]>
Commit | Line | Data |
---|---|---|
494b00c7 CD |
1 | /* |
2 | * ARM implementation of KVM hooks | |
3 | * | |
4 | * Copyright Christoffer Dall 2009-2010 | |
5 | * | |
6 | * This work is licensed under the terms of the GNU GPL, version 2 or later. | |
7 | * See the COPYING file in the top-level directory. | |
8 | * | |
9 | */ | |
10 | ||
74c21bd0 | 11 | #include "qemu/osdep.h" |
494b00c7 | 12 | #include <sys/ioctl.h> |
494b00c7 CD |
13 | |
14 | #include <linux/kvm.h> | |
15 | ||
16 | #include "qemu-common.h" | |
17 | #include "qemu/timer.h" | |
2ecb2027 | 18 | #include "qemu/error-report.h" |
494b00c7 CD |
19 | #include "sysemu/sysemu.h" |
20 | #include "sysemu/kvm.h" | |
eb035b48 | 21 | #include "kvm_arm.h" |
494b00c7 | 22 | #include "cpu.h" |
b05c81d2 | 23 | #include "trace.h" |
38df27c8 | 24 | #include "internals.h" |
bd2be150 | 25 | #include "hw/arm/arm.h" |
b05c81d2 | 26 | #include "hw/pci/pci.h" |
4c663752 | 27 | #include "exec/memattrs.h" |
4344af65 | 28 | #include "exec/address-spaces.h" |
15eafc2e | 29 | #include "hw/boards.h" |
03dd024f | 30 | #include "qemu/log.h" |
494b00c7 CD |
31 | |
32 | const KVMCapabilityInfo kvm_arch_required_capabilities[] = { | |
33 | KVM_CAP_LAST_INFO | |
34 | }; | |
35 | ||
1a1753f7 AB |
36 | static bool cap_has_mp_state; |
37 | ||
c4487d76 PM |
38 | static ARMHostCPUFeatures arm_host_cpu_features; |
39 | ||
228d5e04 PS |
40 | int kvm_arm_vcpu_init(CPUState *cs) |
41 | { | |
42 | ARMCPU *cpu = ARM_CPU(cs); | |
43 | struct kvm_vcpu_init init; | |
44 | ||
45 | init.target = cpu->kvm_target; | |
46 | memcpy(init.features, cpu->kvm_init_features, sizeof(init.features)); | |
47 | ||
48 | return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init); | |
49 | } | |
50 | ||
a96c0514 PM |
51 | bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try, |
52 | int *fdarray, | |
53 | struct kvm_vcpu_init *init) | |
54 | { | |
55 | int ret, kvmfd = -1, vmfd = -1, cpufd = -1; | |
56 | ||
57 | kvmfd = qemu_open("/dev/kvm", O_RDWR); | |
58 | if (kvmfd < 0) { | |
59 | goto err; | |
60 | } | |
61 | vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0); | |
62 | if (vmfd < 0) { | |
63 | goto err; | |
64 | } | |
65 | cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0); | |
66 | if (cpufd < 0) { | |
67 | goto err; | |
68 | } | |
69 | ||
2f340e9c PX |
70 | if (!init) { |
71 | /* Caller doesn't want the VCPU to be initialized, so skip it */ | |
72 | goto finish; | |
73 | } | |
74 | ||
a96c0514 PM |
75 | ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init); |
76 | if (ret >= 0) { | |
77 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
78 | if (ret < 0) { | |
79 | goto err; | |
80 | } | |
2f340e9c | 81 | } else if (cpus_to_try) { |
a96c0514 PM |
82 | /* Old kernel which doesn't know about the |
83 | * PREFERRED_TARGET ioctl: we know it will only support | |
84 | * creating one kind of guest CPU which is its preferred | |
85 | * CPU type. | |
86 | */ | |
87 | while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) { | |
88 | init->target = *cpus_to_try++; | |
89 | memset(init->features, 0, sizeof(init->features)); | |
90 | ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init); | |
91 | if (ret >= 0) { | |
92 | break; | |
93 | } | |
94 | } | |
95 | if (ret < 0) { | |
96 | goto err; | |
97 | } | |
2f340e9c PX |
98 | } else { |
99 | /* Treat a NULL cpus_to_try argument the same as an empty | |
100 | * list, which means we will fail the call since this must | |
101 | * be an old kernel which doesn't support PREFERRED_TARGET. | |
102 | */ | |
103 | goto err; | |
a96c0514 PM |
104 | } |
105 | ||
2f340e9c | 106 | finish: |
a96c0514 PM |
107 | fdarray[0] = kvmfd; |
108 | fdarray[1] = vmfd; | |
109 | fdarray[2] = cpufd; | |
110 | ||
111 | return true; | |
112 | ||
113 | err: | |
114 | if (cpufd >= 0) { | |
115 | close(cpufd); | |
116 | } | |
117 | if (vmfd >= 0) { | |
118 | close(vmfd); | |
119 | } | |
120 | if (kvmfd >= 0) { | |
121 | close(kvmfd); | |
122 | } | |
123 | ||
124 | return false; | |
125 | } | |
126 | ||
127 | void kvm_arm_destroy_scratch_host_vcpu(int *fdarray) | |
128 | { | |
129 | int i; | |
130 | ||
131 | for (i = 2; i >= 0; i--) { | |
132 | close(fdarray[i]); | |
133 | } | |
134 | } | |
135 | ||
c4487d76 | 136 | void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu) |
a96c0514 | 137 | { |
c4487d76 | 138 | CPUARMState *env = &cpu->env; |
a96c0514 | 139 | |
c4487d76 PM |
140 | if (!arm_host_cpu_features.dtb_compatible) { |
141 | if (!kvm_enabled() || | |
142 | !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) { | |
143 | /* We can't report this error yet, so flag that we need to | |
144 | * in arm_cpu_realizefn(). | |
145 | */ | |
146 | cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; | |
147 | cpu->host_cpu_probe_failed = true; | |
148 | return; | |
149 | } | |
a96c0514 | 150 | } |
c4487d76 PM |
151 | |
152 | cpu->kvm_target = arm_host_cpu_features.target; | |
153 | cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible; | |
154 | env->features = arm_host_cpu_features.features; | |
a96c0514 PM |
155 | } |
156 | ||
b16565b3 | 157 | int kvm_arch_init(MachineState *ms, KVMState *s) |
494b00c7 CD |
158 | { |
159 | /* For ARM interrupt delivery is always asynchronous, | |
160 | * whether we are using an in-kernel VGIC or not. | |
161 | */ | |
162 | kvm_async_interrupts_allowed = true; | |
a96c0514 | 163 | |
5d721b78 AG |
164 | /* |
165 | * PSCI wakes up secondary cores, so we always need to | |
166 | * have vCPUs waiting in kernel space | |
167 | */ | |
168 | kvm_halt_in_kernel_allowed = true; | |
169 | ||
1a1753f7 AB |
170 | cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE); |
171 | ||
494b00c7 CD |
172 | return 0; |
173 | } | |
174 | ||
175 | unsigned long kvm_arch_vcpu_id(CPUState *cpu) | |
176 | { | |
177 | return cpu->cpu_index; | |
178 | } | |
179 | ||
eb035b48 PM |
180 | /* We track all the KVM devices which need their memory addresses |
181 | * passing to the kernel in a list of these structures. | |
182 | * When board init is complete we run through the list and | |
183 | * tell the kernel the base addresses of the memory regions. | |
184 | * We use a MemoryListener to track mapping and unmapping of | |
185 | * the regions during board creation, so the board models don't | |
186 | * need to do anything special for the KVM case. | |
19d1bd0b EA |
187 | * |
188 | * Sometimes the address must be OR'ed with some other fields | |
189 | * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION). | |
190 | * @kda_addr_ormask aims at storing the value of those fields. | |
eb035b48 PM |
191 | */ |
192 | typedef struct KVMDevice { | |
193 | struct kvm_arm_device_addr kda; | |
1da41cc1 | 194 | struct kvm_device_attr kdattr; |
19d1bd0b | 195 | uint64_t kda_addr_ormask; |
eb035b48 PM |
196 | MemoryRegion *mr; |
197 | QSLIST_ENTRY(KVMDevice) entries; | |
1da41cc1 | 198 | int dev_fd; |
eb035b48 PM |
199 | } KVMDevice; |
200 | ||
201 | static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head; | |
202 | ||
203 | static void kvm_arm_devlistener_add(MemoryListener *listener, | |
204 | MemoryRegionSection *section) | |
205 | { | |
206 | KVMDevice *kd; | |
207 | ||
208 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
209 | if (section->mr == kd->mr) { | |
210 | kd->kda.addr = section->offset_within_address_space; | |
211 | } | |
212 | } | |
213 | } | |
214 | ||
215 | static void kvm_arm_devlistener_del(MemoryListener *listener, | |
216 | MemoryRegionSection *section) | |
217 | { | |
218 | KVMDevice *kd; | |
219 | ||
220 | QSLIST_FOREACH(kd, &kvm_devices_head, entries) { | |
221 | if (section->mr == kd->mr) { | |
222 | kd->kda.addr = -1; | |
223 | } | |
224 | } | |
225 | } | |
226 | ||
227 | static MemoryListener devlistener = { | |
228 | .region_add = kvm_arm_devlistener_add, | |
229 | .region_del = kvm_arm_devlistener_del, | |
230 | }; | |
231 | ||
1da41cc1 CD |
232 | static void kvm_arm_set_device_addr(KVMDevice *kd) |
233 | { | |
234 | struct kvm_device_attr *attr = &kd->kdattr; | |
235 | int ret; | |
236 | ||
237 | /* If the device control API is available and we have a device fd on the | |
238 | * KVMDevice struct, let's use the newer API | |
239 | */ | |
240 | if (kd->dev_fd >= 0) { | |
241 | uint64_t addr = kd->kda.addr; | |
19d1bd0b EA |
242 | |
243 | addr |= kd->kda_addr_ormask; | |
1da41cc1 CD |
244 | attr->addr = (uintptr_t)&addr; |
245 | ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr); | |
246 | } else { | |
247 | ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda); | |
248 | } | |
249 | ||
250 | if (ret < 0) { | |
251 | fprintf(stderr, "Failed to set device address: %s\n", | |
252 | strerror(-ret)); | |
253 | abort(); | |
254 | } | |
255 | } | |
256 | ||
eb035b48 PM |
257 | static void kvm_arm_machine_init_done(Notifier *notifier, void *data) |
258 | { | |
259 | KVMDevice *kd, *tkd; | |
260 | ||
eb035b48 PM |
261 | QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) { |
262 | if (kd->kda.addr != -1) { | |
1da41cc1 | 263 | kvm_arm_set_device_addr(kd); |
eb035b48 | 264 | } |
dfde4e6e | 265 | memory_region_unref(kd->mr); |
5ff9aaab | 266 | QSLIST_REMOVE_HEAD(&kvm_devices_head, entries); |
eb035b48 PM |
267 | g_free(kd); |
268 | } | |
0bbe4354 | 269 | memory_listener_unregister(&devlistener); |
eb035b48 PM |
270 | } |
271 | ||
272 | static Notifier notify = { | |
273 | .notify = kvm_arm_machine_init_done, | |
274 | }; | |
275 | ||
1da41cc1 | 276 | void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group, |
19d1bd0b | 277 | uint64_t attr, int dev_fd, uint64_t addr_ormask) |
eb035b48 PM |
278 | { |
279 | KVMDevice *kd; | |
280 | ||
281 | if (!kvm_irqchip_in_kernel()) { | |
282 | return; | |
283 | } | |
284 | ||
285 | if (QSLIST_EMPTY(&kvm_devices_head)) { | |
4344af65 | 286 | memory_listener_register(&devlistener, &address_space_memory); |
eb035b48 PM |
287 | qemu_add_machine_init_done_notifier(¬ify); |
288 | } | |
289 | kd = g_new0(KVMDevice, 1); | |
290 | kd->mr = mr; | |
291 | kd->kda.id = devid; | |
292 | kd->kda.addr = -1; | |
1da41cc1 CD |
293 | kd->kdattr.flags = 0; |
294 | kd->kdattr.group = group; | |
295 | kd->kdattr.attr = attr; | |
296 | kd->dev_fd = dev_fd; | |
19d1bd0b | 297 | kd->kda_addr_ormask = addr_ormask; |
eb035b48 | 298 | QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries); |
dfde4e6e | 299 | memory_region_ref(kd->mr); |
eb035b48 PM |
300 | } |
301 | ||
38df27c8 AB |
302 | static int compare_u64(const void *a, const void *b) |
303 | { | |
304 | if (*(uint64_t *)a > *(uint64_t *)b) { | |
305 | return 1; | |
306 | } | |
307 | if (*(uint64_t *)a < *(uint64_t *)b) { | |
308 | return -1; | |
309 | } | |
310 | return 0; | |
311 | } | |
312 | ||
c8a44709 | 313 | /* Initialize the ARMCPU cpreg list according to the kernel's |
38df27c8 AB |
314 | * definition of what CPU registers it knows about (and throw away |
315 | * the previous TCG-created cpreg list). | |
316 | */ | |
317 | int kvm_arm_init_cpreg_list(ARMCPU *cpu) | |
318 | { | |
319 | struct kvm_reg_list rl; | |
320 | struct kvm_reg_list *rlp; | |
321 | int i, ret, arraylen; | |
322 | CPUState *cs = CPU(cpu); | |
323 | ||
324 | rl.n = 0; | |
325 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl); | |
326 | if (ret != -E2BIG) { | |
327 | return ret; | |
328 | } | |
329 | rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t)); | |
330 | rlp->n = rl.n; | |
331 | ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp); | |
332 | if (ret) { | |
333 | goto out; | |
334 | } | |
335 | /* Sort the list we get back from the kernel, since cpreg_tuples | |
336 | * must be in strictly ascending order. | |
337 | */ | |
338 | qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64); | |
339 | ||
340 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
341 | if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) { | |
342 | continue; | |
343 | } | |
344 | switch (rlp->reg[i] & KVM_REG_SIZE_MASK) { | |
345 | case KVM_REG_SIZE_U32: | |
346 | case KVM_REG_SIZE_U64: | |
347 | break; | |
348 | default: | |
349 | fprintf(stderr, "Can't handle size of register in kernel list\n"); | |
350 | ret = -EINVAL; | |
351 | goto out; | |
352 | } | |
353 | ||
354 | arraylen++; | |
355 | } | |
356 | ||
357 | cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen); | |
358 | cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen); | |
359 | cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes, | |
360 | arraylen); | |
361 | cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values, | |
362 | arraylen); | |
363 | cpu->cpreg_array_len = arraylen; | |
364 | cpu->cpreg_vmstate_array_len = arraylen; | |
365 | ||
366 | for (i = 0, arraylen = 0; i < rlp->n; i++) { | |
367 | uint64_t regidx = rlp->reg[i]; | |
368 | if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) { | |
369 | continue; | |
370 | } | |
371 | cpu->cpreg_indexes[arraylen] = regidx; | |
372 | arraylen++; | |
373 | } | |
374 | assert(cpu->cpreg_array_len == arraylen); | |
375 | ||
376 | if (!write_kvmstate_to_list(cpu)) { | |
377 | /* Shouldn't happen unless kernel is inconsistent about | |
378 | * what registers exist. | |
379 | */ | |
380 | fprintf(stderr, "Initial read of kernel register state failed\n"); | |
381 | ret = -EINVAL; | |
382 | goto out; | |
383 | } | |
384 | ||
385 | out: | |
386 | g_free(rlp); | |
387 | return ret; | |
388 | } | |
389 | ||
ff047453 PM |
390 | bool write_kvmstate_to_list(ARMCPU *cpu) |
391 | { | |
392 | CPUState *cs = CPU(cpu); | |
393 | int i; | |
394 | bool ok = true; | |
395 | ||
396 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
397 | struct kvm_one_reg r; | |
398 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
399 | uint32_t v32; | |
400 | int ret; | |
401 | ||
402 | r.id = regidx; | |
403 | ||
404 | switch (regidx & KVM_REG_SIZE_MASK) { | |
405 | case KVM_REG_SIZE_U32: | |
406 | r.addr = (uintptr_t)&v32; | |
407 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
408 | if (!ret) { | |
409 | cpu->cpreg_values[i] = v32; | |
410 | } | |
411 | break; | |
412 | case KVM_REG_SIZE_U64: | |
413 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
414 | ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); | |
415 | break; | |
416 | default: | |
417 | abort(); | |
418 | } | |
419 | if (ret) { | |
420 | ok = false; | |
421 | } | |
422 | } | |
423 | return ok; | |
424 | } | |
425 | ||
4b7a6bf4 | 426 | bool write_list_to_kvmstate(ARMCPU *cpu, int level) |
ff047453 PM |
427 | { |
428 | CPUState *cs = CPU(cpu); | |
429 | int i; | |
430 | bool ok = true; | |
431 | ||
432 | for (i = 0; i < cpu->cpreg_array_len; i++) { | |
433 | struct kvm_one_reg r; | |
434 | uint64_t regidx = cpu->cpreg_indexes[i]; | |
435 | uint32_t v32; | |
436 | int ret; | |
437 | ||
4b7a6bf4 CD |
438 | if (kvm_arm_cpreg_level(regidx) > level) { |
439 | continue; | |
440 | } | |
441 | ||
ff047453 PM |
442 | r.id = regidx; |
443 | switch (regidx & KVM_REG_SIZE_MASK) { | |
444 | case KVM_REG_SIZE_U32: | |
445 | v32 = cpu->cpreg_values[i]; | |
446 | r.addr = (uintptr_t)&v32; | |
447 | break; | |
448 | case KVM_REG_SIZE_U64: | |
449 | r.addr = (uintptr_t)(cpu->cpreg_values + i); | |
450 | break; | |
451 | default: | |
452 | abort(); | |
453 | } | |
454 | ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); | |
455 | if (ret) { | |
456 | /* We might fail for "unknown register" and also for | |
457 | * "you tried to set a register which is constant with | |
458 | * a different value from what it actually contains". | |
459 | */ | |
460 | ok = false; | |
461 | } | |
462 | } | |
463 | return ok; | |
464 | } | |
465 | ||
38df27c8 AB |
466 | void kvm_arm_reset_vcpu(ARMCPU *cpu) |
467 | { | |
25f2895e CD |
468 | int ret; |
469 | ||
38df27c8 AB |
470 | /* Re-init VCPU so that all registers are set to |
471 | * their respective reset values. | |
472 | */ | |
25f2895e CD |
473 | ret = kvm_arm_vcpu_init(CPU(cpu)); |
474 | if (ret < 0) { | |
475 | fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret)); | |
476 | abort(); | |
477 | } | |
478 | if (!write_kvmstate_to_list(cpu)) { | |
479 | fprintf(stderr, "write_kvmstate_to_list failed\n"); | |
480 | abort(); | |
481 | } | |
38df27c8 AB |
482 | } |
483 | ||
1a1753f7 AB |
484 | /* |
485 | * Update KVM's MP_STATE based on what QEMU thinks it is | |
486 | */ | |
487 | int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu) | |
488 | { | |
489 | if (cap_has_mp_state) { | |
490 | struct kvm_mp_state mp_state = { | |
062ba099 AB |
491 | .mp_state = (cpu->power_state == PSCI_OFF) ? |
492 | KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE | |
1a1753f7 AB |
493 | }; |
494 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); | |
495 | if (ret) { | |
496 | fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n", | |
497 | __func__, ret, strerror(-ret)); | |
498 | return -1; | |
499 | } | |
500 | } | |
501 | ||
502 | return 0; | |
503 | } | |
504 | ||
505 | /* | |
506 | * Sync the KVM MP_STATE into QEMU | |
507 | */ | |
508 | int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu) | |
509 | { | |
510 | if (cap_has_mp_state) { | |
511 | struct kvm_mp_state mp_state; | |
512 | int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state); | |
513 | if (ret) { | |
514 | fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n", | |
515 | __func__, ret, strerror(-ret)); | |
516 | abort(); | |
517 | } | |
062ba099 AB |
518 | cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ? |
519 | PSCI_OFF : PSCI_ON; | |
1a1753f7 AB |
520 | } |
521 | ||
522 | return 0; | |
523 | } | |
524 | ||
494b00c7 CD |
525 | void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run) |
526 | { | |
527 | } | |
528 | ||
4c663752 | 529 | MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
494b00c7 | 530 | { |
5d721b78 AG |
531 | ARMCPU *cpu; |
532 | uint32_t switched_level; | |
533 | ||
534 | if (kvm_irqchip_in_kernel()) { | |
535 | /* | |
536 | * We only need to sync timer states with user-space interrupt | |
537 | * controllers, so return early and save cycles if we don't. | |
538 | */ | |
539 | return MEMTXATTRS_UNSPECIFIED; | |
540 | } | |
541 | ||
542 | cpu = ARM_CPU(cs); | |
543 | ||
544 | /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */ | |
545 | if (run->s.regs.device_irq_level != cpu->device_irq_level) { | |
546 | switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level; | |
547 | ||
548 | qemu_mutex_lock_iothread(); | |
549 | ||
550 | if (switched_level & KVM_ARM_DEV_EL1_VTIMER) { | |
551 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT], | |
552 | !!(run->s.regs.device_irq_level & | |
553 | KVM_ARM_DEV_EL1_VTIMER)); | |
554 | switched_level &= ~KVM_ARM_DEV_EL1_VTIMER; | |
555 | } | |
556 | ||
557 | if (switched_level & KVM_ARM_DEV_EL1_PTIMER) { | |
558 | qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS], | |
559 | !!(run->s.regs.device_irq_level & | |
560 | KVM_ARM_DEV_EL1_PTIMER)); | |
561 | switched_level &= ~KVM_ARM_DEV_EL1_PTIMER; | |
562 | } | |
563 | ||
b1659527 AJ |
564 | if (switched_level & KVM_ARM_DEV_PMU) { |
565 | qemu_set_irq(cpu->pmu_interrupt, | |
566 | !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU)); | |
567 | switched_level &= ~KVM_ARM_DEV_PMU; | |
568 | } | |
5d721b78 AG |
569 | |
570 | if (switched_level) { | |
571 | qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n", | |
572 | __func__, switched_level); | |
573 | } | |
574 | ||
575 | /* We also mark unknown levels as processed to not waste cycles */ | |
576 | cpu->device_irq_level = run->s.regs.device_irq_level; | |
577 | qemu_mutex_unlock_iothread(); | |
578 | } | |
579 | ||
4c663752 | 580 | return MEMTXATTRS_UNSPECIFIED; |
494b00c7 CD |
581 | } |
582 | ||
2ecb2027 | 583 | |
494b00c7 CD |
584 | int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
585 | { | |
2ecb2027 AB |
586 | int ret = 0; |
587 | ||
588 | switch (run->exit_reason) { | |
589 | case KVM_EXIT_DEBUG: | |
590 | if (kvm_arm_handle_debug(cs, &run->debug.arch)) { | |
591 | ret = EXCP_DEBUG; | |
592 | } /* otherwise return to guest */ | |
593 | break; | |
594 | default: | |
595 | qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n", | |
596 | __func__, run->exit_reason); | |
597 | break; | |
598 | } | |
599 | return ret; | |
494b00c7 CD |
600 | } |
601 | ||
494b00c7 CD |
602 | bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
603 | { | |
604 | return true; | |
605 | } | |
606 | ||
607 | int kvm_arch_process_async_events(CPUState *cs) | |
608 | { | |
609 | return 0; | |
610 | } | |
611 | ||
2ecb2027 AB |
612 | /* The #ifdef protections are until 32bit headers are imported and can |
613 | * be removed once both 32 and 64 bit reach feature parity. | |
614 | */ | |
494b00c7 CD |
615 | void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg) |
616 | { | |
2ecb2027 AB |
617 | #ifdef KVM_GUESTDBG_USE_SW_BP |
618 | if (kvm_sw_breakpoints_active(cs)) { | |
619 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; | |
620 | } | |
621 | #endif | |
e4482ab7 AB |
622 | #ifdef KVM_GUESTDBG_USE_HW |
623 | if (kvm_arm_hw_debug_active(cs)) { | |
624 | dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW; | |
625 | kvm_arm_copy_hw_debug_data(&dbg->arch); | |
626 | } | |
627 | #endif | |
494b00c7 | 628 | } |
b3a1c626 AK |
629 | |
630 | void kvm_arch_init_irq_routing(KVMState *s) | |
631 | { | |
632 | } | |
1da41cc1 | 633 | |
15eafc2e | 634 | int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) |
1da41cc1 | 635 | { |
15eafc2e PB |
636 | if (machine_kernel_irqchip_split(ms)) { |
637 | perror("-machine kernel_irqchip=split is not supported on ARM."); | |
638 | exit(1); | |
639 | } | |
640 | ||
1da41cc1 CD |
641 | /* If we can create the VGIC using the newer device control API, we |
642 | * let the device do this when it initializes itself, otherwise we | |
643 | * fall back to the old API */ | |
34e85cd9 PF |
644 | return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL); |
645 | } | |
1da41cc1 | 646 | |
34e85cd9 PF |
647 | int kvm_arm_vgic_probe(void) |
648 | { | |
649 | if (kvm_create_device(kvm_state, | |
650 | KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) { | |
651 | return 3; | |
652 | } else if (kvm_create_device(kvm_state, | |
653 | KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) { | |
654 | return 2; | |
655 | } else { | |
656 | return 0; | |
1da41cc1 | 657 | } |
1da41cc1 | 658 | } |
9e03a040 FB |
659 | |
660 | int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, | |
dc9f06ca | 661 | uint64_t address, uint32_t data, PCIDevice *dev) |
9e03a040 | 662 | { |
b05c81d2 EA |
663 | AddressSpace *as = pci_device_iommu_address_space(dev); |
664 | hwaddr xlat, len, doorbell_gpa; | |
665 | MemoryRegionSection mrs; | |
666 | MemoryRegion *mr; | |
667 | int ret = 1; | |
668 | ||
669 | if (as == &address_space_memory) { | |
670 | return 0; | |
671 | } | |
672 | ||
673 | /* MSI doorbell address is translated by an IOMMU */ | |
674 | ||
675 | rcu_read_lock(); | |
bc6b1cec PM |
676 | mr = address_space_translate(as, address, &xlat, &len, true, |
677 | MEMTXATTRS_UNSPECIFIED); | |
b05c81d2 EA |
678 | if (!mr) { |
679 | goto unlock; | |
680 | } | |
681 | mrs = memory_region_find(mr, xlat, 1); | |
682 | if (!mrs.mr) { | |
683 | goto unlock; | |
684 | } | |
685 | ||
686 | doorbell_gpa = mrs.offset_within_address_space; | |
687 | memory_region_unref(mrs.mr); | |
688 | ||
689 | route->u.msi.address_lo = doorbell_gpa; | |
690 | route->u.msi.address_hi = doorbell_gpa >> 32; | |
691 | ||
692 | trace_kvm_arm_fixup_msi_route(address, doorbell_gpa); | |
693 | ||
694 | ret = 0; | |
695 | ||
696 | unlock: | |
697 | rcu_read_unlock(); | |
698 | return ret; | |
9e03a040 | 699 | } |
1850b6b7 | 700 | |
38d87493 PX |
701 | int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
702 | int vector, PCIDevice *dev) | |
703 | { | |
704 | return 0; | |
705 | } | |
706 | ||
707 | int kvm_arch_release_virq_post(int virq) | |
708 | { | |
709 | return 0; | |
710 | } | |
711 | ||
1850b6b7 EA |
712 | int kvm_arch_msi_data_to_gsi(uint32_t data) |
713 | { | |
714 | return (data - 32) & 0xffff; | |
715 | } |