]> Git Repo - qemu.git/blame - linux-user/elfload.c
tcg: track TBs with per-region BST's
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
476 */
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
479
480 return hwcaps;
481}
afce2927 482
ad6919dc
PM
483static uint32_t get_elf_hwcap2(void)
484{
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
487
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
494}
495
496#undef GET_FEATURE
497
24e76ff0
PM
498#else
499/* 64 bit ARM definitions */
500#define ELF_START_MMAP 0x80000000
501
b597c3f7 502#define ELF_ARCH EM_AARCH64
24e76ff0
PM
503#define ELF_CLASS ELFCLASS64
504#define ELF_PLATFORM "aarch64"
505
506static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
508{
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
511
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
514}
515
516#define ELF_NREG 34
517typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
518
519static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
521{
522 int i;
523
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
526 }
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529}
530
531#define USE_ELF_CORE_DUMP
532#define ELF_EXEC_PAGESIZE 4096
533
534enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
558};
559
560#define ELF_HWCAP get_elf_hwcap()
561
562static uint32_t get_elf_hwcap(void)
563{
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
566
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
569
570 /* probe for the extra features */
571#define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
68412d2e 584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
1dc81c15 585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
0438f037 586 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
24e76ff0
PM
587#undef GET_FEATURE
588
589 return hwcaps;
590}
591
592#endif /* not TARGET_AARCH64 */
593#endif /* TARGET_ARM */
30ac07d4 594
853d6f7a 595#ifdef TARGET_SPARC
a315a145 596#ifdef TARGET_SPARC64
853d6f7a
FB
597
598#define ELF_START_MMAP 0x80000000
cf973e46
AT
599#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
600 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 601#ifndef TARGET_ABI32
cb33da57 602#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
603#else
604#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
605#endif
853d6f7a 606
a315a145 607#define ELF_CLASS ELFCLASS64
5ef54116
FB
608#define ELF_ARCH EM_SPARCV9
609
d97ef72e 610#define STACK_BIAS 2047
a315a145 611
d97ef72e
RH
612static inline void init_thread(struct target_pt_regs *regs,
613 struct image_info *infop)
a315a145 614{
992f48a0 615#ifndef TARGET_ABI32
a315a145 616 regs->tstate = 0;
992f48a0 617#endif
a315a145
FB
618 regs->pc = infop->entry;
619 regs->npc = regs->pc + 4;
620 regs->y = 0;
992f48a0
BS
621#ifdef TARGET_ABI32
622 regs->u_regs[14] = infop->start_stack - 16 * 4;
623#else
cb33da57
BS
624 if (personality(infop->personality) == PER_LINUX32)
625 regs->u_regs[14] = infop->start_stack - 16 * 4;
626 else
627 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 628#endif
a315a145
FB
629}
630
631#else
632#define ELF_START_MMAP 0x80000000
cf973e46
AT
633#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV)
a315a145 635
853d6f7a 636#define ELF_CLASS ELFCLASS32
853d6f7a
FB
637#define ELF_ARCH EM_SPARC
638
d97ef72e
RH
639static inline void init_thread(struct target_pt_regs *regs,
640 struct image_info *infop)
853d6f7a 641{
f5155289
FB
642 regs->psr = 0;
643 regs->pc = infop->entry;
644 regs->npc = regs->pc + 4;
645 regs->y = 0;
646 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
647}
648
a315a145 649#endif
853d6f7a
FB
650#endif
651
67867308
FB
652#ifdef TARGET_PPC
653
4ecd4d16 654#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
655#define ELF_START_MMAP 0x80000000
656
e85e7c6e 657#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
658
659#define elf_check_arch(x) ( (x) == EM_PPC64 )
660
d97ef72e 661#define ELF_CLASS ELFCLASS64
84409ddb
JM
662
663#else
664
d97ef72e 665#define ELF_CLASS ELFCLASS32
84409ddb
JM
666
667#endif
668
d97ef72e 669#define ELF_ARCH EM_PPC
67867308 670
df84e4f3
NF
671/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
672 See arch/powerpc/include/asm/cputable.h. */
673enum {
3efa9a67 674 QEMU_PPC_FEATURE_32 = 0x80000000,
675 QEMU_PPC_FEATURE_64 = 0x40000000,
676 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
677 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
678 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
679 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
680 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
681 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
682 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
683 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
684 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
685 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
686 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
687 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
688 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
689 QEMU_PPC_FEATURE_CELL = 0x00010000,
690 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
691 QEMU_PPC_FEATURE_SMT = 0x00004000,
692 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
693 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
694 QEMU_PPC_FEATURE_PA6T = 0x00000800,
695 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
696 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
697 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
698 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
699 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
700
701 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
702 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
703
704 /* Feature definitions in AT_HWCAP2. */
705 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
706 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
707 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
708 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
709 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
710 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
711};
712
713#define ELF_HWCAP get_elf_hwcap()
714
715static uint32_t get_elf_hwcap(void)
716{
a2247f8e 717 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
718 uint32_t features = 0;
719
720 /* We don't have to be terribly complete here; the high points are
721 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 722#define GET_FEATURE(flag, feature) \
a2247f8e 723 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
724#define GET_FEATURE2(flags, feature) \
725 do { \
726 if ((cpu->env.insns_flags2 & flags) == flags) { \
727 features |= feature; \
728 } \
729 } while (0)
3efa9a67 730 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
731 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
732 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
733 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
734 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
735 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
736 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
737 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
738 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
739 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
740 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
741 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
742 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 743#undef GET_FEATURE
0e019746 744#undef GET_FEATURE2
df84e4f3
NF
745
746 return features;
747}
748
a60438dd
TM
749#define ELF_HWCAP2 get_elf_hwcap2()
750
751static uint32_t get_elf_hwcap2(void)
752{
753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754 uint32_t features = 0;
755
756#define GET_FEATURE(flag, feature) \
757 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
758#define GET_FEATURE2(flag, feature) \
759 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
760
761 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
762 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
763 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
764 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
765
766#undef GET_FEATURE
767#undef GET_FEATURE2
768
769 return features;
770}
771
f5155289
FB
772/*
773 * The requirements here are:
774 * - keep the final alignment of sp (sp & 0xf)
775 * - make sure the 32-bit value at the first 16 byte aligned position of
776 * AUXV is greater than 16 for glibc compatibility.
777 * AT_IGNOREPPC is used for that.
778 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
779 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
780 */
0bccf03d 781#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
782#define ARCH_DLINFO \
783 do { \
623e250a 784 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 785 /* \
82991bed
PM
786 * Handle glibc compatibility: these magic entries must \
787 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
788 */ \
789 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
790 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
791 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
792 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
793 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 794 } while (0)
f5155289 795
67867308
FB
796static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
797{
67867308 798 _regs->gpr[1] = infop->start_stack;
e85e7c6e 799#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 800 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
801 uint64_t val;
802 get_user_u64(val, infop->entry + 8);
803 _regs->gpr[2] = val + infop->load_bias;
804 get_user_u64(val, infop->entry);
805 infop->entry = val + infop->load_bias;
d90b94cd
DK
806 } else {
807 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
808 }
84409ddb 809#endif
67867308
FB
810 _regs->nip = infop->entry;
811}
812
e2f3e741
NF
813/* See linux kernel: arch/powerpc/include/asm/elf.h. */
814#define ELF_NREG 48
815typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
816
05390248 817static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
818{
819 int i;
820 target_ulong ccr = 0;
821
822 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 823 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
824 }
825
86cd7b2d
PB
826 (*regs)[32] = tswapreg(env->nip);
827 (*regs)[33] = tswapreg(env->msr);
828 (*regs)[35] = tswapreg(env->ctr);
829 (*regs)[36] = tswapreg(env->lr);
830 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
831
832 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
833 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
834 }
86cd7b2d 835 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
836}
837
838#define USE_ELF_CORE_DUMP
d97ef72e 839#define ELF_EXEC_PAGESIZE 4096
67867308
FB
840
841#endif
842
048f6b4d
FB
843#ifdef TARGET_MIPS
844
845#define ELF_START_MMAP 0x80000000
846
388bb21a
TS
847#ifdef TARGET_MIPS64
848#define ELF_CLASS ELFCLASS64
849#else
048f6b4d 850#define ELF_CLASS ELFCLASS32
388bb21a 851#endif
048f6b4d
FB
852#define ELF_ARCH EM_MIPS
853
d97ef72e
RH
854static inline void init_thread(struct target_pt_regs *regs,
855 struct image_info *infop)
048f6b4d 856{
623a930e 857 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
858 regs->cp0_epc = infop->entry;
859 regs->regs[29] = infop->start_stack;
860}
861
51e52606
NF
862/* See linux kernel: arch/mips/include/asm/elf.h. */
863#define ELF_NREG 45
864typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
865
866/* See linux kernel: arch/mips/include/asm/reg.h. */
867enum {
868#ifdef TARGET_MIPS64
869 TARGET_EF_R0 = 0,
870#else
871 TARGET_EF_R0 = 6,
872#endif
873 TARGET_EF_R26 = TARGET_EF_R0 + 26,
874 TARGET_EF_R27 = TARGET_EF_R0 + 27,
875 TARGET_EF_LO = TARGET_EF_R0 + 32,
876 TARGET_EF_HI = TARGET_EF_R0 + 33,
877 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
878 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
879 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
880 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
881};
882
883/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 884static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
885{
886 int i;
887
888 for (i = 0; i < TARGET_EF_R0; i++) {
889 (*regs)[i] = 0;
890 }
891 (*regs)[TARGET_EF_R0] = 0;
892
893 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 894 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
895 }
896
897 (*regs)[TARGET_EF_R26] = 0;
898 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
899 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
900 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
901 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
902 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
903 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
904 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
905}
906
907#define USE_ELF_CORE_DUMP
388bb21a
TS
908#define ELF_EXEC_PAGESIZE 4096
909
46a1ee4f
JC
910/* See arch/mips/include/uapi/asm/hwcap.h. */
911enum {
912 HWCAP_MIPS_R6 = (1 << 0),
913 HWCAP_MIPS_MSA = (1 << 1),
914};
915
916#define ELF_HWCAP get_elf_hwcap()
917
918static uint32_t get_elf_hwcap(void)
919{
920 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
921 uint32_t hwcaps = 0;
922
923#define GET_FEATURE(flag, hwcap) \
924 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
925
926 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
927 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
928
929#undef GET_FEATURE
930
931 return hwcaps;
932}
933
048f6b4d
FB
934#endif /* TARGET_MIPS */
935
b779e29e
EI
936#ifdef TARGET_MICROBLAZE
937
938#define ELF_START_MMAP 0x80000000
939
0d5d4699 940#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
941
942#define ELF_CLASS ELFCLASS32
0d5d4699 943#define ELF_ARCH EM_MICROBLAZE
b779e29e 944
d97ef72e
RH
945static inline void init_thread(struct target_pt_regs *regs,
946 struct image_info *infop)
b779e29e
EI
947{
948 regs->pc = infop->entry;
949 regs->r1 = infop->start_stack;
950
951}
952
b779e29e
EI
953#define ELF_EXEC_PAGESIZE 4096
954
e4cbd44d
EI
955#define USE_ELF_CORE_DUMP
956#define ELF_NREG 38
957typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
958
959/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 960static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
961{
962 int i, pos = 0;
963
964 for (i = 0; i < 32; i++) {
86cd7b2d 965 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
966 }
967
968 for (i = 0; i < 6; i++) {
86cd7b2d 969 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
970 }
971}
972
b779e29e
EI
973#endif /* TARGET_MICROBLAZE */
974
a0a839b6
MV
975#ifdef TARGET_NIOS2
976
977#define ELF_START_MMAP 0x80000000
978
979#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
980
981#define ELF_CLASS ELFCLASS32
982#define ELF_ARCH EM_ALTERA_NIOS2
983
984static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
985{
986 regs->ea = infop->entry;
987 regs->sp = infop->start_stack;
988 regs->estatus = 0x3;
989}
990
991#define ELF_EXEC_PAGESIZE 4096
992
993#define USE_ELF_CORE_DUMP
994#define ELF_NREG 49
995typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
996
997/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
998static void elf_core_copy_regs(target_elf_gregset_t *regs,
999 const CPUNios2State *env)
1000{
1001 int i;
1002
1003 (*regs)[0] = -1;
1004 for (i = 1; i < 8; i++) /* r0-r7 */
1005 (*regs)[i] = tswapreg(env->regs[i + 7]);
1006
1007 for (i = 8; i < 16; i++) /* r8-r15 */
1008 (*regs)[i] = tswapreg(env->regs[i - 8]);
1009
1010 for (i = 16; i < 24; i++) /* r16-r23 */
1011 (*regs)[i] = tswapreg(env->regs[i + 7]);
1012 (*regs)[24] = -1; /* R_ET */
1013 (*regs)[25] = -1; /* R_BT */
1014 (*regs)[26] = tswapreg(env->regs[R_GP]);
1015 (*regs)[27] = tswapreg(env->regs[R_SP]);
1016 (*regs)[28] = tswapreg(env->regs[R_FP]);
1017 (*regs)[29] = tswapreg(env->regs[R_EA]);
1018 (*regs)[30] = -1; /* R_SSTATUS */
1019 (*regs)[31] = tswapreg(env->regs[R_RA]);
1020
1021 (*regs)[32] = tswapreg(env->regs[R_PC]);
1022
1023 (*regs)[33] = -1; /* R_STATUS */
1024 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1025
1026 for (i = 35; i < 49; i++) /* ... */
1027 (*regs)[i] = -1;
1028}
1029
1030#endif /* TARGET_NIOS2 */
1031
d962783e
JL
1032#ifdef TARGET_OPENRISC
1033
1034#define ELF_START_MMAP 0x08000000
1035
d962783e
JL
1036#define ELF_ARCH EM_OPENRISC
1037#define ELF_CLASS ELFCLASS32
1038#define ELF_DATA ELFDATA2MSB
1039
1040static inline void init_thread(struct target_pt_regs *regs,
1041 struct image_info *infop)
1042{
1043 regs->pc = infop->entry;
1044 regs->gpr[1] = infop->start_stack;
1045}
1046
1047#define USE_ELF_CORE_DUMP
1048#define ELF_EXEC_PAGESIZE 8192
1049
1050/* See linux kernel arch/openrisc/include/asm/elf.h. */
1051#define ELF_NREG 34 /* gprs and pc, sr */
1052typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1053
1054static void elf_core_copy_regs(target_elf_gregset_t *regs,
1055 const CPUOpenRISCState *env)
1056{
1057 int i;
1058
1059 for (i = 0; i < 32; i++) {
d89e71e8 1060 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1061 }
86cd7b2d 1062 (*regs)[32] = tswapreg(env->pc);
84775c43 1063 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1064}
1065#define ELF_HWCAP 0
1066#define ELF_PLATFORM NULL
1067
1068#endif /* TARGET_OPENRISC */
1069
fdf9b3e8
FB
1070#ifdef TARGET_SH4
1071
1072#define ELF_START_MMAP 0x80000000
1073
fdf9b3e8 1074#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1075#define ELF_ARCH EM_SH
1076
d97ef72e
RH
1077static inline void init_thread(struct target_pt_regs *regs,
1078 struct image_info *infop)
fdf9b3e8 1079{
d97ef72e
RH
1080 /* Check other registers XXXXX */
1081 regs->pc = infop->entry;
1082 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1083}
1084
7631c97e
NF
1085/* See linux kernel: arch/sh/include/asm/elf.h. */
1086#define ELF_NREG 23
1087typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1088
1089/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1090enum {
1091 TARGET_REG_PC = 16,
1092 TARGET_REG_PR = 17,
1093 TARGET_REG_SR = 18,
1094 TARGET_REG_GBR = 19,
1095 TARGET_REG_MACH = 20,
1096 TARGET_REG_MACL = 21,
1097 TARGET_REG_SYSCALL = 22
1098};
1099
d97ef72e 1100static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1101 const CPUSH4State *env)
7631c97e
NF
1102{
1103 int i;
1104
1105 for (i = 0; i < 16; i++) {
72cd500b 1106 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1107 }
1108
86cd7b2d
PB
1109 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1110 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1111 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1112 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1113 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1114 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1115 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1116}
1117
1118#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1119#define ELF_EXEC_PAGESIZE 4096
1120
e42fd944
RH
1121enum {
1122 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1123 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1124 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1125 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1126 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1127 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1128 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1129 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1130 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1131 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1132};
1133
1134#define ELF_HWCAP get_elf_hwcap()
1135
1136static uint32_t get_elf_hwcap(void)
1137{
1138 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1139 uint32_t hwcap = 0;
1140
1141 hwcap |= SH_CPU_HAS_FPU;
1142
1143 if (cpu->env.features & SH_FEATURE_SH4A) {
1144 hwcap |= SH_CPU_HAS_LLSC;
1145 }
1146
1147 return hwcap;
1148}
1149
fdf9b3e8
FB
1150#endif
1151
48733d19
TS
1152#ifdef TARGET_CRIS
1153
1154#define ELF_START_MMAP 0x80000000
1155
48733d19 1156#define ELF_CLASS ELFCLASS32
48733d19
TS
1157#define ELF_ARCH EM_CRIS
1158
d97ef72e
RH
1159static inline void init_thread(struct target_pt_regs *regs,
1160 struct image_info *infop)
48733d19 1161{
d97ef72e 1162 regs->erp = infop->entry;
48733d19
TS
1163}
1164
48733d19
TS
1165#define ELF_EXEC_PAGESIZE 8192
1166
1167#endif
1168
e6e5906b
PB
1169#ifdef TARGET_M68K
1170
1171#define ELF_START_MMAP 0x80000000
1172
d97ef72e 1173#define ELF_CLASS ELFCLASS32
d97ef72e 1174#define ELF_ARCH EM_68K
e6e5906b
PB
1175
1176/* ??? Does this need to do anything?
d97ef72e 1177 #define ELF_PLAT_INIT(_r) */
e6e5906b 1178
d97ef72e
RH
1179static inline void init_thread(struct target_pt_regs *regs,
1180 struct image_info *infop)
e6e5906b
PB
1181{
1182 regs->usp = infop->start_stack;
1183 regs->sr = 0;
1184 regs->pc = infop->entry;
1185}
1186
7a93cc55
NF
1187/* See linux kernel: arch/m68k/include/asm/elf.h. */
1188#define ELF_NREG 20
1189typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1190
05390248 1191static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1192{
86cd7b2d
PB
1193 (*regs)[0] = tswapreg(env->dregs[1]);
1194 (*regs)[1] = tswapreg(env->dregs[2]);
1195 (*regs)[2] = tswapreg(env->dregs[3]);
1196 (*regs)[3] = tswapreg(env->dregs[4]);
1197 (*regs)[4] = tswapreg(env->dregs[5]);
1198 (*regs)[5] = tswapreg(env->dregs[6]);
1199 (*regs)[6] = tswapreg(env->dregs[7]);
1200 (*regs)[7] = tswapreg(env->aregs[0]);
1201 (*regs)[8] = tswapreg(env->aregs[1]);
1202 (*regs)[9] = tswapreg(env->aregs[2]);
1203 (*regs)[10] = tswapreg(env->aregs[3]);
1204 (*regs)[11] = tswapreg(env->aregs[4]);
1205 (*regs)[12] = tswapreg(env->aregs[5]);
1206 (*regs)[13] = tswapreg(env->aregs[6]);
1207 (*regs)[14] = tswapreg(env->dregs[0]);
1208 (*regs)[15] = tswapreg(env->aregs[7]);
1209 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1210 (*regs)[17] = tswapreg(env->sr);
1211 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1212 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1213}
1214
1215#define USE_ELF_CORE_DUMP
d97ef72e 1216#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1217
1218#endif
1219
7a3148a9
JM
1220#ifdef TARGET_ALPHA
1221
1222#define ELF_START_MMAP (0x30000000000ULL)
1223
7a3148a9 1224#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1225#define ELF_ARCH EM_ALPHA
1226
d97ef72e
RH
1227static inline void init_thread(struct target_pt_regs *regs,
1228 struct image_info *infop)
7a3148a9
JM
1229{
1230 regs->pc = infop->entry;
1231 regs->ps = 8;
1232 regs->usp = infop->start_stack;
7a3148a9
JM
1233}
1234
7a3148a9
JM
1235#define ELF_EXEC_PAGESIZE 8192
1236
1237#endif /* TARGET_ALPHA */
1238
a4c075f1
UH
1239#ifdef TARGET_S390X
1240
1241#define ELF_START_MMAP (0x20000000000ULL)
1242
a4c075f1
UH
1243#define ELF_CLASS ELFCLASS64
1244#define ELF_DATA ELFDATA2MSB
1245#define ELF_ARCH EM_S390
1246
1247static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1248{
1249 regs->psw.addr = infop->entry;
1250 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1251 regs->gprs[15] = infop->start_stack;
1252}
1253
1254#endif /* TARGET_S390X */
1255
b16189b2
CG
1256#ifdef TARGET_TILEGX
1257
1258/* 42 bits real used address, a half for user mode */
1259#define ELF_START_MMAP (0x00000020000000000ULL)
1260
1261#define elf_check_arch(x) ((x) == EM_TILEGX)
1262
1263#define ELF_CLASS ELFCLASS64
1264#define ELF_DATA ELFDATA2LSB
1265#define ELF_ARCH EM_TILEGX
1266
1267static inline void init_thread(struct target_pt_regs *regs,
1268 struct image_info *infop)
1269{
1270 regs->pc = infop->entry;
1271 regs->sp = infop->start_stack;
1272
1273}
1274
1275#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1276
1277#endif /* TARGET_TILEGX */
1278
47ae93cd
MC
1279#ifdef TARGET_RISCV
1280
1281#define ELF_START_MMAP 0x80000000
1282#define ELF_ARCH EM_RISCV
1283
1284#ifdef TARGET_RISCV32
1285#define ELF_CLASS ELFCLASS32
1286#else
1287#define ELF_CLASS ELFCLASS64
1288#endif
1289
1290static inline void init_thread(struct target_pt_regs *regs,
1291 struct image_info *infop)
1292{
1293 regs->sepc = infop->entry;
1294 regs->sp = infop->start_stack;
1295}
1296
1297#define ELF_EXEC_PAGESIZE 4096
1298
1299#endif /* TARGET_RISCV */
1300
7c248bcd
RH
1301#ifdef TARGET_HPPA
1302
1303#define ELF_START_MMAP 0x80000000
1304#define ELF_CLASS ELFCLASS32
1305#define ELF_ARCH EM_PARISC
1306#define ELF_PLATFORM "PARISC"
1307#define STACK_GROWS_DOWN 0
1308#define STACK_ALIGNMENT 64
1309
1310static inline void init_thread(struct target_pt_regs *regs,
1311 struct image_info *infop)
1312{
1313 regs->iaoq[0] = infop->entry;
1314 regs->iaoq[1] = infop->entry + 4;
1315 regs->gr[23] = 0;
1316 regs->gr[24] = infop->arg_start;
1317 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1318 /* The top-of-stack contains a linkage buffer. */
1319 regs->gr[30] = infop->start_stack + 64;
1320 regs->gr[31] = infop->entry;
1321}
1322
1323#endif /* TARGET_HPPA */
1324
ba7651fb
MF
1325#ifdef TARGET_XTENSA
1326
1327#define ELF_START_MMAP 0x20000000
1328
1329#define ELF_CLASS ELFCLASS32
1330#define ELF_ARCH EM_XTENSA
1331
1332static inline void init_thread(struct target_pt_regs *regs,
1333 struct image_info *infop)
1334{
1335 regs->windowbase = 0;
1336 regs->windowstart = 1;
1337 regs->areg[1] = infop->start_stack;
1338 regs->pc = infop->entry;
1339}
1340
1341/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1342#define ELF_NREG 128
1343typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1344
1345enum {
1346 TARGET_REG_PC,
1347 TARGET_REG_PS,
1348 TARGET_REG_LBEG,
1349 TARGET_REG_LEND,
1350 TARGET_REG_LCOUNT,
1351 TARGET_REG_SAR,
1352 TARGET_REG_WINDOWSTART,
1353 TARGET_REG_WINDOWBASE,
1354 TARGET_REG_THREADPTR,
1355 TARGET_REG_AR0 = 64,
1356};
1357
1358static void elf_core_copy_regs(target_elf_gregset_t *regs,
1359 const CPUXtensaState *env)
1360{
1361 unsigned i;
1362
1363 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1364 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1365 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1366 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1367 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1368 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1369 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1370 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1371 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1372 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1373 for (i = 0; i < env->config->nareg; ++i) {
1374 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1375 }
1376}
1377
1378#define USE_ELF_CORE_DUMP
1379#define ELF_EXEC_PAGESIZE 4096
1380
1381#endif /* TARGET_XTENSA */
1382
15338fd7
FB
1383#ifndef ELF_PLATFORM
1384#define ELF_PLATFORM (NULL)
1385#endif
1386
75be901c
PC
1387#ifndef ELF_MACHINE
1388#define ELF_MACHINE ELF_ARCH
1389#endif
1390
d276a604
PC
1391#ifndef elf_check_arch
1392#define elf_check_arch(x) ((x) == ELF_ARCH)
1393#endif
1394
15338fd7
FB
1395#ifndef ELF_HWCAP
1396#define ELF_HWCAP 0
1397#endif
1398
7c4ee5bc
RH
1399#ifndef STACK_GROWS_DOWN
1400#define STACK_GROWS_DOWN 1
1401#endif
1402
1403#ifndef STACK_ALIGNMENT
1404#define STACK_ALIGNMENT 16
1405#endif
1406
992f48a0 1407#ifdef TARGET_ABI32
cb33da57 1408#undef ELF_CLASS
992f48a0 1409#define ELF_CLASS ELFCLASS32
cb33da57
BS
1410#undef bswaptls
1411#define bswaptls(ptr) bswap32s(ptr)
1412#endif
1413
31e31b8a 1414#include "elf.h"
09bfb054 1415
09bfb054
FB
1416struct exec
1417{
d97ef72e
RH
1418 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1419 unsigned int a_text; /* length of text, in bytes */
1420 unsigned int a_data; /* length of data, in bytes */
1421 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1422 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1423 unsigned int a_entry; /* start address */
1424 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1425 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1426};
1427
1428
1429#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1430#define OMAGIC 0407
1431#define NMAGIC 0410
1432#define ZMAGIC 0413
1433#define QMAGIC 0314
1434
31e31b8a 1435/* Necessary parameters */
54936004 1436#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1437#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1438 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1439#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1440
444cd5c3 1441#define DLINFO_ITEMS 15
31e31b8a 1442
09bfb054
FB
1443static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1444{
d97ef72e 1445 memcpy(to, from, n);
09bfb054 1446}
d691f669 1447
31e31b8a 1448#ifdef BSWAP_NEEDED
92a31b1f 1449static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1450{
d97ef72e
RH
1451 bswap16s(&ehdr->e_type); /* Object file type */
1452 bswap16s(&ehdr->e_machine); /* Architecture */
1453 bswap32s(&ehdr->e_version); /* Object file version */
1454 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1455 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1456 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1457 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1458 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1459 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1460 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1461 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1462 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1463 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1464}
1465
991f8f0c 1466static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1467{
991f8f0c
RH
1468 int i;
1469 for (i = 0; i < phnum; ++i, ++phdr) {
1470 bswap32s(&phdr->p_type); /* Segment type */
1471 bswap32s(&phdr->p_flags); /* Segment flags */
1472 bswaptls(&phdr->p_offset); /* Segment file offset */
1473 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1474 bswaptls(&phdr->p_paddr); /* Segment physical address */
1475 bswaptls(&phdr->p_filesz); /* Segment size in file */
1476 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1477 bswaptls(&phdr->p_align); /* Segment alignment */
1478 }
31e31b8a 1479}
689f936f 1480
991f8f0c 1481static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1482{
991f8f0c
RH
1483 int i;
1484 for (i = 0; i < shnum; ++i, ++shdr) {
1485 bswap32s(&shdr->sh_name);
1486 bswap32s(&shdr->sh_type);
1487 bswaptls(&shdr->sh_flags);
1488 bswaptls(&shdr->sh_addr);
1489 bswaptls(&shdr->sh_offset);
1490 bswaptls(&shdr->sh_size);
1491 bswap32s(&shdr->sh_link);
1492 bswap32s(&shdr->sh_info);
1493 bswaptls(&shdr->sh_addralign);
1494 bswaptls(&shdr->sh_entsize);
1495 }
689f936f
FB
1496}
1497
7a3148a9 1498static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1499{
1500 bswap32s(&sym->st_name);
7a3148a9
JM
1501 bswaptls(&sym->st_value);
1502 bswaptls(&sym->st_size);
689f936f
FB
1503 bswap16s(&sym->st_shndx);
1504}
991f8f0c
RH
1505#else
1506static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1507static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1508static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1509static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1510#endif
1511
edf8e2af 1512#ifdef USE_ELF_CORE_DUMP
9349b4f9 1513static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1514#endif /* USE_ELF_CORE_DUMP */
682674b8 1515static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1516
9058abdd
RH
1517/* Verify the portions of EHDR within E_IDENT for the target.
1518 This can be performed before bswapping the entire header. */
1519static bool elf_check_ident(struct elfhdr *ehdr)
1520{
1521 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1522 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1523 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1524 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1525 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1526 && ehdr->e_ident[EI_DATA] == ELF_DATA
1527 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1528}
1529
1530/* Verify the portions of EHDR outside of E_IDENT for the target.
1531 This has to wait until after bswapping the header. */
1532static bool elf_check_ehdr(struct elfhdr *ehdr)
1533{
1534 return (elf_check_arch(ehdr->e_machine)
1535 && ehdr->e_ehsize == sizeof(struct elfhdr)
1536 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1537 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1538}
1539
31e31b8a 1540/*
e5fe0c52 1541 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1542 * memory to free pages in kernel mem. These are in a format ready
1543 * to be put directly into the top of new user memory.
1544 *
1545 */
59baae9a
SB
1546static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1547 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1548{
59baae9a 1549 char *tmp;
7c4ee5bc 1550 int len, i;
59baae9a 1551 abi_ulong top = p;
31e31b8a
FB
1552
1553 if (!p) {
d97ef72e 1554 return 0; /* bullet-proofing */
31e31b8a 1555 }
59baae9a 1556
7c4ee5bc
RH
1557 if (STACK_GROWS_DOWN) {
1558 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1559 for (i = argc - 1; i >= 0; --i) {
1560 tmp = argv[i];
1561 if (!tmp) {
1562 fprintf(stderr, "VFS: argc is wrong");
1563 exit(-1);
1564 }
1565 len = strlen(tmp) + 1;
1566 tmp += len;
59baae9a 1567
7c4ee5bc
RH
1568 if (len > (p - stack_limit)) {
1569 return 0;
1570 }
1571 while (len) {
1572 int bytes_to_copy = (len > offset) ? offset : len;
1573 tmp -= bytes_to_copy;
1574 p -= bytes_to_copy;
1575 offset -= bytes_to_copy;
1576 len -= bytes_to_copy;
1577
1578 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1579
1580 if (offset == 0) {
1581 memcpy_to_target(p, scratch, top - p);
1582 top = p;
1583 offset = TARGET_PAGE_SIZE;
1584 }
1585 }
d97ef72e 1586 }
7c4ee5bc
RH
1587 if (p != top) {
1588 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1589 }
7c4ee5bc
RH
1590 } else {
1591 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1592 for (i = 0; i < argc; ++i) {
1593 tmp = argv[i];
1594 if (!tmp) {
1595 fprintf(stderr, "VFS: argc is wrong");
1596 exit(-1);
1597 }
1598 len = strlen(tmp) + 1;
1599 if (len > (stack_limit - p)) {
1600 return 0;
1601 }
1602 while (len) {
1603 int bytes_to_copy = (len > remaining) ? remaining : len;
1604
1605 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1606
1607 tmp += bytes_to_copy;
1608 remaining -= bytes_to_copy;
1609 p += bytes_to_copy;
1610 len -= bytes_to_copy;
1611
1612 if (remaining == 0) {
1613 memcpy_to_target(top, scratch, p - top);
1614 top = p;
1615 remaining = TARGET_PAGE_SIZE;
1616 }
d97ef72e
RH
1617 }
1618 }
7c4ee5bc
RH
1619 if (p != top) {
1620 memcpy_to_target(top, scratch, p - top);
1621 }
59baae9a
SB
1622 }
1623
31e31b8a
FB
1624 return p;
1625}
1626
59baae9a
SB
1627/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1628 * argument/environment space. Newer kernels (>2.6.33) allow more,
1629 * dependent on stack size, but guarantee at least 32 pages for
1630 * backwards compatibility.
1631 */
1632#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1633
1634static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1635 struct image_info *info)
53a5960a 1636{
59baae9a 1637 abi_ulong size, error, guard;
31e31b8a 1638
703e0e89 1639 size = guest_stack_size;
59baae9a
SB
1640 if (size < STACK_LOWER_LIMIT) {
1641 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1642 }
1643 guard = TARGET_PAGE_SIZE;
1644 if (guard < qemu_real_host_page_size) {
1645 guard = qemu_real_host_page_size;
1646 }
1647
1648 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1649 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1650 if (error == -1) {
60dcbcb5 1651 perror("mmap stack");
09bfb054
FB
1652 exit(-1);
1653 }
31e31b8a 1654
60dcbcb5 1655 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1656 if (STACK_GROWS_DOWN) {
1657 target_mprotect(error, guard, PROT_NONE);
1658 info->stack_limit = error + guard;
1659 return info->stack_limit + size - sizeof(void *);
1660 } else {
1661 target_mprotect(error + size, guard, PROT_NONE);
1662 info->stack_limit = error + size;
1663 return error;
1664 }
31e31b8a
FB
1665}
1666
cf129f3a
RH
1667/* Map and zero the bss. We need to explicitly zero any fractional pages
1668 after the data section (i.e. bss). */
1669static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1670{
cf129f3a
RH
1671 uintptr_t host_start, host_map_start, host_end;
1672
1673 last_bss = TARGET_PAGE_ALIGN(last_bss);
1674
1675 /* ??? There is confusion between qemu_real_host_page_size and
1676 qemu_host_page_size here and elsewhere in target_mmap, which
1677 may lead to the end of the data section mapping from the file
1678 not being mapped. At least there was an explicit test and
1679 comment for that here, suggesting that "the file size must
1680 be known". The comment probably pre-dates the introduction
1681 of the fstat system call in target_mmap which does in fact
1682 find out the size. What isn't clear is if the workaround
1683 here is still actually needed. For now, continue with it,
1684 but merge it with the "normal" mmap that would allocate the bss. */
1685
1686 host_start = (uintptr_t) g2h(elf_bss);
1687 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1688 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1689
1690 if (host_map_start < host_end) {
1691 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1692 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1693 if (p == MAP_FAILED) {
1694 perror("cannot mmap brk");
1695 exit(-1);
853d6f7a 1696 }
f46e9a0b 1697 }
853d6f7a 1698
f46e9a0b
TM
1699 /* Ensure that the bss page(s) are valid */
1700 if ((page_get_flags(last_bss-1) & prot) != prot) {
1701 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1702 }
31e31b8a 1703
cf129f3a
RH
1704 if (host_start < host_map_start) {
1705 memset((void *)host_start, 0, host_map_start - host_start);
1706 }
1707}
53a5960a 1708
cf58affe
CL
1709#ifdef TARGET_ARM
1710static int elf_is_fdpic(struct elfhdr *exec)
1711{
1712 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1713}
1714#else
a99856cd
CL
1715/* Default implementation, always false. */
1716static int elf_is_fdpic(struct elfhdr *exec)
1717{
1718 return 0;
1719}
cf58affe 1720#endif
a99856cd 1721
1af02e83
MF
1722static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1723{
1724 uint16_t n;
1725 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1726
1727 /* elf32_fdpic_loadseg */
1728 n = info->nsegs;
1729 while (n--) {
1730 sp -= 12;
1731 put_user_u32(loadsegs[n].addr, sp+0);
1732 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1733 put_user_u32(loadsegs[n].p_memsz, sp+8);
1734 }
1735
1736 /* elf32_fdpic_loadmap */
1737 sp -= 4;
1738 put_user_u16(0, sp+0); /* version */
1739 put_user_u16(info->nsegs, sp+2); /* nsegs */
1740
1741 info->personality = PER_LINUX_FDPIC;
1742 info->loadmap_addr = sp;
1743
1744 return sp;
1745}
1af02e83 1746
992f48a0 1747static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1748 struct elfhdr *exec,
1749 struct image_info *info,
1750 struct image_info *interp_info)
31e31b8a 1751{
d97ef72e 1752 abi_ulong sp;
7c4ee5bc 1753 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1754 int size;
14322bad
LA
1755 int i;
1756 abi_ulong u_rand_bytes;
1757 uint8_t k_rand_bytes[16];
d97ef72e
RH
1758 abi_ulong u_platform;
1759 const char *k_platform;
1760 const int n = sizeof(elf_addr_t);
1761
1762 sp = p;
1af02e83 1763
1af02e83
MF
1764 /* Needs to be before we load the env/argc/... */
1765 if (elf_is_fdpic(exec)) {
1766 /* Need 4 byte alignment for these structs */
1767 sp &= ~3;
1768 sp = loader_build_fdpic_loadmap(info, sp);
1769 info->other_info = interp_info;
1770 if (interp_info) {
1771 interp_info->other_info = info;
1772 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1773 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1774 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1775 } else {
1776 info->interpreter_loadmap_addr = 0;
1777 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1778 }
1779 }
1af02e83 1780
d97ef72e
RH
1781 u_platform = 0;
1782 k_platform = ELF_PLATFORM;
1783 if (k_platform) {
1784 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1785 if (STACK_GROWS_DOWN) {
1786 sp -= (len + n - 1) & ~(n - 1);
1787 u_platform = sp;
1788 /* FIXME - check return value of memcpy_to_target() for failure */
1789 memcpy_to_target(sp, k_platform, len);
1790 } else {
1791 memcpy_to_target(sp, k_platform, len);
1792 u_platform = sp;
1793 sp += len + 1;
1794 }
1795 }
1796
1797 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1798 * the argv and envp pointers.
1799 */
1800 if (STACK_GROWS_DOWN) {
1801 sp = QEMU_ALIGN_DOWN(sp, 16);
1802 } else {
1803 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1804 }
14322bad
LA
1805
1806 /*
1807 * Generate 16 random bytes for userspace PRNG seeding (not
1808 * cryptically secure but it's not the aim of QEMU).
1809 */
14322bad
LA
1810 for (i = 0; i < 16; i++) {
1811 k_rand_bytes[i] = rand();
1812 }
7c4ee5bc
RH
1813 if (STACK_GROWS_DOWN) {
1814 sp -= 16;
1815 u_rand_bytes = sp;
1816 /* FIXME - check return value of memcpy_to_target() for failure */
1817 memcpy_to_target(sp, k_rand_bytes, 16);
1818 } else {
1819 memcpy_to_target(sp, k_rand_bytes, 16);
1820 u_rand_bytes = sp;
1821 sp += 16;
1822 }
14322bad 1823
d97ef72e
RH
1824 size = (DLINFO_ITEMS + 1) * 2;
1825 if (k_platform)
1826 size += 2;
f5155289 1827#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1828 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1829#endif
1830#ifdef ELF_HWCAP2
1831 size += 2;
f5155289 1832#endif
f516511e
PM
1833 info->auxv_len = size * n;
1834
d97ef72e 1835 size += envc + argc + 2;
b9329d4b 1836 size += 1; /* argc itself */
d97ef72e 1837 size *= n;
7c4ee5bc
RH
1838
1839 /* Allocate space and finalize stack alignment for entry now. */
1840 if (STACK_GROWS_DOWN) {
1841 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1842 sp = u_argc;
1843 } else {
1844 u_argc = sp;
1845 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1846 }
1847
1848 u_argv = u_argc + n;
1849 u_envp = u_argv + (argc + 1) * n;
1850 u_auxv = u_envp + (envc + 1) * n;
1851 info->saved_auxv = u_auxv;
1852 info->arg_start = u_argv;
1853 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1854
1855 /* This is correct because Linux defines
1856 * elf_addr_t as Elf32_Off / Elf64_Off
1857 */
1858#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1859 put_user_ual(id, u_auxv); u_auxv += n; \
1860 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1861 } while(0)
1862
82991bed
PM
1863#ifdef ARCH_DLINFO
1864 /*
1865 * ARCH_DLINFO must come first so platform specific code can enforce
1866 * special alignment requirements on the AUXV if necessary (eg. PPC).
1867 */
1868 ARCH_DLINFO;
1869#endif
f516511e
PM
1870 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1871 * on info->auxv_len will trigger.
1872 */
8e62a717 1873 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1874 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1875 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1876 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1877 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1878 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1879 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1880 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1881 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1882 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1883 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1884 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1885 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1886 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1887 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1888
ad6919dc
PM
1889#ifdef ELF_HWCAP2
1890 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1891#endif
1892
7c4ee5bc 1893 if (u_platform) {
d97ef72e 1894 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1895 }
7c4ee5bc 1896 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1897#undef NEW_AUX_ENT
1898
f516511e
PM
1899 /* Check that our initial calculation of the auxv length matches how much
1900 * we actually put into it.
1901 */
1902 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1903
1904 put_user_ual(argc, u_argc);
1905
1906 p = info->arg_strings;
1907 for (i = 0; i < argc; ++i) {
1908 put_user_ual(p, u_argv);
1909 u_argv += n;
1910 p += target_strlen(p) + 1;
1911 }
1912 put_user_ual(0, u_argv);
1913
1914 p = info->env_strings;
1915 for (i = 0; i < envc; ++i) {
1916 put_user_ual(p, u_envp);
1917 u_envp += n;
1918 p += target_strlen(p) + 1;
1919 }
1920 put_user_ual(0, u_envp);
edf8e2af 1921
d97ef72e 1922 return sp;
31e31b8a
FB
1923}
1924
dce10401
MI
1925unsigned long init_guest_space(unsigned long host_start,
1926 unsigned long host_size,
1927 unsigned long guest_start,
1928 bool fixed)
1929{
293f2060 1930 unsigned long current_start, aligned_start;
dce10401
MI
1931 int flags;
1932
1933 assert(host_start || host_size);
1934
1935 /* If just a starting address is given, then just verify that
1936 * address. */
1937 if (host_start && !host_size) {
8756e136 1938#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1939 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1940 return (unsigned long)-1;
1941 }
8756e136
LS
1942#endif
1943 return host_start;
dce10401
MI
1944 }
1945
1946 /* Setup the initial flags and start address. */
1947 current_start = host_start & qemu_host_page_mask;
1948 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1949 if (fixed) {
1950 flags |= MAP_FIXED;
1951 }
1952
1953 /* Otherwise, a non-zero size region of memory needs to be mapped
1954 * and validated. */
2a53535a
LS
1955
1956#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1957 /* On 32-bit ARM, we need to map not just the usable memory, but
1958 * also the commpage. Try to find a suitable place by allocating
1959 * a big chunk for all of it. If host_start, then the naive
1960 * strategy probably does good enough.
1961 */
1962 if (!host_start) {
1963 unsigned long guest_full_size, host_full_size, real_start;
1964
1965 guest_full_size =
1966 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1967 host_full_size = guest_full_size - guest_start;
1968 real_start = (unsigned long)
1969 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1970 if (real_start == (unsigned long)-1) {
1971 if (host_size < host_full_size - qemu_host_page_size) {
1972 /* We failed to map a continous segment, but we're
1973 * allowed to have a gap between the usable memory and
1974 * the commpage where other things can be mapped.
1975 * This sparseness gives us more flexibility to find
1976 * an address range.
1977 */
1978 goto naive;
1979 }
1980 return (unsigned long)-1;
1981 }
1982 munmap((void *)real_start, host_full_size);
1983 if (real_start & ~qemu_host_page_mask) {
1984 /* The same thing again, but with an extra qemu_host_page_size
1985 * so that we can shift around alignment.
1986 */
1987 unsigned long real_size = host_full_size + qemu_host_page_size;
1988 real_start = (unsigned long)
1989 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1990 if (real_start == (unsigned long)-1) {
1991 if (host_size < host_full_size - qemu_host_page_size) {
1992 goto naive;
1993 }
1994 return (unsigned long)-1;
1995 }
1996 munmap((void *)real_start, real_size);
1997 real_start = HOST_PAGE_ALIGN(real_start);
1998 }
1999 current_start = real_start;
2000 }
2001 naive:
2002#endif
2003
dce10401 2004 while (1) {
293f2060
LS
2005 unsigned long real_start, real_size, aligned_size;
2006 aligned_size = real_size = host_size;
806d1021 2007
dce10401
MI
2008 /* Do not use mmap_find_vma here because that is limited to the
2009 * guest address space. We are going to make the
2010 * guest address space fit whatever we're given.
2011 */
2012 real_start = (unsigned long)
2013 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2014 if (real_start == (unsigned long)-1) {
2015 return (unsigned long)-1;
2016 }
2017
aac362e4
LS
2018 /* Check to see if the address is valid. */
2019 if (host_start && real_start != current_start) {
2020 goto try_again;
2021 }
2022
806d1021
MI
2023 /* Ensure the address is properly aligned. */
2024 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2025 /* Ideally, we adjust like
2026 *
2027 * pages: [ ][ ][ ][ ][ ]
2028 * old: [ real ]
2029 * [ aligned ]
2030 * new: [ real ]
2031 * [ aligned ]
2032 *
2033 * But if there is something else mapped right after it,
2034 * then obviously it won't have room to grow, and the
2035 * kernel will put the new larger real someplace else with
2036 * unknown alignment (if we made it to here, then
2037 * fixed=false). Which is why we grow real by a full page
2038 * size, instead of by part of one; so that even if we get
2039 * moved, we can still guarantee alignment. But this does
2040 * mean that there is a padding of < 1 page both before
2041 * and after the aligned range; the "after" could could
2042 * cause problems for ARM emulation where it could butt in
2043 * to where we need to put the commpage.
2044 */
806d1021 2045 munmap((void *)real_start, host_size);
293f2060 2046 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2047 real_start = (unsigned long)
2048 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2049 if (real_start == (unsigned long)-1) {
2050 return (unsigned long)-1;
2051 }
293f2060
LS
2052 aligned_start = HOST_PAGE_ALIGN(real_start);
2053 } else {
2054 aligned_start = real_start;
806d1021
MI
2055 }
2056
8756e136 2057#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2058 /* On 32-bit ARM, we need to also be able to map the commpage. */
2059 int valid = init_guest_commpage(aligned_start - guest_start,
2060 aligned_size + guest_start);
2061 if (valid == -1) {
2062 munmap((void *)real_start, real_size);
2063 return (unsigned long)-1;
2064 } else if (valid == 0) {
2065 goto try_again;
dce10401 2066 }
7ad75eea
LS
2067#endif
2068
2069 /* If nothing has said `return -1` or `goto try_again` yet,
2070 * then the address we have is good.
2071 */
2072 break;
dce10401 2073
7ad75eea 2074 try_again:
dce10401
MI
2075 /* That address didn't work. Unmap and try a different one.
2076 * The address the host picked because is typically right at
2077 * the top of the host address space and leaves the guest with
2078 * no usable address space. Resort to a linear search. We
2079 * already compensated for mmap_min_addr, so this should not
2080 * happen often. Probably means we got unlucky and host
2081 * address space randomization put a shared library somewhere
2082 * inconvenient.
8c17d862
LS
2083 *
2084 * This is probably a good strategy if host_start, but is
2085 * probably a bad strategy if not, which means we got here
2086 * because of trouble with ARM commpage setup.
dce10401 2087 */
293f2060 2088 munmap((void *)real_start, real_size);
dce10401
MI
2089 current_start += qemu_host_page_size;
2090 if (host_start == current_start) {
2091 /* Theoretically possible if host doesn't have any suitably
2092 * aligned areas. Normally the first mmap will fail.
2093 */
2094 return (unsigned long)-1;
2095 }
2096 }
2097
13829020 2098 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2099
293f2060 2100 return aligned_start;
dce10401
MI
2101}
2102
f3ed1f5d
PM
2103static void probe_guest_base(const char *image_name,
2104 abi_ulong loaddr, abi_ulong hiaddr)
2105{
2106 /* Probe for a suitable guest base address, if the user has not set
2107 * it explicitly, and set guest_base appropriately.
2108 * In case of error we will print a suitable message and exit.
2109 */
f3ed1f5d
PM
2110 const char *errmsg;
2111 if (!have_guest_base && !reserved_va) {
2112 unsigned long host_start, real_start, host_size;
2113
2114 /* Round addresses to page boundaries. */
2115 loaddr &= qemu_host_page_mask;
2116 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2117
2118 if (loaddr < mmap_min_addr) {
2119 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2120 } else {
2121 host_start = loaddr;
2122 if (host_start != loaddr) {
2123 errmsg = "Address overflow loading ELF binary";
2124 goto exit_errmsg;
2125 }
2126 }
2127 host_size = hiaddr - loaddr;
dce10401
MI
2128
2129 /* Setup the initial guest memory space with ranges gleaned from
2130 * the ELF image that is being loaded.
2131 */
2132 real_start = init_guest_space(host_start, host_size, loaddr, false);
2133 if (real_start == (unsigned long)-1) {
2134 errmsg = "Unable to find space for application";
2135 goto exit_errmsg;
f3ed1f5d 2136 }
dce10401
MI
2137 guest_base = real_start - loaddr;
2138
13829020
PB
2139 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2140 TARGET_ABI_FMT_lx " to 0x%lx\n",
2141 loaddr, real_start);
f3ed1f5d
PM
2142 }
2143 return;
2144
f3ed1f5d
PM
2145exit_errmsg:
2146 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2147 exit(-1);
f3ed1f5d
PM
2148}
2149
2150
8e62a717 2151/* Load an ELF image into the address space.
31e31b8a 2152
8e62a717
RH
2153 IMAGE_NAME is the filename of the image, to use in error messages.
2154 IMAGE_FD is the open file descriptor for the image.
2155
2156 BPRM_BUF is a copy of the beginning of the file; this of course
2157 contains the elf file header at offset 0. It is assumed that this
2158 buffer is sufficiently aligned to present no problems to the host
2159 in accessing data at aligned offsets within the buffer.
2160
2161 On return: INFO values will be filled in, as necessary or available. */
2162
2163static void load_elf_image(const char *image_name, int image_fd,
bf858897 2164 struct image_info *info, char **pinterp_name,
8e62a717 2165 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2166{
8e62a717
RH
2167 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2168 struct elf_phdr *phdr;
2169 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2170 int i, retval;
2171 const char *errmsg;
5fafdf24 2172
8e62a717
RH
2173 /* First of all, some simple consistency checks */
2174 errmsg = "Invalid ELF image for this architecture";
2175 if (!elf_check_ident(ehdr)) {
2176 goto exit_errmsg;
2177 }
2178 bswap_ehdr(ehdr);
2179 if (!elf_check_ehdr(ehdr)) {
2180 goto exit_errmsg;
d97ef72e 2181 }
5fafdf24 2182
8e62a717
RH
2183 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2184 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2185 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2186 } else {
8e62a717
RH
2187 phdr = (struct elf_phdr *) alloca(i);
2188 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2189 if (retval != i) {
8e62a717 2190 goto exit_read;
9955ffac 2191 }
d97ef72e 2192 }
8e62a717 2193 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2194
1af02e83
MF
2195 info->nsegs = 0;
2196 info->pt_dynamic_addr = 0;
1af02e83 2197
98c1076c
AB
2198 mmap_lock();
2199
682674b8
RH
2200 /* Find the maximum size of the image and allocate an appropriate
2201 amount of memory to handle that. */
2202 loaddr = -1, hiaddr = 0;
8e62a717
RH
2203 for (i = 0; i < ehdr->e_phnum; ++i) {
2204 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2205 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2206 if (a < loaddr) {
2207 loaddr = a;
2208 }
ccf661f8 2209 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2210 if (a > hiaddr) {
2211 hiaddr = a;
2212 }
1af02e83 2213 ++info->nsegs;
682674b8
RH
2214 }
2215 }
2216
2217 load_addr = loaddr;
8e62a717 2218 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2219 /* The image indicates that it can be loaded anywhere. Find a
2220 location that can hold the memory space required. If the
2221 image is pre-linked, LOADDR will be non-zero. Since we do
2222 not supply MAP_FIXED here we'll use that address if and
2223 only if it remains available. */
2224 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2225 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2226 -1, 0);
2227 if (load_addr == -1) {
8e62a717 2228 goto exit_perror;
d97ef72e 2229 }
bf858897
RH
2230 } else if (pinterp_name != NULL) {
2231 /* This is the main executable. Make sure that the low
2232 address does not conflict with MMAP_MIN_ADDR or the
2233 QEMU application itself. */
f3ed1f5d 2234 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2235 }
682674b8 2236 load_bias = load_addr - loaddr;
d97ef72e 2237
a99856cd 2238 if (elf_is_fdpic(ehdr)) {
1af02e83 2239 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2240 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2241
2242 for (i = 0; i < ehdr->e_phnum; ++i) {
2243 switch (phdr[i].p_type) {
2244 case PT_DYNAMIC:
2245 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2246 break;
2247 case PT_LOAD:
2248 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2249 loadsegs->p_vaddr = phdr[i].p_vaddr;
2250 loadsegs->p_memsz = phdr[i].p_memsz;
2251 ++loadsegs;
2252 break;
2253 }
2254 }
2255 }
1af02e83 2256
8e62a717
RH
2257 info->load_bias = load_bias;
2258 info->load_addr = load_addr;
2259 info->entry = ehdr->e_entry + load_bias;
2260 info->start_code = -1;
2261 info->end_code = 0;
2262 info->start_data = -1;
2263 info->end_data = 0;
2264 info->brk = 0;
d8fd2954 2265 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2266
2267 for (i = 0; i < ehdr->e_phnum; i++) {
2268 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2269 if (eppnt->p_type == PT_LOAD) {
682674b8 2270 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 2271 int elf_prot = 0;
d97ef72e
RH
2272
2273 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2274 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2275 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2276
682674b8
RH
2277 vaddr = load_bias + eppnt->p_vaddr;
2278 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2279 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2280
2281 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2282 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2283 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2284 if (error == -1) {
8e62a717 2285 goto exit_perror;
09bfb054 2286 }
09bfb054 2287
682674b8
RH
2288 vaddr_ef = vaddr + eppnt->p_filesz;
2289 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2290
cf129f3a 2291 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2292 if (vaddr_ef < vaddr_em) {
2293 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2294 }
8e62a717
RH
2295
2296 /* Find the full program boundaries. */
2297 if (elf_prot & PROT_EXEC) {
2298 if (vaddr < info->start_code) {
2299 info->start_code = vaddr;
2300 }
2301 if (vaddr_ef > info->end_code) {
2302 info->end_code = vaddr_ef;
2303 }
2304 }
2305 if (elf_prot & PROT_WRITE) {
2306 if (vaddr < info->start_data) {
2307 info->start_data = vaddr;
2308 }
2309 if (vaddr_ef > info->end_data) {
2310 info->end_data = vaddr_ef;
2311 }
2312 if (vaddr_em > info->brk) {
2313 info->brk = vaddr_em;
2314 }
2315 }
bf858897
RH
2316 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2317 char *interp_name;
2318
2319 if (*pinterp_name) {
2320 errmsg = "Multiple PT_INTERP entries";
2321 goto exit_errmsg;
2322 }
2323 interp_name = malloc(eppnt->p_filesz);
2324 if (!interp_name) {
2325 goto exit_perror;
2326 }
2327
2328 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2329 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2330 eppnt->p_filesz);
2331 } else {
2332 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2333 eppnt->p_offset);
2334 if (retval != eppnt->p_filesz) {
2335 goto exit_perror;
2336 }
2337 }
2338 if (interp_name[eppnt->p_filesz - 1] != 0) {
2339 errmsg = "Invalid PT_INTERP entry";
2340 goto exit_errmsg;
2341 }
2342 *pinterp_name = interp_name;
d97ef72e 2343 }
682674b8 2344 }
5fafdf24 2345
8e62a717
RH
2346 if (info->end_data == 0) {
2347 info->start_data = info->end_code;
2348 info->end_data = info->end_code;
2349 info->brk = info->end_code;
2350 }
2351
682674b8 2352 if (qemu_log_enabled()) {
8e62a717 2353 load_symbols(ehdr, image_fd, load_bias);
682674b8 2354 }
31e31b8a 2355
98c1076c
AB
2356 mmap_unlock();
2357
8e62a717
RH
2358 close(image_fd);
2359 return;
2360
2361 exit_read:
2362 if (retval >= 0) {
2363 errmsg = "Incomplete read of file header";
2364 goto exit_errmsg;
2365 }
2366 exit_perror:
2367 errmsg = strerror(errno);
2368 exit_errmsg:
2369 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2370 exit(-1);
2371}
2372
2373static void load_elf_interp(const char *filename, struct image_info *info,
2374 char bprm_buf[BPRM_BUF_SIZE])
2375{
2376 int fd, retval;
2377
2378 fd = open(path(filename), O_RDONLY);
2379 if (fd < 0) {
2380 goto exit_perror;
2381 }
31e31b8a 2382
8e62a717
RH
2383 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2384 if (retval < 0) {
2385 goto exit_perror;
2386 }
2387 if (retval < BPRM_BUF_SIZE) {
2388 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2389 }
2390
bf858897 2391 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2392 return;
2393
2394 exit_perror:
2395 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2396 exit(-1);
31e31b8a
FB
2397}
2398
49918a75
PB
2399static int symfind(const void *s0, const void *s1)
2400{
c7c530cd 2401 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2402 struct elf_sym *sym = (struct elf_sym *)s1;
2403 int result = 0;
c7c530cd 2404 if (addr < sym->st_value) {
49918a75 2405 result = -1;
c7c530cd 2406 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2407 result = 1;
2408 }
2409 return result;
2410}
2411
2412static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2413{
2414#if ELF_CLASS == ELFCLASS32
2415 struct elf_sym *syms = s->disas_symtab.elf32;
2416#else
2417 struct elf_sym *syms = s->disas_symtab.elf64;
2418#endif
2419
2420 // binary search
49918a75
PB
2421 struct elf_sym *sym;
2422
c7c530cd 2423 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2424 if (sym != NULL) {
49918a75
PB
2425 return s->disas_strtab + sym->st_name;
2426 }
2427
2428 return "";
2429}
2430
2431/* FIXME: This should use elf_ops.h */
2432static int symcmp(const void *s0, const void *s1)
2433{
2434 struct elf_sym *sym0 = (struct elf_sym *)s0;
2435 struct elf_sym *sym1 = (struct elf_sym *)s1;
2436 return (sym0->st_value < sym1->st_value)
2437 ? -1
2438 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2439}
2440
689f936f 2441/* Best attempt to load symbols from this ELF object. */
682674b8 2442static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2443{
682674b8 2444 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2445 uint64_t segsz;
682674b8 2446 struct elf_shdr *shdr;
b9475279
CV
2447 char *strings = NULL;
2448 struct syminfo *s = NULL;
2449 struct elf_sym *new_syms, *syms = NULL;
689f936f 2450
682674b8
RH
2451 shnum = hdr->e_shnum;
2452 i = shnum * sizeof(struct elf_shdr);
2453 shdr = (struct elf_shdr *)alloca(i);
2454 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2455 return;
2456 }
2457
2458 bswap_shdr(shdr, shnum);
2459 for (i = 0; i < shnum; ++i) {
2460 if (shdr[i].sh_type == SHT_SYMTAB) {
2461 sym_idx = i;
2462 str_idx = shdr[i].sh_link;
49918a75
PB
2463 goto found;
2464 }
689f936f 2465 }
682674b8
RH
2466
2467 /* There will be no symbol table if the file was stripped. */
2468 return;
689f936f
FB
2469
2470 found:
682674b8 2471 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2472 s = g_try_new(struct syminfo, 1);
682674b8 2473 if (!s) {
b9475279 2474 goto give_up;
682674b8 2475 }
5fafdf24 2476
1e06262d
PM
2477 segsz = shdr[str_idx].sh_size;
2478 s->disas_strtab = strings = g_try_malloc(segsz);
2479 if (!strings ||
2480 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2481 goto give_up;
682674b8 2482 }
49918a75 2483
1e06262d
PM
2484 segsz = shdr[sym_idx].sh_size;
2485 syms = g_try_malloc(segsz);
2486 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2487 goto give_up;
682674b8 2488 }
31e31b8a 2489
1e06262d
PM
2490 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2491 /* Implausibly large symbol table: give up rather than ploughing
2492 * on with the number of symbols calculation overflowing
2493 */
2494 goto give_up;
2495 }
2496 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2497 for (i = 0; i < nsyms; ) {
49918a75 2498 bswap_sym(syms + i);
682674b8
RH
2499 /* Throw away entries which we do not need. */
2500 if (syms[i].st_shndx == SHN_UNDEF
2501 || syms[i].st_shndx >= SHN_LORESERVE
2502 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2503 if (i < --nsyms) {
49918a75
PB
2504 syms[i] = syms[nsyms];
2505 }
682674b8 2506 } else {
49918a75 2507#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2508 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2509 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2510#endif
682674b8
RH
2511 syms[i].st_value += load_bias;
2512 i++;
2513 }
0774bed1 2514 }
49918a75 2515
b9475279
CV
2516 /* No "useful" symbol. */
2517 if (nsyms == 0) {
2518 goto give_up;
2519 }
2520
5d5c9930
RH
2521 /* Attempt to free the storage associated with the local symbols
2522 that we threw away. Whether or not this has any effect on the
2523 memory allocation depends on the malloc implementation and how
2524 many symbols we managed to discard. */
0ef9ea29 2525 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2526 if (new_syms == NULL) {
b9475279 2527 goto give_up;
5d5c9930 2528 }
8d79de6e 2529 syms = new_syms;
5d5c9930 2530
49918a75 2531 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2532
49918a75
PB
2533 s->disas_num_syms = nsyms;
2534#if ELF_CLASS == ELFCLASS32
2535 s->disas_symtab.elf32 = syms;
49918a75
PB
2536#else
2537 s->disas_symtab.elf64 = syms;
49918a75 2538#endif
682674b8 2539 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2540 s->next = syminfos;
2541 syminfos = s;
b9475279
CV
2542
2543 return;
2544
2545give_up:
0ef9ea29
PM
2546 g_free(s);
2547 g_free(strings);
2548 g_free(syms);
689f936f 2549}
31e31b8a 2550
768fe76e
YS
2551uint32_t get_elf_eflags(int fd)
2552{
2553 struct elfhdr ehdr;
2554 off_t offset;
2555 int ret;
2556
2557 /* Read ELF header */
2558 offset = lseek(fd, 0, SEEK_SET);
2559 if (offset == (off_t) -1) {
2560 return 0;
2561 }
2562 ret = read(fd, &ehdr, sizeof(ehdr));
2563 if (ret < sizeof(ehdr)) {
2564 return 0;
2565 }
2566 offset = lseek(fd, offset, SEEK_SET);
2567 if (offset == (off_t) -1) {
2568 return 0;
2569 }
2570
2571 /* Check ELF signature */
2572 if (!elf_check_ident(&ehdr)) {
2573 return 0;
2574 }
2575
2576 /* check header */
2577 bswap_ehdr(&ehdr);
2578 if (!elf_check_ehdr(&ehdr)) {
2579 return 0;
2580 }
2581
2582 /* return architecture id */
2583 return ehdr.e_flags;
2584}
2585
f0116c54 2586int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2587{
8e62a717 2588 struct image_info interp_info;
31e31b8a 2589 struct elfhdr elf_ex;
8e62a717 2590 char *elf_interpreter = NULL;
59baae9a 2591 char *scratch;
31e31b8a 2592
bf858897 2593 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2594
2595 load_elf_image(bprm->filename, bprm->fd, info,
2596 &elf_interpreter, bprm->buf);
31e31b8a 2597
bf858897
RH
2598 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2599 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2600 when we load the interpreter. */
2601 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2602
59baae9a
SB
2603 /* Do this so that we can load the interpreter, if need be. We will
2604 change some of these later */
2605 bprm->p = setup_arg_pages(bprm, info);
2606
2607 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2608 if (STACK_GROWS_DOWN) {
2609 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2610 bprm->p, info->stack_limit);
2611 info->file_string = bprm->p;
2612 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2613 bprm->p, info->stack_limit);
2614 info->env_strings = bprm->p;
2615 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2616 bprm->p, info->stack_limit);
2617 info->arg_strings = bprm->p;
2618 } else {
2619 info->arg_strings = bprm->p;
2620 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2621 bprm->p, info->stack_limit);
2622 info->env_strings = bprm->p;
2623 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2624 bprm->p, info->stack_limit);
2625 info->file_string = bprm->p;
2626 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2627 bprm->p, info->stack_limit);
2628 }
2629
59baae9a
SB
2630 g_free(scratch);
2631
e5fe0c52 2632 if (!bprm->p) {
bf858897
RH
2633 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2634 exit(-1);
379f6698 2635 }
379f6698 2636
8e62a717
RH
2637 if (elf_interpreter) {
2638 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2639
8e62a717
RH
2640 /* If the program interpreter is one of these two, then assume
2641 an iBCS2 image. Otherwise assume a native linux image. */
2642
2643 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2644 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2645 info->personality = PER_SVR4;
31e31b8a 2646
8e62a717
RH
2647 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2648 and some applications "depend" upon this behavior. Since
2649 we do not have the power to recompile these, we emulate
2650 the SVr4 behavior. Sigh. */
2651 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2652 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2653 }
31e31b8a
FB
2654 }
2655
8e62a717
RH
2656 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2657 info, (elf_interpreter ? &interp_info : NULL));
2658 info->start_stack = bprm->p;
2659
2660 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2661 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2662 point as a function descriptor. Do this after creating elf tables
2663 so that we copy the original program entry point into the AUXV. */
2664 if (elf_interpreter) {
8e78064e 2665 info->load_bias = interp_info.load_bias;
8e62a717 2666 info->entry = interp_info.entry;
bf858897 2667 free(elf_interpreter);
8e62a717 2668 }
31e31b8a 2669
edf8e2af
MW
2670#ifdef USE_ELF_CORE_DUMP
2671 bprm->core_dump = &elf_core_dump;
2672#endif
2673
31e31b8a
FB
2674 return 0;
2675}
2676
edf8e2af 2677#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2678/*
2679 * Definitions to generate Intel SVR4-like core files.
a2547a13 2680 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2681 * tacked on the front to prevent clashes with linux definitions,
2682 * and the typedef forms have been avoided. This is mostly like
2683 * the SVR4 structure, but more Linuxy, with things that Linux does
2684 * not support and which gdb doesn't really use excluded.
2685 *
2686 * Fields we don't dump (their contents is zero) in linux-user qemu
2687 * are marked with XXX.
2688 *
2689 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2690 *
2691 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2692 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2693 * the target resides):
2694 *
2695 * #define USE_ELF_CORE_DUMP
2696 *
2697 * Next you define type of register set used for dumping. ELF specification
2698 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2699 *
c227f099 2700 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2701 * #define ELF_NREG <number of registers>
c227f099 2702 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2703 *
edf8e2af
MW
2704 * Last step is to implement target specific function that copies registers
2705 * from given cpu into just specified register set. Prototype is:
2706 *
c227f099 2707 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2708 * const CPUArchState *env);
edf8e2af
MW
2709 *
2710 * Parameters:
2711 * regs - copy register values into here (allocated and zeroed by caller)
2712 * env - copy registers from here
2713 *
2714 * Example for ARM target is provided in this file.
2715 */
2716
2717/* An ELF note in memory */
2718struct memelfnote {
2719 const char *name;
2720 size_t namesz;
2721 size_t namesz_rounded;
2722 int type;
2723 size_t datasz;
80f5ce75 2724 size_t datasz_rounded;
edf8e2af
MW
2725 void *data;
2726 size_t notesz;
2727};
2728
a2547a13 2729struct target_elf_siginfo {
f8fd4fc4
PB
2730 abi_int si_signo; /* signal number */
2731 abi_int si_code; /* extra code */
2732 abi_int si_errno; /* errno */
edf8e2af
MW
2733};
2734
a2547a13
LD
2735struct target_elf_prstatus {
2736 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2737 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2738 abi_ulong pr_sigpend; /* XXX */
2739 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2740 target_pid_t pr_pid;
2741 target_pid_t pr_ppid;
2742 target_pid_t pr_pgrp;
2743 target_pid_t pr_sid;
edf8e2af
MW
2744 struct target_timeval pr_utime; /* XXX User time */
2745 struct target_timeval pr_stime; /* XXX System time */
2746 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2747 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2748 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2749 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2750};
2751
2752#define ELF_PRARGSZ (80) /* Number of chars for args */
2753
a2547a13 2754struct target_elf_prpsinfo {
edf8e2af
MW
2755 char pr_state; /* numeric process state */
2756 char pr_sname; /* char for pr_state */
2757 char pr_zomb; /* zombie */
2758 char pr_nice; /* nice val */
ca98ac83 2759 abi_ulong pr_flag; /* flags */
c227f099
AL
2760 target_uid_t pr_uid;
2761 target_gid_t pr_gid;
2762 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2763 /* Lots missing */
2764 char pr_fname[16]; /* filename of executable */
2765 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2766};
2767
2768/* Here is the structure in which status of each thread is captured. */
2769struct elf_thread_status {
72cf2d4f 2770 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2771 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2772#if 0
2773 elf_fpregset_t fpu; /* NT_PRFPREG */
2774 struct task_struct *thread;
2775 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2776#endif
2777 struct memelfnote notes[1];
2778 int num_notes;
2779};
2780
2781struct elf_note_info {
2782 struct memelfnote *notes;
a2547a13
LD
2783 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2784 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2785
72cf2d4f 2786 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2787#if 0
2788 /*
2789 * Current version of ELF coredump doesn't support
2790 * dumping fp regs etc.
2791 */
2792 elf_fpregset_t *fpu;
2793 elf_fpxregset_t *xfpu;
2794 int thread_status_size;
2795#endif
2796 int notes_size;
2797 int numnote;
2798};
2799
2800struct vm_area_struct {
1a1c4db9
MI
2801 target_ulong vma_start; /* start vaddr of memory region */
2802 target_ulong vma_end; /* end vaddr of memory region */
2803 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2804 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2805};
2806
2807struct mm_struct {
72cf2d4f 2808 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2809 int mm_count; /* number of mappings */
2810};
2811
2812static struct mm_struct *vma_init(void);
2813static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2814static int vma_add_mapping(struct mm_struct *, target_ulong,
2815 target_ulong, abi_ulong);
edf8e2af
MW
2816static int vma_get_mapping_count(const struct mm_struct *);
2817static struct vm_area_struct *vma_first(const struct mm_struct *);
2818static struct vm_area_struct *vma_next(struct vm_area_struct *);
2819static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2820static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2821 unsigned long flags);
edf8e2af
MW
2822
2823static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2824static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2825 unsigned int, void *);
a2547a13
LD
2826static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2827static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2828static void fill_auxv_note(struct memelfnote *, const TaskState *);
2829static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2830static size_t note_size(const struct memelfnote *);
2831static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2832static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2833static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2834static int core_dump_filename(const TaskState *, char *, size_t);
2835
2836static int dump_write(int, const void *, size_t);
2837static int write_note(struct memelfnote *, int);
2838static int write_note_info(struct elf_note_info *, int);
2839
2840#ifdef BSWAP_NEEDED
a2547a13 2841static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2842{
ca98ac83
PB
2843 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2844 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2845 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2846 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2847 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2848 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2849 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2850 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2851 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2852 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2853 /* cpu times are not filled, so we skip them */
2854 /* regs should be in correct format already */
2855 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2856}
2857
a2547a13 2858static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2859{
ca98ac83 2860 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2861 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2862 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2863 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2864 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2865 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2866 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2867}
991f8f0c
RH
2868
2869static void bswap_note(struct elf_note *en)
2870{
2871 bswap32s(&en->n_namesz);
2872 bswap32s(&en->n_descsz);
2873 bswap32s(&en->n_type);
2874}
2875#else
2876static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2877static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2878static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2879#endif /* BSWAP_NEEDED */
2880
2881/*
2882 * Minimal support for linux memory regions. These are needed
2883 * when we are finding out what memory exactly belongs to
2884 * emulated process. No locks needed here, as long as
2885 * thread that received the signal is stopped.
2886 */
2887
2888static struct mm_struct *vma_init(void)
2889{
2890 struct mm_struct *mm;
2891
7267c094 2892 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2893 return (NULL);
2894
2895 mm->mm_count = 0;
72cf2d4f 2896 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2897
2898 return (mm);
2899}
2900
2901static void vma_delete(struct mm_struct *mm)
2902{
2903 struct vm_area_struct *vma;
2904
2905 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2906 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2907 g_free(vma);
edf8e2af 2908 }
7267c094 2909 g_free(mm);
edf8e2af
MW
2910}
2911
1a1c4db9
MI
2912static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2913 target_ulong end, abi_ulong flags)
edf8e2af
MW
2914{
2915 struct vm_area_struct *vma;
2916
7267c094 2917 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2918 return (-1);
2919
2920 vma->vma_start = start;
2921 vma->vma_end = end;
2922 vma->vma_flags = flags;
2923
72cf2d4f 2924 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2925 mm->mm_count++;
2926
2927 return (0);
2928}
2929
2930static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2931{
72cf2d4f 2932 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2933}
2934
2935static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2936{
72cf2d4f 2937 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2938}
2939
2940static int vma_get_mapping_count(const struct mm_struct *mm)
2941{
2942 return (mm->mm_count);
2943}
2944
2945/*
2946 * Calculate file (dump) size of given memory region.
2947 */
2948static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2949{
2950 /* if we cannot even read the first page, skip it */
2951 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2952 return (0);
2953
2954 /*
2955 * Usually we don't dump executable pages as they contain
2956 * non-writable code that debugger can read directly from
2957 * target library etc. However, thread stacks are marked
2958 * also executable so we read in first page of given region
2959 * and check whether it contains elf header. If there is
2960 * no elf header, we dump it.
2961 */
2962 if (vma->vma_flags & PROT_EXEC) {
2963 char page[TARGET_PAGE_SIZE];
2964
2965 copy_from_user(page, vma->vma_start, sizeof (page));
2966 if ((page[EI_MAG0] == ELFMAG0) &&
2967 (page[EI_MAG1] == ELFMAG1) &&
2968 (page[EI_MAG2] == ELFMAG2) &&
2969 (page[EI_MAG3] == ELFMAG3)) {
2970 /*
2971 * Mappings are possibly from ELF binary. Don't dump
2972 * them.
2973 */
2974 return (0);
2975 }
2976 }
2977
2978 return (vma->vma_end - vma->vma_start);
2979}
2980
1a1c4db9 2981static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2982 unsigned long flags)
edf8e2af
MW
2983{
2984 struct mm_struct *mm = (struct mm_struct *)priv;
2985
edf8e2af
MW
2986 vma_add_mapping(mm, start, end, flags);
2987 return (0);
2988}
2989
2990static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2991 unsigned int sz, void *data)
edf8e2af
MW
2992{
2993 unsigned int namesz;
2994
2995 namesz = strlen(name) + 1;
2996 note->name = name;
2997 note->namesz = namesz;
2998 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2999 note->type = type;
80f5ce75
LV
3000 note->datasz = sz;
3001 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3002
edf8e2af
MW
3003 note->data = data;
3004
3005 /*
3006 * We calculate rounded up note size here as specified by
3007 * ELF document.
3008 */
3009 note->notesz = sizeof (struct elf_note) +
80f5ce75 3010 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3011}
3012
3013static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3014 uint32_t flags)
edf8e2af
MW
3015{
3016 (void) memset(elf, 0, sizeof(*elf));
3017
3018 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3019 elf->e_ident[EI_CLASS] = ELF_CLASS;
3020 elf->e_ident[EI_DATA] = ELF_DATA;
3021 elf->e_ident[EI_VERSION] = EV_CURRENT;
3022 elf->e_ident[EI_OSABI] = ELF_OSABI;
3023
3024 elf->e_type = ET_CORE;
3025 elf->e_machine = machine;
3026 elf->e_version = EV_CURRENT;
3027 elf->e_phoff = sizeof(struct elfhdr);
3028 elf->e_flags = flags;
3029 elf->e_ehsize = sizeof(struct elfhdr);
3030 elf->e_phentsize = sizeof(struct elf_phdr);
3031 elf->e_phnum = segs;
3032
edf8e2af 3033 bswap_ehdr(elf);
edf8e2af
MW
3034}
3035
3036static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3037{
3038 phdr->p_type = PT_NOTE;
3039 phdr->p_offset = offset;
3040 phdr->p_vaddr = 0;
3041 phdr->p_paddr = 0;
3042 phdr->p_filesz = sz;
3043 phdr->p_memsz = 0;
3044 phdr->p_flags = 0;
3045 phdr->p_align = 0;
3046
991f8f0c 3047 bswap_phdr(phdr, 1);
edf8e2af
MW
3048}
3049
3050static size_t note_size(const struct memelfnote *note)
3051{
3052 return (note->notesz);
3053}
3054
a2547a13 3055static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3056 const TaskState *ts, int signr)
edf8e2af
MW
3057{
3058 (void) memset(prstatus, 0, sizeof (*prstatus));
3059 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3060 prstatus->pr_pid = ts->ts_tid;
3061 prstatus->pr_ppid = getppid();
3062 prstatus->pr_pgrp = getpgrp();
3063 prstatus->pr_sid = getsid(0);
3064
edf8e2af 3065 bswap_prstatus(prstatus);
edf8e2af
MW
3066}
3067
a2547a13 3068static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3069{
900cfbca 3070 char *base_filename;
edf8e2af
MW
3071 unsigned int i, len;
3072
3073 (void) memset(psinfo, 0, sizeof (*psinfo));
3074
3075 len = ts->info->arg_end - ts->info->arg_start;
3076 if (len >= ELF_PRARGSZ)
3077 len = ELF_PRARGSZ - 1;
3078 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3079 return -EFAULT;
3080 for (i = 0; i < len; i++)
3081 if (psinfo->pr_psargs[i] == 0)
3082 psinfo->pr_psargs[i] = ' ';
3083 psinfo->pr_psargs[len] = 0;
3084
3085 psinfo->pr_pid = getpid();
3086 psinfo->pr_ppid = getppid();
3087 psinfo->pr_pgrp = getpgrp();
3088 psinfo->pr_sid = getsid(0);
3089 psinfo->pr_uid = getuid();
3090 psinfo->pr_gid = getgid();
3091
900cfbca
JM
3092 base_filename = g_path_get_basename(ts->bprm->filename);
3093 /*
3094 * Using strncpy here is fine: at max-length,
3095 * this field is not NUL-terminated.
3096 */
edf8e2af 3097 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3098 sizeof(psinfo->pr_fname));
edf8e2af 3099
900cfbca 3100 g_free(base_filename);
edf8e2af 3101 bswap_psinfo(psinfo);
edf8e2af
MW
3102 return (0);
3103}
3104
3105static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3106{
3107 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3108 elf_addr_t orig_auxv = auxv;
edf8e2af 3109 void *ptr;
125b0f55 3110 int len = ts->info->auxv_len;
edf8e2af
MW
3111
3112 /*
3113 * Auxiliary vector is stored in target process stack. It contains
3114 * {type, value} pairs that we need to dump into note. This is not
3115 * strictly necessary but we do it here for sake of completeness.
3116 */
3117
edf8e2af
MW
3118 /* read in whole auxv vector and copy it to memelfnote */
3119 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3120 if (ptr != NULL) {
3121 fill_note(note, "CORE", NT_AUXV, len, ptr);
3122 unlock_user(ptr, auxv, len);
3123 }
3124}
3125
3126/*
3127 * Constructs name of coredump file. We have following convention
3128 * for the name:
3129 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3130 *
3131 * Returns 0 in case of success, -1 otherwise (errno is set).
3132 */
3133static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3134 size_t bufsize)
edf8e2af
MW
3135{
3136 char timestamp[64];
edf8e2af
MW
3137 char *base_filename = NULL;
3138 struct timeval tv;
3139 struct tm tm;
3140
3141 assert(bufsize >= PATH_MAX);
3142
3143 if (gettimeofday(&tv, NULL) < 0) {
3144 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3145 strerror(errno));
edf8e2af
MW
3146 return (-1);
3147 }
3148
b8da57fa 3149 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3150 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3151 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3152 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3153 base_filename, timestamp, (int)getpid());
b8da57fa 3154 g_free(base_filename);
edf8e2af
MW
3155
3156 return (0);
3157}
3158
3159static int dump_write(int fd, const void *ptr, size_t size)
3160{
3161 const char *bufp = (const char *)ptr;
3162 ssize_t bytes_written, bytes_left;
3163 struct rlimit dumpsize;
3164 off_t pos;
3165
3166 bytes_written = 0;
3167 getrlimit(RLIMIT_CORE, &dumpsize);
3168 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3169 if (errno == ESPIPE) { /* not a seekable stream */
3170 bytes_left = size;
3171 } else {
3172 return pos;
3173 }
3174 } else {
3175 if (dumpsize.rlim_cur <= pos) {
3176 return -1;
3177 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3178 bytes_left = size;
3179 } else {
3180 size_t limit_left=dumpsize.rlim_cur - pos;
3181 bytes_left = limit_left >= size ? size : limit_left ;
3182 }
3183 }
3184
3185 /*
3186 * In normal conditions, single write(2) should do but
3187 * in case of socket etc. this mechanism is more portable.
3188 */
3189 do {
3190 bytes_written = write(fd, bufp, bytes_left);
3191 if (bytes_written < 0) {
3192 if (errno == EINTR)
3193 continue;
3194 return (-1);
3195 } else if (bytes_written == 0) { /* eof */
3196 return (-1);
3197 }
3198 bufp += bytes_written;
3199 bytes_left -= bytes_written;
3200 } while (bytes_left > 0);
3201
3202 return (0);
3203}
3204
3205static int write_note(struct memelfnote *men, int fd)
3206{
3207 struct elf_note en;
3208
3209 en.n_namesz = men->namesz;
3210 en.n_type = men->type;
3211 en.n_descsz = men->datasz;
3212
edf8e2af 3213 bswap_note(&en);
edf8e2af
MW
3214
3215 if (dump_write(fd, &en, sizeof(en)) != 0)
3216 return (-1);
3217 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3218 return (-1);
80f5ce75 3219 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3220 return (-1);
3221
3222 return (0);
3223}
3224
9349b4f9 3225static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3226{
0429a971
AF
3227 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3228 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3229 struct elf_thread_status *ets;
3230
7267c094 3231 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3232 ets->num_notes = 1; /* only prstatus is dumped */
3233 fill_prstatus(&ets->prstatus, ts, 0);
3234 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3235 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3236 &ets->prstatus);
edf8e2af 3237
72cf2d4f 3238 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3239
3240 info->notes_size += note_size(&ets->notes[0]);
3241}
3242
6afafa86
PM
3243static void init_note_info(struct elf_note_info *info)
3244{
3245 /* Initialize the elf_note_info structure so that it is at
3246 * least safe to call free_note_info() on it. Must be
3247 * called before calling fill_note_info().
3248 */
3249 memset(info, 0, sizeof (*info));
3250 QTAILQ_INIT(&info->thread_list);
3251}
3252
edf8e2af 3253static int fill_note_info(struct elf_note_info *info,
9349b4f9 3254 long signr, const CPUArchState *env)
edf8e2af
MW
3255{
3256#define NUMNOTES 3
0429a971
AF
3257 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3258 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3259 int i;
3260
c78d65e8 3261 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3262 if (info->notes == NULL)
3263 return (-ENOMEM);
7267c094 3264 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3265 if (info->prstatus == NULL)
3266 return (-ENOMEM);
7267c094 3267 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3268 if (info->prstatus == NULL)
3269 return (-ENOMEM);
3270
3271 /*
3272 * First fill in status (and registers) of current thread
3273 * including process info & aux vector.
3274 */
3275 fill_prstatus(info->prstatus, ts, signr);
3276 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3277 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3278 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3279 fill_psinfo(info->psinfo, ts);
3280 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3281 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3282 fill_auxv_note(&info->notes[2], ts);
3283 info->numnote = 3;
3284
3285 info->notes_size = 0;
3286 for (i = 0; i < info->numnote; i++)
3287 info->notes_size += note_size(&info->notes[i]);
3288
3289 /* read and fill status of all threads */
3290 cpu_list_lock();
bdc44640 3291 CPU_FOREACH(cpu) {
a2247f8e 3292 if (cpu == thread_cpu) {
edf8e2af 3293 continue;
182735ef
AF
3294 }
3295 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3296 }
3297 cpu_list_unlock();
3298
3299 return (0);
3300}
3301
3302static void free_note_info(struct elf_note_info *info)
3303{
3304 struct elf_thread_status *ets;
3305
72cf2d4f
BS
3306 while (!QTAILQ_EMPTY(&info->thread_list)) {
3307 ets = QTAILQ_FIRST(&info->thread_list);
3308 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3309 g_free(ets);
edf8e2af
MW
3310 }
3311
7267c094
AL
3312 g_free(info->prstatus);
3313 g_free(info->psinfo);
3314 g_free(info->notes);
edf8e2af
MW
3315}
3316
3317static int write_note_info(struct elf_note_info *info, int fd)
3318{
3319 struct elf_thread_status *ets;
3320 int i, error = 0;
3321
3322 /* write prstatus, psinfo and auxv for current thread */
3323 for (i = 0; i < info->numnote; i++)
3324 if ((error = write_note(&info->notes[i], fd)) != 0)
3325 return (error);
3326
3327 /* write prstatus for each thread */
52a53afe 3328 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3329 if ((error = write_note(&ets->notes[0], fd)) != 0)
3330 return (error);
3331 }
3332
3333 return (0);
3334}
3335
3336/*
3337 * Write out ELF coredump.
3338 *
3339 * See documentation of ELF object file format in:
3340 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3341 *
3342 * Coredump format in linux is following:
3343 *
3344 * 0 +----------------------+ \
3345 * | ELF header | ET_CORE |
3346 * +----------------------+ |
3347 * | ELF program headers | |--- headers
3348 * | - NOTE section | |
3349 * | - PT_LOAD sections | |
3350 * +----------------------+ /
3351 * | NOTEs: |
3352 * | - NT_PRSTATUS |
3353 * | - NT_PRSINFO |
3354 * | - NT_AUXV |
3355 * +----------------------+ <-- aligned to target page
3356 * | Process memory dump |
3357 * : :
3358 * . .
3359 * : :
3360 * | |
3361 * +----------------------+
3362 *
3363 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3364 * NT_PRSINFO -> struct elf_prpsinfo
3365 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3366 *
3367 * Format follows System V format as close as possible. Current
3368 * version limitations are as follows:
3369 * - no floating point registers are dumped
3370 *
3371 * Function returns 0 in case of success, negative errno otherwise.
3372 *
3373 * TODO: make this work also during runtime: it should be
3374 * possible to force coredump from running process and then
3375 * continue processing. For example qemu could set up SIGUSR2
3376 * handler (provided that target process haven't registered
3377 * handler for that) that does the dump when signal is received.
3378 */
9349b4f9 3379static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3380{
0429a971
AF
3381 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3382 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3383 struct vm_area_struct *vma = NULL;
3384 char corefile[PATH_MAX];
3385 struct elf_note_info info;
3386 struct elfhdr elf;
3387 struct elf_phdr phdr;
3388 struct rlimit dumpsize;
3389 struct mm_struct *mm = NULL;
3390 off_t offset = 0, data_offset = 0;
3391 int segs = 0;
3392 int fd = -1;
3393
6afafa86
PM
3394 init_note_info(&info);
3395
edf8e2af
MW
3396 errno = 0;
3397 getrlimit(RLIMIT_CORE, &dumpsize);
3398 if (dumpsize.rlim_cur == 0)
d97ef72e 3399 return 0;
edf8e2af
MW
3400
3401 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3402 return (-errno);
3403
3404 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3405 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3406 return (-errno);
3407
3408 /*
3409 * Walk through target process memory mappings and
3410 * set up structure containing this information. After
3411 * this point vma_xxx functions can be used.
3412 */
3413 if ((mm = vma_init()) == NULL)
3414 goto out;
3415
3416 walk_memory_regions(mm, vma_walker);
3417 segs = vma_get_mapping_count(mm);
3418
3419 /*
3420 * Construct valid coredump ELF header. We also
3421 * add one more segment for notes.
3422 */
3423 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3424 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3425 goto out;
3426
b6af0975 3427 /* fill in the in-memory version of notes */
edf8e2af
MW
3428 if (fill_note_info(&info, signr, env) < 0)
3429 goto out;
3430
3431 offset += sizeof (elf); /* elf header */
3432 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3433
3434 /* write out notes program header */
3435 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3436
3437 offset += info.notes_size;
3438 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3439 goto out;
3440
3441 /*
3442 * ELF specification wants data to start at page boundary so
3443 * we align it here.
3444 */
80f5ce75 3445 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3446
3447 /*
3448 * Write program headers for memory regions mapped in
3449 * the target process.
3450 */
3451 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3452 (void) memset(&phdr, 0, sizeof (phdr));
3453
3454 phdr.p_type = PT_LOAD;
3455 phdr.p_offset = offset;
3456 phdr.p_vaddr = vma->vma_start;
3457 phdr.p_paddr = 0;
3458 phdr.p_filesz = vma_dump_size(vma);
3459 offset += phdr.p_filesz;
3460 phdr.p_memsz = vma->vma_end - vma->vma_start;
3461 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3462 if (vma->vma_flags & PROT_WRITE)
3463 phdr.p_flags |= PF_W;
3464 if (vma->vma_flags & PROT_EXEC)
3465 phdr.p_flags |= PF_X;
3466 phdr.p_align = ELF_EXEC_PAGESIZE;
3467
80f5ce75 3468 bswap_phdr(&phdr, 1);
772034b6
PM
3469 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3470 goto out;
3471 }
edf8e2af
MW
3472 }
3473
3474 /*
3475 * Next we write notes just after program headers. No
3476 * alignment needed here.
3477 */
3478 if (write_note_info(&info, fd) < 0)
3479 goto out;
3480
3481 /* align data to page boundary */
edf8e2af
MW
3482 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3483 goto out;
3484
3485 /*
3486 * Finally we can dump process memory into corefile as well.
3487 */
3488 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3489 abi_ulong addr;
3490 abi_ulong end;
3491
3492 end = vma->vma_start + vma_dump_size(vma);
3493
3494 for (addr = vma->vma_start; addr < end;
d97ef72e 3495 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3496 char page[TARGET_PAGE_SIZE];
3497 int error;
3498
3499 /*
3500 * Read in page from target process memory and
3501 * write it to coredump file.
3502 */
3503 error = copy_from_user(page, addr, sizeof (page));
3504 if (error != 0) {
49995e17 3505 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3506 addr);
edf8e2af
MW
3507 errno = -error;
3508 goto out;
3509 }
3510 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3511 goto out;
3512 }
3513 }
3514
d97ef72e 3515 out:
edf8e2af
MW
3516 free_note_info(&info);
3517 if (mm != NULL)
3518 vma_delete(mm);
3519 (void) close(fd);
3520
3521 if (errno != 0)
3522 return (-errno);
3523 return (0);
3524}
edf8e2af
MW
3525#endif /* USE_ELF_CORE_DUMP */
3526
e5fe0c52
PB
3527void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3528{
3529 init_thread(regs, infop);
3530}
This page took 1.261231 seconds and 4 git commands to generate.