]>
Commit | Line | Data |
---|---|---|
5fafdf24 | 1 | /* |
16406950 PB |
2 | * ARM kernel loader. |
3 | * | |
9ee6e8bb | 4 | * Copyright (c) 2006-2007 CodeSourcery. |
16406950 PB |
5 | * Written by Paul Brook |
6 | * | |
8e31bf38 | 7 | * This code is licensed under the GPL. |
16406950 PB |
8 | */ |
9 | ||
12b16722 | 10 | #include "qemu/osdep.h" |
c0dbca36 | 11 | #include "qemu/error-report.h" |
da34e65c | 12 | #include "qapi/error.h" |
b77257d7 | 13 | #include <libfdt.h> |
83c9f4ca | 14 | #include "hw/hw.h" |
bd2be150 | 15 | #include "hw/arm/arm.h" |
d8b1ae42 | 16 | #include "hw/arm/linux-boot-if.h" |
baf6b681 | 17 | #include "sysemu/kvm.h" |
9c17d615 | 18 | #include "sysemu/sysemu.h" |
9695200a | 19 | #include "sysemu/numa.h" |
83c9f4ca PB |
20 | #include "hw/boards.h" |
21 | #include "hw/loader.h" | |
ca20cf32 | 22 | #include "elf.h" |
9c17d615 | 23 | #include "sysemu/device_tree.h" |
1de7afc9 | 24 | #include "qemu/config-file.h" |
922a01a0 | 25 | #include "qemu/option.h" |
2198a121 | 26 | #include "exec/address-spaces.h" |
16406950 | 27 | |
4d9ebf75 MH |
28 | /* Kernel boot protocol is specified in the kernel docs |
29 | * Documentation/arm/Booting and Documentation/arm64/booting.txt | |
30 | * They have different preferred image load offsets from system RAM base. | |
31 | */ | |
16406950 PB |
32 | #define KERNEL_ARGS_ADDR 0x100 |
33 | #define KERNEL_LOAD_ADDR 0x00010000 | |
4d9ebf75 | 34 | #define KERNEL64_LOAD_ADDR 0x00080000 |
16406950 | 35 | |
68115ed5 AB |
36 | #define ARM64_TEXT_OFFSET_OFFSET 8 |
37 | #define ARM64_MAGIC_OFFSET 56 | |
38 | ||
9f43d4c3 PM |
39 | static AddressSpace *arm_boot_address_space(ARMCPU *cpu, |
40 | const struct arm_boot_info *info) | |
41 | { | |
42 | /* Return the address space to use for bootloader reads and writes. | |
43 | * We prefer the secure address space if the CPU has it and we're | |
44 | * going to boot the guest into it. | |
45 | */ | |
46 | int asidx; | |
47 | CPUState *cs = CPU(cpu); | |
48 | ||
49 | if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) { | |
50 | asidx = ARMASIdx_S; | |
51 | } else { | |
52 | asidx = ARMASIdx_NS; | |
53 | } | |
54 | ||
55 | return cpu_get_address_space(cs, asidx); | |
56 | } | |
57 | ||
47b1da81 | 58 | typedef enum { |
84e59397 PC |
59 | FIXUP_NONE = 0, /* do nothing */ |
60 | FIXUP_TERMINATOR, /* end of insns */ | |
61 | FIXUP_BOARDID, /* overwrite with board ID number */ | |
10b8ec73 | 62 | FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */ |
84e59397 PC |
63 | FIXUP_ARGPTR, /* overwrite with pointer to kernel args */ |
64 | FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */ | |
65 | FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */ | |
66 | FIXUP_BOOTREG, /* overwrite with boot register address */ | |
67 | FIXUP_DSB, /* overwrite with correct DSB insn for cpu */ | |
47b1da81 PM |
68 | FIXUP_MAX, |
69 | } FixupType; | |
70 | ||
71 | typedef struct ARMInsnFixup { | |
72 | uint32_t insn; | |
73 | FixupType fixup; | |
74 | } ARMInsnFixup; | |
75 | ||
4d9ebf75 MH |
76 | static const ARMInsnFixup bootloader_aarch64[] = { |
77 | { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */ | |
78 | { 0xaa1f03e1 }, /* mov x1, xzr */ | |
79 | { 0xaa1f03e2 }, /* mov x2, xzr */ | |
80 | { 0xaa1f03e3 }, /* mov x3, xzr */ | |
81 | { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */ | |
82 | { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */ | |
83 | { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */ | |
84 | { 0 }, /* .word @DTB Higher 32-bits */ | |
85 | { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */ | |
86 | { 0 }, /* .word @Kernel Entry Higher 32-bits */ | |
87 | { 0, FIXUP_TERMINATOR } | |
88 | }; | |
89 | ||
10b8ec73 PC |
90 | /* A very small bootloader: call the board-setup code (if needed), |
91 | * set r0-r2, then jump to the kernel. | |
92 | * If we're not calling boot setup code then we don't copy across | |
93 | * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array. | |
94 | */ | |
95 | ||
47b1da81 | 96 | static const ARMInsnFixup bootloader[] = { |
b4850e5a | 97 | { 0xe28fe004 }, /* add lr, pc, #4 */ |
10b8ec73 PC |
98 | { 0xe51ff004 }, /* ldr pc, [pc, #-4] */ |
99 | { 0, FIXUP_BOARD_SETUP }, | |
100 | #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3 | |
47b1da81 PM |
101 | { 0xe3a00000 }, /* mov r0, #0 */ |
102 | { 0xe59f1004 }, /* ldr r1, [pc, #4] */ | |
103 | { 0xe59f2004 }, /* ldr r2, [pc, #4] */ | |
104 | { 0xe59ff004 }, /* ldr pc, [pc, #4] */ | |
105 | { 0, FIXUP_BOARDID }, | |
106 | { 0, FIXUP_ARGPTR }, | |
107 | { 0, FIXUP_ENTRYPOINT }, | |
108 | { 0, FIXUP_TERMINATOR } | |
16406950 PB |
109 | }; |
110 | ||
9d5ba9bf ML |
111 | /* Handling for secondary CPU boot in a multicore system. |
112 | * Unlike the uniprocessor/primary CPU boot, this is platform | |
113 | * dependent. The default code here is based on the secondary | |
114 | * CPU boot protocol used on realview/vexpress boards, with | |
115 | * some parameterisation to increase its flexibility. | |
116 | * QEMU platform models for which this code is not appropriate | |
117 | * should override write_secondary_boot and secondary_cpu_reset_hook | |
118 | * instead. | |
119 | * | |
120 | * This code enables the interrupt controllers for the secondary | |
121 | * CPUs and then puts all the secondary CPUs into a loop waiting | |
122 | * for an interprocessor interrupt and polling a configurable | |
123 | * location for the kernel secondary CPU entry point. | |
124 | */ | |
bf471f79 PM |
125 | #define DSB_INSN 0xf57ff04f |
126 | #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */ | |
127 | ||
47b1da81 PM |
128 | static const ARMInsnFixup smpboot[] = { |
129 | { 0xe59f2028 }, /* ldr r2, gic_cpu_if */ | |
130 | { 0xe59f0028 }, /* ldr r0, bootreg_addr */ | |
131 | { 0xe3a01001 }, /* mov r1, #1 */ | |
132 | { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */ | |
133 | { 0xe3a010ff }, /* mov r1, #0xff */ | |
134 | { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */ | |
135 | { 0, FIXUP_DSB }, /* dsb */ | |
136 | { 0xe320f003 }, /* wfi */ | |
137 | { 0xe5901000 }, /* ldr r1, [r0] */ | |
138 | { 0xe1110001 }, /* tst r1, r1 */ | |
139 | { 0x0afffffb }, /* beq <wfi> */ | |
140 | { 0xe12fff11 }, /* bx r1 */ | |
141 | { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */ | |
142 | { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */ | |
143 | { 0, FIXUP_TERMINATOR } | |
9ee6e8bb PB |
144 | }; |
145 | ||
47b1da81 | 146 | static void write_bootloader(const char *name, hwaddr addr, |
9f43d4c3 PM |
147 | const ARMInsnFixup *insns, uint32_t *fixupcontext, |
148 | AddressSpace *as) | |
47b1da81 PM |
149 | { |
150 | /* Fix up the specified bootloader fragment and write it into | |
151 | * guest memory using rom_add_blob_fixed(). fixupcontext is | |
152 | * an array giving the values to write in for the fixup types | |
153 | * which write a value into the code array. | |
154 | */ | |
155 | int i, len; | |
156 | uint32_t *code; | |
157 | ||
158 | len = 0; | |
159 | while (insns[len].fixup != FIXUP_TERMINATOR) { | |
160 | len++; | |
161 | } | |
162 | ||
163 | code = g_new0(uint32_t, len); | |
164 | ||
165 | for (i = 0; i < len; i++) { | |
166 | uint32_t insn = insns[i].insn; | |
167 | FixupType fixup = insns[i].fixup; | |
168 | ||
169 | switch (fixup) { | |
170 | case FIXUP_NONE: | |
171 | break; | |
172 | case FIXUP_BOARDID: | |
10b8ec73 | 173 | case FIXUP_BOARD_SETUP: |
47b1da81 PM |
174 | case FIXUP_ARGPTR: |
175 | case FIXUP_ENTRYPOINT: | |
176 | case FIXUP_GIC_CPU_IF: | |
177 | case FIXUP_BOOTREG: | |
178 | case FIXUP_DSB: | |
179 | insn = fixupcontext[fixup]; | |
180 | break; | |
181 | default: | |
182 | abort(); | |
183 | } | |
184 | code[i] = tswap32(insn); | |
185 | } | |
186 | ||
9f43d4c3 | 187 | rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as); |
47b1da81 PM |
188 | |
189 | g_free(code); | |
190 | } | |
191 | ||
9543b0cd | 192 | static void default_write_secondary(ARMCPU *cpu, |
9d5ba9bf ML |
193 | const struct arm_boot_info *info) |
194 | { | |
47b1da81 | 195 | uint32_t fixupcontext[FIXUP_MAX]; |
9f43d4c3 | 196 | AddressSpace *as = arm_boot_address_space(cpu, info); |
47b1da81 PM |
197 | |
198 | fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr; | |
199 | fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr; | |
200 | if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { | |
201 | fixupcontext[FIXUP_DSB] = DSB_INSN; | |
202 | } else { | |
203 | fixupcontext[FIXUP_DSB] = CP15_DSB_INSN; | |
9d5ba9bf | 204 | } |
47b1da81 PM |
205 | |
206 | write_bootloader("smpboot", info->smp_loader_start, | |
9f43d4c3 | 207 | smpboot, fixupcontext, as); |
9d5ba9bf ML |
208 | } |
209 | ||
716536a9 AB |
210 | void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu, |
211 | const struct arm_boot_info *info, | |
212 | hwaddr mvbar_addr) | |
213 | { | |
9f43d4c3 | 214 | AddressSpace *as = arm_boot_address_space(cpu, info); |
716536a9 AB |
215 | int n; |
216 | uint32_t mvbar_blob[] = { | |
217 | /* mvbar_addr: secure monitor vectors | |
218 | * Default unimplemented and unused vectors to spin. Makes it | |
219 | * easier to debug (as opposed to the CPU running away). | |
220 | */ | |
221 | 0xeafffffe, /* (spin) */ | |
222 | 0xeafffffe, /* (spin) */ | |
223 | 0xe1b0f00e, /* movs pc, lr ;SMC exception return */ | |
224 | 0xeafffffe, /* (spin) */ | |
225 | 0xeafffffe, /* (spin) */ | |
226 | 0xeafffffe, /* (spin) */ | |
227 | 0xeafffffe, /* (spin) */ | |
228 | 0xeafffffe, /* (spin) */ | |
229 | }; | |
230 | uint32_t board_setup_blob[] = { | |
231 | /* board setup addr */ | |
232 | 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */ | |
233 | 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */ | |
234 | 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */ | |
235 | 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */ | |
236 | 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */ | |
237 | 0xe1a0100e, /* mov r1, lr ;save LR across SMC */ | |
238 | 0xe1600070, /* smc #0 ;call monitor to flush SCR */ | |
239 | 0xe1a0f001, /* mov pc, r1 ;return */ | |
240 | }; | |
241 | ||
242 | /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */ | |
243 | assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100); | |
244 | ||
245 | /* check that these blobs don't overlap */ | |
246 | assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr) | |
247 | || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr)); | |
248 | ||
249 | for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) { | |
250 | mvbar_blob[n] = tswap32(mvbar_blob[n]); | |
251 | } | |
9f43d4c3 PM |
252 | rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob), |
253 | mvbar_addr, as); | |
716536a9 AB |
254 | |
255 | for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) { | |
256 | board_setup_blob[n] = tswap32(board_setup_blob[n]); | |
257 | } | |
9f43d4c3 PM |
258 | rom_add_blob_fixed_as("board-setup", board_setup_blob, |
259 | sizeof(board_setup_blob), info->board_setup_addr, as); | |
716536a9 AB |
260 | } |
261 | ||
5d309320 | 262 | static void default_reset_secondary(ARMCPU *cpu, |
9d5ba9bf ML |
263 | const struct arm_boot_info *info) |
264 | { | |
9f43d4c3 | 265 | AddressSpace *as = arm_boot_address_space(cpu, info); |
4df81c6e | 266 | CPUState *cs = CPU(cpu); |
5d309320 | 267 | |
9f43d4c3 | 268 | address_space_stl_notdirty(as, info->smp_bootreg_addr, |
42874d3a | 269 | 0, MEMTXATTRS_UNSPECIFIED, NULL); |
4df81c6e | 270 | cpu_set_pc(cs, info->smp_loader_start); |
9d5ba9bf ML |
271 | } |
272 | ||
83bfffec PM |
273 | static inline bool have_dtb(const struct arm_boot_info *info) |
274 | { | |
275 | return info->dtb_filename || info->get_dtb; | |
276 | } | |
277 | ||
52b43737 | 278 | #define WRITE_WORD(p, value) do { \ |
9f43d4c3 | 279 | address_space_stl_notdirty(as, p, value, \ |
42874d3a | 280 | MEMTXATTRS_UNSPECIFIED, NULL); \ |
52b43737 PB |
281 | p += 4; \ |
282 | } while (0) | |
283 | ||
9f43d4c3 | 284 | static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as) |
16406950 | 285 | { |
761c9eb0 | 286 | int initrd_size = info->initrd_size; |
a8170e5e AK |
287 | hwaddr base = info->loader_start; |
288 | hwaddr p; | |
16406950 | 289 | |
52b43737 | 290 | p = base + KERNEL_ARGS_ADDR; |
16406950 | 291 | /* ATAG_CORE */ |
52b43737 PB |
292 | WRITE_WORD(p, 5); |
293 | WRITE_WORD(p, 0x54410001); | |
294 | WRITE_WORD(p, 1); | |
295 | WRITE_WORD(p, 0x1000); | |
296 | WRITE_WORD(p, 0); | |
16406950 | 297 | /* ATAG_MEM */ |
f93eb9ff | 298 | /* TODO: handle multiple chips on one ATAG list */ |
52b43737 PB |
299 | WRITE_WORD(p, 4); |
300 | WRITE_WORD(p, 0x54410002); | |
301 | WRITE_WORD(p, info->ram_size); | |
302 | WRITE_WORD(p, info->loader_start); | |
16406950 PB |
303 | if (initrd_size) { |
304 | /* ATAG_INITRD2 */ | |
52b43737 PB |
305 | WRITE_WORD(p, 4); |
306 | WRITE_WORD(p, 0x54420005); | |
fc53b7d4 | 307 | WRITE_WORD(p, info->initrd_start); |
52b43737 | 308 | WRITE_WORD(p, initrd_size); |
16406950 | 309 | } |
f93eb9ff | 310 | if (info->kernel_cmdline && *info->kernel_cmdline) { |
16406950 PB |
311 | /* ATAG_CMDLINE */ |
312 | int cmdline_size; | |
313 | ||
f93eb9ff | 314 | cmdline_size = strlen(info->kernel_cmdline); |
9f43d4c3 PM |
315 | address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED, |
316 | (const uint8_t *)info->kernel_cmdline, | |
317 | cmdline_size + 1); | |
16406950 | 318 | cmdline_size = (cmdline_size >> 2) + 1; |
52b43737 PB |
319 | WRITE_WORD(p, cmdline_size + 2); |
320 | WRITE_WORD(p, 0x54410009); | |
321 | p += cmdline_size * 4; | |
16406950 | 322 | } |
f93eb9ff AZ |
323 | if (info->atag_board) { |
324 | /* ATAG_BOARD */ | |
325 | int atag_board_len; | |
52b43737 | 326 | uint8_t atag_board_buf[0x1000]; |
f93eb9ff | 327 | |
52b43737 PB |
328 | atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3; |
329 | WRITE_WORD(p, (atag_board_len + 8) >> 2); | |
330 | WRITE_WORD(p, 0x414f4d50); | |
9f43d4c3 PM |
331 | address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, |
332 | atag_board_buf, atag_board_len); | |
f93eb9ff AZ |
333 | p += atag_board_len; |
334 | } | |
16406950 | 335 | /* ATAG_END */ |
52b43737 PB |
336 | WRITE_WORD(p, 0); |
337 | WRITE_WORD(p, 0); | |
16406950 PB |
338 | } |
339 | ||
9f43d4c3 PM |
340 | static void set_kernel_args_old(const struct arm_boot_info *info, |
341 | AddressSpace *as) | |
2b8f2d41 | 342 | { |
a8170e5e | 343 | hwaddr p; |
52b43737 | 344 | const char *s; |
761c9eb0 | 345 | int initrd_size = info->initrd_size; |
a8170e5e | 346 | hwaddr base = info->loader_start; |
2b8f2d41 AZ |
347 | |
348 | /* see linux/include/asm-arm/setup.h */ | |
52b43737 | 349 | p = base + KERNEL_ARGS_ADDR; |
2b8f2d41 | 350 | /* page_size */ |
52b43737 | 351 | WRITE_WORD(p, 4096); |
2b8f2d41 | 352 | /* nr_pages */ |
52b43737 | 353 | WRITE_WORD(p, info->ram_size / 4096); |
2b8f2d41 | 354 | /* ramdisk_size */ |
52b43737 | 355 | WRITE_WORD(p, 0); |
2b8f2d41 AZ |
356 | #define FLAG_READONLY 1 |
357 | #define FLAG_RDLOAD 4 | |
358 | #define FLAG_RDPROMPT 8 | |
359 | /* flags */ | |
52b43737 | 360 | WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT); |
2b8f2d41 | 361 | /* rootdev */ |
52b43737 | 362 | WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */ |
2b8f2d41 | 363 | /* video_num_cols */ |
52b43737 | 364 | WRITE_WORD(p, 0); |
2b8f2d41 | 365 | /* video_num_rows */ |
52b43737 | 366 | WRITE_WORD(p, 0); |
2b8f2d41 | 367 | /* video_x */ |
52b43737 | 368 | WRITE_WORD(p, 0); |
2b8f2d41 | 369 | /* video_y */ |
52b43737 | 370 | WRITE_WORD(p, 0); |
2b8f2d41 | 371 | /* memc_control_reg */ |
52b43737 | 372 | WRITE_WORD(p, 0); |
2b8f2d41 AZ |
373 | /* unsigned char sounddefault */ |
374 | /* unsigned char adfsdrives */ | |
375 | /* unsigned char bytes_per_char_h */ | |
376 | /* unsigned char bytes_per_char_v */ | |
52b43737 | 377 | WRITE_WORD(p, 0); |
2b8f2d41 | 378 | /* pages_in_bank[4] */ |
52b43737 PB |
379 | WRITE_WORD(p, 0); |
380 | WRITE_WORD(p, 0); | |
381 | WRITE_WORD(p, 0); | |
382 | WRITE_WORD(p, 0); | |
2b8f2d41 | 383 | /* pages_in_vram */ |
52b43737 | 384 | WRITE_WORD(p, 0); |
2b8f2d41 | 385 | /* initrd_start */ |
fc53b7d4 PM |
386 | if (initrd_size) { |
387 | WRITE_WORD(p, info->initrd_start); | |
388 | } else { | |
52b43737 | 389 | WRITE_WORD(p, 0); |
fc53b7d4 | 390 | } |
2b8f2d41 | 391 | /* initrd_size */ |
52b43737 | 392 | WRITE_WORD(p, initrd_size); |
2b8f2d41 | 393 | /* rd_start */ |
52b43737 | 394 | WRITE_WORD(p, 0); |
2b8f2d41 | 395 | /* system_rev */ |
52b43737 | 396 | WRITE_WORD(p, 0); |
2b8f2d41 | 397 | /* system_serial_low */ |
52b43737 | 398 | WRITE_WORD(p, 0); |
2b8f2d41 | 399 | /* system_serial_high */ |
52b43737 | 400 | WRITE_WORD(p, 0); |
2b8f2d41 | 401 | /* mem_fclk_21285 */ |
52b43737 | 402 | WRITE_WORD(p, 0); |
2b8f2d41 | 403 | /* zero unused fields */ |
52b43737 PB |
404 | while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) { |
405 | WRITE_WORD(p, 0); | |
406 | } | |
407 | s = info->kernel_cmdline; | |
408 | if (s) { | |
9f43d4c3 PM |
409 | address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, |
410 | (const uint8_t *)s, strlen(s) + 1); | |
52b43737 PB |
411 | } else { |
412 | WRITE_WORD(p, 0); | |
413 | } | |
2b8f2d41 AZ |
414 | } |
415 | ||
4cbca7d9 AS |
416 | static void fdt_add_psci_node(void *fdt) |
417 | { | |
418 | uint32_t cpu_suspend_fn; | |
419 | uint32_t cpu_off_fn; | |
420 | uint32_t cpu_on_fn; | |
421 | uint32_t migrate_fn; | |
422 | ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0)); | |
423 | const char *psci_method; | |
424 | int64_t psci_conduit; | |
c39770cd | 425 | int rc; |
4cbca7d9 AS |
426 | |
427 | psci_conduit = object_property_get_int(OBJECT(armcpu), | |
428 | "psci-conduit", | |
429 | &error_abort); | |
430 | switch (psci_conduit) { | |
431 | case QEMU_PSCI_CONDUIT_DISABLED: | |
432 | return; | |
433 | case QEMU_PSCI_CONDUIT_HVC: | |
434 | psci_method = "hvc"; | |
435 | break; | |
436 | case QEMU_PSCI_CONDUIT_SMC: | |
437 | psci_method = "smc"; | |
438 | break; | |
439 | default: | |
440 | g_assert_not_reached(); | |
441 | } | |
442 | ||
c39770cd AS |
443 | /* |
444 | * If /psci node is present in provided DTB, assume that no fixup | |
445 | * is necessary and all PSCI configuration should be taken as-is | |
446 | */ | |
447 | rc = fdt_path_offset(fdt, "/psci"); | |
448 | if (rc >= 0) { | |
449 | return; | |
450 | } | |
451 | ||
4cbca7d9 AS |
452 | qemu_fdt_add_subnode(fdt, "/psci"); |
453 | if (armcpu->psci_version == 2) { | |
454 | const char comp[] = "arm,psci-0.2\0arm,psci"; | |
455 | qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp)); | |
456 | ||
457 | cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF; | |
458 | if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) { | |
459 | cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND; | |
460 | cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON; | |
461 | migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE; | |
462 | } else { | |
463 | cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND; | |
464 | cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON; | |
465 | migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE; | |
466 | } | |
467 | } else { | |
468 | qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci"); | |
469 | ||
470 | cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND; | |
471 | cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF; | |
472 | cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON; | |
473 | migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE; | |
474 | } | |
475 | ||
476 | /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer | |
477 | * to the instruction that should be used to invoke PSCI functions. | |
478 | * However, the device tree binding uses 'method' instead, so that is | |
479 | * what we should use here. | |
480 | */ | |
481 | qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method); | |
482 | ||
483 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn); | |
484 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn); | |
485 | qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn); | |
486 | qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn); | |
487 | } | |
488 | ||
fee8ea12 AB |
489 | /** |
490 | * load_dtb() - load a device tree binary image into memory | |
491 | * @addr: the address to load the image at | |
492 | * @binfo: struct describing the boot environment | |
493 | * @addr_limit: upper limit of the available memory area at @addr | |
9f43d4c3 | 494 | * @as: address space to load image to |
fee8ea12 AB |
495 | * |
496 | * Load a device tree supplied by the machine or by the user with the | |
497 | * '-dtb' command line option, and put it at offset @addr in target | |
498 | * memory. | |
499 | * | |
500 | * If @addr_limit contains a meaningful value (i.e., it is strictly greater | |
501 | * than @addr), the device tree is only loaded if its size does not exceed | |
502 | * the limit. | |
503 | * | |
504 | * Returns: the size of the device tree image on success, | |
505 | * 0 if the image size exceeds the limit, | |
506 | * -1 on errors. | |
a554ecb4 HZ |
507 | * |
508 | * Note: Must not be called unless have_dtb(binfo) is true. | |
fee8ea12 AB |
509 | */ |
510 | static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo, | |
9f43d4c3 | 511 | hwaddr addr_limit, AddressSpace *as) |
412beee6 | 512 | { |
412beee6 | 513 | void *fdt = NULL; |
412beee6 | 514 | int size, rc; |
70976c41 | 515 | uint32_t acells, scells; |
9695200a SZ |
516 | char *nodename; |
517 | unsigned int i; | |
518 | hwaddr mem_base, mem_len; | |
412beee6 | 519 | |
0fb79851 JR |
520 | if (binfo->dtb_filename) { |
521 | char *filename; | |
522 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename); | |
523 | if (!filename) { | |
524 | fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename); | |
525 | goto fail; | |
526 | } | |
412beee6 | 527 | |
0fb79851 JR |
528 | fdt = load_device_tree(filename, &size); |
529 | if (!fdt) { | |
530 | fprintf(stderr, "Couldn't open dtb file %s\n", filename); | |
531 | g_free(filename); | |
532 | goto fail; | |
533 | } | |
412beee6 | 534 | g_free(filename); |
a554ecb4 | 535 | } else { |
0fb79851 JR |
536 | fdt = binfo->get_dtb(binfo, &size); |
537 | if (!fdt) { | |
538 | fprintf(stderr, "Board was unable to create a dtb blob\n"); | |
539 | goto fail; | |
540 | } | |
412beee6 | 541 | } |
412beee6 | 542 | |
fee8ea12 AB |
543 | if (addr_limit > addr && size > (addr_limit - addr)) { |
544 | /* Installing the device tree blob at addr would exceed addr_limit. | |
545 | * Whether this constitutes failure is up to the caller to decide, | |
546 | * so just return 0 as size, i.e., no error. | |
547 | */ | |
548 | g_free(fdt); | |
549 | return 0; | |
550 | } | |
551 | ||
58e71097 EA |
552 | acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells", |
553 | NULL, &error_fatal); | |
554 | scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells", | |
555 | NULL, &error_fatal); | |
9bfa659e PM |
556 | if (acells == 0 || scells == 0) { |
557 | fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n"); | |
c23045de | 558 | goto fail; |
9bfa659e PM |
559 | } |
560 | ||
70976c41 PM |
561 | if (scells < 2 && binfo->ram_size >= (1ULL << 32)) { |
562 | /* This is user error so deserves a friendlier error message | |
563 | * than the failure of setprop_sized_cells would provide | |
564 | */ | |
9bfa659e PM |
565 | fprintf(stderr, "qemu: dtb file not compatible with " |
566 | "RAM size > 4GB\n"); | |
c23045de | 567 | goto fail; |
9bfa659e PM |
568 | } |
569 | ||
9695200a SZ |
570 | if (nb_numa_nodes > 0) { |
571 | /* | |
572 | * Turn the /memory node created before into a NOP node, then create | |
573 | * /memory@addr nodes for all numa nodes respectively. | |
574 | */ | |
575 | qemu_fdt_nop_node(fdt, "/memory"); | |
576 | mem_base = binfo->loader_start; | |
577 | for (i = 0; i < nb_numa_nodes; i++) { | |
578 | mem_len = numa_info[i].node_mem; | |
579 | nodename = g_strdup_printf("/memory@%" PRIx64, mem_base); | |
580 | qemu_fdt_add_subnode(fdt, nodename); | |
581 | qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory"); | |
582 | rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", | |
583 | acells, mem_base, | |
584 | scells, mem_len); | |
585 | if (rc < 0) { | |
586 | fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename, | |
587 | i); | |
588 | goto fail; | |
589 | } | |
590 | ||
591 | qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i); | |
592 | mem_base += mem_len; | |
593 | g_free(nodename); | |
594 | } | |
595 | } else { | |
b77257d7 GR |
596 | Error *err = NULL; |
597 | ||
598 | rc = fdt_path_offset(fdt, "/memory"); | |
599 | if (rc < 0) { | |
600 | qemu_fdt_add_subnode(fdt, "/memory"); | |
601 | } | |
602 | ||
603 | if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) { | |
604 | qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory"); | |
605 | } | |
606 | ||
9695200a SZ |
607 | rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg", |
608 | acells, binfo->loader_start, | |
609 | scells, binfo->ram_size); | |
610 | if (rc < 0) { | |
611 | fprintf(stderr, "couldn't set /memory/reg\n"); | |
612 | goto fail; | |
613 | } | |
412beee6 GL |
614 | } |
615 | ||
b77257d7 GR |
616 | rc = fdt_path_offset(fdt, "/chosen"); |
617 | if (rc < 0) { | |
618 | qemu_fdt_add_subnode(fdt, "/chosen"); | |
619 | } | |
620 | ||
5e87975c | 621 | if (binfo->kernel_cmdline && *binfo->kernel_cmdline) { |
5a4348d1 PC |
622 | rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", |
623 | binfo->kernel_cmdline); | |
5e87975c PC |
624 | if (rc < 0) { |
625 | fprintf(stderr, "couldn't set /chosen/bootargs\n"); | |
c23045de | 626 | goto fail; |
5e87975c | 627 | } |
412beee6 GL |
628 | } |
629 | ||
630 | if (binfo->initrd_size) { | |
5a4348d1 PC |
631 | rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", |
632 | binfo->initrd_start); | |
412beee6 GL |
633 | if (rc < 0) { |
634 | fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n"); | |
c23045de | 635 | goto fail; |
412beee6 GL |
636 | } |
637 | ||
5a4348d1 PC |
638 | rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", |
639 | binfo->initrd_start + binfo->initrd_size); | |
412beee6 GL |
640 | if (rc < 0) { |
641 | fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n"); | |
c23045de | 642 | goto fail; |
412beee6 GL |
643 | } |
644 | } | |
3b1cceb8 | 645 | |
4cbca7d9 AS |
646 | fdt_add_psci_node(fdt); |
647 | ||
3b1cceb8 PM |
648 | if (binfo->modify_dtb) { |
649 | binfo->modify_dtb(binfo, fdt); | |
650 | } | |
651 | ||
5a4348d1 | 652 | qemu_fdt_dumpdtb(fdt, size); |
412beee6 | 653 | |
4c4bf654 AB |
654 | /* Put the DTB into the memory map as a ROM image: this will ensure |
655 | * the DTB is copied again upon reset, even if addr points into RAM. | |
656 | */ | |
9f43d4c3 | 657 | rom_add_blob_fixed_as("dtb", fdt, size, addr, as); |
412beee6 | 658 | |
c23045de PM |
659 | g_free(fdt); |
660 | ||
fee8ea12 | 661 | return size; |
c23045de PM |
662 | |
663 | fail: | |
664 | g_free(fdt); | |
665 | return -1; | |
412beee6 GL |
666 | } |
667 | ||
6ed221b6 | 668 | static void do_cpu_reset(void *opaque) |
f2d74978 | 669 | { |
351d5666 | 670 | ARMCPU *cpu = opaque; |
4df81c6e | 671 | CPUState *cs = CPU(cpu); |
351d5666 | 672 | CPUARMState *env = &cpu->env; |
462a8bc6 | 673 | const struct arm_boot_info *info = env->boot_info; |
f2d74978 | 674 | |
4df81c6e | 675 | cpu_reset(cs); |
f2d74978 PB |
676 | if (info) { |
677 | if (!info->is_linux) { | |
9776f636 | 678 | int i; |
f2d74978 | 679 | /* Jump to the entry point. */ |
4df81c6e PC |
680 | uint64_t entry = info->entry; |
681 | ||
9776f636 PC |
682 | switch (info->endianness) { |
683 | case ARM_ENDIANNESS_LE: | |
684 | env->cp15.sctlr_el[1] &= ~SCTLR_E0E; | |
685 | for (i = 1; i < 4; ++i) { | |
686 | env->cp15.sctlr_el[i] &= ~SCTLR_EE; | |
687 | } | |
688 | env->uncached_cpsr &= ~CPSR_E; | |
689 | break; | |
690 | case ARM_ENDIANNESS_BE8: | |
691 | env->cp15.sctlr_el[1] |= SCTLR_E0E; | |
692 | for (i = 1; i < 4; ++i) { | |
693 | env->cp15.sctlr_el[i] |= SCTLR_EE; | |
694 | } | |
695 | env->uncached_cpsr |= CPSR_E; | |
696 | break; | |
697 | case ARM_ENDIANNESS_BE32: | |
698 | env->cp15.sctlr_el[1] |= SCTLR_B; | |
699 | break; | |
700 | case ARM_ENDIANNESS_UNKNOWN: | |
701 | break; /* Board's decision */ | |
702 | default: | |
703 | g_assert_not_reached(); | |
704 | } | |
705 | ||
4df81c6e | 706 | if (!env->aarch64) { |
a9047ec3 | 707 | env->thumb = info->entry & 1; |
4df81c6e | 708 | entry &= 0xfffffffe; |
a9047ec3 | 709 | } |
4df81c6e | 710 | cpu_set_pc(cs, entry); |
f2d74978 | 711 | } else { |
c8e829b7 GB |
712 | /* If we are booting Linux then we need to check whether we are |
713 | * booting into secure or non-secure state and adjust the state | |
714 | * accordingly. Out of reset, ARM is defined to be in secure state | |
715 | * (SCR.NS = 0), we change that here if non-secure boot has been | |
716 | * requested. | |
717 | */ | |
5097227c GB |
718 | if (arm_feature(env, ARM_FEATURE_EL3)) { |
719 | /* AArch64 is defined to come out of reset into EL3 if enabled. | |
720 | * If we are booting Linux then we need to adjust our EL as | |
721 | * Linux expects us to be in EL2 or EL1. AArch32 resets into | |
722 | * SVC, which Linux expects, so no privilege/exception level to | |
723 | * adjust. | |
724 | */ | |
725 | if (env->aarch64) { | |
48d21a57 | 726 | env->cp15.scr_el3 |= SCR_RW; |
5097227c | 727 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
48d21a57 | 728 | env->cp15.hcr_el2 |= HCR_RW; |
5097227c GB |
729 | env->pstate = PSTATE_MODE_EL2h; |
730 | } else { | |
731 | env->pstate = PSTATE_MODE_EL1h; | |
732 | } | |
43118f43 PM |
733 | /* AArch64 kernels never boot in secure mode */ |
734 | assert(!info->secure_boot); | |
735 | /* This hook is only supported for AArch32 currently: | |
736 | * bootloader_aarch64[] will not call the hook, and | |
737 | * the code above has already dropped us into EL2 or EL1. | |
738 | */ | |
739 | assert(!info->secure_board_setup); | |
5097227c GB |
740 | } |
741 | ||
bda816f0 PM |
742 | if (arm_feature(env, ARM_FEATURE_EL2)) { |
743 | /* If we have EL2 then Linux expects the HVC insn to work */ | |
744 | env->cp15.scr_el3 |= SCR_HCE; | |
745 | } | |
746 | ||
5097227c | 747 | /* Set to non-secure if not a secure boot */ |
baf6b681 PC |
748 | if (!info->secure_boot && |
749 | (cs != first_cpu || !info->secure_board_setup)) { | |
5097227c GB |
750 | /* Linux expects non-secure state */ |
751 | env->cp15.scr_el3 |= SCR_NS; | |
752 | } | |
c8e829b7 GB |
753 | } |
754 | ||
4df81c6e | 755 | if (cs == first_cpu) { |
9f43d4c3 PM |
756 | AddressSpace *as = arm_boot_address_space(cpu, info); |
757 | ||
4df81c6e | 758 | cpu_set_pc(cs, info->loader_start); |
4d9ebf75 | 759 | |
83bfffec | 760 | if (!have_dtb(info)) { |
412beee6 | 761 | if (old_param) { |
9f43d4c3 | 762 | set_kernel_args_old(info, as); |
412beee6 | 763 | } else { |
9f43d4c3 | 764 | set_kernel_args(info, as); |
412beee6 | 765 | } |
6ed221b6 | 766 | } |
f2d74978 | 767 | } else { |
5d309320 | 768 | info->secondary_cpu_reset_hook(cpu, info); |
f2d74978 PB |
769 | } |
770 | } | |
771 | } | |
f2d74978 PB |
772 | } |
773 | ||
07abe45c LE |
774 | /** |
775 | * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified | |
776 | * by key. | |
777 | * @fw_cfg: The firmware config instance to store the data in. | |
778 | * @size_key: The firmware config key to store the size of the loaded | |
779 | * data under, with fw_cfg_add_i32(). | |
780 | * @data_key: The firmware config key to store the loaded data under, | |
781 | * with fw_cfg_add_bytes(). | |
782 | * @image_name: The name of the image file to load. If it is NULL, the | |
783 | * function returns without doing anything. | |
784 | * @try_decompress: Whether the image should be decompressed (gunzipped) before | |
785 | * adding it to fw_cfg. If decompression fails, the image is | |
786 | * loaded as-is. | |
787 | * | |
788 | * In case of failure, the function prints an error message to stderr and the | |
789 | * process exits with status 1. | |
790 | */ | |
791 | static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, | |
792 | uint16_t data_key, const char *image_name, | |
793 | bool try_decompress) | |
794 | { | |
795 | size_t size = -1; | |
796 | uint8_t *data; | |
797 | ||
798 | if (image_name == NULL) { | |
799 | return; | |
800 | } | |
801 | ||
802 | if (try_decompress) { | |
803 | size = load_image_gzipped_buffer(image_name, | |
804 | LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); | |
805 | } | |
806 | ||
807 | if (size == (size_t)-1) { | |
808 | gchar *contents; | |
809 | gsize length; | |
810 | ||
811 | if (!g_file_get_contents(image_name, &contents, &length, NULL)) { | |
c0dbca36 | 812 | error_report("failed to load \"%s\"", image_name); |
07abe45c LE |
813 | exit(1); |
814 | } | |
815 | size = length; | |
816 | data = (uint8_t *)contents; | |
817 | } | |
818 | ||
819 | fw_cfg_add_i32(fw_cfg, size_key, size); | |
820 | fw_cfg_add_bytes(fw_cfg, data_key, data, size); | |
821 | } | |
822 | ||
d8b1ae42 PM |
823 | static int do_arm_linux_init(Object *obj, void *opaque) |
824 | { | |
825 | if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) { | |
826 | ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj); | |
827 | ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj); | |
828 | struct arm_boot_info *info = opaque; | |
829 | ||
830 | if (albifc->arm_linux_init) { | |
831 | albifc->arm_linux_init(albif, info->secure_boot); | |
832 | } | |
833 | } | |
834 | return 0; | |
835 | } | |
836 | ||
9776f636 PC |
837 | static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, |
838 | uint64_t *lowaddr, uint64_t *highaddr, | |
9f43d4c3 | 839 | int elf_machine, AddressSpace *as) |
9776f636 PC |
840 | { |
841 | bool elf_is64; | |
842 | union { | |
843 | Elf32_Ehdr h32; | |
844 | Elf64_Ehdr h64; | |
845 | } elf_header; | |
846 | int data_swab = 0; | |
847 | bool big_endian; | |
848 | uint64_t ret = -1; | |
849 | Error *err = NULL; | |
850 | ||
851 | ||
852 | load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err); | |
853 | if (err) { | |
36f876ce | 854 | error_free(err); |
9776f636 PC |
855 | return ret; |
856 | } | |
857 | ||
858 | if (elf_is64) { | |
859 | big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB; | |
860 | info->endianness = big_endian ? ARM_ENDIANNESS_BE8 | |
861 | : ARM_ENDIANNESS_LE; | |
862 | } else { | |
863 | big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB; | |
864 | if (big_endian) { | |
865 | if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) { | |
866 | info->endianness = ARM_ENDIANNESS_BE8; | |
867 | } else { | |
868 | info->endianness = ARM_ENDIANNESS_BE32; | |
869 | /* In BE32, the CPU has a different view of the per-byte | |
870 | * address map than the rest of the system. BE32 ELF files | |
871 | * are organised such that they can be programmed through | |
872 | * the CPU's per-word byte-reversed view of the world. QEMU | |
873 | * however loads ELF files independently of the CPU. So | |
874 | * tell the ELF loader to byte reverse the data for us. | |
875 | */ | |
876 | data_swab = 2; | |
877 | } | |
878 | } else { | |
879 | info->endianness = ARM_ENDIANNESS_LE; | |
880 | } | |
881 | } | |
882 | ||
9f43d4c3 PM |
883 | ret = load_elf_as(info->kernel_filename, NULL, NULL, |
884 | pentry, lowaddr, highaddr, big_endian, elf_machine, | |
885 | 1, data_swab, as); | |
9776f636 PC |
886 | if (ret <= 0) { |
887 | /* The header loaded but the image didn't */ | |
888 | exit(1); | |
889 | } | |
890 | ||
891 | return ret; | |
892 | } | |
893 | ||
68115ed5 | 894 | static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base, |
9f43d4c3 | 895 | hwaddr *entry, AddressSpace *as) |
68115ed5 AB |
896 | { |
897 | hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR; | |
898 | uint8_t *buffer; | |
899 | int size; | |
900 | ||
901 | /* On aarch64, it's the bootloader's job to uncompress the kernel. */ | |
902 | size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES, | |
903 | &buffer); | |
904 | ||
905 | if (size < 0) { | |
906 | gsize len; | |
907 | ||
908 | /* Load as raw file otherwise */ | |
909 | if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) { | |
910 | return -1; | |
911 | } | |
912 | size = len; | |
913 | } | |
914 | ||
915 | /* check the arm64 magic header value -- very old kernels may not have it */ | |
27640407 MAL |
916 | if (size > ARM64_MAGIC_OFFSET + 4 && |
917 | memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) { | |
68115ed5 AB |
918 | uint64_t hdrvals[2]; |
919 | ||
920 | /* The arm64 Image header has text_offset and image_size fields at 8 and | |
921 | * 16 bytes into the Image header, respectively. The text_offset field | |
922 | * is only valid if the image_size is non-zero. | |
923 | */ | |
924 | memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals)); | |
925 | if (hdrvals[1] != 0) { | |
926 | kernel_load_offset = le64_to_cpu(hdrvals[0]); | |
927 | } | |
928 | } | |
929 | ||
930 | *entry = mem_base + kernel_load_offset; | |
9f43d4c3 | 931 | rom_add_blob_fixed_as(filename, buffer, size, *entry, as); |
68115ed5 AB |
932 | |
933 | g_free(buffer); | |
934 | ||
935 | return size; | |
936 | } | |
937 | ||
ac9d32e3 | 938 | static void arm_load_kernel_notify(Notifier *notifier, void *data) |
16406950 | 939 | { |
c6faa758 | 940 | CPUState *cs; |
16406950 PB |
941 | int kernel_size; |
942 | int initrd_size; | |
1c7b3754 | 943 | int is_linux = 0; |
92df8450 | 944 | uint64_t elf_entry, elf_low_addr, elf_high_addr; |
da0af40d | 945 | int elf_machine; |
68115ed5 | 946 | hwaddr entry; |
4d9ebf75 | 947 | static const ARMInsnFixup *primary_loader; |
ac9d32e3 EA |
948 | ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier, |
949 | notifier, notifier); | |
950 | ARMCPU *cpu = n->cpu; | |
951 | struct arm_boot_info *info = | |
952 | container_of(n, struct arm_boot_info, load_kernel_notifier); | |
9f43d4c3 | 953 | AddressSpace *as = arm_boot_address_space(cpu, info); |
16406950 | 954 | |
baf6b681 PC |
955 | /* The board code is not supposed to set secure_board_setup unless |
956 | * running its code in secure mode is actually possible, and KVM | |
957 | * doesn't support secure. | |
958 | */ | |
959 | assert(!(info->secure_board_setup && kvm_enabled())); | |
960 | ||
4c8afda7 MO |
961 | info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb"); |
962 | ||
16406950 | 963 | /* Load the kernel. */ |
07abe45c | 964 | if (!info->kernel_filename || info->firmware_loaded) { |
69e7f76f AB |
965 | |
966 | if (have_dtb(info)) { | |
07abe45c LE |
967 | /* If we have a device tree blob, but no kernel to supply it to (or |
968 | * the kernel is supposed to be loaded by the bootloader), copy the | |
969 | * DTB to the base of RAM for the bootloader to pick up. | |
69e7f76f | 970 | */ |
9f43d4c3 | 971 | if (load_dtb(info->loader_start, info, 0, as) < 0) { |
69e7f76f AB |
972 | exit(1); |
973 | } | |
974 | } | |
975 | ||
07abe45c LE |
976 | if (info->kernel_filename) { |
977 | FWCfgState *fw_cfg; | |
978 | bool try_decompressing_kernel; | |
979 | ||
980 | fw_cfg = fw_cfg_find(); | |
981 | try_decompressing_kernel = arm_feature(&cpu->env, | |
982 | ARM_FEATURE_AARCH64); | |
983 | ||
984 | /* Expose the kernel, the command line, and the initrd in fw_cfg. | |
985 | * We don't process them here at all, it's all left to the | |
986 | * firmware. | |
987 | */ | |
988 | load_image_to_fw_cfg(fw_cfg, | |
989 | FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA, | |
990 | info->kernel_filename, | |
991 | try_decompressing_kernel); | |
992 | load_image_to_fw_cfg(fw_cfg, | |
993 | FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA, | |
994 | info->initrd_filename, false); | |
995 | ||
996 | if (info->kernel_cmdline) { | |
997 | fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, | |
998 | strlen(info->kernel_cmdline) + 1); | |
999 | fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, | |
1000 | info->kernel_cmdline); | |
1001 | } | |
1002 | } | |
1003 | ||
1004 | /* We will start from address 0 (typically a boot ROM image) in the | |
1005 | * same way as hardware. | |
9546dbab PM |
1006 | */ |
1007 | return; | |
16406950 | 1008 | } |
daf90626 | 1009 | |
4d9ebf75 MH |
1010 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
1011 | primary_loader = bootloader_aarch64; | |
da0af40d | 1012 | elf_machine = EM_AARCH64; |
4d9ebf75 MH |
1013 | } else { |
1014 | primary_loader = bootloader; | |
10b8ec73 PC |
1015 | if (!info->write_board_setup) { |
1016 | primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET; | |
1017 | } | |
da0af40d | 1018 | elf_machine = EM_ARM; |
4d9ebf75 MH |
1019 | } |
1020 | ||
9d5ba9bf ML |
1021 | if (!info->secondary_cpu_reset_hook) { |
1022 | info->secondary_cpu_reset_hook = default_reset_secondary; | |
1023 | } | |
1024 | if (!info->write_secondary_boot) { | |
1025 | info->write_secondary_boot = default_write_secondary; | |
1026 | } | |
1027 | ||
f2d74978 PB |
1028 | if (info->nb_cpus == 0) |
1029 | info->nb_cpus = 1; | |
f93eb9ff | 1030 | |
fc53b7d4 PM |
1031 | /* We want to put the initrd far enough into RAM that when the |
1032 | * kernel is uncompressed it will not clobber the initrd. However | |
1033 | * on boards without much RAM we must ensure that we still leave | |
1034 | * enough room for a decent sized initrd, and on boards with large | |
1035 | * amounts of RAM we must avoid the initrd being so far up in RAM | |
1036 | * that it is outside lowmem and inaccessible to the kernel. | |
1037 | * So for boards with less than 256MB of RAM we put the initrd | |
1038 | * halfway into RAM, and for boards with 256MB of RAM or more we put | |
1039 | * the initrd at 128MB. | |
1040 | */ | |
1041 | info->initrd_start = info->loader_start + | |
1042 | MIN(info->ram_size / 2, 128 * 1024 * 1024); | |
1043 | ||
1c7b3754 | 1044 | /* Assume that raw images are linux kernels, and ELF images are not. */ |
9776f636 | 1045 | kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr, |
9f43d4c3 | 1046 | &elf_high_addr, elf_machine, as); |
92df8450 AB |
1047 | if (kernel_size > 0 && have_dtb(info)) { |
1048 | /* If there is still some room left at the base of RAM, try and put | |
1049 | * the DTB there like we do for images loaded with -bios or -pflash. | |
1050 | */ | |
1051 | if (elf_low_addr > info->loader_start | |
1052 | || elf_high_addr < info->loader_start) { | |
1053 | /* Pass elf_low_addr as address limit to load_dtb if it may be | |
1054 | * pointing into RAM, otherwise pass '0' (no limit) | |
1055 | */ | |
1056 | if (elf_low_addr < info->loader_start) { | |
1057 | elf_low_addr = 0; | |
1058 | } | |
9f43d4c3 | 1059 | if (load_dtb(info->loader_start, info, elf_low_addr, as) < 0) { |
92df8450 AB |
1060 | exit(1); |
1061 | } | |
1062 | } | |
1063 | } | |
1c7b3754 PB |
1064 | entry = elf_entry; |
1065 | if (kernel_size < 0) { | |
9f43d4c3 PM |
1066 | kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL, |
1067 | &is_linux, NULL, NULL, as); | |
1c7b3754 | 1068 | } |
6f5d3cbe | 1069 | if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) { |
68115ed5 | 1070 | kernel_size = load_aarch64_image(info->kernel_filename, |
9f43d4c3 | 1071 | info->loader_start, &entry, as); |
6f5d3cbe | 1072 | is_linux = 1; |
68115ed5 AB |
1073 | } else if (kernel_size < 0) { |
1074 | /* 32-bit ARM */ | |
1075 | entry = info->loader_start + KERNEL_LOAD_ADDR; | |
9f43d4c3 PM |
1076 | kernel_size = load_image_targphys_as(info->kernel_filename, entry, |
1077 | info->ram_size - KERNEL_LOAD_ADDR, | |
1078 | as); | |
1c7b3754 PB |
1079 | is_linux = 1; |
1080 | } | |
1081 | if (kernel_size < 0) { | |
c0dbca36 | 1082 | error_report("could not load kernel '%s'", info->kernel_filename); |
1c7b3754 PB |
1083 | exit(1); |
1084 | } | |
f2d74978 PB |
1085 | info->entry = entry; |
1086 | if (is_linux) { | |
47b1da81 PM |
1087 | uint32_t fixupcontext[FIXUP_MAX]; |
1088 | ||
f93eb9ff | 1089 | if (info->initrd_filename) { |
9f43d4c3 PM |
1090 | initrd_size = load_ramdisk_as(info->initrd_filename, |
1091 | info->initrd_start, | |
1092 | info->ram_size - info->initrd_start, | |
1093 | as); | |
fd76663e | 1094 | if (initrd_size < 0) { |
9f43d4c3 PM |
1095 | initrd_size = load_image_targphys_as(info->initrd_filename, |
1096 | info->initrd_start, | |
1097 | info->ram_size - | |
1098 | info->initrd_start, | |
1099 | as); | |
fd76663e | 1100 | } |
daf90626 | 1101 | if (initrd_size < 0) { |
c0dbca36 AF |
1102 | error_report("could not load initrd '%s'", |
1103 | info->initrd_filename); | |
daf90626 PB |
1104 | exit(1); |
1105 | } | |
1106 | } else { | |
1107 | initrd_size = 0; | |
1108 | } | |
412beee6 GL |
1109 | info->initrd_size = initrd_size; |
1110 | ||
47b1da81 | 1111 | fixupcontext[FIXUP_BOARDID] = info->board_id; |
10b8ec73 | 1112 | fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr; |
412beee6 GL |
1113 | |
1114 | /* for device tree boot, we pass the DTB directly in r2. Otherwise | |
1115 | * we point to the kernel args. | |
1116 | */ | |
83bfffec | 1117 | if (have_dtb(info)) { |
76e2aef3 AG |
1118 | hwaddr align; |
1119 | hwaddr dtb_start; | |
1120 | ||
1121 | if (elf_machine == EM_AARCH64) { | |
1122 | /* | |
1123 | * Some AArch64 kernels on early bootup map the fdt region as | |
1124 | * | |
1125 | * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ] | |
1126 | * | |
1127 | * Let's play safe and prealign it to 2MB to give us some space. | |
1128 | */ | |
1129 | align = 2 * 1024 * 1024; | |
1130 | } else { | |
1131 | /* | |
1132 | * Some 32bit kernels will trash anything in the 4K page the | |
1133 | * initrd ends in, so make sure the DTB isn't caught up in that. | |
1134 | */ | |
1135 | align = 4096; | |
1136 | } | |
1137 | ||
1138 | /* Place the DTB after the initrd in memory with alignment. */ | |
1139 | dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align); | |
9f43d4c3 | 1140 | if (load_dtb(dtb_start, info, 0, as) < 0) { |
412beee6 GL |
1141 | exit(1); |
1142 | } | |
47b1da81 | 1143 | fixupcontext[FIXUP_ARGPTR] = dtb_start; |
412beee6 | 1144 | } else { |
47b1da81 | 1145 | fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR; |
3871481c | 1146 | if (info->ram_size >= (1ULL << 32)) { |
c0dbca36 AF |
1147 | error_report("RAM size must be less than 4GB to boot" |
1148 | " Linux kernel using ATAGS (try passing a device tree" | |
1149 | " using -dtb)"); | |
3871481c PM |
1150 | exit(1); |
1151 | } | |
412beee6 | 1152 | } |
47b1da81 PM |
1153 | fixupcontext[FIXUP_ENTRYPOINT] = entry; |
1154 | ||
1155 | write_bootloader("bootloader", info->loader_start, | |
9f43d4c3 | 1156 | primary_loader, fixupcontext, as); |
47b1da81 | 1157 | |
52b43737 | 1158 | if (info->nb_cpus > 1) { |
9543b0cd | 1159 | info->write_secondary_boot(cpu, info); |
52b43737 | 1160 | } |
10b8ec73 PC |
1161 | if (info->write_board_setup) { |
1162 | info->write_board_setup(cpu, info); | |
1163 | } | |
d8b1ae42 PM |
1164 | |
1165 | /* Notify devices which need to fake up firmware initialization | |
1166 | * that we're doing a direct kernel boot. | |
1167 | */ | |
1168 | object_child_foreach_recursive(object_get_root(), | |
1169 | do_arm_linux_init, info); | |
16406950 | 1170 | } |
f2d74978 | 1171 | info->is_linux = is_linux; |
6ed221b6 | 1172 | |
c6faa758 AB |
1173 | for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { |
1174 | ARM_CPU(cs)->env.boot_info = info; | |
6ed221b6 | 1175 | } |
16406950 | 1176 | } |
ac9d32e3 EA |
1177 | |
1178 | void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info) | |
1179 | { | |
63a183ed EA |
1180 | CPUState *cs; |
1181 | ||
ac9d32e3 EA |
1182 | info->load_kernel_notifier.cpu = cpu; |
1183 | info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify; | |
1184 | qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier); | |
63a183ed EA |
1185 | |
1186 | /* CPU objects (unlike devices) are not automatically reset on system | |
1187 | * reset, so we must always register a handler to do so. If we're | |
1188 | * actually loading a kernel, the handler is also responsible for | |
1189 | * arranging that we start it correctly. | |
1190 | */ | |
1191 | for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) { | |
1192 | qemu_register_reset(do_cpu_reset, ARM_CPU(cs)); | |
1193 | } | |
ac9d32e3 | 1194 | } |
d8b1ae42 PM |
1195 | |
1196 | static const TypeInfo arm_linux_boot_if_info = { | |
1197 | .name = TYPE_ARM_LINUX_BOOT_IF, | |
1198 | .parent = TYPE_INTERFACE, | |
1199 | .class_size = sizeof(ARMLinuxBootIfClass), | |
1200 | }; | |
1201 | ||
1202 | static void arm_linux_boot_register_types(void) | |
1203 | { | |
1204 | type_register_static(&arm_linux_boot_if_info); | |
1205 | } | |
1206 | ||
1207 | type_init(arm_linux_boot_register_types) |