]> Git Repo - qemu.git/blame - migration/ram.c
multifd: Drop x-multifd-page-count parameter
[qemu.git] / migration / ram.c
CommitLineData
56e93d26
JQ
1/*
2 * QEMU System Emulator
3 *
4 * Copyright (c) 2003-2008 Fabrice Bellard
76cc7b58
JQ
5 * Copyright (c) 2011-2015 Red Hat Inc
6 *
7 * Authors:
8 * Juan Quintela <[email protected]>
56e93d26
JQ
9 *
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
16 *
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * THE SOFTWARE.
27 */
e688df6b 28
1393a485 29#include "qemu/osdep.h"
33c11879 30#include "cpu.h"
56e93d26 31#include <zlib.h>
f348b6d1 32#include "qemu/cutils.h"
56e93d26
JQ
33#include "qemu/bitops.h"
34#include "qemu/bitmap.h"
7205c9ec 35#include "qemu/main-loop.h"
56eb90af 36#include "qemu/pmem.h"
709e3fe8 37#include "xbzrle.h"
7b1e1a22 38#include "ram.h"
6666c96a 39#include "migration.h"
71bb07db 40#include "socket.h"
f2a8f0a6 41#include "migration/register.h"
7b1e1a22 42#include "migration/misc.h"
08a0aee1 43#include "qemu-file.h"
be07b0ac 44#include "postcopy-ram.h"
53d37d36 45#include "page_cache.h"
56e93d26 46#include "qemu/error-report.h"
e688df6b 47#include "qapi/error.h"
9af23989 48#include "qapi/qapi-events-migration.h"
8acabf69 49#include "qapi/qmp/qerror.h"
56e93d26 50#include "trace.h"
56e93d26 51#include "exec/ram_addr.h"
f9494614 52#include "exec/target_page.h"
56e93d26 53#include "qemu/rcu_queue.h"
a91246c9 54#include "migration/colo.h"
53d37d36 55#include "block.h"
af8b7d2b
JQ
56#include "sysemu/sysemu.h"
57#include "qemu/uuid.h"
edd090c7 58#include "savevm.h"
b9ee2f7d 59#include "qemu/iov.h"
56e93d26 60
56e93d26
JQ
61/***********************************************************/
62/* ram save/restore */
63
bb890ed5
JQ
64/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
65 * worked for pages that where filled with the same char. We switched
66 * it to only search for the zero value. And to avoid confusion with
67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
68 */
69
56e93d26 70#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
bb890ed5 71#define RAM_SAVE_FLAG_ZERO 0x02
56e93d26
JQ
72#define RAM_SAVE_FLAG_MEM_SIZE 0x04
73#define RAM_SAVE_FLAG_PAGE 0x08
74#define RAM_SAVE_FLAG_EOS 0x10
75#define RAM_SAVE_FLAG_CONTINUE 0x20
76#define RAM_SAVE_FLAG_XBZRLE 0x40
77/* 0x80 is reserved in migration.h start with 0x100 next */
78#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
79
56e93d26
JQ
80static inline bool is_zero_range(uint8_t *p, uint64_t size)
81{
a1febc49 82 return buffer_is_zero(p, size);
56e93d26
JQ
83}
84
9360447d
JQ
85XBZRLECacheStats xbzrle_counters;
86
56e93d26
JQ
87/* struct contains XBZRLE cache and a static page
88 used by the compression */
89static struct {
90 /* buffer used for XBZRLE encoding */
91 uint8_t *encoded_buf;
92 /* buffer for storing page content */
93 uint8_t *current_buf;
94 /* Cache for XBZRLE, Protected by lock. */
95 PageCache *cache;
96 QemuMutex lock;
c00e0928
JQ
97 /* it will store a page full of zeros */
98 uint8_t *zero_target_page;
f265e0e4
JQ
99 /* buffer used for XBZRLE decoding */
100 uint8_t *decoded_buf;
56e93d26
JQ
101} XBZRLE;
102
56e93d26
JQ
103static void XBZRLE_cache_lock(void)
104{
105 if (migrate_use_xbzrle())
106 qemu_mutex_lock(&XBZRLE.lock);
107}
108
109static void XBZRLE_cache_unlock(void)
110{
111 if (migrate_use_xbzrle())
112 qemu_mutex_unlock(&XBZRLE.lock);
113}
114
3d0684b2
JQ
115/**
116 * xbzrle_cache_resize: resize the xbzrle cache
117 *
118 * This function is called from qmp_migrate_set_cache_size in main
119 * thread, possibly while a migration is in progress. A running
120 * migration may be using the cache and might finish during this call,
121 * hence changes to the cache are protected by XBZRLE.lock().
122 *
c9dede2d 123 * Returns 0 for success or -1 for error
3d0684b2
JQ
124 *
125 * @new_size: new cache size
8acabf69 126 * @errp: set *errp if the check failed, with reason
56e93d26 127 */
c9dede2d 128int xbzrle_cache_resize(int64_t new_size, Error **errp)
56e93d26
JQ
129{
130 PageCache *new_cache;
c9dede2d 131 int64_t ret = 0;
56e93d26 132
8acabf69
JQ
133 /* Check for truncation */
134 if (new_size != (size_t)new_size) {
135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
136 "exceeding address space");
137 return -1;
138 }
139
2a313e5c
JQ
140 if (new_size == migrate_xbzrle_cache_size()) {
141 /* nothing to do */
c9dede2d 142 return 0;
2a313e5c
JQ
143 }
144
56e93d26
JQ
145 XBZRLE_cache_lock();
146
147 if (XBZRLE.cache != NULL) {
80f8dfde 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
56e93d26 149 if (!new_cache) {
56e93d26
JQ
150 ret = -1;
151 goto out;
152 }
153
154 cache_fini(XBZRLE.cache);
155 XBZRLE.cache = new_cache;
156 }
56e93d26
JQ
157out:
158 XBZRLE_cache_unlock();
159 return ret;
160}
161
fbd162e6
YK
162static bool ramblock_is_ignored(RAMBlock *block)
163{
164 return !qemu_ram_is_migratable(block) ||
165 (migrate_ignore_shared() && qemu_ram_is_shared(block));
166}
167
b895de50 168/* Should be holding either ram_list.mutex, or the RCU lock. */
fbd162e6
YK
169#define RAMBLOCK_FOREACH_NOT_IGNORED(block) \
170 INTERNAL_RAMBLOCK_FOREACH(block) \
171 if (ramblock_is_ignored(block)) {} else
172
b895de50 173#define RAMBLOCK_FOREACH_MIGRATABLE(block) \
343f632c 174 INTERNAL_RAMBLOCK_FOREACH(block) \
b895de50
CLG
175 if (!qemu_ram_is_migratable(block)) {} else
176
343f632c
DDAG
177#undef RAMBLOCK_FOREACH
178
fbd162e6
YK
179int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
180{
181 RAMBlock *block;
182 int ret = 0;
183
184 rcu_read_lock();
185 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
186 ret = func(block, opaque);
187 if (ret) {
188 break;
189 }
190 }
191 rcu_read_unlock();
192 return ret;
193}
194
f9494614
AP
195static void ramblock_recv_map_init(void)
196{
197 RAMBlock *rb;
198
fbd162e6 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
200 assert(!rb->receivedmap);
201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
202 }
203}
204
205int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
206{
207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
208 rb->receivedmap);
209}
210
1cba9f6e
DDAG
211bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
212{
213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
214}
215
f9494614
AP
216void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
217{
218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
219}
220
221void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
222 size_t nr)
223{
224 bitmap_set_atomic(rb->receivedmap,
225 ramblock_recv_bitmap_offset(host_addr, rb),
226 nr);
227}
228
a335debb
PX
229#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
230
231/*
232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
233 *
234 * Returns >0 if success with sent bytes, or <0 if error.
235 */
236int64_t ramblock_recv_bitmap_send(QEMUFile *file,
237 const char *block_name)
238{
239 RAMBlock *block = qemu_ram_block_by_name(block_name);
240 unsigned long *le_bitmap, nbits;
241 uint64_t size;
242
243 if (!block) {
244 error_report("%s: invalid block name: %s", __func__, block_name);
245 return -1;
246 }
247
248 nbits = block->used_length >> TARGET_PAGE_BITS;
249
250 /*
251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
252 * machines we may need 4 more bytes for padding (see below
253 * comment). So extend it a bit before hand.
254 */
255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
256
257 /*
258 * Always use little endian when sending the bitmap. This is
259 * required that when source and destination VMs are not using the
260 * same endianess. (Note: big endian won't work.)
261 */
262 bitmap_to_le(le_bitmap, block->receivedmap, nbits);
263
264 /* Size of the bitmap, in bytes */
a725ef9f 265 size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
266
267 /*
268 * size is always aligned to 8 bytes for 64bit machines, but it
269 * may not be true for 32bit machines. We need this padding to
270 * make sure the migration can survive even between 32bit and
271 * 64bit machines.
272 */
273 size = ROUND_UP(size, 8);
274
275 qemu_put_be64(file, size);
276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
277 /*
278 * Mark as an end, in case the middle part is screwed up due to
279 * some "misterious" reason.
280 */
281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
282 qemu_fflush(file);
283
bf269906 284 g_free(le_bitmap);
a335debb
PX
285
286 if (qemu_file_get_error(file)) {
287 return qemu_file_get_error(file);
288 }
289
290 return size + sizeof(size);
291}
292
ec481c6c
JQ
293/*
294 * An outstanding page request, on the source, having been received
295 * and queued
296 */
297struct RAMSrcPageRequest {
298 RAMBlock *rb;
299 hwaddr offset;
300 hwaddr len;
301
302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
303};
304
6f37bb8b
JQ
305/* State of RAM for migration */
306struct RAMState {
204b88b8
JQ
307 /* QEMUFile used for this migration */
308 QEMUFile *f;
6f37bb8b
JQ
309 /* Last block that we have visited searching for dirty pages */
310 RAMBlock *last_seen_block;
311 /* Last block from where we have sent data */
312 RAMBlock *last_sent_block;
269ace29
JQ
313 /* Last dirty target page we have sent */
314 ram_addr_t last_page;
6f37bb8b
JQ
315 /* last ram version we have seen */
316 uint32_t last_version;
317 /* We are in the first round */
318 bool ram_bulk_stage;
6eeb63f7
WW
319 /* The free page optimization is enabled */
320 bool fpo_enabled;
8d820d6f
JQ
321 /* How many times we have dirty too many pages */
322 int dirty_rate_high_cnt;
f664da80
JQ
323 /* these variables are used for bitmap sync */
324 /* last time we did a full bitmap_sync */
325 int64_t time_last_bitmap_sync;
eac74159 326 /* bytes transferred at start_time */
c4bdf0cf 327 uint64_t bytes_xfer_prev;
a66cd90c 328 /* number of dirty pages since start_time */
68908ed6 329 uint64_t num_dirty_pages_period;
b5833fde
JQ
330 /* xbzrle misses since the beginning of the period */
331 uint64_t xbzrle_cache_miss_prev;
76e03000
XG
332
333 /* compression statistics since the beginning of the period */
334 /* amount of count that no free thread to compress data */
335 uint64_t compress_thread_busy_prev;
336 /* amount bytes after compression */
337 uint64_t compressed_size_prev;
338 /* amount of compressed pages */
339 uint64_t compress_pages_prev;
340
be8b02ed
XG
341 /* total handled target pages at the beginning of period */
342 uint64_t target_page_count_prev;
343 /* total handled target pages since start */
344 uint64_t target_page_count;
9360447d 345 /* number of dirty bits in the bitmap */
2dfaf12e 346 uint64_t migration_dirty_pages;
386a907b 347 /* Protects modification of the bitmap and migration dirty pages */
108cfae0 348 QemuMutex bitmap_mutex;
68a098f3
JQ
349 /* The RAMBlock used in the last src_page_requests */
350 RAMBlock *last_req_rb;
ec481c6c
JQ
351 /* Queue of outstanding page requests from the destination */
352 QemuMutex src_page_req_mutex;
b58deb34 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
6f37bb8b
JQ
354};
355typedef struct RAMState RAMState;
356
53518d94 357static RAMState *ram_state;
6f37bb8b 358
bd227060
WW
359static NotifierWithReturnList precopy_notifier_list;
360
361void precopy_infrastructure_init(void)
362{
363 notifier_with_return_list_init(&precopy_notifier_list);
364}
365
366void precopy_add_notifier(NotifierWithReturn *n)
367{
368 notifier_with_return_list_add(&precopy_notifier_list, n);
369}
370
371void precopy_remove_notifier(NotifierWithReturn *n)
372{
373 notifier_with_return_remove(n);
374}
375
376int precopy_notify(PrecopyNotifyReason reason, Error **errp)
377{
378 PrecopyNotifyData pnd;
379 pnd.reason = reason;
380 pnd.errp = errp;
381
382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
383}
384
6eeb63f7
WW
385void precopy_enable_free_page_optimization(void)
386{
387 if (!ram_state) {
388 return;
389 }
390
391 ram_state->fpo_enabled = true;
392}
393
9edabd4d 394uint64_t ram_bytes_remaining(void)
2f4fde93 395{
bae416e5
DDAG
396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
397 0;
2f4fde93
JQ
398}
399
9360447d 400MigrationStats ram_counters;
96506894 401
b8fb8cb7
DDAG
402/* used by the search for pages to send */
403struct PageSearchStatus {
404 /* Current block being searched */
405 RAMBlock *block;
a935e30f
JQ
406 /* Current page to search from */
407 unsigned long page;
b8fb8cb7
DDAG
408 /* Set once we wrap around */
409 bool complete_round;
410};
411typedef struct PageSearchStatus PageSearchStatus;
412
76e03000
XG
413CompressionStats compression_counters;
414
56e93d26 415struct CompressParam {
56e93d26 416 bool done;
90e56fb4 417 bool quit;
5e5fdcff 418 bool zero_page;
56e93d26
JQ
419 QEMUFile *file;
420 QemuMutex mutex;
421 QemuCond cond;
422 RAMBlock *block;
423 ram_addr_t offset;
34ab9e97
XG
424
425 /* internally used fields */
dcaf446e 426 z_stream stream;
34ab9e97 427 uint8_t *originbuf;
56e93d26
JQ
428};
429typedef struct CompressParam CompressParam;
430
431struct DecompressParam {
73a8912b 432 bool done;
90e56fb4 433 bool quit;
56e93d26
JQ
434 QemuMutex mutex;
435 QemuCond cond;
436 void *des;
d341d9f3 437 uint8_t *compbuf;
56e93d26 438 int len;
797ca154 439 z_stream stream;
56e93d26
JQ
440};
441typedef struct DecompressParam DecompressParam;
442
443static CompressParam *comp_param;
444static QemuThread *compress_threads;
445/* comp_done_cond is used to wake up the migration thread when
446 * one of the compression threads has finished the compression.
447 * comp_done_lock is used to co-work with comp_done_cond.
448 */
0d9f9a5c
LL
449static QemuMutex comp_done_lock;
450static QemuCond comp_done_cond;
56e93d26
JQ
451/* The empty QEMUFileOps will be used by file in CompressParam */
452static const QEMUFileOps empty_ops = { };
453
34ab9e97 454static QEMUFile *decomp_file;
56e93d26
JQ
455static DecompressParam *decomp_param;
456static QemuThread *decompress_threads;
73a8912b
LL
457static QemuMutex decomp_done_lock;
458static QemuCond decomp_done_cond;
56e93d26 459
5e5fdcff 460static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 461 ram_addr_t offset, uint8_t *source_buf);
56e93d26
JQ
462
463static void *do_data_compress(void *opaque)
464{
465 CompressParam *param = opaque;
a7a9a88f
LL
466 RAMBlock *block;
467 ram_addr_t offset;
5e5fdcff 468 bool zero_page;
56e93d26 469
a7a9a88f 470 qemu_mutex_lock(&param->mutex);
90e56fb4 471 while (!param->quit) {
a7a9a88f
LL
472 if (param->block) {
473 block = param->block;
474 offset = param->offset;
475 param->block = NULL;
476 qemu_mutex_unlock(&param->mutex);
477
5e5fdcff
XG
478 zero_page = do_compress_ram_page(param->file, &param->stream,
479 block, offset, param->originbuf);
a7a9a88f 480
0d9f9a5c 481 qemu_mutex_lock(&comp_done_lock);
a7a9a88f 482 param->done = true;
5e5fdcff 483 param->zero_page = zero_page;
0d9f9a5c
LL
484 qemu_cond_signal(&comp_done_cond);
485 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
486
487 qemu_mutex_lock(&param->mutex);
488 } else {
56e93d26
JQ
489 qemu_cond_wait(&param->cond, &param->mutex);
490 }
56e93d26 491 }
a7a9a88f 492 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
493
494 return NULL;
495}
496
f0afa331 497static void compress_threads_save_cleanup(void)
56e93d26
JQ
498{
499 int i, thread_count;
500
05306935 501 if (!migrate_use_compression() || !comp_param) {
56e93d26
JQ
502 return;
503 }
05306935 504
56e93d26
JQ
505 thread_count = migrate_compress_threads();
506 for (i = 0; i < thread_count; i++) {
dcaf446e
XG
507 /*
508 * we use it as a indicator which shows if the thread is
509 * properly init'd or not
510 */
511 if (!comp_param[i].file) {
512 break;
513 }
05306935
FL
514
515 qemu_mutex_lock(&comp_param[i].mutex);
516 comp_param[i].quit = true;
517 qemu_cond_signal(&comp_param[i].cond);
518 qemu_mutex_unlock(&comp_param[i].mutex);
519
56e93d26 520 qemu_thread_join(compress_threads + i);
56e93d26
JQ
521 qemu_mutex_destroy(&comp_param[i].mutex);
522 qemu_cond_destroy(&comp_param[i].cond);
dcaf446e 523 deflateEnd(&comp_param[i].stream);
34ab9e97 524 g_free(comp_param[i].originbuf);
dcaf446e
XG
525 qemu_fclose(comp_param[i].file);
526 comp_param[i].file = NULL;
56e93d26 527 }
0d9f9a5c
LL
528 qemu_mutex_destroy(&comp_done_lock);
529 qemu_cond_destroy(&comp_done_cond);
56e93d26
JQ
530 g_free(compress_threads);
531 g_free(comp_param);
56e93d26
JQ
532 compress_threads = NULL;
533 comp_param = NULL;
56e93d26
JQ
534}
535
dcaf446e 536static int compress_threads_save_setup(void)
56e93d26
JQ
537{
538 int i, thread_count;
539
540 if (!migrate_use_compression()) {
dcaf446e 541 return 0;
56e93d26 542 }
56e93d26
JQ
543 thread_count = migrate_compress_threads();
544 compress_threads = g_new0(QemuThread, thread_count);
545 comp_param = g_new0(CompressParam, thread_count);
0d9f9a5c
LL
546 qemu_cond_init(&comp_done_cond);
547 qemu_mutex_init(&comp_done_lock);
56e93d26 548 for (i = 0; i < thread_count; i++) {
34ab9e97
XG
549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
550 if (!comp_param[i].originbuf) {
551 goto exit;
552 }
553
dcaf446e
XG
554 if (deflateInit(&comp_param[i].stream,
555 migrate_compress_level()) != Z_OK) {
34ab9e97 556 g_free(comp_param[i].originbuf);
dcaf446e
XG
557 goto exit;
558 }
559
e110aa91
C
560 /* comp_param[i].file is just used as a dummy buffer to save data,
561 * set its ops to empty.
56e93d26
JQ
562 */
563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
564 comp_param[i].done = true;
90e56fb4 565 comp_param[i].quit = false;
56e93d26
JQ
566 qemu_mutex_init(&comp_param[i].mutex);
567 qemu_cond_init(&comp_param[i].cond);
568 qemu_thread_create(compress_threads + i, "compress",
569 do_data_compress, comp_param + i,
570 QEMU_THREAD_JOINABLE);
571 }
dcaf446e
XG
572 return 0;
573
574exit:
575 compress_threads_save_cleanup();
576 return -1;
56e93d26
JQ
577}
578
f986c3d2
JQ
579/* Multiple fd's */
580
af8b7d2b
JQ
581#define MULTIFD_MAGIC 0x11223344U
582#define MULTIFD_VERSION 1
583
6df264ac
JQ
584#define MULTIFD_FLAG_SYNC (1 << 0)
585
efd1a1d6
JQ
586/* This value needs to be a multiple of qemu_target_page_size() */
587#define MULTIFD_PACKET_SIZE (64 * 1024)
588
af8b7d2b
JQ
589typedef struct {
590 uint32_t magic;
591 uint32_t version;
592 unsigned char uuid[16]; /* QemuUUID */
593 uint8_t id;
594} __attribute__((packed)) MultiFDInit_t;
595
2a26c979
JQ
596typedef struct {
597 uint32_t magic;
598 uint32_t version;
599 uint32_t flags;
6f862692
JQ
600 /* maximum number of allocated pages */
601 uint32_t pages_alloc;
602 uint32_t pages_used;
2a34ee59
JQ
603 /* size of the next packet that contains pages */
604 uint32_t next_packet_size;
2a26c979
JQ
605 uint64_t packet_num;
606 char ramblock[256];
607 uint64_t offset[];
608} __attribute__((packed)) MultiFDPacket_t;
609
34c55a94
JQ
610typedef struct {
611 /* number of used pages */
612 uint32_t used;
613 /* number of allocated pages */
614 uint32_t allocated;
615 /* global number of generated multifd packets */
616 uint64_t packet_num;
617 /* offset of each page */
618 ram_addr_t *offset;
619 /* pointer to each page */
620 struct iovec *iov;
621 RAMBlock *block;
622} MultiFDPages_t;
623
8c4598f2
JQ
624typedef struct {
625 /* this fields are not changed once the thread is created */
626 /* channel number */
f986c3d2 627 uint8_t id;
8c4598f2 628 /* channel thread name */
f986c3d2 629 char *name;
8c4598f2 630 /* channel thread id */
f986c3d2 631 QemuThread thread;
8c4598f2 632 /* communication channel */
60df2d4a 633 QIOChannel *c;
8c4598f2 634 /* sem where to wait for more work */
f986c3d2 635 QemuSemaphore sem;
8c4598f2 636 /* this mutex protects the following parameters */
f986c3d2 637 QemuMutex mutex;
8c4598f2 638 /* is this channel thread running */
66770707 639 bool running;
8c4598f2 640 /* should this thread finish */
f986c3d2 641 bool quit;
0beb5ed3
JQ
642 /* thread has work to do */
643 int pending_job;
34c55a94
JQ
644 /* array of pages to sent */
645 MultiFDPages_t *pages;
2a26c979
JQ
646 /* packet allocated len */
647 uint32_t packet_len;
648 /* pointer to the packet */
649 MultiFDPacket_t *packet;
650 /* multifd flags for each packet */
651 uint32_t flags;
2a34ee59
JQ
652 /* size of the next packet that contains pages */
653 uint32_t next_packet_size;
2a26c979
JQ
654 /* global number of generated multifd packets */
655 uint64_t packet_num;
408ea6ae
JQ
656 /* thread local variables */
657 /* packets sent through this channel */
658 uint64_t num_packets;
659 /* pages sent through this channel */
660 uint64_t num_pages;
6df264ac
JQ
661 /* syncs main thread and channels */
662 QemuSemaphore sem_sync;
8c4598f2
JQ
663} MultiFDSendParams;
664
665typedef struct {
666 /* this fields are not changed once the thread is created */
667 /* channel number */
668 uint8_t id;
669 /* channel thread name */
670 char *name;
671 /* channel thread id */
672 QemuThread thread;
673 /* communication channel */
674 QIOChannel *c;
8c4598f2
JQ
675 /* this mutex protects the following parameters */
676 QemuMutex mutex;
677 /* is this channel thread running */
678 bool running;
34c55a94
JQ
679 /* array of pages to receive */
680 MultiFDPages_t *pages;
2a26c979
JQ
681 /* packet allocated len */
682 uint32_t packet_len;
683 /* pointer to the packet */
684 MultiFDPacket_t *packet;
685 /* multifd flags for each packet */
686 uint32_t flags;
687 /* global number of generated multifd packets */
688 uint64_t packet_num;
408ea6ae 689 /* thread local variables */
2a34ee59
JQ
690 /* size of the next packet that contains pages */
691 uint32_t next_packet_size;
408ea6ae
JQ
692 /* packets sent through this channel */
693 uint64_t num_packets;
694 /* pages sent through this channel */
695 uint64_t num_pages;
6df264ac
JQ
696 /* syncs main thread and channels */
697 QemuSemaphore sem_sync;
8c4598f2 698} MultiFDRecvParams;
f986c3d2 699
af8b7d2b
JQ
700static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp)
701{
702 MultiFDInit_t msg;
703 int ret;
704
705 msg.magic = cpu_to_be32(MULTIFD_MAGIC);
706 msg.version = cpu_to_be32(MULTIFD_VERSION);
707 msg.id = p->id;
708 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid));
709
710 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp);
711 if (ret != 0) {
712 return -1;
713 }
714 return 0;
715}
716
717static int multifd_recv_initial_packet(QIOChannel *c, Error **errp)
718{
719 MultiFDInit_t msg;
720 int ret;
721
722 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp);
723 if (ret != 0) {
724 return -1;
725 }
726
341ba0df
PM
727 msg.magic = be32_to_cpu(msg.magic);
728 msg.version = be32_to_cpu(msg.version);
af8b7d2b
JQ
729
730 if (msg.magic != MULTIFD_MAGIC) {
731 error_setg(errp, "multifd: received packet magic %x "
732 "expected %x", msg.magic, MULTIFD_MAGIC);
733 return -1;
734 }
735
736 if (msg.version != MULTIFD_VERSION) {
737 error_setg(errp, "multifd: received packet version %d "
738 "expected %d", msg.version, MULTIFD_VERSION);
739 return -1;
740 }
741
742 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) {
743 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid);
744 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid);
745
746 error_setg(errp, "multifd: received uuid '%s' and expected "
747 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id);
748 g_free(uuid);
749 g_free(msg_uuid);
750 return -1;
751 }
752
753 if (msg.id > migrate_multifd_channels()) {
754 error_setg(errp, "multifd: received channel version %d "
755 "expected %d", msg.version, MULTIFD_VERSION);
756 return -1;
757 }
758
759 return msg.id;
760}
761
34c55a94
JQ
762static MultiFDPages_t *multifd_pages_init(size_t size)
763{
764 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1);
765
766 pages->allocated = size;
767 pages->iov = g_new0(struct iovec, size);
768 pages->offset = g_new0(ram_addr_t, size);
769
770 return pages;
771}
772
773static void multifd_pages_clear(MultiFDPages_t *pages)
774{
775 pages->used = 0;
776 pages->allocated = 0;
777 pages->packet_num = 0;
778 pages->block = NULL;
779 g_free(pages->iov);
780 pages->iov = NULL;
781 g_free(pages->offset);
782 pages->offset = NULL;
783 g_free(pages);
784}
785
2a26c979
JQ
786static void multifd_send_fill_packet(MultiFDSendParams *p)
787{
788 MultiFDPacket_t *packet = p->packet;
efd1a1d6 789 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
790 int i;
791
792 packet->magic = cpu_to_be32(MULTIFD_MAGIC);
793 packet->version = cpu_to_be32(MULTIFD_VERSION);
794 packet->flags = cpu_to_be32(p->flags);
efd1a1d6 795 packet->pages_alloc = cpu_to_be32(page_count);
6f862692 796 packet->pages_used = cpu_to_be32(p->pages->used);
2a34ee59 797 packet->next_packet_size = cpu_to_be32(p->next_packet_size);
2a26c979
JQ
798 packet->packet_num = cpu_to_be64(p->packet_num);
799
800 if (p->pages->block) {
801 strncpy(packet->ramblock, p->pages->block->idstr, 256);
802 }
803
804 for (i = 0; i < p->pages->used; i++) {
805 packet->offset[i] = cpu_to_be64(p->pages->offset[i]);
806 }
807}
808
809static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp)
810{
811 MultiFDPacket_t *packet = p->packet;
efd1a1d6 812 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
2a26c979
JQ
813 RAMBlock *block;
814 int i;
815
341ba0df 816 packet->magic = be32_to_cpu(packet->magic);
2a26c979
JQ
817 if (packet->magic != MULTIFD_MAGIC) {
818 error_setg(errp, "multifd: received packet "
819 "magic %x and expected magic %x",
820 packet->magic, MULTIFD_MAGIC);
821 return -1;
822 }
823
341ba0df 824 packet->version = be32_to_cpu(packet->version);
2a26c979
JQ
825 if (packet->version != MULTIFD_VERSION) {
826 error_setg(errp, "multifd: received packet "
827 "version %d and expected version %d",
828 packet->version, MULTIFD_VERSION);
829 return -1;
830 }
831
832 p->flags = be32_to_cpu(packet->flags);
833
6f862692 834 packet->pages_alloc = be32_to_cpu(packet->pages_alloc);
efd1a1d6 835 if (packet->pages_alloc > page_count) {
2a26c979
JQ
836 error_setg(errp, "multifd: received packet "
837 "with size %d and expected maximum size %d",
efd1a1d6 838 packet->pages_alloc, page_count) ;
2a26c979
JQ
839 return -1;
840 }
841
6f862692
JQ
842 p->pages->used = be32_to_cpu(packet->pages_used);
843 if (p->pages->used > packet->pages_alloc) {
2a26c979 844 error_setg(errp, "multifd: received packet "
6f862692
JQ
845 "with %d pages and expected maximum pages are %d",
846 p->pages->used, packet->pages_alloc) ;
2a26c979
JQ
847 return -1;
848 }
849
2a34ee59 850 p->next_packet_size = be32_to_cpu(packet->next_packet_size);
2a26c979
JQ
851 p->packet_num = be64_to_cpu(packet->packet_num);
852
853 if (p->pages->used) {
854 /* make sure that ramblock is 0 terminated */
855 packet->ramblock[255] = 0;
856 block = qemu_ram_block_by_name(packet->ramblock);
857 if (!block) {
858 error_setg(errp, "multifd: unknown ram block %s",
859 packet->ramblock);
860 return -1;
861 }
862 }
863
864 for (i = 0; i < p->pages->used; i++) {
865 ram_addr_t offset = be64_to_cpu(packet->offset[i]);
866
867 if (offset > (block->used_length - TARGET_PAGE_SIZE)) {
868 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT
869 " (max " RAM_ADDR_FMT ")",
870 offset, block->max_length);
871 return -1;
872 }
873 p->pages->iov[i].iov_base = block->host + offset;
874 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE;
875 }
876
877 return 0;
878}
879
f986c3d2
JQ
880struct {
881 MultiFDSendParams *params;
882 /* number of created threads */
883 int count;
34c55a94
JQ
884 /* array of pages to sent */
885 MultiFDPages_t *pages;
6df264ac
JQ
886 /* syncs main thread and channels */
887 QemuSemaphore sem_sync;
888 /* global number of generated multifd packets */
889 uint64_t packet_num;
b9ee2f7d
JQ
890 /* send channels ready */
891 QemuSemaphore channels_ready;
f986c3d2
JQ
892} *multifd_send_state;
893
b9ee2f7d
JQ
894/*
895 * How we use multifd_send_state->pages and channel->pages?
896 *
897 * We create a pages for each channel, and a main one. Each time that
898 * we need to send a batch of pages we interchange the ones between
899 * multifd_send_state and the channel that is sending it. There are
900 * two reasons for that:
901 * - to not have to do so many mallocs during migration
902 * - to make easier to know what to free at the end of migration
903 *
904 * This way we always know who is the owner of each "pages" struct,
905 * and we don't need any loocking. It belongs to the migration thread
906 * or to the channel thread. Switching is safe because the migration
907 * thread is using the channel mutex when changing it, and the channel
908 * have to had finish with its own, otherwise pending_job can't be
909 * false.
910 */
911
912static void multifd_send_pages(void)
913{
914 int i;
915 static int next_channel;
916 MultiFDSendParams *p = NULL; /* make happy gcc */
917 MultiFDPages_t *pages = multifd_send_state->pages;
918 uint64_t transferred;
919
920 qemu_sem_wait(&multifd_send_state->channels_ready);
921 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) {
922 p = &multifd_send_state->params[i];
923
924 qemu_mutex_lock(&p->mutex);
925 if (!p->pending_job) {
926 p->pending_job++;
927 next_channel = (i + 1) % migrate_multifd_channels();
928 break;
929 }
930 qemu_mutex_unlock(&p->mutex);
931 }
932 p->pages->used = 0;
933
934 p->packet_num = multifd_send_state->packet_num++;
935 p->pages->block = NULL;
936 multifd_send_state->pages = p->pages;
937 p->pages = pages;
4fcefd44 938 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len;
b9ee2f7d
JQ
939 ram_counters.multifd_bytes += transferred;
940 ram_counters.transferred += transferred;;
941 qemu_mutex_unlock(&p->mutex);
942 qemu_sem_post(&p->sem);
943}
944
945static void multifd_queue_page(RAMBlock *block, ram_addr_t offset)
946{
947 MultiFDPages_t *pages = multifd_send_state->pages;
948
949 if (!pages->block) {
950 pages->block = block;
951 }
952
953 if (pages->block == block) {
954 pages->offset[pages->used] = offset;
955 pages->iov[pages->used].iov_base = block->host + offset;
956 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE;
957 pages->used++;
958
959 if (pages->used < pages->allocated) {
960 return;
961 }
962 }
963
964 multifd_send_pages();
965
966 if (pages->block != block) {
967 multifd_queue_page(block, offset);
968 }
969}
970
66770707 971static void multifd_send_terminate_threads(Error *err)
f986c3d2
JQ
972{
973 int i;
974
7a169d74
JQ
975 if (err) {
976 MigrationState *s = migrate_get_current();
977 migrate_set_error(s, err);
978 if (s->state == MIGRATION_STATUS_SETUP ||
979 s->state == MIGRATION_STATUS_PRE_SWITCHOVER ||
980 s->state == MIGRATION_STATUS_DEVICE ||
981 s->state == MIGRATION_STATUS_ACTIVE) {
982 migrate_set_state(&s->state, s->state,
983 MIGRATION_STATUS_FAILED);
984 }
985 }
986
66770707 987 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
988 MultiFDSendParams *p = &multifd_send_state->params[i];
989
990 qemu_mutex_lock(&p->mutex);
991 p->quit = true;
992 qemu_sem_post(&p->sem);
993 qemu_mutex_unlock(&p->mutex);
994 }
995}
996
1398b2e3 997void multifd_save_cleanup(void)
f986c3d2
JQ
998{
999 int i;
f986c3d2
JQ
1000
1001 if (!migrate_use_multifd()) {
1398b2e3 1002 return;
f986c3d2 1003 }
66770707
JQ
1004 multifd_send_terminate_threads(NULL);
1005 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1006 MultiFDSendParams *p = &multifd_send_state->params[i];
1007
66770707
JQ
1008 if (p->running) {
1009 qemu_thread_join(&p->thread);
1010 }
60df2d4a
JQ
1011 socket_send_channel_destroy(p->c);
1012 p->c = NULL;
f986c3d2
JQ
1013 qemu_mutex_destroy(&p->mutex);
1014 qemu_sem_destroy(&p->sem);
6df264ac 1015 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1016 g_free(p->name);
1017 p->name = NULL;
34c55a94
JQ
1018 multifd_pages_clear(p->pages);
1019 p->pages = NULL;
2a26c979
JQ
1020 p->packet_len = 0;
1021 g_free(p->packet);
1022 p->packet = NULL;
f986c3d2 1023 }
b9ee2f7d 1024 qemu_sem_destroy(&multifd_send_state->channels_ready);
6df264ac 1025 qemu_sem_destroy(&multifd_send_state->sem_sync);
f986c3d2
JQ
1026 g_free(multifd_send_state->params);
1027 multifd_send_state->params = NULL;
34c55a94
JQ
1028 multifd_pages_clear(multifd_send_state->pages);
1029 multifd_send_state->pages = NULL;
f986c3d2
JQ
1030 g_free(multifd_send_state);
1031 multifd_send_state = NULL;
f986c3d2
JQ
1032}
1033
6df264ac
JQ
1034static void multifd_send_sync_main(void)
1035{
1036 int i;
1037
1038 if (!migrate_use_multifd()) {
1039 return;
1040 }
b9ee2f7d
JQ
1041 if (multifd_send_state->pages->used) {
1042 multifd_send_pages();
1043 }
6df264ac
JQ
1044 for (i = 0; i < migrate_multifd_channels(); i++) {
1045 MultiFDSendParams *p = &multifd_send_state->params[i];
1046
1047 trace_multifd_send_sync_main_signal(p->id);
1048
1049 qemu_mutex_lock(&p->mutex);
b9ee2f7d
JQ
1050
1051 p->packet_num = multifd_send_state->packet_num++;
6df264ac
JQ
1052 p->flags |= MULTIFD_FLAG_SYNC;
1053 p->pending_job++;
1054 qemu_mutex_unlock(&p->mutex);
1055 qemu_sem_post(&p->sem);
1056 }
1057 for (i = 0; i < migrate_multifd_channels(); i++) {
1058 MultiFDSendParams *p = &multifd_send_state->params[i];
1059
1060 trace_multifd_send_sync_main_wait(p->id);
1061 qemu_sem_wait(&multifd_send_state->sem_sync);
1062 }
1063 trace_multifd_send_sync_main(multifd_send_state->packet_num);
1064}
1065
f986c3d2
JQ
1066static void *multifd_send_thread(void *opaque)
1067{
1068 MultiFDSendParams *p = opaque;
af8b7d2b 1069 Error *local_err = NULL;
8b2db7f5 1070 int ret;
af8b7d2b 1071
408ea6ae 1072 trace_multifd_send_thread_start(p->id);
74637e6f 1073 rcu_register_thread();
408ea6ae 1074
af8b7d2b
JQ
1075 if (multifd_send_initial_packet(p, &local_err) < 0) {
1076 goto out;
1077 }
408ea6ae
JQ
1078 /* initial packet */
1079 p->num_packets = 1;
f986c3d2
JQ
1080
1081 while (true) {
d82628e4 1082 qemu_sem_wait(&p->sem);
f986c3d2 1083 qemu_mutex_lock(&p->mutex);
0beb5ed3
JQ
1084
1085 if (p->pending_job) {
1086 uint32_t used = p->pages->used;
1087 uint64_t packet_num = p->packet_num;
1088 uint32_t flags = p->flags;
1089
2a34ee59 1090 p->next_packet_size = used * qemu_target_page_size();
0beb5ed3
JQ
1091 multifd_send_fill_packet(p);
1092 p->flags = 0;
1093 p->num_packets++;
1094 p->num_pages += used;
1095 p->pages->used = 0;
1096 qemu_mutex_unlock(&p->mutex);
1097
2a34ee59
JQ
1098 trace_multifd_send(p->id, packet_num, used, flags,
1099 p->next_packet_size);
0beb5ed3 1100
8b2db7f5
JQ
1101 ret = qio_channel_write_all(p->c, (void *)p->packet,
1102 p->packet_len, &local_err);
1103 if (ret != 0) {
1104 break;
1105 }
1106
ad24c7cb
JQ
1107 if (used) {
1108 ret = qio_channel_writev_all(p->c, p->pages->iov,
1109 used, &local_err);
1110 if (ret != 0) {
1111 break;
1112 }
8b2db7f5 1113 }
0beb5ed3
JQ
1114
1115 qemu_mutex_lock(&p->mutex);
1116 p->pending_job--;
1117 qemu_mutex_unlock(&p->mutex);
6df264ac
JQ
1118
1119 if (flags & MULTIFD_FLAG_SYNC) {
1120 qemu_sem_post(&multifd_send_state->sem_sync);
1121 }
b9ee2f7d 1122 qemu_sem_post(&multifd_send_state->channels_ready);
0beb5ed3 1123 } else if (p->quit) {
f986c3d2
JQ
1124 qemu_mutex_unlock(&p->mutex);
1125 break;
6df264ac
JQ
1126 } else {
1127 qemu_mutex_unlock(&p->mutex);
1128 /* sometimes there are spurious wakeups */
f986c3d2 1129 }
f986c3d2
JQ
1130 }
1131
af8b7d2b
JQ
1132out:
1133 if (local_err) {
1134 multifd_send_terminate_threads(local_err);
1135 }
1136
66770707
JQ
1137 qemu_mutex_lock(&p->mutex);
1138 p->running = false;
1139 qemu_mutex_unlock(&p->mutex);
1140
74637e6f 1141 rcu_unregister_thread();
408ea6ae
JQ
1142 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages);
1143
f986c3d2
JQ
1144 return NULL;
1145}
1146
60df2d4a
JQ
1147static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque)
1148{
1149 MultiFDSendParams *p = opaque;
1150 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task));
1151 Error *local_err = NULL;
1152
1153 if (qio_task_propagate_error(task, &local_err)) {
1398b2e3
FL
1154 migrate_set_error(migrate_get_current(), local_err);
1155 multifd_save_cleanup();
60df2d4a
JQ
1156 } else {
1157 p->c = QIO_CHANNEL(sioc);
1158 qio_channel_set_delay(p->c, false);
1159 p->running = true;
1160 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p,
1161 QEMU_THREAD_JOINABLE);
1162
1163 atomic_inc(&multifd_send_state->count);
1164 }
1165}
1166
f986c3d2
JQ
1167int multifd_save_setup(void)
1168{
1169 int thread_count;
efd1a1d6 1170 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1171 uint8_t i;
1172
1173 if (!migrate_use_multifd()) {
1174 return 0;
1175 }
1176 thread_count = migrate_multifd_channels();
1177 multifd_send_state = g_malloc0(sizeof(*multifd_send_state));
1178 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count);
66770707 1179 atomic_set(&multifd_send_state->count, 0);
34c55a94 1180 multifd_send_state->pages = multifd_pages_init(page_count);
6df264ac 1181 qemu_sem_init(&multifd_send_state->sem_sync, 0);
b9ee2f7d 1182 qemu_sem_init(&multifd_send_state->channels_ready, 0);
34c55a94 1183
f986c3d2
JQ
1184 for (i = 0; i < thread_count; i++) {
1185 MultiFDSendParams *p = &multifd_send_state->params[i];
1186
1187 qemu_mutex_init(&p->mutex);
1188 qemu_sem_init(&p->sem, 0);
6df264ac 1189 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1190 p->quit = false;
0beb5ed3 1191 p->pending_job = 0;
f986c3d2 1192 p->id = i;
34c55a94 1193 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1194 p->packet_len = sizeof(MultiFDPacket_t)
1195 + sizeof(ram_addr_t) * page_count;
1196 p->packet = g_malloc0(p->packet_len);
f986c3d2 1197 p->name = g_strdup_printf("multifdsend_%d", i);
60df2d4a 1198 socket_send_channel_create(multifd_new_send_channel_async, p);
f986c3d2
JQ
1199 }
1200 return 0;
1201}
1202
f986c3d2
JQ
1203struct {
1204 MultiFDRecvParams *params;
1205 /* number of created threads */
1206 int count;
6df264ac
JQ
1207 /* syncs main thread and channels */
1208 QemuSemaphore sem_sync;
1209 /* global number of generated multifd packets */
1210 uint64_t packet_num;
f986c3d2
JQ
1211} *multifd_recv_state;
1212
66770707 1213static void multifd_recv_terminate_threads(Error *err)
f986c3d2
JQ
1214{
1215 int i;
1216
7a169d74
JQ
1217 if (err) {
1218 MigrationState *s = migrate_get_current();
1219 migrate_set_error(s, err);
1220 if (s->state == MIGRATION_STATUS_SETUP ||
1221 s->state == MIGRATION_STATUS_ACTIVE) {
1222 migrate_set_state(&s->state, s->state,
1223 MIGRATION_STATUS_FAILED);
1224 }
1225 }
1226
66770707 1227 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1228 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1229
1230 qemu_mutex_lock(&p->mutex);
7a5cc33c
JQ
1231 /* We could arrive here for two reasons:
1232 - normal quit, i.e. everything went fine, just finished
1233 - error quit: We close the channels so the channel threads
1234 finish the qio_channel_read_all_eof() */
1235 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL);
f986c3d2
JQ
1236 qemu_mutex_unlock(&p->mutex);
1237 }
1238}
1239
1240int multifd_load_cleanup(Error **errp)
1241{
1242 int i;
1243 int ret = 0;
1244
1245 if (!migrate_use_multifd()) {
1246 return 0;
1247 }
66770707
JQ
1248 multifd_recv_terminate_threads(NULL);
1249 for (i = 0; i < migrate_multifd_channels(); i++) {
f986c3d2
JQ
1250 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1251
66770707
JQ
1252 if (p->running) {
1253 qemu_thread_join(&p->thread);
1254 }
60df2d4a
JQ
1255 object_unref(OBJECT(p->c));
1256 p->c = NULL;
f986c3d2 1257 qemu_mutex_destroy(&p->mutex);
6df264ac 1258 qemu_sem_destroy(&p->sem_sync);
f986c3d2
JQ
1259 g_free(p->name);
1260 p->name = NULL;
34c55a94
JQ
1261 multifd_pages_clear(p->pages);
1262 p->pages = NULL;
2a26c979
JQ
1263 p->packet_len = 0;
1264 g_free(p->packet);
1265 p->packet = NULL;
f986c3d2 1266 }
6df264ac 1267 qemu_sem_destroy(&multifd_recv_state->sem_sync);
f986c3d2
JQ
1268 g_free(multifd_recv_state->params);
1269 multifd_recv_state->params = NULL;
1270 g_free(multifd_recv_state);
1271 multifd_recv_state = NULL;
1272
1273 return ret;
1274}
1275
6df264ac
JQ
1276static void multifd_recv_sync_main(void)
1277{
1278 int i;
1279
1280 if (!migrate_use_multifd()) {
1281 return;
1282 }
1283 for (i = 0; i < migrate_multifd_channels(); i++) {
1284 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1285
6df264ac
JQ
1286 trace_multifd_recv_sync_main_wait(p->id);
1287 qemu_sem_wait(&multifd_recv_state->sem_sync);
1288 qemu_mutex_lock(&p->mutex);
1289 if (multifd_recv_state->packet_num < p->packet_num) {
1290 multifd_recv_state->packet_num = p->packet_num;
1291 }
1292 qemu_mutex_unlock(&p->mutex);
1293 }
1294 for (i = 0; i < migrate_multifd_channels(); i++) {
1295 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1296
1297 trace_multifd_recv_sync_main_signal(p->id);
6df264ac
JQ
1298 qemu_sem_post(&p->sem_sync);
1299 }
1300 trace_multifd_recv_sync_main(multifd_recv_state->packet_num);
1301}
1302
f986c3d2
JQ
1303static void *multifd_recv_thread(void *opaque)
1304{
1305 MultiFDRecvParams *p = opaque;
2a26c979
JQ
1306 Error *local_err = NULL;
1307 int ret;
f986c3d2 1308
408ea6ae 1309 trace_multifd_recv_thread_start(p->id);
74637e6f 1310 rcu_register_thread();
408ea6ae 1311
f986c3d2 1312 while (true) {
6df264ac
JQ
1313 uint32_t used;
1314 uint32_t flags;
0beb5ed3 1315
8b2db7f5
JQ
1316 ret = qio_channel_read_all_eof(p->c, (void *)p->packet,
1317 p->packet_len, &local_err);
1318 if (ret == 0) { /* EOF */
1319 break;
1320 }
1321 if (ret == -1) { /* Error */
1322 break;
1323 }
2a26c979 1324
6df264ac
JQ
1325 qemu_mutex_lock(&p->mutex);
1326 ret = multifd_recv_unfill_packet(p, &local_err);
1327 if (ret) {
f986c3d2
JQ
1328 qemu_mutex_unlock(&p->mutex);
1329 break;
1330 }
6df264ac
JQ
1331
1332 used = p->pages->used;
1333 flags = p->flags;
2a34ee59
JQ
1334 trace_multifd_recv(p->id, p->packet_num, used, flags,
1335 p->next_packet_size);
6df264ac
JQ
1336 p->num_packets++;
1337 p->num_pages += used;
f986c3d2 1338 qemu_mutex_unlock(&p->mutex);
6df264ac 1339
ad24c7cb
JQ
1340 if (used) {
1341 ret = qio_channel_readv_all(p->c, p->pages->iov,
1342 used, &local_err);
1343 if (ret != 0) {
1344 break;
1345 }
8b2db7f5
JQ
1346 }
1347
6df264ac
JQ
1348 if (flags & MULTIFD_FLAG_SYNC) {
1349 qemu_sem_post(&multifd_recv_state->sem_sync);
1350 qemu_sem_wait(&p->sem_sync);
1351 }
f986c3d2
JQ
1352 }
1353
d82628e4
JQ
1354 if (local_err) {
1355 multifd_recv_terminate_threads(local_err);
1356 }
66770707
JQ
1357 qemu_mutex_lock(&p->mutex);
1358 p->running = false;
1359 qemu_mutex_unlock(&p->mutex);
1360
74637e6f 1361 rcu_unregister_thread();
408ea6ae
JQ
1362 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages);
1363
f986c3d2
JQ
1364 return NULL;
1365}
1366
1367int multifd_load_setup(void)
1368{
1369 int thread_count;
efd1a1d6 1370 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size();
f986c3d2
JQ
1371 uint8_t i;
1372
1373 if (!migrate_use_multifd()) {
1374 return 0;
1375 }
1376 thread_count = migrate_multifd_channels();
1377 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state));
1378 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count);
66770707 1379 atomic_set(&multifd_recv_state->count, 0);
6df264ac 1380 qemu_sem_init(&multifd_recv_state->sem_sync, 0);
34c55a94 1381
f986c3d2
JQ
1382 for (i = 0; i < thread_count; i++) {
1383 MultiFDRecvParams *p = &multifd_recv_state->params[i];
1384
1385 qemu_mutex_init(&p->mutex);
6df264ac 1386 qemu_sem_init(&p->sem_sync, 0);
f986c3d2 1387 p->id = i;
34c55a94 1388 p->pages = multifd_pages_init(page_count);
2a26c979
JQ
1389 p->packet_len = sizeof(MultiFDPacket_t)
1390 + sizeof(ram_addr_t) * page_count;
1391 p->packet = g_malloc0(p->packet_len);
f986c3d2 1392 p->name = g_strdup_printf("multifdrecv_%d", i);
f986c3d2
JQ
1393 }
1394 return 0;
1395}
1396
62c1e0ca
JQ
1397bool multifd_recv_all_channels_created(void)
1398{
1399 int thread_count = migrate_multifd_channels();
1400
1401 if (!migrate_use_multifd()) {
1402 return true;
1403 }
1404
1405 return thread_count == atomic_read(&multifd_recv_state->count);
1406}
1407
49ed0d24
FL
1408/*
1409 * Try to receive all multifd channels to get ready for the migration.
1410 * - Return true and do not set @errp when correctly receving all channels;
1411 * - Return false and do not set @errp when correctly receiving the current one;
1412 * - Return false and set @errp when failing to receive the current channel.
1413 */
1414bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp)
71bb07db 1415{
60df2d4a 1416 MultiFDRecvParams *p;
af8b7d2b
JQ
1417 Error *local_err = NULL;
1418 int id;
60df2d4a 1419
af8b7d2b
JQ
1420 id = multifd_recv_initial_packet(ioc, &local_err);
1421 if (id < 0) {
1422 multifd_recv_terminate_threads(local_err);
49ed0d24
FL
1423 error_propagate_prepend(errp, local_err,
1424 "failed to receive packet"
1425 " via multifd channel %d: ",
1426 atomic_read(&multifd_recv_state->count));
81e62053 1427 return false;
af8b7d2b
JQ
1428 }
1429
1430 p = &multifd_recv_state->params[id];
1431 if (p->c != NULL) {
1432 error_setg(&local_err, "multifd: received id '%d' already setup'",
1433 id);
1434 multifd_recv_terminate_threads(local_err);
49ed0d24 1435 error_propagate(errp, local_err);
81e62053 1436 return false;
af8b7d2b 1437 }
60df2d4a
JQ
1438 p->c = ioc;
1439 object_ref(OBJECT(ioc));
408ea6ae
JQ
1440 /* initial packet */
1441 p->num_packets = 1;
60df2d4a
JQ
1442
1443 p->running = true;
1444 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p,
1445 QEMU_THREAD_JOINABLE);
1446 atomic_inc(&multifd_recv_state->count);
49ed0d24
FL
1447 return atomic_read(&multifd_recv_state->count) ==
1448 migrate_multifd_channels();
71bb07db
JQ
1449}
1450
56e93d26 1451/**
3d0684b2 1452 * save_page_header: write page header to wire
56e93d26
JQ
1453 *
1454 * If this is the 1st block, it also writes the block identification
1455 *
3d0684b2 1456 * Returns the number of bytes written
56e93d26
JQ
1457 *
1458 * @f: QEMUFile where to send the data
1459 * @block: block that contains the page we want to send
1460 * @offset: offset inside the block for the page
1461 * in the lower bits, it contains flags
1462 */
2bf3aa85
JQ
1463static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
1464 ram_addr_t offset)
56e93d26 1465{
9f5f380b 1466 size_t size, len;
56e93d26 1467
24795694
JQ
1468 if (block == rs->last_sent_block) {
1469 offset |= RAM_SAVE_FLAG_CONTINUE;
1470 }
2bf3aa85 1471 qemu_put_be64(f, offset);
56e93d26
JQ
1472 size = 8;
1473
1474 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
9f5f380b 1475 len = strlen(block->idstr);
2bf3aa85
JQ
1476 qemu_put_byte(f, len);
1477 qemu_put_buffer(f, (uint8_t *)block->idstr, len);
9f5f380b 1478 size += 1 + len;
24795694 1479 rs->last_sent_block = block;
56e93d26
JQ
1480 }
1481 return size;
1482}
1483
3d0684b2
JQ
1484/**
1485 * mig_throttle_guest_down: throotle down the guest
1486 *
1487 * Reduce amount of guest cpu execution to hopefully slow down memory
1488 * writes. If guest dirty memory rate is reduced below the rate at
1489 * which we can transfer pages to the destination then we should be
1490 * able to complete migration. Some workloads dirty memory way too
1491 * fast and will not effectively converge, even with auto-converge.
070afca2
JH
1492 */
1493static void mig_throttle_guest_down(void)
1494{
1495 MigrationState *s = migrate_get_current();
2594f56d
DB
1496 uint64_t pct_initial = s->parameters.cpu_throttle_initial;
1497 uint64_t pct_icrement = s->parameters.cpu_throttle_increment;
4cbc9c7f 1498 int pct_max = s->parameters.max_cpu_throttle;
070afca2
JH
1499
1500 /* We have not started throttling yet. Let's start it. */
1501 if (!cpu_throttle_active()) {
1502 cpu_throttle_set(pct_initial);
1503 } else {
1504 /* Throttling already on, just increase the rate */
4cbc9c7f
LQ
1505 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement,
1506 pct_max));
070afca2
JH
1507 }
1508}
1509
3d0684b2
JQ
1510/**
1511 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
1512 *
6f37bb8b 1513 * @rs: current RAM state
3d0684b2
JQ
1514 * @current_addr: address for the zero page
1515 *
1516 * Update the xbzrle cache to reflect a page that's been sent as all 0.
56e93d26
JQ
1517 * The important thing is that a stale (not-yet-0'd) page be replaced
1518 * by the new data.
1519 * As a bonus, if the page wasn't in the cache it gets added so that
3d0684b2 1520 * when a small write is made into the 0'd page it gets XBZRLE sent.
56e93d26 1521 */
6f37bb8b 1522static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
56e93d26 1523{
6f37bb8b 1524 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
56e93d26
JQ
1525 return;
1526 }
1527
1528 /* We don't care if this fails to allocate a new cache page
1529 * as long as it updated an old one */
c00e0928 1530 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
9360447d 1531 ram_counters.dirty_sync_count);
56e93d26
JQ
1532}
1533
1534#define ENCODING_FLAG_XBZRLE 0x1
1535
1536/**
1537 * save_xbzrle_page: compress and send current page
1538 *
1539 * Returns: 1 means that we wrote the page
1540 * 0 means that page is identical to the one already sent
1541 * -1 means that xbzrle would be longer than normal
1542 *
5a987738 1543 * @rs: current RAM state
3d0684b2
JQ
1544 * @current_data: pointer to the address of the page contents
1545 * @current_addr: addr of the page
56e93d26
JQ
1546 * @block: block that contains the page we want to send
1547 * @offset: offset inside the block for the page
1548 * @last_stage: if we are at the completion stage
56e93d26 1549 */
204b88b8 1550static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
56e93d26 1551 ram_addr_t current_addr, RAMBlock *block,
072c2511 1552 ram_addr_t offset, bool last_stage)
56e93d26
JQ
1553{
1554 int encoded_len = 0, bytes_xbzrle;
1555 uint8_t *prev_cached_page;
1556
9360447d
JQ
1557 if (!cache_is_cached(XBZRLE.cache, current_addr,
1558 ram_counters.dirty_sync_count)) {
1559 xbzrle_counters.cache_miss++;
56e93d26
JQ
1560 if (!last_stage) {
1561 if (cache_insert(XBZRLE.cache, current_addr, *current_data,
9360447d 1562 ram_counters.dirty_sync_count) == -1) {
56e93d26
JQ
1563 return -1;
1564 } else {
1565 /* update *current_data when the page has been
1566 inserted into cache */
1567 *current_data = get_cached_data(XBZRLE.cache, current_addr);
1568 }
1569 }
1570 return -1;
1571 }
1572
1573 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
1574
1575 /* save current buffer into memory */
1576 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
1577
1578 /* XBZRLE encoding (if there is no overflow) */
1579 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
1580 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
1581 TARGET_PAGE_SIZE);
1582 if (encoded_len == 0) {
55c4446b 1583 trace_save_xbzrle_page_skipping();
56e93d26
JQ
1584 return 0;
1585 } else if (encoded_len == -1) {
55c4446b 1586 trace_save_xbzrle_page_overflow();
9360447d 1587 xbzrle_counters.overflow++;
56e93d26
JQ
1588 /* update data in the cache */
1589 if (!last_stage) {
1590 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE);
1591 *current_data = prev_cached_page;
1592 }
1593 return -1;
1594 }
1595
1596 /* we need to update the data in the cache, in order to get the same data */
1597 if (!last_stage) {
1598 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
1599 }
1600
1601 /* Send XBZRLE based compressed page */
2bf3aa85 1602 bytes_xbzrle = save_page_header(rs, rs->f, block,
204b88b8
JQ
1603 offset | RAM_SAVE_FLAG_XBZRLE);
1604 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
1605 qemu_put_be16(rs->f, encoded_len);
1606 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
56e93d26 1607 bytes_xbzrle += encoded_len + 1 + 2;
9360447d
JQ
1608 xbzrle_counters.pages++;
1609 xbzrle_counters.bytes += bytes_xbzrle;
1610 ram_counters.transferred += bytes_xbzrle;
56e93d26
JQ
1611
1612 return 1;
1613}
1614
3d0684b2
JQ
1615/**
1616 * migration_bitmap_find_dirty: find the next dirty page from start
f3f491fc 1617 *
3d0684b2
JQ
1618 * Called with rcu_read_lock() to protect migration_bitmap
1619 *
1620 * Returns the byte offset within memory region of the start of a dirty page
1621 *
6f37bb8b 1622 * @rs: current RAM state
3d0684b2 1623 * @rb: RAMBlock where to search for dirty pages
a935e30f 1624 * @start: page where we start the search
f3f491fc 1625 */
56e93d26 1626static inline
a935e30f 1627unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
f20e2865 1628 unsigned long start)
56e93d26 1629{
6b6712ef
JQ
1630 unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
1631 unsigned long *bitmap = rb->bmap;
56e93d26
JQ
1632 unsigned long next;
1633
fbd162e6 1634 if (ramblock_is_ignored(rb)) {
b895de50
CLG
1635 return size;
1636 }
1637
6eeb63f7
WW
1638 /*
1639 * When the free page optimization is enabled, we need to check the bitmap
1640 * to send the non-free pages rather than all the pages in the bulk stage.
1641 */
1642 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) {
6b6712ef 1643 next = start + 1;
56e93d26 1644 } else {
6b6712ef 1645 next = find_next_bit(bitmap, size, start);
56e93d26
JQ
1646 }
1647
6b6712ef 1648 return next;
56e93d26
JQ
1649}
1650
06b10688 1651static inline bool migration_bitmap_clear_dirty(RAMState *rs,
f20e2865
JQ
1652 RAMBlock *rb,
1653 unsigned long page)
a82d593b
DDAG
1654{
1655 bool ret;
a82d593b 1656
386a907b 1657 qemu_mutex_lock(&rs->bitmap_mutex);
6b6712ef 1658 ret = test_and_clear_bit(page, rb->bmap);
a82d593b
DDAG
1659
1660 if (ret) {
0d8ec885 1661 rs->migration_dirty_pages--;
a82d593b 1662 }
386a907b
WW
1663 qemu_mutex_unlock(&rs->bitmap_mutex);
1664
a82d593b
DDAG
1665 return ret;
1666}
1667
15440dd5
JQ
1668static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb,
1669 ram_addr_t start, ram_addr_t length)
56e93d26 1670{
0d8ec885 1671 rs->migration_dirty_pages +=
6b6712ef 1672 cpu_physical_memory_sync_dirty_bitmap(rb, start, length,
0d8ec885 1673 &rs->num_dirty_pages_period);
56e93d26
JQ
1674}
1675
3d0684b2
JQ
1676/**
1677 * ram_pagesize_summary: calculate all the pagesizes of a VM
1678 *
1679 * Returns a summary bitmap of the page sizes of all RAMBlocks
1680 *
1681 * For VMs with just normal pages this is equivalent to the host page
1682 * size. If it's got some huge pages then it's the OR of all the
1683 * different page sizes.
e8ca1db2
DDAG
1684 */
1685uint64_t ram_pagesize_summary(void)
1686{
1687 RAMBlock *block;
1688 uint64_t summary = 0;
1689
fbd162e6 1690 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
e8ca1db2
DDAG
1691 summary |= block->page_size;
1692 }
1693
1694 return summary;
1695}
1696
aecbfe9c
XG
1697uint64_t ram_get_total_transferred_pages(void)
1698{
1699 return ram_counters.normal + ram_counters.duplicate +
1700 compression_counters.pages + xbzrle_counters.pages;
1701}
1702
b734035b
XG
1703static void migration_update_rates(RAMState *rs, int64_t end_time)
1704{
be8b02ed 1705 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
76e03000 1706 double compressed_size;
b734035b
XG
1707
1708 /* calculate period counters */
1709 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1710 / (end_time - rs->time_last_bitmap_sync);
1711
be8b02ed 1712 if (!page_count) {
b734035b
XG
1713 return;
1714 }
1715
1716 if (migrate_use_xbzrle()) {
1717 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
be8b02ed 1718 rs->xbzrle_cache_miss_prev) / page_count;
b734035b
XG
1719 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1720 }
76e03000
XG
1721
1722 if (migrate_use_compression()) {
1723 compression_counters.busy_rate = (double)(compression_counters.busy -
1724 rs->compress_thread_busy_prev) / page_count;
1725 rs->compress_thread_busy_prev = compression_counters.busy;
1726
1727 compressed_size = compression_counters.compressed_size -
1728 rs->compressed_size_prev;
1729 if (compressed_size) {
1730 double uncompressed_size = (compression_counters.pages -
1731 rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1732
1733 /* Compression-Ratio = Uncompressed-size / Compressed-size */
1734 compression_counters.compression_rate =
1735 uncompressed_size / compressed_size;
1736
1737 rs->compress_pages_prev = compression_counters.pages;
1738 rs->compressed_size_prev = compression_counters.compressed_size;
1739 }
1740 }
b734035b
XG
1741}
1742
8d820d6f 1743static void migration_bitmap_sync(RAMState *rs)
56e93d26
JQ
1744{
1745 RAMBlock *block;
56e93d26 1746 int64_t end_time;
c4bdf0cf 1747 uint64_t bytes_xfer_now;
56e93d26 1748
9360447d 1749 ram_counters.dirty_sync_count++;
56e93d26 1750
f664da80
JQ
1751 if (!rs->time_last_bitmap_sync) {
1752 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
56e93d26
JQ
1753 }
1754
1755 trace_migration_bitmap_sync_start();
9c1f8f44 1756 memory_global_dirty_log_sync();
56e93d26 1757
108cfae0 1758 qemu_mutex_lock(&rs->bitmap_mutex);
56e93d26 1759 rcu_read_lock();
fbd162e6 1760 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
15440dd5 1761 migration_bitmap_sync_range(rs, block, 0, block->used_length);
56e93d26 1762 }
650af890 1763 ram_counters.remaining = ram_bytes_remaining();
56e93d26 1764 rcu_read_unlock();
108cfae0 1765 qemu_mutex_unlock(&rs->bitmap_mutex);
56e93d26 1766
a66cd90c 1767 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1ffb5dfd 1768
56e93d26
JQ
1769 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1770
1771 /* more than 1 second = 1000 millisecons */
f664da80 1772 if (end_time > rs->time_last_bitmap_sync + 1000) {
9360447d 1773 bytes_xfer_now = ram_counters.transferred;
d693c6f1 1774
9ac78b61
PL
1775 /* During block migration the auto-converge logic incorrectly detects
1776 * that ram migration makes no progress. Avoid this by disabling the
1777 * throttling logic during the bulk phase of block migration. */
1778 if (migrate_auto_converge() && !blk_mig_bulk_active()) {
56e93d26
JQ
1779 /* The following detection logic can be refined later. For now:
1780 Check to see if the dirtied bytes is 50% more than the approx.
1781 amount of bytes that just got transferred since the last time we
070afca2
JH
1782 were in this routine. If that happens twice, start or increase
1783 throttling */
070afca2 1784
d693c6f1 1785 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE >
eac74159 1786 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) &&
b4a3c64b 1787 (++rs->dirty_rate_high_cnt >= 2)) {
56e93d26 1788 trace_migration_throttle();
8d820d6f 1789 rs->dirty_rate_high_cnt = 0;
070afca2 1790 mig_throttle_guest_down();
d693c6f1 1791 }
56e93d26 1792 }
070afca2 1793
b734035b
XG
1794 migration_update_rates(rs, end_time);
1795
be8b02ed 1796 rs->target_page_count_prev = rs->target_page_count;
d693c6f1
FF
1797
1798 /* reset period counters */
f664da80 1799 rs->time_last_bitmap_sync = end_time;
a66cd90c 1800 rs->num_dirty_pages_period = 0;
d2a4d85a 1801 rs->bytes_xfer_prev = bytes_xfer_now;
56e93d26 1802 }
4addcd4f 1803 if (migrate_use_events()) {
3ab72385 1804 qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
4addcd4f 1805 }
56e93d26
JQ
1806}
1807
bd227060
WW
1808static void migration_bitmap_sync_precopy(RAMState *rs)
1809{
1810 Error *local_err = NULL;
1811
1812 /*
1813 * The current notifier usage is just an optimization to migration, so we
1814 * don't stop the normal migration process in the error case.
1815 */
1816 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1817 error_report_err(local_err);
1818 }
1819
1820 migration_bitmap_sync(rs);
1821
1822 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1823 error_report_err(local_err);
1824 }
1825}
1826
6c97ec5f
XG
1827/**
1828 * save_zero_page_to_file: send the zero page to the file
1829 *
1830 * Returns the size of data written to the file, 0 means the page is not
1831 * a zero page
1832 *
1833 * @rs: current RAM state
1834 * @file: the file where the data is saved
1835 * @block: block that contains the page we want to send
1836 * @offset: offset inside the block for the page
1837 */
1838static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1839 RAMBlock *block, ram_addr_t offset)
1840{
1841 uint8_t *p = block->host + offset;
1842 int len = 0;
1843
1844 if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1845 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1846 qemu_put_byte(file, 0);
1847 len += 1;
1848 }
1849 return len;
1850}
1851
56e93d26 1852/**
3d0684b2 1853 * save_zero_page: send the zero page to the stream
56e93d26 1854 *
3d0684b2 1855 * Returns the number of pages written.
56e93d26 1856 *
f7ccd61b 1857 * @rs: current RAM state
56e93d26
JQ
1858 * @block: block that contains the page we want to send
1859 * @offset: offset inside the block for the page
56e93d26 1860 */
7faccdc3 1861static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
56e93d26 1862{
6c97ec5f 1863 int len = save_zero_page_to_file(rs, rs->f, block, offset);
56e93d26 1864
6c97ec5f 1865 if (len) {
9360447d 1866 ram_counters.duplicate++;
6c97ec5f
XG
1867 ram_counters.transferred += len;
1868 return 1;
56e93d26 1869 }
6c97ec5f 1870 return -1;
56e93d26
JQ
1871}
1872
5727309d 1873static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
53f09a10 1874{
5727309d 1875 if (!migrate_release_ram() || !migration_in_postcopy()) {
53f09a10
PB
1876 return;
1877 }
1878
aaa2064c 1879 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS);
53f09a10
PB
1880}
1881
059ff0fb
XG
1882/*
1883 * @pages: the number of pages written by the control path,
1884 * < 0 - error
1885 * > 0 - number of pages written
1886 *
1887 * Return true if the pages has been saved, otherwise false is returned.
1888 */
1889static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1890 int *pages)
1891{
1892 uint64_t bytes_xmit = 0;
1893 int ret;
1894
1895 *pages = -1;
1896 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1897 &bytes_xmit);
1898 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1899 return false;
1900 }
1901
1902 if (bytes_xmit) {
1903 ram_counters.transferred += bytes_xmit;
1904 *pages = 1;
1905 }
1906
1907 if (ret == RAM_SAVE_CONTROL_DELAYED) {
1908 return true;
1909 }
1910
1911 if (bytes_xmit > 0) {
1912 ram_counters.normal++;
1913 } else if (bytes_xmit == 0) {
1914 ram_counters.duplicate++;
1915 }
1916
1917 return true;
1918}
1919
65dacaa0
XG
1920/*
1921 * directly send the page to the stream
1922 *
1923 * Returns the number of pages written.
1924 *
1925 * @rs: current RAM state
1926 * @block: block that contains the page we want to send
1927 * @offset: offset inside the block for the page
1928 * @buf: the page to be sent
1929 * @async: send to page asyncly
1930 */
1931static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1932 uint8_t *buf, bool async)
1933{
1934 ram_counters.transferred += save_page_header(rs, rs->f, block,
1935 offset | RAM_SAVE_FLAG_PAGE);
1936 if (async) {
1937 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1938 migrate_release_ram() &
1939 migration_in_postcopy());
1940 } else {
1941 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1942 }
1943 ram_counters.transferred += TARGET_PAGE_SIZE;
1944 ram_counters.normal++;
1945 return 1;
1946}
1947
56e93d26 1948/**
3d0684b2 1949 * ram_save_page: send the given page to the stream
56e93d26 1950 *
3d0684b2 1951 * Returns the number of pages written.
3fd3c4b3
DDAG
1952 * < 0 - error
1953 * >=0 - Number of pages written - this might legally be 0
1954 * if xbzrle noticed the page was the same.
56e93d26 1955 *
6f37bb8b 1956 * @rs: current RAM state
56e93d26
JQ
1957 * @block: block that contains the page we want to send
1958 * @offset: offset inside the block for the page
1959 * @last_stage: if we are at the completion stage
56e93d26 1960 */
a0a8aa14 1961static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
56e93d26
JQ
1962{
1963 int pages = -1;
56e93d26 1964 uint8_t *p;
56e93d26 1965 bool send_async = true;
a08f6890 1966 RAMBlock *block = pss->block;
a935e30f 1967 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
059ff0fb 1968 ram_addr_t current_addr = block->offset + offset;
56e93d26 1969
2f68e399 1970 p = block->host + offset;
1db9d8e5 1971 trace_ram_save_page(block->idstr, (uint64_t)offset, p);
56e93d26 1972
56e93d26 1973 XBZRLE_cache_lock();
d7400a34
XG
1974 if (!rs->ram_bulk_stage && !migration_in_postcopy() &&
1975 migrate_use_xbzrle()) {
059ff0fb
XG
1976 pages = save_xbzrle_page(rs, &p, current_addr, block,
1977 offset, last_stage);
1978 if (!last_stage) {
1979 /* Can't send this cached data async, since the cache page
1980 * might get updated before it gets to the wire
56e93d26 1981 */
059ff0fb 1982 send_async = false;
56e93d26
JQ
1983 }
1984 }
1985
1986 /* XBZRLE overflow or normal page */
1987 if (pages == -1) {
65dacaa0 1988 pages = save_normal_page(rs, block, offset, p, send_async);
56e93d26
JQ
1989 }
1990
1991 XBZRLE_cache_unlock();
1992
1993 return pages;
1994}
1995
b9ee2f7d
JQ
1996static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1997 ram_addr_t offset)
1998{
b9ee2f7d 1999 multifd_queue_page(block, offset);
b9ee2f7d
JQ
2000 ram_counters.normal++;
2001
2002 return 1;
2003}
2004
5e5fdcff 2005static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
6ef3771c 2006 ram_addr_t offset, uint8_t *source_buf)
56e93d26 2007{
53518d94 2008 RAMState *rs = ram_state;
a7a9a88f 2009 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
5e5fdcff 2010 bool zero_page = false;
6ef3771c 2011 int ret;
56e93d26 2012
5e5fdcff
XG
2013 if (save_zero_page_to_file(rs, f, block, offset)) {
2014 zero_page = true;
2015 goto exit;
2016 }
2017
6ef3771c 2018 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
34ab9e97
XG
2019
2020 /*
2021 * copy it to a internal buffer to avoid it being modified by VM
2022 * so that we can catch up the error during compression and
2023 * decompression
2024 */
2025 memcpy(source_buf, p, TARGET_PAGE_SIZE);
6ef3771c
XG
2026 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
2027 if (ret < 0) {
2028 qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
b3be2896 2029 error_report("compressed data failed!");
5e5fdcff 2030 return false;
b3be2896 2031 }
56e93d26 2032
5e5fdcff 2033exit:
6ef3771c 2034 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
5e5fdcff
XG
2035 return zero_page;
2036}
2037
2038static void
2039update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
2040{
76e03000
XG
2041 ram_counters.transferred += bytes_xmit;
2042
5e5fdcff
XG
2043 if (param->zero_page) {
2044 ram_counters.duplicate++;
76e03000 2045 return;
5e5fdcff 2046 }
76e03000
XG
2047
2048 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
2049 compression_counters.compressed_size += bytes_xmit - 8;
2050 compression_counters.pages++;
56e93d26
JQ
2051}
2052
32b05495
XG
2053static bool save_page_use_compression(RAMState *rs);
2054
ce25d337 2055static void flush_compressed_data(RAMState *rs)
56e93d26
JQ
2056{
2057 int idx, len, thread_count;
2058
32b05495 2059 if (!save_page_use_compression(rs)) {
56e93d26
JQ
2060 return;
2061 }
2062 thread_count = migrate_compress_threads();
a7a9a88f 2063
0d9f9a5c 2064 qemu_mutex_lock(&comp_done_lock);
56e93d26 2065 for (idx = 0; idx < thread_count; idx++) {
a7a9a88f 2066 while (!comp_param[idx].done) {
0d9f9a5c 2067 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
56e93d26 2068 }
a7a9a88f 2069 }
0d9f9a5c 2070 qemu_mutex_unlock(&comp_done_lock);
a7a9a88f
LL
2071
2072 for (idx = 0; idx < thread_count; idx++) {
2073 qemu_mutex_lock(&comp_param[idx].mutex);
90e56fb4 2074 if (!comp_param[idx].quit) {
ce25d337 2075 len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
5e5fdcff
XG
2076 /*
2077 * it's safe to fetch zero_page without holding comp_done_lock
2078 * as there is no further request submitted to the thread,
2079 * i.e, the thread should be waiting for a request at this point.
2080 */
2081 update_compress_thread_counts(&comp_param[idx], len);
56e93d26 2082 }
a7a9a88f 2083 qemu_mutex_unlock(&comp_param[idx].mutex);
56e93d26
JQ
2084 }
2085}
2086
2087static inline void set_compress_params(CompressParam *param, RAMBlock *block,
2088 ram_addr_t offset)
2089{
2090 param->block = block;
2091 param->offset = offset;
2092}
2093
ce25d337
JQ
2094static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
2095 ram_addr_t offset)
56e93d26
JQ
2096{
2097 int idx, thread_count, bytes_xmit = -1, pages = -1;
1d58872a 2098 bool wait = migrate_compress_wait_thread();
56e93d26
JQ
2099
2100 thread_count = migrate_compress_threads();
0d9f9a5c 2101 qemu_mutex_lock(&comp_done_lock);
1d58872a
XG
2102retry:
2103 for (idx = 0; idx < thread_count; idx++) {
2104 if (comp_param[idx].done) {
2105 comp_param[idx].done = false;
2106 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
2107 qemu_mutex_lock(&comp_param[idx].mutex);
2108 set_compress_params(&comp_param[idx], block, offset);
2109 qemu_cond_signal(&comp_param[idx].cond);
2110 qemu_mutex_unlock(&comp_param[idx].mutex);
2111 pages = 1;
5e5fdcff 2112 update_compress_thread_counts(&comp_param[idx], bytes_xmit);
56e93d26 2113 break;
56e93d26
JQ
2114 }
2115 }
1d58872a
XG
2116
2117 /*
2118 * wait for the free thread if the user specifies 'compress-wait-thread',
2119 * otherwise we will post the page out in the main thread as normal page.
2120 */
2121 if (pages < 0 && wait) {
2122 qemu_cond_wait(&comp_done_cond, &comp_done_lock);
2123 goto retry;
2124 }
0d9f9a5c 2125 qemu_mutex_unlock(&comp_done_lock);
56e93d26
JQ
2126
2127 return pages;
2128}
2129
3d0684b2
JQ
2130/**
2131 * find_dirty_block: find the next dirty page and update any state
2132 * associated with the search process.
b9e60928 2133 *
3d0684b2 2134 * Returns if a page is found
b9e60928 2135 *
6f37bb8b 2136 * @rs: current RAM state
3d0684b2
JQ
2137 * @pss: data about the state of the current dirty page scan
2138 * @again: set to false if the search has scanned the whole of RAM
b9e60928 2139 */
f20e2865 2140static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
b9e60928 2141{
f20e2865 2142 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
6f37bb8b 2143 if (pss->complete_round && pss->block == rs->last_seen_block &&
a935e30f 2144 pss->page >= rs->last_page) {
b9e60928
DDAG
2145 /*
2146 * We've been once around the RAM and haven't found anything.
2147 * Give up.
2148 */
2149 *again = false;
2150 return false;
2151 }
a935e30f 2152 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) {
b9e60928 2153 /* Didn't find anything in this RAM Block */
a935e30f 2154 pss->page = 0;
b9e60928
DDAG
2155 pss->block = QLIST_NEXT_RCU(pss->block, next);
2156 if (!pss->block) {
48df9d80
XG
2157 /*
2158 * If memory migration starts over, we will meet a dirtied page
2159 * which may still exists in compression threads's ring, so we
2160 * should flush the compressed data to make sure the new page
2161 * is not overwritten by the old one in the destination.
2162 *
2163 * Also If xbzrle is on, stop using the data compression at this
2164 * point. In theory, xbzrle can do better than compression.
2165 */
2166 flush_compressed_data(rs);
2167
b9e60928
DDAG
2168 /* Hit the end of the list */
2169 pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
2170 /* Flag that we've looped */
2171 pss->complete_round = true;
6f37bb8b 2172 rs->ram_bulk_stage = false;
b9e60928
DDAG
2173 }
2174 /* Didn't find anything this time, but try again on the new block */
2175 *again = true;
2176 return false;
2177 } else {
2178 /* Can go around again, but... */
2179 *again = true;
2180 /* We've found something so probably don't need to */
2181 return true;
2182 }
2183}
2184
3d0684b2
JQ
2185/**
2186 * unqueue_page: gets a page of the queue
2187 *
a82d593b 2188 * Helper for 'get_queued_page' - gets a page off the queue
a82d593b 2189 *
3d0684b2
JQ
2190 * Returns the block of the page (or NULL if none available)
2191 *
ec481c6c 2192 * @rs: current RAM state
3d0684b2 2193 * @offset: used to return the offset within the RAMBlock
a82d593b 2194 */
f20e2865 2195static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
a82d593b
DDAG
2196{
2197 RAMBlock *block = NULL;
2198
ae526e32
XG
2199 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
2200 return NULL;
2201 }
2202
ec481c6c
JQ
2203 qemu_mutex_lock(&rs->src_page_req_mutex);
2204 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
2205 struct RAMSrcPageRequest *entry =
2206 QSIMPLEQ_FIRST(&rs->src_page_requests);
a82d593b
DDAG
2207 block = entry->rb;
2208 *offset = entry->offset;
a82d593b
DDAG
2209
2210 if (entry->len > TARGET_PAGE_SIZE) {
2211 entry->len -= TARGET_PAGE_SIZE;
2212 entry->offset += TARGET_PAGE_SIZE;
2213 } else {
2214 memory_region_unref(block->mr);
ec481c6c 2215 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
a82d593b 2216 g_free(entry);
e03a34f8 2217 migration_consume_urgent_request();
a82d593b
DDAG
2218 }
2219 }
ec481c6c 2220 qemu_mutex_unlock(&rs->src_page_req_mutex);
a82d593b
DDAG
2221
2222 return block;
2223}
2224
3d0684b2
JQ
2225/**
2226 * get_queued_page: unqueue a page from the postocpy requests
2227 *
2228 * Skips pages that are already sent (!dirty)
a82d593b 2229 *
3d0684b2 2230 * Returns if a queued page is found
a82d593b 2231 *
6f37bb8b 2232 * @rs: current RAM state
3d0684b2 2233 * @pss: data about the state of the current dirty page scan
a82d593b 2234 */
f20e2865 2235static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
a82d593b
DDAG
2236{
2237 RAMBlock *block;
2238 ram_addr_t offset;
2239 bool dirty;
2240
2241 do {
f20e2865 2242 block = unqueue_page(rs, &offset);
a82d593b
DDAG
2243 /*
2244 * We're sending this page, and since it's postcopy nothing else
2245 * will dirty it, and we must make sure it doesn't get sent again
2246 * even if this queue request was received after the background
2247 * search already sent it.
2248 */
2249 if (block) {
f20e2865
JQ
2250 unsigned long page;
2251
6b6712ef
JQ
2252 page = offset >> TARGET_PAGE_BITS;
2253 dirty = test_bit(page, block->bmap);
a82d593b 2254 if (!dirty) {
06b10688 2255 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
6b6712ef 2256 page, test_bit(page, block->unsentmap));
a82d593b 2257 } else {
f20e2865 2258 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
a82d593b
DDAG
2259 }
2260 }
2261
2262 } while (block && !dirty);
2263
2264 if (block) {
2265 /*
2266 * As soon as we start servicing pages out of order, then we have
2267 * to kill the bulk stage, since the bulk stage assumes
2268 * in (migration_bitmap_find_and_reset_dirty) that every page is
2269 * dirty, that's no longer true.
2270 */
6f37bb8b 2271 rs->ram_bulk_stage = false;
a82d593b
DDAG
2272
2273 /*
2274 * We want the background search to continue from the queued page
2275 * since the guest is likely to want other pages near to the page
2276 * it just requested.
2277 */
2278 pss->block = block;
a935e30f 2279 pss->page = offset >> TARGET_PAGE_BITS;
a82d593b
DDAG
2280 }
2281
2282 return !!block;
2283}
2284
6c595cde 2285/**
5e58f968
JQ
2286 * migration_page_queue_free: drop any remaining pages in the ram
2287 * request queue
6c595cde 2288 *
3d0684b2
JQ
2289 * It should be empty at the end anyway, but in error cases there may
2290 * be some left. in case that there is any page left, we drop it.
2291 *
6c595cde 2292 */
83c13382 2293static void migration_page_queue_free(RAMState *rs)
6c595cde 2294{
ec481c6c 2295 struct RAMSrcPageRequest *mspr, *next_mspr;
6c595cde
DDAG
2296 /* This queue generally should be empty - but in the case of a failed
2297 * migration might have some droppings in.
2298 */
2299 rcu_read_lock();
ec481c6c 2300 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
6c595cde 2301 memory_region_unref(mspr->rb->mr);
ec481c6c 2302 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
6c595cde
DDAG
2303 g_free(mspr);
2304 }
2305 rcu_read_unlock();
2306}
2307
2308/**
3d0684b2
JQ
2309 * ram_save_queue_pages: queue the page for transmission
2310 *
2311 * A request from postcopy destination for example.
2312 *
2313 * Returns zero on success or negative on error
2314 *
3d0684b2
JQ
2315 * @rbname: Name of the RAMBLock of the request. NULL means the
2316 * same that last one.
2317 * @start: starting address from the start of the RAMBlock
2318 * @len: length (in bytes) to send
6c595cde 2319 */
96506894 2320int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
6c595cde
DDAG
2321{
2322 RAMBlock *ramblock;
53518d94 2323 RAMState *rs = ram_state;
6c595cde 2324
9360447d 2325 ram_counters.postcopy_requests++;
6c595cde
DDAG
2326 rcu_read_lock();
2327 if (!rbname) {
2328 /* Reuse last RAMBlock */
68a098f3 2329 ramblock = rs->last_req_rb;
6c595cde
DDAG
2330
2331 if (!ramblock) {
2332 /*
2333 * Shouldn't happen, we can't reuse the last RAMBlock if
2334 * it's the 1st request.
2335 */
2336 error_report("ram_save_queue_pages no previous block");
2337 goto err;
2338 }
2339 } else {
2340 ramblock = qemu_ram_block_by_name(rbname);
2341
2342 if (!ramblock) {
2343 /* We shouldn't be asked for a non-existent RAMBlock */
2344 error_report("ram_save_queue_pages no block '%s'", rbname);
2345 goto err;
2346 }
68a098f3 2347 rs->last_req_rb = ramblock;
6c595cde
DDAG
2348 }
2349 trace_ram_save_queue_pages(ramblock->idstr, start, len);
2350 if (start+len > ramblock->used_length) {
9458ad6b
JQ
2351 error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2352 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
6c595cde
DDAG
2353 __func__, start, len, ramblock->used_length);
2354 goto err;
2355 }
2356
ec481c6c
JQ
2357 struct RAMSrcPageRequest *new_entry =
2358 g_malloc0(sizeof(struct RAMSrcPageRequest));
6c595cde
DDAG
2359 new_entry->rb = ramblock;
2360 new_entry->offset = start;
2361 new_entry->len = len;
2362
2363 memory_region_ref(ramblock->mr);
ec481c6c
JQ
2364 qemu_mutex_lock(&rs->src_page_req_mutex);
2365 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
e03a34f8 2366 migration_make_urgent_request();
ec481c6c 2367 qemu_mutex_unlock(&rs->src_page_req_mutex);
6c595cde
DDAG
2368 rcu_read_unlock();
2369
2370 return 0;
2371
2372err:
2373 rcu_read_unlock();
2374 return -1;
2375}
2376
d7400a34
XG
2377static bool save_page_use_compression(RAMState *rs)
2378{
2379 if (!migrate_use_compression()) {
2380 return false;
2381 }
2382
2383 /*
2384 * If xbzrle is on, stop using the data compression after first
2385 * round of migration even if compression is enabled. In theory,
2386 * xbzrle can do better than compression.
2387 */
2388 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) {
2389 return true;
2390 }
2391
2392 return false;
2393}
2394
5e5fdcff
XG
2395/*
2396 * try to compress the page before posting it out, return true if the page
2397 * has been properly handled by compression, otherwise needs other
2398 * paths to handle it
2399 */
2400static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2401{
2402 if (!save_page_use_compression(rs)) {
2403 return false;
2404 }
2405
2406 /*
2407 * When starting the process of a new block, the first page of
2408 * the block should be sent out before other pages in the same
2409 * block, and all the pages in last block should have been sent
2410 * out, keeping this order is important, because the 'cont' flag
2411 * is used to avoid resending the block name.
2412 *
2413 * We post the fist page as normal page as compression will take
2414 * much CPU resource.
2415 */
2416 if (block != rs->last_sent_block) {
2417 flush_compressed_data(rs);
2418 return false;
2419 }
2420
2421 if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2422 return true;
2423 }
2424
76e03000 2425 compression_counters.busy++;
5e5fdcff
XG
2426 return false;
2427}
2428
a82d593b 2429/**
3d0684b2 2430 * ram_save_target_page: save one target page
a82d593b 2431 *
3d0684b2 2432 * Returns the number of pages written
a82d593b 2433 *
6f37bb8b 2434 * @rs: current RAM state
3d0684b2 2435 * @pss: data about the page we want to send
a82d593b 2436 * @last_stage: if we are at the completion stage
a82d593b 2437 */
a0a8aa14 2438static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2439 bool last_stage)
a82d593b 2440{
a8ec91f9
XG
2441 RAMBlock *block = pss->block;
2442 ram_addr_t offset = pss->page << TARGET_PAGE_BITS;
2443 int res;
2444
2445 if (control_save_page(rs, block, offset, &res)) {
2446 return res;
2447 }
2448
5e5fdcff
XG
2449 if (save_compress_page(rs, block, offset)) {
2450 return 1;
d7400a34
XG
2451 }
2452
2453 res = save_zero_page(rs, block, offset);
2454 if (res > 0) {
2455 /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2456 * page would be stale
2457 */
2458 if (!save_page_use_compression(rs)) {
2459 XBZRLE_cache_lock();
2460 xbzrle_cache_zero_page(rs, block->offset + offset);
2461 XBZRLE_cache_unlock();
2462 }
2463 ram_release_pages(block->idstr, offset, res);
2464 return res;
2465 }
2466
da3f56cb 2467 /*
5e5fdcff
XG
2468 * do not use multifd for compression as the first page in the new
2469 * block should be posted out before sending the compressed page
da3f56cb 2470 */
5e5fdcff 2471 if (!save_page_use_compression(rs) && migrate_use_multifd()) {
b9ee2f7d 2472 return ram_save_multifd_page(rs, block, offset);
a82d593b
DDAG
2473 }
2474
1faa5665 2475 return ram_save_page(rs, pss, last_stage);
a82d593b
DDAG
2476}
2477
2478/**
3d0684b2 2479 * ram_save_host_page: save a whole host page
a82d593b 2480 *
3d0684b2
JQ
2481 * Starting at *offset send pages up to the end of the current host
2482 * page. It's valid for the initial offset to point into the middle of
2483 * a host page in which case the remainder of the hostpage is sent.
2484 * Only dirty target pages are sent. Note that the host page size may
2485 * be a huge page for this block.
1eb3fc0a
DDAG
2486 * The saving stops at the boundary of the used_length of the block
2487 * if the RAMBlock isn't a multiple of the host page size.
a82d593b 2488 *
3d0684b2
JQ
2489 * Returns the number of pages written or negative on error
2490 *
6f37bb8b 2491 * @rs: current RAM state
3d0684b2 2492 * @ms: current migration state
3d0684b2 2493 * @pss: data about the page we want to send
a82d593b 2494 * @last_stage: if we are at the completion stage
a82d593b 2495 */
a0a8aa14 2496static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
f20e2865 2497 bool last_stage)
a82d593b
DDAG
2498{
2499 int tmppages, pages = 0;
a935e30f
JQ
2500 size_t pagesize_bits =
2501 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
4c011c37 2502
fbd162e6 2503 if (ramblock_is_ignored(pss->block)) {
b895de50
CLG
2504 error_report("block %s should not be migrated !", pss->block->idstr);
2505 return 0;
2506 }
2507
a82d593b 2508 do {
1faa5665
XG
2509 /* Check the pages is dirty and if it is send it */
2510 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2511 pss->page++;
2512 continue;
2513 }
2514
f20e2865 2515 tmppages = ram_save_target_page(rs, pss, last_stage);
a82d593b
DDAG
2516 if (tmppages < 0) {
2517 return tmppages;
2518 }
2519
2520 pages += tmppages;
1faa5665
XG
2521 if (pss->block->unsentmap) {
2522 clear_bit(pss->page, pss->block->unsentmap);
2523 }
2524
a935e30f 2525 pss->page++;
1eb3fc0a
DDAG
2526 } while ((pss->page & (pagesize_bits - 1)) &&
2527 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS));
a82d593b
DDAG
2528
2529 /* The offset we leave with is the last one we looked at */
a935e30f 2530 pss->page--;
a82d593b
DDAG
2531 return pages;
2532}
6c595cde 2533
56e93d26 2534/**
3d0684b2 2535 * ram_find_and_save_block: finds a dirty page and sends it to f
56e93d26
JQ
2536 *
2537 * Called within an RCU critical section.
2538 *
e8f3735f
XG
2539 * Returns the number of pages written where zero means no dirty pages,
2540 * or negative on error
56e93d26 2541 *
6f37bb8b 2542 * @rs: current RAM state
56e93d26 2543 * @last_stage: if we are at the completion stage
a82d593b
DDAG
2544 *
2545 * On systems where host-page-size > target-page-size it will send all the
2546 * pages in a host page that are dirty.
56e93d26
JQ
2547 */
2548
ce25d337 2549static int ram_find_and_save_block(RAMState *rs, bool last_stage)
56e93d26 2550{
b8fb8cb7 2551 PageSearchStatus pss;
56e93d26 2552 int pages = 0;
b9e60928 2553 bool again, found;
56e93d26 2554
0827b9e9
AA
2555 /* No dirty page as there is zero RAM */
2556 if (!ram_bytes_total()) {
2557 return pages;
2558 }
2559
6f37bb8b 2560 pss.block = rs->last_seen_block;
a935e30f 2561 pss.page = rs->last_page;
b8fb8cb7
DDAG
2562 pss.complete_round = false;
2563
2564 if (!pss.block) {
2565 pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2566 }
56e93d26 2567
b9e60928 2568 do {
a82d593b 2569 again = true;
f20e2865 2570 found = get_queued_page(rs, &pss);
b9e60928 2571
a82d593b
DDAG
2572 if (!found) {
2573 /* priority queue empty, so just search for something dirty */
f20e2865 2574 found = find_dirty_block(rs, &pss, &again);
a82d593b 2575 }
f3f491fc 2576
a82d593b 2577 if (found) {
f20e2865 2578 pages = ram_save_host_page(rs, &pss, last_stage);
56e93d26 2579 }
b9e60928 2580 } while (!pages && again);
56e93d26 2581
6f37bb8b 2582 rs->last_seen_block = pss.block;
a935e30f 2583 rs->last_page = pss.page;
56e93d26
JQ
2584
2585 return pages;
2586}
2587
2588void acct_update_position(QEMUFile *f, size_t size, bool zero)
2589{
2590 uint64_t pages = size / TARGET_PAGE_SIZE;
f7ccd61b 2591
56e93d26 2592 if (zero) {
9360447d 2593 ram_counters.duplicate += pages;
56e93d26 2594 } else {
9360447d
JQ
2595 ram_counters.normal += pages;
2596 ram_counters.transferred += size;
56e93d26
JQ
2597 qemu_update_position(f, size);
2598 }
2599}
2600
fbd162e6 2601static uint64_t ram_bytes_total_common(bool count_ignored)
56e93d26
JQ
2602{
2603 RAMBlock *block;
2604 uint64_t total = 0;
2605
2606 rcu_read_lock();
fbd162e6
YK
2607 if (count_ignored) {
2608 RAMBLOCK_FOREACH_MIGRATABLE(block) {
2609 total += block->used_length;
2610 }
2611 } else {
2612 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2613 total += block->used_length;
2614 }
99e15582 2615 }
56e93d26
JQ
2616 rcu_read_unlock();
2617 return total;
2618}
2619
fbd162e6
YK
2620uint64_t ram_bytes_total(void)
2621{
2622 return ram_bytes_total_common(false);
2623}
2624
f265e0e4 2625static void xbzrle_load_setup(void)
56e93d26 2626{
f265e0e4 2627 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
56e93d26
JQ
2628}
2629
f265e0e4
JQ
2630static void xbzrle_load_cleanup(void)
2631{
2632 g_free(XBZRLE.decoded_buf);
2633 XBZRLE.decoded_buf = NULL;
2634}
2635
7d7c96be
PX
2636static void ram_state_cleanup(RAMState **rsp)
2637{
b9ccaf6d
DDAG
2638 if (*rsp) {
2639 migration_page_queue_free(*rsp);
2640 qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2641 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2642 g_free(*rsp);
2643 *rsp = NULL;
2644 }
7d7c96be
PX
2645}
2646
84593a08
PX
2647static void xbzrle_cleanup(void)
2648{
2649 XBZRLE_cache_lock();
2650 if (XBZRLE.cache) {
2651 cache_fini(XBZRLE.cache);
2652 g_free(XBZRLE.encoded_buf);
2653 g_free(XBZRLE.current_buf);
2654 g_free(XBZRLE.zero_target_page);
2655 XBZRLE.cache = NULL;
2656 XBZRLE.encoded_buf = NULL;
2657 XBZRLE.current_buf = NULL;
2658 XBZRLE.zero_target_page = NULL;
2659 }
2660 XBZRLE_cache_unlock();
2661}
2662
f265e0e4 2663static void ram_save_cleanup(void *opaque)
56e93d26 2664{
53518d94 2665 RAMState **rsp = opaque;
6b6712ef 2666 RAMBlock *block;
eb859c53 2667
2ff64038
LZ
2668 /* caller have hold iothread lock or is in a bh, so there is
2669 * no writing race against this migration_bitmap
2670 */
6b6712ef
JQ
2671 memory_global_dirty_log_stop();
2672
fbd162e6 2673 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2674 g_free(block->bmap);
2675 block->bmap = NULL;
2676 g_free(block->unsentmap);
2677 block->unsentmap = NULL;
56e93d26
JQ
2678 }
2679
84593a08 2680 xbzrle_cleanup();
f0afa331 2681 compress_threads_save_cleanup();
7d7c96be 2682 ram_state_cleanup(rsp);
56e93d26
JQ
2683}
2684
6f37bb8b 2685static void ram_state_reset(RAMState *rs)
56e93d26 2686{
6f37bb8b
JQ
2687 rs->last_seen_block = NULL;
2688 rs->last_sent_block = NULL;
269ace29 2689 rs->last_page = 0;
6f37bb8b
JQ
2690 rs->last_version = ram_list.version;
2691 rs->ram_bulk_stage = true;
6eeb63f7 2692 rs->fpo_enabled = false;
56e93d26
JQ
2693}
2694
2695#define MAX_WAIT 50 /* ms, half buffered_file limit */
2696
4f2e4252
DDAG
2697/*
2698 * 'expected' is the value you expect the bitmap mostly to be full
2699 * of; it won't bother printing lines that are all this value.
2700 * If 'todump' is null the migration bitmap is dumped.
2701 */
6b6712ef
JQ
2702void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2703 unsigned long pages)
4f2e4252 2704{
4f2e4252
DDAG
2705 int64_t cur;
2706 int64_t linelen = 128;
2707 char linebuf[129];
2708
6b6712ef 2709 for (cur = 0; cur < pages; cur += linelen) {
4f2e4252
DDAG
2710 int64_t curb;
2711 bool found = false;
2712 /*
2713 * Last line; catch the case where the line length
2714 * is longer than remaining ram
2715 */
6b6712ef
JQ
2716 if (cur + linelen > pages) {
2717 linelen = pages - cur;
4f2e4252
DDAG
2718 }
2719 for (curb = 0; curb < linelen; curb++) {
2720 bool thisbit = test_bit(cur + curb, todump);
2721 linebuf[curb] = thisbit ? '1' : '.';
2722 found = found || (thisbit != expected);
2723 }
2724 if (found) {
2725 linebuf[curb] = '\0';
2726 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf);
2727 }
2728 }
2729}
2730
e0b266f0
DDAG
2731/* **** functions for postcopy ***** */
2732
ced1c616
PB
2733void ram_postcopy_migrated_memory_release(MigrationState *ms)
2734{
2735 struct RAMBlock *block;
ced1c616 2736
fbd162e6 2737 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2738 unsigned long *bitmap = block->bmap;
2739 unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2740 unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
ced1c616
PB
2741
2742 while (run_start < range) {
2743 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
aaa2064c 2744 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS,
ced1c616
PB
2745 (run_end - run_start) << TARGET_PAGE_BITS);
2746 run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2747 }
2748 }
2749}
2750
3d0684b2
JQ
2751/**
2752 * postcopy_send_discard_bm_ram: discard a RAMBlock
2753 *
2754 * Returns zero on success
2755 *
e0b266f0
DDAG
2756 * Callback from postcopy_each_ram_send_discard for each RAMBlock
2757 * Note: At this point the 'unsentmap' is the processed bitmap combined
2758 * with the dirtymap; so a '1' means it's either dirty or unsent.
3d0684b2
JQ
2759 *
2760 * @ms: current migration state
2761 * @pds: state for postcopy
2762 * @start: RAMBlock starting page
2763 * @length: RAMBlock size
e0b266f0
DDAG
2764 */
2765static int postcopy_send_discard_bm_ram(MigrationState *ms,
2766 PostcopyDiscardState *pds,
6b6712ef 2767 RAMBlock *block)
e0b266f0 2768{
6b6712ef 2769 unsigned long end = block->used_length >> TARGET_PAGE_BITS;
e0b266f0 2770 unsigned long current;
6b6712ef 2771 unsigned long *unsentmap = block->unsentmap;
e0b266f0 2772
6b6712ef 2773 for (current = 0; current < end; ) {
e0b266f0
DDAG
2774 unsigned long one = find_next_bit(unsentmap, end, current);
2775
2776 if (one <= end) {
2777 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1);
2778 unsigned long discard_length;
2779
2780 if (zero >= end) {
2781 discard_length = end - one;
2782 } else {
2783 discard_length = zero - one;
2784 }
d688c62d
DDAG
2785 if (discard_length) {
2786 postcopy_discard_send_range(ms, pds, one, discard_length);
2787 }
e0b266f0
DDAG
2788 current = one + discard_length;
2789 } else {
2790 current = one;
2791 }
2792 }
2793
2794 return 0;
2795}
2796
3d0684b2
JQ
2797/**
2798 * postcopy_each_ram_send_discard: discard all RAMBlocks
2799 *
2800 * Returns 0 for success or negative for error
2801 *
e0b266f0
DDAG
2802 * Utility for the outgoing postcopy code.
2803 * Calls postcopy_send_discard_bm_ram for each RAMBlock
2804 * passing it bitmap indexes and name.
e0b266f0
DDAG
2805 * (qemu_ram_foreach_block ends up passing unscaled lengths
2806 * which would mean postcopy code would have to deal with target page)
3d0684b2
JQ
2807 *
2808 * @ms: current migration state
e0b266f0
DDAG
2809 */
2810static int postcopy_each_ram_send_discard(MigrationState *ms)
2811{
2812 struct RAMBlock *block;
2813 int ret;
2814
fbd162e6 2815 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
2816 PostcopyDiscardState *pds =
2817 postcopy_discard_send_init(ms, block->idstr);
e0b266f0
DDAG
2818
2819 /*
2820 * Postcopy sends chunks of bitmap over the wire, but it
2821 * just needs indexes at this point, avoids it having
2822 * target page specific code.
2823 */
6b6712ef 2824 ret = postcopy_send_discard_bm_ram(ms, pds, block);
e0b266f0
DDAG
2825 postcopy_discard_send_finish(ms, pds);
2826 if (ret) {
2827 return ret;
2828 }
2829 }
2830
2831 return 0;
2832}
2833
3d0684b2
JQ
2834/**
2835 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages
2836 *
2837 * Helper for postcopy_chunk_hostpages; it's called twice to
2838 * canonicalize the two bitmaps, that are similar, but one is
2839 * inverted.
99e314eb 2840 *
3d0684b2
JQ
2841 * Postcopy requires that all target pages in a hostpage are dirty or
2842 * clean, not a mix. This function canonicalizes the bitmaps.
99e314eb 2843 *
3d0684b2
JQ
2844 * @ms: current migration state
2845 * @unsent_pass: if true we need to canonicalize partially unsent host pages
2846 * otherwise we need to canonicalize partially dirty host pages
2847 * @block: block that contains the page we want to canonicalize
2848 * @pds: state for postcopy
99e314eb
DDAG
2849 */
2850static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass,
2851 RAMBlock *block,
2852 PostcopyDiscardState *pds)
2853{
53518d94 2854 RAMState *rs = ram_state;
6b6712ef
JQ
2855 unsigned long *bitmap = block->bmap;
2856 unsigned long *unsentmap = block->unsentmap;
29c59172 2857 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
6b6712ef 2858 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
99e314eb
DDAG
2859 unsigned long run_start;
2860
29c59172
DDAG
2861 if (block->page_size == TARGET_PAGE_SIZE) {
2862 /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2863 return;
2864 }
2865
99e314eb
DDAG
2866 if (unsent_pass) {
2867 /* Find a sent page */
6b6712ef 2868 run_start = find_next_zero_bit(unsentmap, pages, 0);
99e314eb
DDAG
2869 } else {
2870 /* Find a dirty page */
6b6712ef 2871 run_start = find_next_bit(bitmap, pages, 0);
99e314eb
DDAG
2872 }
2873
6b6712ef 2874 while (run_start < pages) {
99e314eb
DDAG
2875 bool do_fixup = false;
2876 unsigned long fixup_start_addr;
2877 unsigned long host_offset;
2878
2879 /*
2880 * If the start of this run of pages is in the middle of a host
2881 * page, then we need to fixup this host page.
2882 */
2883 host_offset = run_start % host_ratio;
2884 if (host_offset) {
2885 do_fixup = true;
2886 run_start -= host_offset;
2887 fixup_start_addr = run_start;
2888 /* For the next pass */
2889 run_start = run_start + host_ratio;
2890 } else {
2891 /* Find the end of this run */
2892 unsigned long run_end;
2893 if (unsent_pass) {
6b6712ef 2894 run_end = find_next_bit(unsentmap, pages, run_start + 1);
99e314eb 2895 } else {
6b6712ef 2896 run_end = find_next_zero_bit(bitmap, pages, run_start + 1);
99e314eb
DDAG
2897 }
2898 /*
2899 * If the end isn't at the start of a host page, then the
2900 * run doesn't finish at the end of a host page
2901 * and we need to discard.
2902 */
2903 host_offset = run_end % host_ratio;
2904 if (host_offset) {
2905 do_fixup = true;
2906 fixup_start_addr = run_end - host_offset;
2907 /*
2908 * This host page has gone, the next loop iteration starts
2909 * from after the fixup
2910 */
2911 run_start = fixup_start_addr + host_ratio;
2912 } else {
2913 /*
2914 * No discards on this iteration, next loop starts from
2915 * next sent/dirty page
2916 */
2917 run_start = run_end + 1;
2918 }
2919 }
2920
2921 if (do_fixup) {
2922 unsigned long page;
2923
2924 /* Tell the destination to discard this page */
2925 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) {
2926 /* For the unsent_pass we:
2927 * discard partially sent pages
2928 * For the !unsent_pass (dirty) we:
2929 * discard partially dirty pages that were sent
2930 * (any partially sent pages were already discarded
2931 * by the previous unsent_pass)
2932 */
2933 postcopy_discard_send_range(ms, pds, fixup_start_addr,
2934 host_ratio);
2935 }
2936
2937 /* Clean up the bitmap */
2938 for (page = fixup_start_addr;
2939 page < fixup_start_addr + host_ratio; page++) {
2940 /* All pages in this host page are now not sent */
2941 set_bit(page, unsentmap);
2942
2943 /*
2944 * Remark them as dirty, updating the count for any pages
2945 * that weren't previously dirty.
2946 */
0d8ec885 2947 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
99e314eb
DDAG
2948 }
2949 }
2950
2951 if (unsent_pass) {
2952 /* Find the next sent page for the next iteration */
6b6712ef 2953 run_start = find_next_zero_bit(unsentmap, pages, run_start);
99e314eb
DDAG
2954 } else {
2955 /* Find the next dirty page for the next iteration */
6b6712ef 2956 run_start = find_next_bit(bitmap, pages, run_start);
99e314eb
DDAG
2957 }
2958 }
2959}
2960
3d0684b2
JQ
2961/**
2962 * postcopy_chuck_hostpages: discrad any partially sent host page
2963 *
99e314eb
DDAG
2964 * Utility for the outgoing postcopy code.
2965 *
2966 * Discard any partially sent host-page size chunks, mark any partially
29c59172
DDAG
2967 * dirty host-page size chunks as all dirty. In this case the host-page
2968 * is the host-page for the particular RAMBlock, i.e. it might be a huge page
99e314eb 2969 *
3d0684b2
JQ
2970 * Returns zero on success
2971 *
2972 * @ms: current migration state
6b6712ef 2973 * @block: block we want to work with
99e314eb 2974 */
6b6712ef 2975static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
99e314eb 2976{
6b6712ef
JQ
2977 PostcopyDiscardState *pds =
2978 postcopy_discard_send_init(ms, block->idstr);
99e314eb 2979
6b6712ef
JQ
2980 /* First pass: Discard all partially sent host pages */
2981 postcopy_chunk_hostpages_pass(ms, true, block, pds);
2982 /*
2983 * Second pass: Ensure that all partially dirty host pages are made
2984 * fully dirty.
2985 */
2986 postcopy_chunk_hostpages_pass(ms, false, block, pds);
99e314eb 2987
6b6712ef 2988 postcopy_discard_send_finish(ms, pds);
99e314eb
DDAG
2989 return 0;
2990}
2991
3d0684b2
JQ
2992/**
2993 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2994 *
2995 * Returns zero on success
2996 *
e0b266f0
DDAG
2997 * Transmit the set of pages to be discarded after precopy to the target
2998 * these are pages that:
2999 * a) Have been previously transmitted but are now dirty again
3000 * b) Pages that have never been transmitted, this ensures that
3001 * any pages on the destination that have been mapped by background
3002 * tasks get discarded (transparent huge pages is the specific concern)
3003 * Hopefully this is pretty sparse
3d0684b2
JQ
3004 *
3005 * @ms: current migration state
e0b266f0
DDAG
3006 */
3007int ram_postcopy_send_discard_bitmap(MigrationState *ms)
3008{
53518d94 3009 RAMState *rs = ram_state;
6b6712ef 3010 RAMBlock *block;
e0b266f0 3011 int ret;
e0b266f0
DDAG
3012
3013 rcu_read_lock();
3014
3015 /* This should be our last sync, the src is now paused */
eb859c53 3016 migration_bitmap_sync(rs);
e0b266f0 3017
6b6712ef
JQ
3018 /* Easiest way to make sure we don't resume in the middle of a host-page */
3019 rs->last_seen_block = NULL;
3020 rs->last_sent_block = NULL;
3021 rs->last_page = 0;
e0b266f0 3022
fbd162e6 3023 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
6b6712ef
JQ
3024 unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
3025 unsigned long *bitmap = block->bmap;
3026 unsigned long *unsentmap = block->unsentmap;
3027
3028 if (!unsentmap) {
3029 /* We don't have a safe way to resize the sentmap, so
3030 * if the bitmap was resized it will be NULL at this
3031 * point.
3032 */
3033 error_report("migration ram resized during precopy phase");
3034 rcu_read_unlock();
3035 return -EINVAL;
3036 }
3037 /* Deal with TPS != HPS and huge pages */
3038 ret = postcopy_chunk_hostpages(ms, block);
3039 if (ret) {
3040 rcu_read_unlock();
3041 return ret;
3042 }
e0b266f0 3043
6b6712ef
JQ
3044 /*
3045 * Update the unsentmap to be unsentmap = unsentmap | dirty
3046 */
3047 bitmap_or(unsentmap, unsentmap, bitmap, pages);
e0b266f0 3048#ifdef DEBUG_POSTCOPY
6b6712ef 3049 ram_debug_dump_bitmap(unsentmap, true, pages);
e0b266f0 3050#endif
6b6712ef
JQ
3051 }
3052 trace_ram_postcopy_send_discard_bitmap();
e0b266f0
DDAG
3053
3054 ret = postcopy_each_ram_send_discard(ms);
3055 rcu_read_unlock();
3056
3057 return ret;
3058}
3059
3d0684b2
JQ
3060/**
3061 * ram_discard_range: discard dirtied pages at the beginning of postcopy
e0b266f0 3062 *
3d0684b2 3063 * Returns zero on success
e0b266f0 3064 *
36449157
JQ
3065 * @rbname: name of the RAMBlock of the request. NULL means the
3066 * same that last one.
3d0684b2
JQ
3067 * @start: RAMBlock starting page
3068 * @length: RAMBlock size
e0b266f0 3069 */
aaa2064c 3070int ram_discard_range(const char *rbname, uint64_t start, size_t length)
e0b266f0
DDAG
3071{
3072 int ret = -1;
3073
36449157 3074 trace_ram_discard_range(rbname, start, length);
d3a5038c 3075
e0b266f0 3076 rcu_read_lock();
36449157 3077 RAMBlock *rb = qemu_ram_block_by_name(rbname);
e0b266f0
DDAG
3078
3079 if (!rb) {
36449157 3080 error_report("ram_discard_range: Failed to find block '%s'", rbname);
e0b266f0
DDAG
3081 goto err;
3082 }
3083
814bb08f
PX
3084 /*
3085 * On source VM, we don't need to update the received bitmap since
3086 * we don't even have one.
3087 */
3088 if (rb->receivedmap) {
3089 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
3090 length >> qemu_target_page_bits());
3091 }
3092
d3a5038c 3093 ret = ram_block_discard_range(rb, start, length);
e0b266f0
DDAG
3094
3095err:
3096 rcu_read_unlock();
3097
3098 return ret;
3099}
3100
84593a08
PX
3101/*
3102 * For every allocation, we will try not to crash the VM if the
3103 * allocation failed.
3104 */
3105static int xbzrle_init(void)
3106{
3107 Error *local_err = NULL;
3108
3109 if (!migrate_use_xbzrle()) {
3110 return 0;
3111 }
3112
3113 XBZRLE_cache_lock();
3114
3115 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
3116 if (!XBZRLE.zero_target_page) {
3117 error_report("%s: Error allocating zero page", __func__);
3118 goto err_out;
3119 }
3120
3121 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
3122 TARGET_PAGE_SIZE, &local_err);
3123 if (!XBZRLE.cache) {
3124 error_report_err(local_err);
3125 goto free_zero_page;
3126 }
3127
3128 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
3129 if (!XBZRLE.encoded_buf) {
3130 error_report("%s: Error allocating encoded_buf", __func__);
3131 goto free_cache;
3132 }
3133
3134 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
3135 if (!XBZRLE.current_buf) {
3136 error_report("%s: Error allocating current_buf", __func__);
3137 goto free_encoded_buf;
3138 }
3139
3140 /* We are all good */
3141 XBZRLE_cache_unlock();
3142 return 0;
3143
3144free_encoded_buf:
3145 g_free(XBZRLE.encoded_buf);
3146 XBZRLE.encoded_buf = NULL;
3147free_cache:
3148 cache_fini(XBZRLE.cache);
3149 XBZRLE.cache = NULL;
3150free_zero_page:
3151 g_free(XBZRLE.zero_target_page);
3152 XBZRLE.zero_target_page = NULL;
3153err_out:
3154 XBZRLE_cache_unlock();
3155 return -ENOMEM;
3156}
3157
53518d94 3158static int ram_state_init(RAMState **rsp)
56e93d26 3159{
7d00ee6a
PX
3160 *rsp = g_try_new0(RAMState, 1);
3161
3162 if (!*rsp) {
3163 error_report("%s: Init ramstate fail", __func__);
3164 return -1;
3165 }
53518d94
JQ
3166
3167 qemu_mutex_init(&(*rsp)->bitmap_mutex);
3168 qemu_mutex_init(&(*rsp)->src_page_req_mutex);
3169 QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
56e93d26 3170
7d00ee6a
PX
3171 /*
3172 * Count the total number of pages used by ram blocks not including any
3173 * gaps due to alignment or unplugs.
3174 */
3175 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
3176
3177 ram_state_reset(*rsp);
3178
3179 return 0;
3180}
3181
d6eff5d7 3182static void ram_list_init_bitmaps(void)
7d00ee6a 3183{
d6eff5d7
PX
3184 RAMBlock *block;
3185 unsigned long pages;
56e93d26 3186
0827b9e9
AA
3187 /* Skip setting bitmap if there is no RAM */
3188 if (ram_bytes_total()) {
fbd162e6 3189 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d6eff5d7 3190 pages = block->max_length >> TARGET_PAGE_BITS;
6b6712ef
JQ
3191 block->bmap = bitmap_new(pages);
3192 bitmap_set(block->bmap, 0, pages);
3193 if (migrate_postcopy_ram()) {
3194 block->unsentmap = bitmap_new(pages);
3195 bitmap_set(block->unsentmap, 0, pages);
3196 }
0827b9e9 3197 }
f3f491fc 3198 }
d6eff5d7
PX
3199}
3200
3201static void ram_init_bitmaps(RAMState *rs)
3202{
3203 /* For memory_global_dirty_log_start below. */
3204 qemu_mutex_lock_iothread();
3205 qemu_mutex_lock_ramlist();
3206 rcu_read_lock();
f3f491fc 3207
d6eff5d7 3208 ram_list_init_bitmaps();
56e93d26 3209 memory_global_dirty_log_start();
bd227060 3210 migration_bitmap_sync_precopy(rs);
d6eff5d7
PX
3211
3212 rcu_read_unlock();
56e93d26 3213 qemu_mutex_unlock_ramlist();
49877834 3214 qemu_mutex_unlock_iothread();
d6eff5d7
PX
3215}
3216
3217static int ram_init_all(RAMState **rsp)
3218{
3219 if (ram_state_init(rsp)) {
3220 return -1;
3221 }
3222
3223 if (xbzrle_init()) {
3224 ram_state_cleanup(rsp);
3225 return -1;
3226 }
3227
3228 ram_init_bitmaps(*rsp);
a91246c9
HZ
3229
3230 return 0;
3231}
3232
08614f34
PX
3233static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
3234{
3235 RAMBlock *block;
3236 uint64_t pages = 0;
3237
3238 /*
3239 * Postcopy is not using xbzrle/compression, so no need for that.
3240 * Also, since source are already halted, we don't need to care
3241 * about dirty page logging as well.
3242 */
3243
fbd162e6 3244 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
08614f34
PX
3245 pages += bitmap_count_one(block->bmap,
3246 block->used_length >> TARGET_PAGE_BITS);
3247 }
3248
3249 /* This may not be aligned with current bitmaps. Recalculate. */
3250 rs->migration_dirty_pages = pages;
3251
3252 rs->last_seen_block = NULL;
3253 rs->last_sent_block = NULL;
3254 rs->last_page = 0;
3255 rs->last_version = ram_list.version;
3256 /*
3257 * Disable the bulk stage, otherwise we'll resend the whole RAM no
3258 * matter what we have sent.
3259 */
3260 rs->ram_bulk_stage = false;
3261
3262 /* Update RAMState cache of output QEMUFile */
3263 rs->f = out;
3264
3265 trace_ram_state_resume_prepare(pages);
3266}
3267
6bcb05fc
WW
3268/*
3269 * This function clears bits of the free pages reported by the caller from the
3270 * migration dirty bitmap. @addr is the host address corresponding to the
3271 * start of the continuous guest free pages, and @len is the total bytes of
3272 * those pages.
3273 */
3274void qemu_guest_free_page_hint(void *addr, size_t len)
3275{
3276 RAMBlock *block;
3277 ram_addr_t offset;
3278 size_t used_len, start, npages;
3279 MigrationState *s = migrate_get_current();
3280
3281 /* This function is currently expected to be used during live migration */
3282 if (!migration_is_setup_or_active(s->state)) {
3283 return;
3284 }
3285
3286 for (; len > 0; len -= used_len, addr += used_len) {
3287 block = qemu_ram_block_from_host(addr, false, &offset);
3288 if (unlikely(!block || offset >= block->used_length)) {
3289 /*
3290 * The implementation might not support RAMBlock resize during
3291 * live migration, but it could happen in theory with future
3292 * updates. So we add a check here to capture that case.
3293 */
3294 error_report_once("%s unexpected error", __func__);
3295 return;
3296 }
3297
3298 if (len <= block->used_length - offset) {
3299 used_len = len;
3300 } else {
3301 used_len = block->used_length - offset;
3302 }
3303
3304 start = offset >> TARGET_PAGE_BITS;
3305 npages = used_len >> TARGET_PAGE_BITS;
3306
3307 qemu_mutex_lock(&ram_state->bitmap_mutex);
3308 ram_state->migration_dirty_pages -=
3309 bitmap_count_one_with_offset(block->bmap, start, npages);
3310 bitmap_clear(block->bmap, start, npages);
3311 qemu_mutex_unlock(&ram_state->bitmap_mutex);
3312 }
3313}
3314
3d0684b2
JQ
3315/*
3316 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
a91246c9
HZ
3317 * long-running RCU critical section. When rcu-reclaims in the code
3318 * start to become numerous it will be necessary to reduce the
3319 * granularity of these critical sections.
3320 */
3321
3d0684b2
JQ
3322/**
3323 * ram_save_setup: Setup RAM for migration
3324 *
3325 * Returns zero to indicate success and negative for error
3326 *
3327 * @f: QEMUFile where to send the data
3328 * @opaque: RAMState pointer
3329 */
a91246c9
HZ
3330static int ram_save_setup(QEMUFile *f, void *opaque)
3331{
53518d94 3332 RAMState **rsp = opaque;
a91246c9
HZ
3333 RAMBlock *block;
3334
dcaf446e
XG
3335 if (compress_threads_save_setup()) {
3336 return -1;
3337 }
3338
a91246c9
HZ
3339 /* migration has already setup the bitmap, reuse it. */
3340 if (!migration_in_colo_state()) {
7d00ee6a 3341 if (ram_init_all(rsp) != 0) {
dcaf446e 3342 compress_threads_save_cleanup();
a91246c9 3343 return -1;
53518d94 3344 }
a91246c9 3345 }
53518d94 3346 (*rsp)->f = f;
a91246c9
HZ
3347
3348 rcu_read_lock();
56e93d26 3349
fbd162e6 3350 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
56e93d26 3351
b895de50 3352 RAMBLOCK_FOREACH_MIGRATABLE(block) {
56e93d26
JQ
3353 qemu_put_byte(f, strlen(block->idstr));
3354 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3355 qemu_put_be64(f, block->used_length);
ef08fb38
DDAG
3356 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) {
3357 qemu_put_be64(f, block->page_size);
3358 }
fbd162e6
YK
3359 if (migrate_ignore_shared()) {
3360 qemu_put_be64(f, block->mr->addr);
3361 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0);
3362 }
56e93d26
JQ
3363 }
3364
3365 rcu_read_unlock();
3366
3367 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3368 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3369
6df264ac 3370 multifd_send_sync_main();
56e93d26 3371 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3372 qemu_fflush(f);
56e93d26
JQ
3373
3374 return 0;
3375}
3376
3d0684b2
JQ
3377/**
3378 * ram_save_iterate: iterative stage for migration
3379 *
3380 * Returns zero to indicate success and negative for error
3381 *
3382 * @f: QEMUFile where to send the data
3383 * @opaque: RAMState pointer
3384 */
56e93d26
JQ
3385static int ram_save_iterate(QEMUFile *f, void *opaque)
3386{
53518d94
JQ
3387 RAMState **temp = opaque;
3388 RAMState *rs = *temp;
56e93d26
JQ
3389 int ret;
3390 int i;
3391 int64_t t0;
5c90308f 3392 int done = 0;
56e93d26 3393
b2557345
PL
3394 if (blk_mig_bulk_active()) {
3395 /* Avoid transferring ram during bulk phase of block migration as
3396 * the bulk phase will usually take a long time and transferring
3397 * ram updates during that time is pointless. */
3398 goto out;
3399 }
3400
56e93d26 3401 rcu_read_lock();
6f37bb8b
JQ
3402 if (ram_list.version != rs->last_version) {
3403 ram_state_reset(rs);
56e93d26
JQ
3404 }
3405
3406 /* Read version before ram_list.blocks */
3407 smp_rmb();
3408
3409 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3410
3411 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3412 i = 0;
e03a34f8
DDAG
3413 while ((ret = qemu_file_rate_limit(f)) == 0 ||
3414 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
56e93d26
JQ
3415 int pages;
3416
e03a34f8
DDAG
3417 if (qemu_file_get_error(f)) {
3418 break;
3419 }
3420
ce25d337 3421 pages = ram_find_and_save_block(rs, false);
56e93d26
JQ
3422 /* no more pages to sent */
3423 if (pages == 0) {
5c90308f 3424 done = 1;
56e93d26
JQ
3425 break;
3426 }
e8f3735f
XG
3427
3428 if (pages < 0) {
3429 qemu_file_set_error(f, pages);
3430 break;
3431 }
3432
be8b02ed 3433 rs->target_page_count += pages;
070afca2 3434
56e93d26
JQ
3435 /* we want to check in the 1st loop, just in case it was the 1st time
3436 and we had to sync the dirty bitmap.
3437 qemu_get_clock_ns() is a bit expensive, so we only check each some
3438 iterations
3439 */
3440 if ((i & 63) == 0) {
3441 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
3442 if (t1 > MAX_WAIT) {
55c4446b 3443 trace_ram_save_iterate_big_wait(t1, i);
56e93d26
JQ
3444 break;
3445 }
3446 }
3447 i++;
3448 }
56e93d26
JQ
3449 rcu_read_unlock();
3450
3451 /*
3452 * Must occur before EOS (or any QEMUFile operation)
3453 * because of RDMA protocol.
3454 */
3455 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3456
6df264ac 3457 multifd_send_sync_main();
b2557345 3458out:
56e93d26 3459 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3460 qemu_fflush(f);
9360447d 3461 ram_counters.transferred += 8;
56e93d26
JQ
3462
3463 ret = qemu_file_get_error(f);
3464 if (ret < 0) {
3465 return ret;
3466 }
3467
5c90308f 3468 return done;
56e93d26
JQ
3469}
3470
3d0684b2
JQ
3471/**
3472 * ram_save_complete: function called to send the remaining amount of ram
3473 *
e8f3735f 3474 * Returns zero to indicate success or negative on error
3d0684b2
JQ
3475 *
3476 * Called with iothread lock
3477 *
3478 * @f: QEMUFile where to send the data
3479 * @opaque: RAMState pointer
3480 */
56e93d26
JQ
3481static int ram_save_complete(QEMUFile *f, void *opaque)
3482{
53518d94
JQ
3483 RAMState **temp = opaque;
3484 RAMState *rs = *temp;
e8f3735f 3485 int ret = 0;
6f37bb8b 3486
56e93d26
JQ
3487 rcu_read_lock();
3488
5727309d 3489 if (!migration_in_postcopy()) {
bd227060 3490 migration_bitmap_sync_precopy(rs);
663e6c1d 3491 }
56e93d26
JQ
3492
3493 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3494
3495 /* try transferring iterative blocks of memory */
3496
3497 /* flush all remaining blocks regardless of rate limiting */
3498 while (true) {
3499 int pages;
3500
ce25d337 3501 pages = ram_find_and_save_block(rs, !migration_in_colo_state());
56e93d26
JQ
3502 /* no more blocks to sent */
3503 if (pages == 0) {
3504 break;
3505 }
e8f3735f
XG
3506 if (pages < 0) {
3507 ret = pages;
3508 break;
3509 }
56e93d26
JQ
3510 }
3511
ce25d337 3512 flush_compressed_data(rs);
56e93d26 3513 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
56e93d26
JQ
3514
3515 rcu_read_unlock();
d09a6fde 3516
6df264ac 3517 multifd_send_sync_main();
56e93d26 3518 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
35374cbd 3519 qemu_fflush(f);
56e93d26 3520
e8f3735f 3521 return ret;
56e93d26
JQ
3522}
3523
c31b098f 3524static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
47995026
VSO
3525 uint64_t *res_precopy_only,
3526 uint64_t *res_compatible,
3527 uint64_t *res_postcopy_only)
56e93d26 3528{
53518d94
JQ
3529 RAMState **temp = opaque;
3530 RAMState *rs = *temp;
56e93d26
JQ
3531 uint64_t remaining_size;
3532
9edabd4d 3533 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3534
5727309d 3535 if (!migration_in_postcopy() &&
663e6c1d 3536 remaining_size < max_size) {
56e93d26
JQ
3537 qemu_mutex_lock_iothread();
3538 rcu_read_lock();
bd227060 3539 migration_bitmap_sync_precopy(rs);
56e93d26
JQ
3540 rcu_read_unlock();
3541 qemu_mutex_unlock_iothread();
9edabd4d 3542 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
56e93d26 3543 }
c31b098f 3544
86e1167e
VSO
3545 if (migrate_postcopy_ram()) {
3546 /* We can do postcopy, and all the data is postcopiable */
47995026 3547 *res_compatible += remaining_size;
86e1167e 3548 } else {
47995026 3549 *res_precopy_only += remaining_size;
86e1167e 3550 }
56e93d26
JQ
3551}
3552
3553static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3554{
3555 unsigned int xh_len;
3556 int xh_flags;
063e760a 3557 uint8_t *loaded_data;
56e93d26 3558
56e93d26
JQ
3559 /* extract RLE header */
3560 xh_flags = qemu_get_byte(f);
3561 xh_len = qemu_get_be16(f);
3562
3563 if (xh_flags != ENCODING_FLAG_XBZRLE) {
3564 error_report("Failed to load XBZRLE page - wrong compression!");
3565 return -1;
3566 }
3567
3568 if (xh_len > TARGET_PAGE_SIZE) {
3569 error_report("Failed to load XBZRLE page - len overflow!");
3570 return -1;
3571 }
f265e0e4 3572 loaded_data = XBZRLE.decoded_buf;
56e93d26 3573 /* load data and decode */
f265e0e4 3574 /* it can change loaded_data to point to an internal buffer */
063e760a 3575 qemu_get_buffer_in_place(f, &loaded_data, xh_len);
56e93d26
JQ
3576
3577 /* decode RLE */
063e760a 3578 if (xbzrle_decode_buffer(loaded_data, xh_len, host,
56e93d26
JQ
3579 TARGET_PAGE_SIZE) == -1) {
3580 error_report("Failed to load XBZRLE page - decode error!");
3581 return -1;
3582 }
3583
3584 return 0;
3585}
3586
3d0684b2
JQ
3587/**
3588 * ram_block_from_stream: read a RAMBlock id from the migration stream
3589 *
3590 * Must be called from within a rcu critical section.
3591 *
56e93d26 3592 * Returns a pointer from within the RCU-protected ram_list.
a7180877 3593 *
3d0684b2
JQ
3594 * @f: QEMUFile where to read the data from
3595 * @flags: Page flags (mostly to see if it's a continuation of previous block)
a7180877 3596 */
3d0684b2 3597static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
56e93d26
JQ
3598{
3599 static RAMBlock *block = NULL;
3600 char id[256];
3601 uint8_t len;
3602
3603 if (flags & RAM_SAVE_FLAG_CONTINUE) {
4c4bad48 3604 if (!block) {
56e93d26
JQ
3605 error_report("Ack, bad migration stream!");
3606 return NULL;
3607 }
4c4bad48 3608 return block;
56e93d26
JQ
3609 }
3610
3611 len = qemu_get_byte(f);
3612 qemu_get_buffer(f, (uint8_t *)id, len);
3613 id[len] = 0;
3614
e3dd7493 3615 block = qemu_ram_block_by_name(id);
4c4bad48
HZ
3616 if (!block) {
3617 error_report("Can't find block %s", id);
3618 return NULL;
56e93d26
JQ
3619 }
3620
fbd162e6 3621 if (ramblock_is_ignored(block)) {
b895de50
CLG
3622 error_report("block %s should not be migrated !", id);
3623 return NULL;
3624 }
3625
4c4bad48
HZ
3626 return block;
3627}
3628
3629static inline void *host_from_ram_block_offset(RAMBlock *block,
3630 ram_addr_t offset)
3631{
3632 if (!offset_in_ramblock(block, offset)) {
3633 return NULL;
3634 }
3635
3636 return block->host + offset;
56e93d26
JQ
3637}
3638
13af18f2
ZC
3639static inline void *colo_cache_from_block_offset(RAMBlock *block,
3640 ram_addr_t offset)
3641{
3642 if (!offset_in_ramblock(block, offset)) {
3643 return NULL;
3644 }
3645 if (!block->colo_cache) {
3646 error_report("%s: colo_cache is NULL in block :%s",
3647 __func__, block->idstr);
3648 return NULL;
3649 }
7d9acafa
ZC
3650
3651 /*
3652 * During colo checkpoint, we need bitmap of these migrated pages.
3653 * It help us to decide which pages in ram cache should be flushed
3654 * into VM's RAM later.
3655 */
3656 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3657 ram_state->migration_dirty_pages++;
3658 }
13af18f2
ZC
3659 return block->colo_cache + offset;
3660}
3661
3d0684b2
JQ
3662/**
3663 * ram_handle_compressed: handle the zero page case
3664 *
56e93d26
JQ
3665 * If a page (or a whole RDMA chunk) has been
3666 * determined to be zero, then zap it.
3d0684b2
JQ
3667 *
3668 * @host: host address for the zero page
3669 * @ch: what the page is filled from. We only support zero
3670 * @size: size of the zero page
56e93d26
JQ
3671 */
3672void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3673{
3674 if (ch != 0 || !is_zero_range(host, size)) {
3675 memset(host, ch, size);
3676 }
3677}
3678
797ca154
XG
3679/* return the size after decompression, or negative value on error */
3680static int
3681qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3682 const uint8_t *source, size_t source_len)
3683{
3684 int err;
3685
3686 err = inflateReset(stream);
3687 if (err != Z_OK) {
3688 return -1;
3689 }
3690
3691 stream->avail_in = source_len;
3692 stream->next_in = (uint8_t *)source;
3693 stream->avail_out = dest_len;
3694 stream->next_out = dest;
3695
3696 err = inflate(stream, Z_NO_FLUSH);
3697 if (err != Z_STREAM_END) {
3698 return -1;
3699 }
3700
3701 return stream->total_out;
3702}
3703
56e93d26
JQ
3704static void *do_data_decompress(void *opaque)
3705{
3706 DecompressParam *param = opaque;
3707 unsigned long pagesize;
33d151f4 3708 uint8_t *des;
34ab9e97 3709 int len, ret;
56e93d26 3710
33d151f4 3711 qemu_mutex_lock(&param->mutex);
90e56fb4 3712 while (!param->quit) {
33d151f4
LL
3713 if (param->des) {
3714 des = param->des;
3715 len = param->len;
3716 param->des = 0;
3717 qemu_mutex_unlock(&param->mutex);
3718
56e93d26 3719 pagesize = TARGET_PAGE_SIZE;
34ab9e97
XG
3720
3721 ret = qemu_uncompress_data(&param->stream, des, pagesize,
3722 param->compbuf, len);
f548222c 3723 if (ret < 0 && migrate_get_current()->decompress_error_check) {
34ab9e97
XG
3724 error_report("decompress data failed");
3725 qemu_file_set_error(decomp_file, ret);
3726 }
73a8912b 3727
33d151f4
LL
3728 qemu_mutex_lock(&decomp_done_lock);
3729 param->done = true;
3730 qemu_cond_signal(&decomp_done_cond);
3731 qemu_mutex_unlock(&decomp_done_lock);
3732
3733 qemu_mutex_lock(&param->mutex);
3734 } else {
3735 qemu_cond_wait(&param->cond, &param->mutex);
3736 }
56e93d26 3737 }
33d151f4 3738 qemu_mutex_unlock(&param->mutex);
56e93d26
JQ
3739
3740 return NULL;
3741}
3742
34ab9e97 3743static int wait_for_decompress_done(void)
5533b2e9
LL
3744{
3745 int idx, thread_count;
3746
3747 if (!migrate_use_compression()) {
34ab9e97 3748 return 0;
5533b2e9
LL
3749 }
3750
3751 thread_count = migrate_decompress_threads();
3752 qemu_mutex_lock(&decomp_done_lock);
3753 for (idx = 0; idx < thread_count; idx++) {
3754 while (!decomp_param[idx].done) {
3755 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3756 }
3757 }
3758 qemu_mutex_unlock(&decomp_done_lock);
34ab9e97 3759 return qemu_file_get_error(decomp_file);
5533b2e9
LL
3760}
3761
f0afa331 3762static void compress_threads_load_cleanup(void)
56e93d26
JQ
3763{
3764 int i, thread_count;
3765
3416ab5b
JQ
3766 if (!migrate_use_compression()) {
3767 return;
3768 }
56e93d26
JQ
3769 thread_count = migrate_decompress_threads();
3770 for (i = 0; i < thread_count; i++) {
797ca154
XG
3771 /*
3772 * we use it as a indicator which shows if the thread is
3773 * properly init'd or not
3774 */
3775 if (!decomp_param[i].compbuf) {
3776 break;
3777 }
3778
56e93d26 3779 qemu_mutex_lock(&decomp_param[i].mutex);
90e56fb4 3780 decomp_param[i].quit = true;
56e93d26
JQ
3781 qemu_cond_signal(&decomp_param[i].cond);
3782 qemu_mutex_unlock(&decomp_param[i].mutex);
3783 }
3784 for (i = 0; i < thread_count; i++) {
797ca154
XG
3785 if (!decomp_param[i].compbuf) {
3786 break;
3787 }
3788
56e93d26
JQ
3789 qemu_thread_join(decompress_threads + i);
3790 qemu_mutex_destroy(&decomp_param[i].mutex);
3791 qemu_cond_destroy(&decomp_param[i].cond);
797ca154 3792 inflateEnd(&decomp_param[i].stream);
56e93d26 3793 g_free(decomp_param[i].compbuf);
797ca154 3794 decomp_param[i].compbuf = NULL;
56e93d26
JQ
3795 }
3796 g_free(decompress_threads);
3797 g_free(decomp_param);
56e93d26
JQ
3798 decompress_threads = NULL;
3799 decomp_param = NULL;
34ab9e97 3800 decomp_file = NULL;
56e93d26
JQ
3801}
3802
34ab9e97 3803static int compress_threads_load_setup(QEMUFile *f)
797ca154
XG
3804{
3805 int i, thread_count;
3806
3807 if (!migrate_use_compression()) {
3808 return 0;
3809 }
3810
3811 thread_count = migrate_decompress_threads();
3812 decompress_threads = g_new0(QemuThread, thread_count);
3813 decomp_param = g_new0(DecompressParam, thread_count);
3814 qemu_mutex_init(&decomp_done_lock);
3815 qemu_cond_init(&decomp_done_cond);
34ab9e97 3816 decomp_file = f;
797ca154
XG
3817 for (i = 0; i < thread_count; i++) {
3818 if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3819 goto exit;
3820 }
3821
3822 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3823 qemu_mutex_init(&decomp_param[i].mutex);
3824 qemu_cond_init(&decomp_param[i].cond);
3825 decomp_param[i].done = true;
3826 decomp_param[i].quit = false;
3827 qemu_thread_create(decompress_threads + i, "decompress",
3828 do_data_decompress, decomp_param + i,
3829 QEMU_THREAD_JOINABLE);
3830 }
3831 return 0;
3832exit:
3833 compress_threads_load_cleanup();
3834 return -1;
3835}
3836
c1bc6626 3837static void decompress_data_with_multi_threads(QEMUFile *f,
56e93d26
JQ
3838 void *host, int len)
3839{
3840 int idx, thread_count;
3841
3842 thread_count = migrate_decompress_threads();
73a8912b 3843 qemu_mutex_lock(&decomp_done_lock);
56e93d26
JQ
3844 while (true) {
3845 for (idx = 0; idx < thread_count; idx++) {
73a8912b 3846 if (decomp_param[idx].done) {
33d151f4
LL
3847 decomp_param[idx].done = false;
3848 qemu_mutex_lock(&decomp_param[idx].mutex);
c1bc6626 3849 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
56e93d26
JQ
3850 decomp_param[idx].des = host;
3851 decomp_param[idx].len = len;
33d151f4
LL
3852 qemu_cond_signal(&decomp_param[idx].cond);
3853 qemu_mutex_unlock(&decomp_param[idx].mutex);
56e93d26
JQ
3854 break;
3855 }
3856 }
3857 if (idx < thread_count) {
3858 break;
73a8912b
LL
3859 } else {
3860 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
56e93d26
JQ
3861 }
3862 }
73a8912b 3863 qemu_mutex_unlock(&decomp_done_lock);
56e93d26
JQ
3864}
3865
13af18f2
ZC
3866/*
3867 * colo cache: this is for secondary VM, we cache the whole
3868 * memory of the secondary VM, it is need to hold the global lock
3869 * to call this helper.
3870 */
3871int colo_init_ram_cache(void)
3872{
3873 RAMBlock *block;
3874
3875 rcu_read_lock();
fbd162e6 3876 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3877 block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3878 NULL,
3879 false);
3880 if (!block->colo_cache) {
3881 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3882 "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3883 block->used_length);
3884 goto out_locked;
3885 }
3886 memcpy(block->colo_cache, block->host, block->used_length);
3887 }
3888 rcu_read_unlock();
7d9acafa
ZC
3889 /*
3890 * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3891 * with to decide which page in cache should be flushed into SVM's RAM. Here
3892 * we use the same name 'ram_bitmap' as for migration.
3893 */
3894 if (ram_bytes_total()) {
3895 RAMBlock *block;
3896
fbd162e6 3897 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3898 unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3899
3900 block->bmap = bitmap_new(pages);
3901 bitmap_set(block->bmap, 0, pages);
3902 }
3903 }
3904 ram_state = g_new0(RAMState, 1);
3905 ram_state->migration_dirty_pages = 0;
d1955d22 3906 memory_global_dirty_log_start();
7d9acafa 3907
13af18f2
ZC
3908 return 0;
3909
3910out_locked:
7d9acafa 3911
fbd162e6 3912 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3913 if (block->colo_cache) {
3914 qemu_anon_ram_free(block->colo_cache, block->used_length);
3915 block->colo_cache = NULL;
3916 }
3917 }
3918
3919 rcu_read_unlock();
3920 return -errno;
3921}
3922
3923/* It is need to hold the global lock to call this helper */
3924void colo_release_ram_cache(void)
3925{
3926 RAMBlock *block;
3927
d1955d22 3928 memory_global_dirty_log_stop();
fbd162e6 3929 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
7d9acafa
ZC
3930 g_free(block->bmap);
3931 block->bmap = NULL;
3932 }
3933
13af18f2 3934 rcu_read_lock();
7d9acafa 3935
fbd162e6 3936 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
13af18f2
ZC
3937 if (block->colo_cache) {
3938 qemu_anon_ram_free(block->colo_cache, block->used_length);
3939 block->colo_cache = NULL;
3940 }
3941 }
7d9acafa 3942
13af18f2 3943 rcu_read_unlock();
7d9acafa
ZC
3944 g_free(ram_state);
3945 ram_state = NULL;
13af18f2
ZC
3946}
3947
f265e0e4
JQ
3948/**
3949 * ram_load_setup: Setup RAM for migration incoming side
3950 *
3951 * Returns zero to indicate success and negative for error
3952 *
3953 * @f: QEMUFile where to receive the data
3954 * @opaque: RAMState pointer
3955 */
3956static int ram_load_setup(QEMUFile *f, void *opaque)
3957{
34ab9e97 3958 if (compress_threads_load_setup(f)) {
797ca154
XG
3959 return -1;
3960 }
3961
f265e0e4 3962 xbzrle_load_setup();
f9494614 3963 ramblock_recv_map_init();
13af18f2 3964
f265e0e4
JQ
3965 return 0;
3966}
3967
3968static int ram_load_cleanup(void *opaque)
3969{
f9494614 3970 RAMBlock *rb;
56eb90af 3971
fbd162e6 3972 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
56eb90af
JH
3973 if (ramblock_is_pmem(rb)) {
3974 pmem_persist(rb->host, rb->used_length);
3975 }
3976 }
3977
f265e0e4 3978 xbzrle_load_cleanup();
f0afa331 3979 compress_threads_load_cleanup();
f9494614 3980
fbd162e6 3981 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
f9494614
AP
3982 g_free(rb->receivedmap);
3983 rb->receivedmap = NULL;
3984 }
13af18f2 3985
f265e0e4
JQ
3986 return 0;
3987}
3988
3d0684b2
JQ
3989/**
3990 * ram_postcopy_incoming_init: allocate postcopy data structures
3991 *
3992 * Returns 0 for success and negative if there was one error
3993 *
3994 * @mis: current migration incoming state
3995 *
3996 * Allocate data structures etc needed by incoming migration with
3997 * postcopy-ram. postcopy-ram's similarly names
3998 * postcopy_ram_incoming_init does the work.
1caddf8a
DDAG
3999 */
4000int ram_postcopy_incoming_init(MigrationIncomingState *mis)
4001{
c136180c 4002 return postcopy_ram_incoming_init(mis);
1caddf8a
DDAG
4003}
4004
3d0684b2
JQ
4005/**
4006 * ram_load_postcopy: load a page in postcopy case
4007 *
4008 * Returns 0 for success or -errno in case of error
4009 *
a7180877
DDAG
4010 * Called in postcopy mode by ram_load().
4011 * rcu_read_lock is taken prior to this being called.
3d0684b2
JQ
4012 *
4013 * @f: QEMUFile where to send the data
a7180877
DDAG
4014 */
4015static int ram_load_postcopy(QEMUFile *f)
4016{
4017 int flags = 0, ret = 0;
4018 bool place_needed = false;
1aa83678 4019 bool matches_target_page_size = false;
a7180877
DDAG
4020 MigrationIncomingState *mis = migration_incoming_get_current();
4021 /* Temporary page that is later 'placed' */
4022 void *postcopy_host_page = postcopy_get_tmp_page(mis);
c53b7ddc 4023 void *last_host = NULL;
a3b6ff6d 4024 bool all_zero = false;
a7180877
DDAG
4025
4026 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4027 ram_addr_t addr;
4028 void *host = NULL;
4029 void *page_buffer = NULL;
4030 void *place_source = NULL;
df9ff5e1 4031 RAMBlock *block = NULL;
a7180877 4032 uint8_t ch;
a7180877
DDAG
4033
4034 addr = qemu_get_be64(f);
7a9ddfbf
PX
4035
4036 /*
4037 * If qemu file error, we should stop here, and then "addr"
4038 * may be invalid
4039 */
4040 ret = qemu_file_get_error(f);
4041 if (ret) {
4042 break;
4043 }
4044
a7180877
DDAG
4045 flags = addr & ~TARGET_PAGE_MASK;
4046 addr &= TARGET_PAGE_MASK;
4047
4048 trace_ram_load_postcopy_loop((uint64_t)addr, flags);
4049 place_needed = false;
bb890ed5 4050 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
df9ff5e1 4051 block = ram_block_from_stream(f, flags);
4c4bad48
HZ
4052
4053 host = host_from_ram_block_offset(block, addr);
a7180877
DDAG
4054 if (!host) {
4055 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4056 ret = -EINVAL;
4057 break;
4058 }
1aa83678 4059 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
a7180877 4060 /*
28abd200
DDAG
4061 * Postcopy requires that we place whole host pages atomically;
4062 * these may be huge pages for RAMBlocks that are backed by
4063 * hugetlbfs.
a7180877
DDAG
4064 * To make it atomic, the data is read into a temporary page
4065 * that's moved into place later.
4066 * The migration protocol uses, possibly smaller, target-pages
4067 * however the source ensures it always sends all the components
4068 * of a host page in order.
4069 */
4070 page_buffer = postcopy_host_page +
28abd200 4071 ((uintptr_t)host & (block->page_size - 1));
a7180877 4072 /* If all TP are zero then we can optimise the place */
28abd200 4073 if (!((uintptr_t)host & (block->page_size - 1))) {
a7180877 4074 all_zero = true;
c53b7ddc
DDAG
4075 } else {
4076 /* not the 1st TP within the HP */
4077 if (host != (last_host + TARGET_PAGE_SIZE)) {
9af9e0fe 4078 error_report("Non-sequential target page %p/%p",
c53b7ddc
DDAG
4079 host, last_host);
4080 ret = -EINVAL;
4081 break;
4082 }
a7180877
DDAG
4083 }
4084
c53b7ddc 4085
a7180877
DDAG
4086 /*
4087 * If it's the last part of a host page then we place the host
4088 * page
4089 */
4090 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) &
28abd200 4091 (block->page_size - 1)) == 0;
a7180877
DDAG
4092 place_source = postcopy_host_page;
4093 }
c53b7ddc 4094 last_host = host;
a7180877
DDAG
4095
4096 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
bb890ed5 4097 case RAM_SAVE_FLAG_ZERO:
a7180877
DDAG
4098 ch = qemu_get_byte(f);
4099 memset(page_buffer, ch, TARGET_PAGE_SIZE);
4100 if (ch) {
4101 all_zero = false;
4102 }
4103 break;
4104
4105 case RAM_SAVE_FLAG_PAGE:
4106 all_zero = false;
1aa83678
PX
4107 if (!matches_target_page_size) {
4108 /* For huge pages, we always use temporary buffer */
a7180877
DDAG
4109 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
4110 } else {
1aa83678
PX
4111 /*
4112 * For small pages that matches target page size, we
4113 * avoid the qemu_file copy. Instead we directly use
4114 * the buffer of QEMUFile to place the page. Note: we
4115 * cannot do any QEMUFile operation before using that
4116 * buffer to make sure the buffer is valid when
4117 * placing the page.
a7180877
DDAG
4118 */
4119 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
4120 TARGET_PAGE_SIZE);
4121 }
4122 break;
4123 case RAM_SAVE_FLAG_EOS:
4124 /* normal exit */
6df264ac 4125 multifd_recv_sync_main();
a7180877
DDAG
4126 break;
4127 default:
4128 error_report("Unknown combination of migration flags: %#x"
4129 " (postcopy mode)", flags);
4130 ret = -EINVAL;
7a9ddfbf
PX
4131 break;
4132 }
4133
4134 /* Detect for any possible file errors */
4135 if (!ret && qemu_file_get_error(f)) {
4136 ret = qemu_file_get_error(f);
a7180877
DDAG
4137 }
4138
7a9ddfbf 4139 if (!ret && place_needed) {
a7180877 4140 /* This gets called at the last target page in the host page */
df9ff5e1
DDAG
4141 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size;
4142
a7180877 4143 if (all_zero) {
df9ff5e1 4144 ret = postcopy_place_page_zero(mis, place_dest,
8be4620b 4145 block);
a7180877 4146 } else {
df9ff5e1 4147 ret = postcopy_place_page(mis, place_dest,
8be4620b 4148 place_source, block);
a7180877
DDAG
4149 }
4150 }
a7180877
DDAG
4151 }
4152
4153 return ret;
4154}
4155
acab30b8
DHB
4156static bool postcopy_is_advised(void)
4157{
4158 PostcopyState ps = postcopy_state_get();
4159 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
4160}
4161
4162static bool postcopy_is_running(void)
4163{
4164 PostcopyState ps = postcopy_state_get();
4165 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
4166}
4167
e6f4aa18
ZC
4168/*
4169 * Flush content of RAM cache into SVM's memory.
4170 * Only flush the pages that be dirtied by PVM or SVM or both.
4171 */
4172static void colo_flush_ram_cache(void)
4173{
4174 RAMBlock *block = NULL;
4175 void *dst_host;
4176 void *src_host;
4177 unsigned long offset = 0;
4178
d1955d22
HZ
4179 memory_global_dirty_log_sync();
4180 rcu_read_lock();
fbd162e6 4181 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
d1955d22
HZ
4182 migration_bitmap_sync_range(ram_state, block, 0, block->used_length);
4183 }
4184 rcu_read_unlock();
4185
e6f4aa18
ZC
4186 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
4187 rcu_read_lock();
4188 block = QLIST_FIRST_RCU(&ram_list.blocks);
4189
4190 while (block) {
4191 offset = migration_bitmap_find_dirty(ram_state, block, offset);
4192
4193 if (offset << TARGET_PAGE_BITS >= block->used_length) {
4194 offset = 0;
4195 block = QLIST_NEXT_RCU(block, next);
4196 } else {
4197 migration_bitmap_clear_dirty(ram_state, block, offset);
4198 dst_host = block->host + (offset << TARGET_PAGE_BITS);
4199 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS);
4200 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
4201 }
4202 }
4203
4204 rcu_read_unlock();
4205 trace_colo_flush_ram_cache_end();
4206}
4207
56e93d26
JQ
4208static int ram_load(QEMUFile *f, void *opaque, int version_id)
4209{
edc60127 4210 int flags = 0, ret = 0, invalid_flags = 0;
56e93d26
JQ
4211 static uint64_t seq_iter;
4212 int len = 0;
a7180877
DDAG
4213 /*
4214 * If system is running in postcopy mode, page inserts to host memory must
4215 * be atomic
4216 */
acab30b8 4217 bool postcopy_running = postcopy_is_running();
ef08fb38 4218 /* ADVISE is earlier, it shows the source has the postcopy capability on */
acab30b8 4219 bool postcopy_advised = postcopy_is_advised();
56e93d26
JQ
4220
4221 seq_iter++;
4222
4223 if (version_id != 4) {
4224 ret = -EINVAL;
4225 }
4226
edc60127
JQ
4227 if (!migrate_use_compression()) {
4228 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4229 }
56e93d26
JQ
4230 /* This RCU critical section can be very long running.
4231 * When RCU reclaims in the code start to become numerous,
4232 * it will be necessary to reduce the granularity of this
4233 * critical section.
4234 */
4235 rcu_read_lock();
a7180877
DDAG
4236
4237 if (postcopy_running) {
4238 ret = ram_load_postcopy(f);
4239 }
4240
4241 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) {
56e93d26 4242 ram_addr_t addr, total_ram_bytes;
a776aa15 4243 void *host = NULL;
56e93d26
JQ
4244 uint8_t ch;
4245
4246 addr = qemu_get_be64(f);
4247 flags = addr & ~TARGET_PAGE_MASK;
4248 addr &= TARGET_PAGE_MASK;
4249
edc60127
JQ
4250 if (flags & invalid_flags) {
4251 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4252 error_report("Received an unexpected compressed page");
4253 }
4254
4255 ret = -EINVAL;
4256 break;
4257 }
4258
bb890ed5 4259 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
a776aa15 4260 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4c4bad48
HZ
4261 RAMBlock *block = ram_block_from_stream(f, flags);
4262
13af18f2
ZC
4263 /*
4264 * After going into COLO, we should load the Page into colo_cache.
4265 */
4266 if (migration_incoming_in_colo_state()) {
4267 host = colo_cache_from_block_offset(block, addr);
4268 } else {
4269 host = host_from_ram_block_offset(block, addr);
4270 }
a776aa15
DDAG
4271 if (!host) {
4272 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4273 ret = -EINVAL;
4274 break;
4275 }
13af18f2
ZC
4276
4277 if (!migration_incoming_in_colo_state()) {
4278 ramblock_recv_bitmap_set(block, host);
4279 }
4280
1db9d8e5 4281 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
a776aa15
DDAG
4282 }
4283
56e93d26
JQ
4284 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4285 case RAM_SAVE_FLAG_MEM_SIZE:
4286 /* Synchronize RAM block list */
4287 total_ram_bytes = addr;
4288 while (!ret && total_ram_bytes) {
4289 RAMBlock *block;
56e93d26
JQ
4290 char id[256];
4291 ram_addr_t length;
4292
4293 len = qemu_get_byte(f);
4294 qemu_get_buffer(f, (uint8_t *)id, len);
4295 id[len] = 0;
4296 length = qemu_get_be64(f);
4297
e3dd7493 4298 block = qemu_ram_block_by_name(id);
b895de50
CLG
4299 if (block && !qemu_ram_is_migratable(block)) {
4300 error_report("block %s should not be migrated !", id);
4301 ret = -EINVAL;
4302 } else if (block) {
e3dd7493
DDAG
4303 if (length != block->used_length) {
4304 Error *local_err = NULL;
56e93d26 4305
fa53a0e5 4306 ret = qemu_ram_resize(block, length,
e3dd7493
DDAG
4307 &local_err);
4308 if (local_err) {
4309 error_report_err(local_err);
56e93d26 4310 }
56e93d26 4311 }
ef08fb38
DDAG
4312 /* For postcopy we need to check hugepage sizes match */
4313 if (postcopy_advised &&
4314 block->page_size != qemu_host_page_size) {
4315 uint64_t remote_page_size = qemu_get_be64(f);
4316 if (remote_page_size != block->page_size) {
4317 error_report("Mismatched RAM page size %s "
4318 "(local) %zd != %" PRId64,
4319 id, block->page_size,
4320 remote_page_size);
4321 ret = -EINVAL;
4322 }
4323 }
fbd162e6
YK
4324 if (migrate_ignore_shared()) {
4325 hwaddr addr = qemu_get_be64(f);
4326 bool ignored = qemu_get_byte(f);
4327 if (ignored != ramblock_is_ignored(block)) {
4328 error_report("RAM block %s should %s be migrated",
4329 id, ignored ? "" : "not");
4330 ret = -EINVAL;
4331 }
4332 if (ramblock_is_ignored(block) &&
4333 block->mr->addr != addr) {
4334 error_report("Mismatched GPAs for block %s "
4335 "%" PRId64 "!= %" PRId64,
4336 id, (uint64_t)addr,
4337 (uint64_t)block->mr->addr);
4338 ret = -EINVAL;
4339 }
4340 }
e3dd7493
DDAG
4341 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4342 block->idstr);
4343 } else {
56e93d26
JQ
4344 error_report("Unknown ramblock \"%s\", cannot "
4345 "accept migration", id);
4346 ret = -EINVAL;
4347 }
4348
4349 total_ram_bytes -= length;
4350 }
4351 break;
a776aa15 4352
bb890ed5 4353 case RAM_SAVE_FLAG_ZERO:
56e93d26
JQ
4354 ch = qemu_get_byte(f);
4355 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4356 break;
a776aa15 4357
56e93d26 4358 case RAM_SAVE_FLAG_PAGE:
56e93d26
JQ
4359 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4360 break;
56e93d26 4361
a776aa15 4362 case RAM_SAVE_FLAG_COMPRESS_PAGE:
56e93d26
JQ
4363 len = qemu_get_be32(f);
4364 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4365 error_report("Invalid compressed data length: %d", len);
4366 ret = -EINVAL;
4367 break;
4368 }
c1bc6626 4369 decompress_data_with_multi_threads(f, host, len);
56e93d26 4370 break;
a776aa15 4371
56e93d26 4372 case RAM_SAVE_FLAG_XBZRLE:
56e93d26
JQ
4373 if (load_xbzrle(f, addr, host) < 0) {
4374 error_report("Failed to decompress XBZRLE page at "
4375 RAM_ADDR_FMT, addr);
4376 ret = -EINVAL;
4377 break;
4378 }
4379 break;
4380 case RAM_SAVE_FLAG_EOS:
4381 /* normal exit */
6df264ac 4382 multifd_recv_sync_main();
56e93d26
JQ
4383 break;
4384 default:
4385 if (flags & RAM_SAVE_FLAG_HOOK) {
632e3a5c 4386 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
56e93d26
JQ
4387 } else {
4388 error_report("Unknown combination of migration flags: %#x",
4389 flags);
4390 ret = -EINVAL;
4391 }
4392 }
4393 if (!ret) {
4394 ret = qemu_file_get_error(f);
4395 }
4396 }
4397
34ab9e97 4398 ret |= wait_for_decompress_done();
56e93d26 4399 rcu_read_unlock();
55c4446b 4400 trace_ram_load_complete(ret, seq_iter);
e6f4aa18
ZC
4401
4402 if (!ret && migration_incoming_in_colo_state()) {
4403 colo_flush_ram_cache();
4404 }
56e93d26
JQ
4405 return ret;
4406}
4407
c6467627
VSO
4408static bool ram_has_postcopy(void *opaque)
4409{
469dd51b 4410 RAMBlock *rb;
fbd162e6 4411 RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
469dd51b
JH
4412 if (ramblock_is_pmem(rb)) {
4413 info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4414 "is not supported now!", rb->idstr, rb->host);
4415 return false;
4416 }
4417 }
4418
c6467627
VSO
4419 return migrate_postcopy_ram();
4420}
4421
edd090c7
PX
4422/* Sync all the dirty bitmap with destination VM. */
4423static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4424{
4425 RAMBlock *block;
4426 QEMUFile *file = s->to_dst_file;
4427 int ramblock_count = 0;
4428
4429 trace_ram_dirty_bitmap_sync_start();
4430
fbd162e6 4431 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
edd090c7
PX
4432 qemu_savevm_send_recv_bitmap(file, block->idstr);
4433 trace_ram_dirty_bitmap_request(block->idstr);
4434 ramblock_count++;
4435 }
4436
4437 trace_ram_dirty_bitmap_sync_wait();
4438
4439 /* Wait until all the ramblocks' dirty bitmap synced */
4440 while (ramblock_count--) {
4441 qemu_sem_wait(&s->rp_state.rp_sem);
4442 }
4443
4444 trace_ram_dirty_bitmap_sync_complete();
4445
4446 return 0;
4447}
4448
4449static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4450{
4451 qemu_sem_post(&s->rp_state.rp_sem);
4452}
4453
a335debb
PX
4454/*
4455 * Read the received bitmap, revert it as the initial dirty bitmap.
4456 * This is only used when the postcopy migration is paused but wants
4457 * to resume from a middle point.
4458 */
4459int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4460{
4461 int ret = -EINVAL;
4462 QEMUFile *file = s->rp_state.from_dst_file;
4463 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
a725ef9f 4464 uint64_t local_size = DIV_ROUND_UP(nbits, 8);
a335debb
PX
4465 uint64_t size, end_mark;
4466
4467 trace_ram_dirty_bitmap_reload_begin(block->idstr);
4468
4469 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4470 error_report("%s: incorrect state %s", __func__,
4471 MigrationStatus_str(s->state));
4472 return -EINVAL;
4473 }
4474
4475 /*
4476 * Note: see comments in ramblock_recv_bitmap_send() on why we
4477 * need the endianess convertion, and the paddings.
4478 */
4479 local_size = ROUND_UP(local_size, 8);
4480
4481 /* Add paddings */
4482 le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4483
4484 size = qemu_get_be64(file);
4485
4486 /* The size of the bitmap should match with our ramblock */
4487 if (size != local_size) {
4488 error_report("%s: ramblock '%s' bitmap size mismatch "
4489 "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4490 block->idstr, size, local_size);
4491 ret = -EINVAL;
4492 goto out;
4493 }
4494
4495 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4496 end_mark = qemu_get_be64(file);
4497
4498 ret = qemu_file_get_error(file);
4499 if (ret || size != local_size) {
4500 error_report("%s: read bitmap failed for ramblock '%s': %d"
4501 " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4502 __func__, block->idstr, ret, local_size, size);
4503 ret = -EIO;
4504 goto out;
4505 }
4506
4507 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4508 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64,
4509 __func__, block->idstr, end_mark);
4510 ret = -EINVAL;
4511 goto out;
4512 }
4513
4514 /*
4515 * Endianess convertion. We are during postcopy (though paused).
4516 * The dirty bitmap won't change. We can directly modify it.
4517 */
4518 bitmap_from_le(block->bmap, le_bitmap, nbits);
4519
4520 /*
4521 * What we received is "received bitmap". Revert it as the initial
4522 * dirty bitmap for this ramblock.
4523 */
4524 bitmap_complement(block->bmap, block->bmap, nbits);
4525
4526 trace_ram_dirty_bitmap_reload_complete(block->idstr);
4527
edd090c7
PX
4528 /*
4529 * We succeeded to sync bitmap for current ramblock. If this is
4530 * the last one to sync, we need to notify the main send thread.
4531 */
4532 ram_dirty_bitmap_reload_notify(s);
4533
a335debb
PX
4534 ret = 0;
4535out:
bf269906 4536 g_free(le_bitmap);
a335debb
PX
4537 return ret;
4538}
4539
edd090c7
PX
4540static int ram_resume_prepare(MigrationState *s, void *opaque)
4541{
4542 RAMState *rs = *(RAMState **)opaque;
08614f34 4543 int ret;
edd090c7 4544
08614f34
PX
4545 ret = ram_dirty_bitmap_sync_all(s, rs);
4546 if (ret) {
4547 return ret;
4548 }
4549
4550 ram_state_resume_prepare(rs, s->to_dst_file);
4551
4552 return 0;
edd090c7
PX
4553}
4554
56e93d26 4555static SaveVMHandlers savevm_ram_handlers = {
9907e842 4556 .save_setup = ram_save_setup,
56e93d26 4557 .save_live_iterate = ram_save_iterate,
763c906b 4558 .save_live_complete_postcopy = ram_save_complete,
a3e06c3d 4559 .save_live_complete_precopy = ram_save_complete,
c6467627 4560 .has_postcopy = ram_has_postcopy,
56e93d26
JQ
4561 .save_live_pending = ram_save_pending,
4562 .load_state = ram_load,
f265e0e4
JQ
4563 .save_cleanup = ram_save_cleanup,
4564 .load_setup = ram_load_setup,
4565 .load_cleanup = ram_load_cleanup,
edd090c7 4566 .resume_prepare = ram_resume_prepare,
56e93d26
JQ
4567};
4568
4569void ram_mig_init(void)
4570{
4571 qemu_mutex_init(&XBZRLE.lock);
6f37bb8b 4572 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state);
56e93d26 4573}
This page took 0.894126 seconds and 4 git commands to generate.