_ram_dirty_bitmap_sync_start();
4449
fbd162e6 4450 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4451 qemu_savevm_send_recv_bitmap(file, block->idstr);
4452 trace_ram_dirty_bitmap_request(block->idstr);
4453 ramblock_count++;
4454 }
4455
4456 trace_ram_dirty_bitmap_sync_wait();
4457
4458 /* Wait until all the ramblocks' dirty bitmap synced */
4459 while (ramblock_count--) {
4460 qemu_sem_wait(&s->rp_state.rp_sem);
4461 }
4462
4463 trace_ram_dirty_bitmap_sync_complete();
4464
4465 return 0;
4466}
4467
4468static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4469{
4470 qemu_sem_post(&s->rp_state.rp_sem);
4471}
4472
a335debb
PX
4473/*
4474 * Read the received bitmap, revert it as the initial dirty bitmap.
4475 * This is only used when the postcopy migration is paused but wants
4476 * to resume from a middle point.
4477 */
4478int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4479{
4480 int ret = -EINVAL;
4481 QEMUFile *file = s->rp_state.from_dst_file;
4482 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4483 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4484 uint64_t size, end_mark;
4485
4486 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4487
4488 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4489 error_report("%s: incorrect state %s", __func__,
4490 MigrationStatus_str(s->state));
4491 return -EINVAL;
4492 }
4493
4494 /*
4495 * Note: see comments in ramblock_recv_bitmap_send() on why we
4496 * need the endianess convertion, and the paddings.
4497 */
4498 local_size = ROUND_UP(local_size, 8);
4499
4500 /* Add paddings */
4501 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4502
4503 size = qemu_get_be64(file);
4504
4505 /* The size of the bitmap should match with our ramblock */
4506 if (size != local_size) {
4507 error_report("%s: ramblock '%s' bitmap size mismatch "
4508 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4509 block->idstr, size, local_size);
4510 ret = -EINVAL;
4511 goto out;
4512 }
4513
4514 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4515 end_mark = qemu_get_be64(file);
4516
4517 ret = qemu_file_get_error(file);
4518 if (ret || size != local_size) {
4519 error_report("%s: read bitmap failed for ramblock '%s': %d"
4520 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4521 __func__, block->idstr, ret, local_size, size);
4522 ret = -EIO;
4523 goto out;
4524 }
4525
4526 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4527 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4528 __func__, block->idstr, end_mark);
4529 ret = -EINVAL;
4530 goto out;
4531 }
4532
4533 /*
4534 * Endianess convertion. We are during postcopy (though paused).
4535 * The dirty bitmap won't change. We can directly modify it.
4536 */
4537 bitmap_from_le(block->bmap, le_bitmap, nbits);
4538
4539 /*
4540 * What we received is "received bitmap". Revert it as the initial
4541 * dirty bitmap for this ramblock.
4542 */
4543 bitmap_complement(block->bmap, block->bmap, nbits);
4544
4545 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4546
edd090c7
PX
4547 /*
4548 * We succeeded to sync bitmap for current ramblock. If this is
4549 * the last one to sync, we need to notify the main send thread.
4550 */
4551 ram_dirty_bitmap_reload_notify(s);
4552
a335debb
PX
4553 ret = 0;
4554out:
bf269906 4555 g_free(le_bitmap);
a335debb
PX
4556 return ret;
4557}
4558
edd090c7
PX
4559static int ram_resume_prepare(MigrationState *s, void *opaque)
4560{
4561 RAMState *rs = *(RAMState **)opaque;
08614f34 4562 int ret;
edd090c7 4563
08614f34
PX
4564 ret = ram_dirty_bitmap_sync_all(s, rs);
4565 if (ret) {
4566 return ret;
4567 }
4568
4569 ram_state_resume_prepare(rs, s->to_dst_file);
4570
4571 return 0;
edd090c7
PX
4572}
4573
56e93d26 4574static SaveVMHandlers savevm_ram_handlers = {
9907e842 4575 .save_setup = ram_save_setup,
56e93d26 4576 .save_live_iterate = ram_save_iterate,
763c906b 4577 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4578 .save_live_complete_precopy = ram_save_complete,
c6467627 4579 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4580 .save_live_pending = ram_save_pending,
4581 .load_state = ram_load,
f265e0e4
JQ
4582 .save_cleanup = ram_save_cleanup,
4583 .load_setup = ram_load_setup,
4584 .load_cleanup = ram_load_cleanup,
edd090c7 4585 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4586};
4587
4588void ram_mig_init(void)
4589{
4590 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4591 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4592}
This page took 0.976413 seconds and 4 git commands to generate.