]> Git Repo - qemu.git/blame - linux-user/elfload.c
libqtest: Inline g_assert_no_errno()
[qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475 * to our VFP_FP16 feature bit.
476 */
477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
479
480 return hwcaps;
481}
afce2927 482
ad6919dc
PM
483static uint32_t get_elf_hwcap2(void)
484{
485 ARMCPU *cpu = ARM_CPU(thread_cpu);
486 uint32_t hwcaps = 0;
487
488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493 return hwcaps;
494}
495
496#undef GET_FEATURE
497
24e76ff0
PM
498#else
499/* 64 bit ARM definitions */
500#define ELF_START_MMAP 0x80000000
501
b597c3f7 502#define ELF_ARCH EM_AARCH64
24e76ff0
PM
503#define ELF_CLASS ELFCLASS64
504#define ELF_PLATFORM "aarch64"
505
506static inline void init_thread(struct target_pt_regs *regs,
507 struct image_info *infop)
508{
509 abi_long stack = infop->start_stack;
510 memset(regs, 0, sizeof(*regs));
511
512 regs->pc = infop->entry & ~0x3ULL;
513 regs->sp = stack;
514}
515
516#define ELF_NREG 34
517typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
518
519static void elf_core_copy_regs(target_elf_gregset_t *regs,
520 const CPUARMState *env)
521{
522 int i;
523
524 for (i = 0; i < 32; i++) {
525 (*regs)[i] = tswapreg(env->xregs[i]);
526 }
527 (*regs)[32] = tswapreg(env->pc);
528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529}
530
531#define USE_ELF_CORE_DUMP
532#define ELF_EXEC_PAGESIZE 4096
533
534enum {
535 ARM_HWCAP_A64_FP = 1 << 0,
536 ARM_HWCAP_A64_ASIMD = 1 << 1,
537 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
538 ARM_HWCAP_A64_AES = 1 << 3,
539 ARM_HWCAP_A64_PMULL = 1 << 4,
540 ARM_HWCAP_A64_SHA1 = 1 << 5,
541 ARM_HWCAP_A64_SHA2 = 1 << 6,
542 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
543 ARM_HWCAP_A64_ATOMICS = 1 << 8,
544 ARM_HWCAP_A64_FPHP = 1 << 9,
545 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
546 ARM_HWCAP_A64_CPUID = 1 << 11,
547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
548 ARM_HWCAP_A64_JSCVT = 1 << 13,
549 ARM_HWCAP_A64_FCMA = 1 << 14,
550 ARM_HWCAP_A64_LRCPC = 1 << 15,
551 ARM_HWCAP_A64_DCPOP = 1 << 16,
552 ARM_HWCAP_A64_SHA3 = 1 << 17,
553 ARM_HWCAP_A64_SM3 = 1 << 18,
554 ARM_HWCAP_A64_SM4 = 1 << 19,
555 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
556 ARM_HWCAP_A64_SHA512 = 1 << 21,
557 ARM_HWCAP_A64_SVE = 1 << 22,
24e76ff0
PM
558};
559
560#define ELF_HWCAP get_elf_hwcap()
561
562static uint32_t get_elf_hwcap(void)
563{
564 ARMCPU *cpu = ARM_CPU(thread_cpu);
565 uint32_t hwcaps = 0;
566
567 hwcaps |= ARM_HWCAP_A64_FP;
568 hwcaps |= ARM_HWCAP_A64_ASIMD;
569
570 /* probe for the extra features */
571#define GET_FEATURE(feat, hwcap) \
572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
955f56d4
AB
578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
201b19d5
PM
582 GET_FEATURE(ARM_FEATURE_V8_FP16,
583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
68412d2e 584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
1dc81c15 585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
26c470a7 586 GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
0438f037 587 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
802ac0e1 588 GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
24e76ff0
PM
589#undef GET_FEATURE
590
591 return hwcaps;
592}
593
594#endif /* not TARGET_AARCH64 */
595#endif /* TARGET_ARM */
30ac07d4 596
853d6f7a 597#ifdef TARGET_SPARC
a315a145 598#ifdef TARGET_SPARC64
853d6f7a
FB
599
600#define ELF_START_MMAP 0x80000000
cf973e46
AT
601#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 603#ifndef TARGET_ABI32
cb33da57 604#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
605#else
606#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607#endif
853d6f7a 608
a315a145 609#define ELF_CLASS ELFCLASS64
5ef54116
FB
610#define ELF_ARCH EM_SPARCV9
611
d97ef72e 612#define STACK_BIAS 2047
a315a145 613
d97ef72e
RH
614static inline void init_thread(struct target_pt_regs *regs,
615 struct image_info *infop)
a315a145 616{
992f48a0 617#ifndef TARGET_ABI32
a315a145 618 regs->tstate = 0;
992f48a0 619#endif
a315a145
FB
620 regs->pc = infop->entry;
621 regs->npc = regs->pc + 4;
622 regs->y = 0;
992f48a0
BS
623#ifdef TARGET_ABI32
624 regs->u_regs[14] = infop->start_stack - 16 * 4;
625#else
cb33da57
BS
626 if (personality(infop->personality) == PER_LINUX32)
627 regs->u_regs[14] = infop->start_stack - 16 * 4;
628 else
629 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 630#endif
a315a145
FB
631}
632
633#else
634#define ELF_START_MMAP 0x80000000
cf973e46
AT
635#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636 | HWCAP_SPARC_MULDIV)
a315a145 637
853d6f7a 638#define ELF_CLASS ELFCLASS32
853d6f7a
FB
639#define ELF_ARCH EM_SPARC
640
d97ef72e
RH
641static inline void init_thread(struct target_pt_regs *regs,
642 struct image_info *infop)
853d6f7a 643{
f5155289
FB
644 regs->psr = 0;
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
648 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
649}
650
a315a145 651#endif
853d6f7a
FB
652#endif
653
67867308
FB
654#ifdef TARGET_PPC
655
4ecd4d16 656#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
657#define ELF_START_MMAP 0x80000000
658
e85e7c6e 659#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
660
661#define elf_check_arch(x) ( (x) == EM_PPC64 )
662
d97ef72e 663#define ELF_CLASS ELFCLASS64
84409ddb
JM
664
665#else
666
d97ef72e 667#define ELF_CLASS ELFCLASS32
84409ddb
JM
668
669#endif
670
d97ef72e 671#define ELF_ARCH EM_PPC
67867308 672
df84e4f3
NF
673/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674 See arch/powerpc/include/asm/cputable.h. */
675enum {
3efa9a67 676 QEMU_PPC_FEATURE_32 = 0x80000000,
677 QEMU_PPC_FEATURE_64 = 0x40000000,
678 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691 QEMU_PPC_FEATURE_CELL = 0x00010000,
692 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693 QEMU_PPC_FEATURE_SMT = 0x00004000,
694 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696 QEMU_PPC_FEATURE_PA6T = 0x00000800,
697 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
702
703 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
705
706 /* Feature definitions in AT_HWCAP2. */
707 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
be0c46d4 713 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
df84e4f3
NF
714};
715
716#define ELF_HWCAP get_elf_hwcap()
717
718static uint32_t get_elf_hwcap(void)
719{
a2247f8e 720 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
721 uint32_t features = 0;
722
723 /* We don't have to be terribly complete here; the high points are
724 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 725#define GET_FEATURE(flag, feature) \
a2247f8e 726 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
727#define GET_FEATURE2(flags, feature) \
728 do { \
729 if ((cpu->env.insns_flags2 & flags) == flags) { \
730 features |= feature; \
731 } \
732 } while (0)
3efa9a67 733 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
734 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
735 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
736 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
737 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
738 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
739 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
740 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
741 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
742 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
743 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
744 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
745 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 746#undef GET_FEATURE
0e019746 747#undef GET_FEATURE2
df84e4f3
NF
748
749 return features;
750}
751
a60438dd
TM
752#define ELF_HWCAP2 get_elf_hwcap2()
753
754static uint32_t get_elf_hwcap2(void)
755{
756 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
757 uint32_t features = 0;
758
759#define GET_FEATURE(flag, feature) \
760 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
761#define GET_FEATURE2(flag, feature) \
762 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
763
764 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
765 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
766 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
767 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
be0c46d4 768 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
a60438dd
TM
769
770#undef GET_FEATURE
771#undef GET_FEATURE2
772
773 return features;
774}
775
f5155289
FB
776/*
777 * The requirements here are:
778 * - keep the final alignment of sp (sp & 0xf)
779 * - make sure the 32-bit value at the first 16 byte aligned position of
780 * AUXV is greater than 16 for glibc compatibility.
781 * AT_IGNOREPPC is used for that.
782 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
783 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
784 */
0bccf03d 785#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
786#define ARCH_DLINFO \
787 do { \
623e250a 788 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 789 /* \
82991bed
PM
790 * Handle glibc compatibility: these magic entries must \
791 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
792 */ \
793 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
794 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
795 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
796 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
797 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 798 } while (0)
f5155289 799
67867308
FB
800static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
801{
67867308 802 _regs->gpr[1] = infop->start_stack;
e85e7c6e 803#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 804 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
805 uint64_t val;
806 get_user_u64(val, infop->entry + 8);
807 _regs->gpr[2] = val + infop->load_bias;
808 get_user_u64(val, infop->entry);
809 infop->entry = val + infop->load_bias;
d90b94cd
DK
810 } else {
811 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
812 }
84409ddb 813#endif
67867308
FB
814 _regs->nip = infop->entry;
815}
816
e2f3e741
NF
817/* See linux kernel: arch/powerpc/include/asm/elf.h. */
818#define ELF_NREG 48
819typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
820
05390248 821static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
822{
823 int i;
824 target_ulong ccr = 0;
825
826 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 827 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
828 }
829
86cd7b2d
PB
830 (*regs)[32] = tswapreg(env->nip);
831 (*regs)[33] = tswapreg(env->msr);
832 (*regs)[35] = tswapreg(env->ctr);
833 (*regs)[36] = tswapreg(env->lr);
834 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
835
836 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
837 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
838 }
86cd7b2d 839 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
840}
841
842#define USE_ELF_CORE_DUMP
d97ef72e 843#define ELF_EXEC_PAGESIZE 4096
67867308
FB
844
845#endif
846
048f6b4d
FB
847#ifdef TARGET_MIPS
848
849#define ELF_START_MMAP 0x80000000
850
388bb21a
TS
851#ifdef TARGET_MIPS64
852#define ELF_CLASS ELFCLASS64
853#else
048f6b4d 854#define ELF_CLASS ELFCLASS32
388bb21a 855#endif
048f6b4d
FB
856#define ELF_ARCH EM_MIPS
857
f72541f3
AM
858#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
859
d97ef72e
RH
860static inline void init_thread(struct target_pt_regs *regs,
861 struct image_info *infop)
048f6b4d 862{
623a930e 863 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
864 regs->cp0_epc = infop->entry;
865 regs->regs[29] = infop->start_stack;
866}
867
51e52606
NF
868/* See linux kernel: arch/mips/include/asm/elf.h. */
869#define ELF_NREG 45
870typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
871
872/* See linux kernel: arch/mips/include/asm/reg.h. */
873enum {
874#ifdef TARGET_MIPS64
875 TARGET_EF_R0 = 0,
876#else
877 TARGET_EF_R0 = 6,
878#endif
879 TARGET_EF_R26 = TARGET_EF_R0 + 26,
880 TARGET_EF_R27 = TARGET_EF_R0 + 27,
881 TARGET_EF_LO = TARGET_EF_R0 + 32,
882 TARGET_EF_HI = TARGET_EF_R0 + 33,
883 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
884 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
885 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
886 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
887};
888
889/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 890static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
891{
892 int i;
893
894 for (i = 0; i < TARGET_EF_R0; i++) {
895 (*regs)[i] = 0;
896 }
897 (*regs)[TARGET_EF_R0] = 0;
898
899 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 900 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
901 }
902
903 (*regs)[TARGET_EF_R26] = 0;
904 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
905 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
906 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
907 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
908 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
909 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
910 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
911}
912
913#define USE_ELF_CORE_DUMP
388bb21a
TS
914#define ELF_EXEC_PAGESIZE 4096
915
46a1ee4f
JC
916/* See arch/mips/include/uapi/asm/hwcap.h. */
917enum {
918 HWCAP_MIPS_R6 = (1 << 0),
919 HWCAP_MIPS_MSA = (1 << 1),
920};
921
922#define ELF_HWCAP get_elf_hwcap()
923
924static uint32_t get_elf_hwcap(void)
925{
926 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
927 uint32_t hwcaps = 0;
928
929#define GET_FEATURE(flag, hwcap) \
930 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
931
932 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
933 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
934
935#undef GET_FEATURE
936
937 return hwcaps;
938}
939
048f6b4d
FB
940#endif /* TARGET_MIPS */
941
b779e29e
EI
942#ifdef TARGET_MICROBLAZE
943
944#define ELF_START_MMAP 0x80000000
945
0d5d4699 946#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
947
948#define ELF_CLASS ELFCLASS32
0d5d4699 949#define ELF_ARCH EM_MICROBLAZE
b779e29e 950
d97ef72e
RH
951static inline void init_thread(struct target_pt_regs *regs,
952 struct image_info *infop)
b779e29e
EI
953{
954 regs->pc = infop->entry;
955 regs->r1 = infop->start_stack;
956
957}
958
b779e29e
EI
959#define ELF_EXEC_PAGESIZE 4096
960
e4cbd44d
EI
961#define USE_ELF_CORE_DUMP
962#define ELF_NREG 38
963typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
964
965/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 966static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
967{
968 int i, pos = 0;
969
970 for (i = 0; i < 32; i++) {
86cd7b2d 971 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
972 }
973
974 for (i = 0; i < 6; i++) {
86cd7b2d 975 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
976 }
977}
978
b779e29e
EI
979#endif /* TARGET_MICROBLAZE */
980
a0a839b6
MV
981#ifdef TARGET_NIOS2
982
983#define ELF_START_MMAP 0x80000000
984
985#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
986
987#define ELF_CLASS ELFCLASS32
988#define ELF_ARCH EM_ALTERA_NIOS2
989
990static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
991{
992 regs->ea = infop->entry;
993 regs->sp = infop->start_stack;
994 regs->estatus = 0x3;
995}
996
997#define ELF_EXEC_PAGESIZE 4096
998
999#define USE_ELF_CORE_DUMP
1000#define ELF_NREG 49
1001typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1002
1003/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1004static void elf_core_copy_regs(target_elf_gregset_t *regs,
1005 const CPUNios2State *env)
1006{
1007 int i;
1008
1009 (*regs)[0] = -1;
1010 for (i = 1; i < 8; i++) /* r0-r7 */
1011 (*regs)[i] = tswapreg(env->regs[i + 7]);
1012
1013 for (i = 8; i < 16; i++) /* r8-r15 */
1014 (*regs)[i] = tswapreg(env->regs[i - 8]);
1015
1016 for (i = 16; i < 24; i++) /* r16-r23 */
1017 (*regs)[i] = tswapreg(env->regs[i + 7]);
1018 (*regs)[24] = -1; /* R_ET */
1019 (*regs)[25] = -1; /* R_BT */
1020 (*regs)[26] = tswapreg(env->regs[R_GP]);
1021 (*regs)[27] = tswapreg(env->regs[R_SP]);
1022 (*regs)[28] = tswapreg(env->regs[R_FP]);
1023 (*regs)[29] = tswapreg(env->regs[R_EA]);
1024 (*regs)[30] = -1; /* R_SSTATUS */
1025 (*regs)[31] = tswapreg(env->regs[R_RA]);
1026
1027 (*regs)[32] = tswapreg(env->regs[R_PC]);
1028
1029 (*regs)[33] = -1; /* R_STATUS */
1030 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1031
1032 for (i = 35; i < 49; i++) /* ... */
1033 (*regs)[i] = -1;
1034}
1035
1036#endif /* TARGET_NIOS2 */
1037
d962783e
JL
1038#ifdef TARGET_OPENRISC
1039
1040#define ELF_START_MMAP 0x08000000
1041
d962783e
JL
1042#define ELF_ARCH EM_OPENRISC
1043#define ELF_CLASS ELFCLASS32
1044#define ELF_DATA ELFDATA2MSB
1045
1046static inline void init_thread(struct target_pt_regs *regs,
1047 struct image_info *infop)
1048{
1049 regs->pc = infop->entry;
1050 regs->gpr[1] = infop->start_stack;
1051}
1052
1053#define USE_ELF_CORE_DUMP
1054#define ELF_EXEC_PAGESIZE 8192
1055
1056/* See linux kernel arch/openrisc/include/asm/elf.h. */
1057#define ELF_NREG 34 /* gprs and pc, sr */
1058typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1059
1060static void elf_core_copy_regs(target_elf_gregset_t *regs,
1061 const CPUOpenRISCState *env)
1062{
1063 int i;
1064
1065 for (i = 0; i < 32; i++) {
d89e71e8 1066 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1067 }
86cd7b2d 1068 (*regs)[32] = tswapreg(env->pc);
84775c43 1069 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1070}
1071#define ELF_HWCAP 0
1072#define ELF_PLATFORM NULL
1073
1074#endif /* TARGET_OPENRISC */
1075
fdf9b3e8
FB
1076#ifdef TARGET_SH4
1077
1078#define ELF_START_MMAP 0x80000000
1079
fdf9b3e8 1080#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1081#define ELF_ARCH EM_SH
1082
d97ef72e
RH
1083static inline void init_thread(struct target_pt_regs *regs,
1084 struct image_info *infop)
fdf9b3e8 1085{
d97ef72e
RH
1086 /* Check other registers XXXXX */
1087 regs->pc = infop->entry;
1088 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1089}
1090
7631c97e
NF
1091/* See linux kernel: arch/sh/include/asm/elf.h. */
1092#define ELF_NREG 23
1093typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1094
1095/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1096enum {
1097 TARGET_REG_PC = 16,
1098 TARGET_REG_PR = 17,
1099 TARGET_REG_SR = 18,
1100 TARGET_REG_GBR = 19,
1101 TARGET_REG_MACH = 20,
1102 TARGET_REG_MACL = 21,
1103 TARGET_REG_SYSCALL = 22
1104};
1105
d97ef72e 1106static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1107 const CPUSH4State *env)
7631c97e
NF
1108{
1109 int i;
1110
1111 for (i = 0; i < 16; i++) {
72cd500b 1112 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1113 }
1114
86cd7b2d
PB
1115 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1116 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1117 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1118 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1119 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1120 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1121 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1122}
1123
1124#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1125#define ELF_EXEC_PAGESIZE 4096
1126
e42fd944
RH
1127enum {
1128 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1129 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1130 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1131 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1132 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1133 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1134 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1135 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1136 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1137 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1138};
1139
1140#define ELF_HWCAP get_elf_hwcap()
1141
1142static uint32_t get_elf_hwcap(void)
1143{
1144 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1145 uint32_t hwcap = 0;
1146
1147 hwcap |= SH_CPU_HAS_FPU;
1148
1149 if (cpu->env.features & SH_FEATURE_SH4A) {
1150 hwcap |= SH_CPU_HAS_LLSC;
1151 }
1152
1153 return hwcap;
1154}
1155
fdf9b3e8
FB
1156#endif
1157
48733d19
TS
1158#ifdef TARGET_CRIS
1159
1160#define ELF_START_MMAP 0x80000000
1161
48733d19 1162#define ELF_CLASS ELFCLASS32
48733d19
TS
1163#define ELF_ARCH EM_CRIS
1164
d97ef72e
RH
1165static inline void init_thread(struct target_pt_regs *regs,
1166 struct image_info *infop)
48733d19 1167{
d97ef72e 1168 regs->erp = infop->entry;
48733d19
TS
1169}
1170
48733d19
TS
1171#define ELF_EXEC_PAGESIZE 8192
1172
1173#endif
1174
e6e5906b
PB
1175#ifdef TARGET_M68K
1176
1177#define ELF_START_MMAP 0x80000000
1178
d97ef72e 1179#define ELF_CLASS ELFCLASS32
d97ef72e 1180#define ELF_ARCH EM_68K
e6e5906b
PB
1181
1182/* ??? Does this need to do anything?
d97ef72e 1183 #define ELF_PLAT_INIT(_r) */
e6e5906b 1184
d97ef72e
RH
1185static inline void init_thread(struct target_pt_regs *regs,
1186 struct image_info *infop)
e6e5906b
PB
1187{
1188 regs->usp = infop->start_stack;
1189 regs->sr = 0;
1190 regs->pc = infop->entry;
1191}
1192
7a93cc55
NF
1193/* See linux kernel: arch/m68k/include/asm/elf.h. */
1194#define ELF_NREG 20
1195typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1196
05390248 1197static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1198{
86cd7b2d
PB
1199 (*regs)[0] = tswapreg(env->dregs[1]);
1200 (*regs)[1] = tswapreg(env->dregs[2]);
1201 (*regs)[2] = tswapreg(env->dregs[3]);
1202 (*regs)[3] = tswapreg(env->dregs[4]);
1203 (*regs)[4] = tswapreg(env->dregs[5]);
1204 (*regs)[5] = tswapreg(env->dregs[6]);
1205 (*regs)[6] = tswapreg(env->dregs[7]);
1206 (*regs)[7] = tswapreg(env->aregs[0]);
1207 (*regs)[8] = tswapreg(env->aregs[1]);
1208 (*regs)[9] = tswapreg(env->aregs[2]);
1209 (*regs)[10] = tswapreg(env->aregs[3]);
1210 (*regs)[11] = tswapreg(env->aregs[4]);
1211 (*regs)[12] = tswapreg(env->aregs[5]);
1212 (*regs)[13] = tswapreg(env->aregs[6]);
1213 (*regs)[14] = tswapreg(env->dregs[0]);
1214 (*regs)[15] = tswapreg(env->aregs[7]);
1215 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1216 (*regs)[17] = tswapreg(env->sr);
1217 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1218 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1219}
1220
1221#define USE_ELF_CORE_DUMP
d97ef72e 1222#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1223
1224#endif
1225
7a3148a9
JM
1226#ifdef TARGET_ALPHA
1227
1228#define ELF_START_MMAP (0x30000000000ULL)
1229
7a3148a9 1230#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1231#define ELF_ARCH EM_ALPHA
1232
d97ef72e
RH
1233static inline void init_thread(struct target_pt_regs *regs,
1234 struct image_info *infop)
7a3148a9
JM
1235{
1236 regs->pc = infop->entry;
1237 regs->ps = 8;
1238 regs->usp = infop->start_stack;
7a3148a9
JM
1239}
1240
7a3148a9
JM
1241#define ELF_EXEC_PAGESIZE 8192
1242
1243#endif /* TARGET_ALPHA */
1244
a4c075f1
UH
1245#ifdef TARGET_S390X
1246
1247#define ELF_START_MMAP (0x20000000000ULL)
1248
a4c075f1
UH
1249#define ELF_CLASS ELFCLASS64
1250#define ELF_DATA ELFDATA2MSB
1251#define ELF_ARCH EM_S390
1252
1253static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1254{
1255 regs->psw.addr = infop->entry;
1256 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1257 regs->gprs[15] = infop->start_stack;
1258}
1259
1260#endif /* TARGET_S390X */
1261
b16189b2
CG
1262#ifdef TARGET_TILEGX
1263
1264/* 42 bits real used address, a half for user mode */
1265#define ELF_START_MMAP (0x00000020000000000ULL)
1266
1267#define elf_check_arch(x) ((x) == EM_TILEGX)
1268
1269#define ELF_CLASS ELFCLASS64
1270#define ELF_DATA ELFDATA2LSB
1271#define ELF_ARCH EM_TILEGX
1272
1273static inline void init_thread(struct target_pt_regs *regs,
1274 struct image_info *infop)
1275{
1276 regs->pc = infop->entry;
1277 regs->sp = infop->start_stack;
1278
1279}
1280
1281#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1282
1283#endif /* TARGET_TILEGX */
1284
47ae93cd
MC
1285#ifdef TARGET_RISCV
1286
1287#define ELF_START_MMAP 0x80000000
1288#define ELF_ARCH EM_RISCV
1289
1290#ifdef TARGET_RISCV32
1291#define ELF_CLASS ELFCLASS32
1292#else
1293#define ELF_CLASS ELFCLASS64
1294#endif
1295
1296static inline void init_thread(struct target_pt_regs *regs,
1297 struct image_info *infop)
1298{
1299 regs->sepc = infop->entry;
1300 regs->sp = infop->start_stack;
1301}
1302
1303#define ELF_EXEC_PAGESIZE 4096
1304
1305#endif /* TARGET_RISCV */
1306
7c248bcd
RH
1307#ifdef TARGET_HPPA
1308
1309#define ELF_START_MMAP 0x80000000
1310#define ELF_CLASS ELFCLASS32
1311#define ELF_ARCH EM_PARISC
1312#define ELF_PLATFORM "PARISC"
1313#define STACK_GROWS_DOWN 0
1314#define STACK_ALIGNMENT 64
1315
1316static inline void init_thread(struct target_pt_regs *regs,
1317 struct image_info *infop)
1318{
1319 regs->iaoq[0] = infop->entry;
1320 regs->iaoq[1] = infop->entry + 4;
1321 regs->gr[23] = 0;
1322 regs->gr[24] = infop->arg_start;
1323 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1324 /* The top-of-stack contains a linkage buffer. */
1325 regs->gr[30] = infop->start_stack + 64;
1326 regs->gr[31] = infop->entry;
1327}
1328
1329#endif /* TARGET_HPPA */
1330
ba7651fb
MF
1331#ifdef TARGET_XTENSA
1332
1333#define ELF_START_MMAP 0x20000000
1334
1335#define ELF_CLASS ELFCLASS32
1336#define ELF_ARCH EM_XTENSA
1337
1338static inline void init_thread(struct target_pt_regs *regs,
1339 struct image_info *infop)
1340{
1341 regs->windowbase = 0;
1342 regs->windowstart = 1;
1343 regs->areg[1] = infop->start_stack;
1344 regs->pc = infop->entry;
1345}
1346
1347/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1348#define ELF_NREG 128
1349typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1350
1351enum {
1352 TARGET_REG_PC,
1353 TARGET_REG_PS,
1354 TARGET_REG_LBEG,
1355 TARGET_REG_LEND,
1356 TARGET_REG_LCOUNT,
1357 TARGET_REG_SAR,
1358 TARGET_REG_WINDOWSTART,
1359 TARGET_REG_WINDOWBASE,
1360 TARGET_REG_THREADPTR,
1361 TARGET_REG_AR0 = 64,
1362};
1363
1364static void elf_core_copy_regs(target_elf_gregset_t *regs,
1365 const CPUXtensaState *env)
1366{
1367 unsigned i;
1368
1369 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1370 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1371 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1372 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1373 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1374 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1375 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1376 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1377 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1378 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1379 for (i = 0; i < env->config->nareg; ++i) {
1380 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1381 }
1382}
1383
1384#define USE_ELF_CORE_DUMP
1385#define ELF_EXEC_PAGESIZE 4096
1386
1387#endif /* TARGET_XTENSA */
1388
15338fd7
FB
1389#ifndef ELF_PLATFORM
1390#define ELF_PLATFORM (NULL)
1391#endif
1392
75be901c
PC
1393#ifndef ELF_MACHINE
1394#define ELF_MACHINE ELF_ARCH
1395#endif
1396
d276a604
PC
1397#ifndef elf_check_arch
1398#define elf_check_arch(x) ((x) == ELF_ARCH)
1399#endif
1400
15338fd7
FB
1401#ifndef ELF_HWCAP
1402#define ELF_HWCAP 0
1403#endif
1404
7c4ee5bc
RH
1405#ifndef STACK_GROWS_DOWN
1406#define STACK_GROWS_DOWN 1
1407#endif
1408
1409#ifndef STACK_ALIGNMENT
1410#define STACK_ALIGNMENT 16
1411#endif
1412
992f48a0 1413#ifdef TARGET_ABI32
cb33da57 1414#undef ELF_CLASS
992f48a0 1415#define ELF_CLASS ELFCLASS32
cb33da57
BS
1416#undef bswaptls
1417#define bswaptls(ptr) bswap32s(ptr)
1418#endif
1419
31e31b8a 1420#include "elf.h"
09bfb054 1421
09bfb054
FB
1422struct exec
1423{
d97ef72e
RH
1424 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1425 unsigned int a_text; /* length of text, in bytes */
1426 unsigned int a_data; /* length of data, in bytes */
1427 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1428 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1429 unsigned int a_entry; /* start address */
1430 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1431 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1432};
1433
1434
1435#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1436#define OMAGIC 0407
1437#define NMAGIC 0410
1438#define ZMAGIC 0413
1439#define QMAGIC 0314
1440
31e31b8a 1441/* Necessary parameters */
94894ff2
SB
1442#define TARGET_ELF_EXEC_PAGESIZE \
1443 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1444 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1445#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1446#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1447 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1448#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1449
444cd5c3 1450#define DLINFO_ITEMS 15
31e31b8a 1451
09bfb054
FB
1452static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1453{
d97ef72e 1454 memcpy(to, from, n);
09bfb054 1455}
d691f669 1456
31e31b8a 1457#ifdef BSWAP_NEEDED
92a31b1f 1458static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1459{
d97ef72e
RH
1460 bswap16s(&ehdr->e_type); /* Object file type */
1461 bswap16s(&ehdr->e_machine); /* Architecture */
1462 bswap32s(&ehdr->e_version); /* Object file version */
1463 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1464 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1465 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1466 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1467 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1468 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1469 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1470 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1471 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1472 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1473}
1474
991f8f0c 1475static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1476{
991f8f0c
RH
1477 int i;
1478 for (i = 0; i < phnum; ++i, ++phdr) {
1479 bswap32s(&phdr->p_type); /* Segment type */
1480 bswap32s(&phdr->p_flags); /* Segment flags */
1481 bswaptls(&phdr->p_offset); /* Segment file offset */
1482 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1483 bswaptls(&phdr->p_paddr); /* Segment physical address */
1484 bswaptls(&phdr->p_filesz); /* Segment size in file */
1485 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1486 bswaptls(&phdr->p_align); /* Segment alignment */
1487 }
31e31b8a 1488}
689f936f 1489
991f8f0c 1490static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1491{
991f8f0c
RH
1492 int i;
1493 for (i = 0; i < shnum; ++i, ++shdr) {
1494 bswap32s(&shdr->sh_name);
1495 bswap32s(&shdr->sh_type);
1496 bswaptls(&shdr->sh_flags);
1497 bswaptls(&shdr->sh_addr);
1498 bswaptls(&shdr->sh_offset);
1499 bswaptls(&shdr->sh_size);
1500 bswap32s(&shdr->sh_link);
1501 bswap32s(&shdr->sh_info);
1502 bswaptls(&shdr->sh_addralign);
1503 bswaptls(&shdr->sh_entsize);
1504 }
689f936f
FB
1505}
1506
7a3148a9 1507static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1508{
1509 bswap32s(&sym->st_name);
7a3148a9
JM
1510 bswaptls(&sym->st_value);
1511 bswaptls(&sym->st_size);
689f936f
FB
1512 bswap16s(&sym->st_shndx);
1513}
991f8f0c
RH
1514#else
1515static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1516static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1517static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1518static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1519#endif
1520
edf8e2af 1521#ifdef USE_ELF_CORE_DUMP
9349b4f9 1522static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1523#endif /* USE_ELF_CORE_DUMP */
682674b8 1524static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1525
9058abdd
RH
1526/* Verify the portions of EHDR within E_IDENT for the target.
1527 This can be performed before bswapping the entire header. */
1528static bool elf_check_ident(struct elfhdr *ehdr)
1529{
1530 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1531 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1532 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1533 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1534 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1535 && ehdr->e_ident[EI_DATA] == ELF_DATA
1536 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1537}
1538
1539/* Verify the portions of EHDR outside of E_IDENT for the target.
1540 This has to wait until after bswapping the header. */
1541static bool elf_check_ehdr(struct elfhdr *ehdr)
1542{
1543 return (elf_check_arch(ehdr->e_machine)
1544 && ehdr->e_ehsize == sizeof(struct elfhdr)
1545 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1546 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1547}
1548
31e31b8a 1549/*
e5fe0c52 1550 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1551 * memory to free pages in kernel mem. These are in a format ready
1552 * to be put directly into the top of new user memory.
1553 *
1554 */
59baae9a
SB
1555static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1556 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1557{
59baae9a 1558 char *tmp;
7c4ee5bc 1559 int len, i;
59baae9a 1560 abi_ulong top = p;
31e31b8a
FB
1561
1562 if (!p) {
d97ef72e 1563 return 0; /* bullet-proofing */
31e31b8a 1564 }
59baae9a 1565
7c4ee5bc
RH
1566 if (STACK_GROWS_DOWN) {
1567 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1568 for (i = argc - 1; i >= 0; --i) {
1569 tmp = argv[i];
1570 if (!tmp) {
1571 fprintf(stderr, "VFS: argc is wrong");
1572 exit(-1);
1573 }
1574 len = strlen(tmp) + 1;
1575 tmp += len;
59baae9a 1576
7c4ee5bc
RH
1577 if (len > (p - stack_limit)) {
1578 return 0;
1579 }
1580 while (len) {
1581 int bytes_to_copy = (len > offset) ? offset : len;
1582 tmp -= bytes_to_copy;
1583 p -= bytes_to_copy;
1584 offset -= bytes_to_copy;
1585 len -= bytes_to_copy;
1586
1587 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1588
1589 if (offset == 0) {
1590 memcpy_to_target(p, scratch, top - p);
1591 top = p;
1592 offset = TARGET_PAGE_SIZE;
1593 }
1594 }
d97ef72e 1595 }
7c4ee5bc
RH
1596 if (p != top) {
1597 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1598 }
7c4ee5bc
RH
1599 } else {
1600 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1601 for (i = 0; i < argc; ++i) {
1602 tmp = argv[i];
1603 if (!tmp) {
1604 fprintf(stderr, "VFS: argc is wrong");
1605 exit(-1);
1606 }
1607 len = strlen(tmp) + 1;
1608 if (len > (stack_limit - p)) {
1609 return 0;
1610 }
1611 while (len) {
1612 int bytes_to_copy = (len > remaining) ? remaining : len;
1613
1614 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1615
1616 tmp += bytes_to_copy;
1617 remaining -= bytes_to_copy;
1618 p += bytes_to_copy;
1619 len -= bytes_to_copy;
1620
1621 if (remaining == 0) {
1622 memcpy_to_target(top, scratch, p - top);
1623 top = p;
1624 remaining = TARGET_PAGE_SIZE;
1625 }
d97ef72e
RH
1626 }
1627 }
7c4ee5bc
RH
1628 if (p != top) {
1629 memcpy_to_target(top, scratch, p - top);
1630 }
59baae9a
SB
1631 }
1632
31e31b8a
FB
1633 return p;
1634}
1635
59baae9a
SB
1636/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1637 * argument/environment space. Newer kernels (>2.6.33) allow more,
1638 * dependent on stack size, but guarantee at least 32 pages for
1639 * backwards compatibility.
1640 */
1641#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1642
1643static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1644 struct image_info *info)
53a5960a 1645{
59baae9a 1646 abi_ulong size, error, guard;
31e31b8a 1647
703e0e89 1648 size = guest_stack_size;
59baae9a
SB
1649 if (size < STACK_LOWER_LIMIT) {
1650 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1651 }
1652 guard = TARGET_PAGE_SIZE;
1653 if (guard < qemu_real_host_page_size) {
1654 guard = qemu_real_host_page_size;
1655 }
1656
1657 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1658 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1659 if (error == -1) {
60dcbcb5 1660 perror("mmap stack");
09bfb054
FB
1661 exit(-1);
1662 }
31e31b8a 1663
60dcbcb5 1664 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1665 if (STACK_GROWS_DOWN) {
1666 target_mprotect(error, guard, PROT_NONE);
1667 info->stack_limit = error + guard;
1668 return info->stack_limit + size - sizeof(void *);
1669 } else {
1670 target_mprotect(error + size, guard, PROT_NONE);
1671 info->stack_limit = error + size;
1672 return error;
1673 }
31e31b8a
FB
1674}
1675
cf129f3a
RH
1676/* Map and zero the bss. We need to explicitly zero any fractional pages
1677 after the data section (i.e. bss). */
1678static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1679{
cf129f3a
RH
1680 uintptr_t host_start, host_map_start, host_end;
1681
1682 last_bss = TARGET_PAGE_ALIGN(last_bss);
1683
1684 /* ??? There is confusion between qemu_real_host_page_size and
1685 qemu_host_page_size here and elsewhere in target_mmap, which
1686 may lead to the end of the data section mapping from the file
1687 not being mapped. At least there was an explicit test and
1688 comment for that here, suggesting that "the file size must
1689 be known". The comment probably pre-dates the introduction
1690 of the fstat system call in target_mmap which does in fact
1691 find out the size. What isn't clear is if the workaround
1692 here is still actually needed. For now, continue with it,
1693 but merge it with the "normal" mmap that would allocate the bss. */
1694
1695 host_start = (uintptr_t) g2h(elf_bss);
1696 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1697 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1698
1699 if (host_map_start < host_end) {
1700 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1701 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1702 if (p == MAP_FAILED) {
1703 perror("cannot mmap brk");
1704 exit(-1);
853d6f7a 1705 }
f46e9a0b 1706 }
853d6f7a 1707
f46e9a0b
TM
1708 /* Ensure that the bss page(s) are valid */
1709 if ((page_get_flags(last_bss-1) & prot) != prot) {
1710 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1711 }
31e31b8a 1712
cf129f3a
RH
1713 if (host_start < host_map_start) {
1714 memset((void *)host_start, 0, host_map_start - host_start);
1715 }
1716}
53a5960a 1717
cf58affe
CL
1718#ifdef TARGET_ARM
1719static int elf_is_fdpic(struct elfhdr *exec)
1720{
1721 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1722}
1723#else
a99856cd
CL
1724/* Default implementation, always false. */
1725static int elf_is_fdpic(struct elfhdr *exec)
1726{
1727 return 0;
1728}
cf58affe 1729#endif
a99856cd 1730
1af02e83
MF
1731static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1732{
1733 uint16_t n;
1734 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1735
1736 /* elf32_fdpic_loadseg */
1737 n = info->nsegs;
1738 while (n--) {
1739 sp -= 12;
1740 put_user_u32(loadsegs[n].addr, sp+0);
1741 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1742 put_user_u32(loadsegs[n].p_memsz, sp+8);
1743 }
1744
1745 /* elf32_fdpic_loadmap */
1746 sp -= 4;
1747 put_user_u16(0, sp+0); /* version */
1748 put_user_u16(info->nsegs, sp+2); /* nsegs */
1749
1750 info->personality = PER_LINUX_FDPIC;
1751 info->loadmap_addr = sp;
1752
1753 return sp;
1754}
1af02e83 1755
992f48a0 1756static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1757 struct elfhdr *exec,
1758 struct image_info *info,
1759 struct image_info *interp_info)
31e31b8a 1760{
d97ef72e 1761 abi_ulong sp;
7c4ee5bc 1762 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1763 int size;
14322bad
LA
1764 int i;
1765 abi_ulong u_rand_bytes;
1766 uint8_t k_rand_bytes[16];
d97ef72e
RH
1767 abi_ulong u_platform;
1768 const char *k_platform;
1769 const int n = sizeof(elf_addr_t);
1770
1771 sp = p;
1af02e83 1772
1af02e83
MF
1773 /* Needs to be before we load the env/argc/... */
1774 if (elf_is_fdpic(exec)) {
1775 /* Need 4 byte alignment for these structs */
1776 sp &= ~3;
1777 sp = loader_build_fdpic_loadmap(info, sp);
1778 info->other_info = interp_info;
1779 if (interp_info) {
1780 interp_info->other_info = info;
1781 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1782 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1783 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1784 } else {
1785 info->interpreter_loadmap_addr = 0;
1786 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1787 }
1788 }
1af02e83 1789
d97ef72e
RH
1790 u_platform = 0;
1791 k_platform = ELF_PLATFORM;
1792 if (k_platform) {
1793 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1794 if (STACK_GROWS_DOWN) {
1795 sp -= (len + n - 1) & ~(n - 1);
1796 u_platform = sp;
1797 /* FIXME - check return value of memcpy_to_target() for failure */
1798 memcpy_to_target(sp, k_platform, len);
1799 } else {
1800 memcpy_to_target(sp, k_platform, len);
1801 u_platform = sp;
1802 sp += len + 1;
1803 }
1804 }
1805
1806 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1807 * the argv and envp pointers.
1808 */
1809 if (STACK_GROWS_DOWN) {
1810 sp = QEMU_ALIGN_DOWN(sp, 16);
1811 } else {
1812 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1813 }
14322bad
LA
1814
1815 /*
1816 * Generate 16 random bytes for userspace PRNG seeding (not
1817 * cryptically secure but it's not the aim of QEMU).
1818 */
14322bad
LA
1819 for (i = 0; i < 16; i++) {
1820 k_rand_bytes[i] = rand();
1821 }
7c4ee5bc
RH
1822 if (STACK_GROWS_DOWN) {
1823 sp -= 16;
1824 u_rand_bytes = sp;
1825 /* FIXME - check return value of memcpy_to_target() for failure */
1826 memcpy_to_target(sp, k_rand_bytes, 16);
1827 } else {
1828 memcpy_to_target(sp, k_rand_bytes, 16);
1829 u_rand_bytes = sp;
1830 sp += 16;
1831 }
14322bad 1832
d97ef72e
RH
1833 size = (DLINFO_ITEMS + 1) * 2;
1834 if (k_platform)
1835 size += 2;
f5155289 1836#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1837 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1838#endif
1839#ifdef ELF_HWCAP2
1840 size += 2;
f5155289 1841#endif
f516511e
PM
1842 info->auxv_len = size * n;
1843
d97ef72e 1844 size += envc + argc + 2;
b9329d4b 1845 size += 1; /* argc itself */
d97ef72e 1846 size *= n;
7c4ee5bc
RH
1847
1848 /* Allocate space and finalize stack alignment for entry now. */
1849 if (STACK_GROWS_DOWN) {
1850 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1851 sp = u_argc;
1852 } else {
1853 u_argc = sp;
1854 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1855 }
1856
1857 u_argv = u_argc + n;
1858 u_envp = u_argv + (argc + 1) * n;
1859 u_auxv = u_envp + (envc + 1) * n;
1860 info->saved_auxv = u_auxv;
1861 info->arg_start = u_argv;
1862 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1863
1864 /* This is correct because Linux defines
1865 * elf_addr_t as Elf32_Off / Elf64_Off
1866 */
1867#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1868 put_user_ual(id, u_auxv); u_auxv += n; \
1869 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1870 } while(0)
1871
82991bed
PM
1872#ifdef ARCH_DLINFO
1873 /*
1874 * ARCH_DLINFO must come first so platform specific code can enforce
1875 * special alignment requirements on the AUXV if necessary (eg. PPC).
1876 */
1877 ARCH_DLINFO;
1878#endif
f516511e
PM
1879 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1880 * on info->auxv_len will trigger.
1881 */
8e62a717 1882 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1883 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1884 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1885 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1886 /* Target doesn't support host page size alignment */
1887 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1888 } else {
1889 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1890 qemu_host_page_size)));
1891 }
8e62a717 1892 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1893 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1894 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1895 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1896 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1897 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1898 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1899 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1900 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1901 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1902 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1903
ad6919dc
PM
1904#ifdef ELF_HWCAP2
1905 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1906#endif
1907
7c4ee5bc 1908 if (u_platform) {
d97ef72e 1909 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1910 }
7c4ee5bc 1911 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1912#undef NEW_AUX_ENT
1913
f516511e
PM
1914 /* Check that our initial calculation of the auxv length matches how much
1915 * we actually put into it.
1916 */
1917 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1918
1919 put_user_ual(argc, u_argc);
1920
1921 p = info->arg_strings;
1922 for (i = 0; i < argc; ++i) {
1923 put_user_ual(p, u_argv);
1924 u_argv += n;
1925 p += target_strlen(p) + 1;
1926 }
1927 put_user_ual(0, u_argv);
1928
1929 p = info->env_strings;
1930 for (i = 0; i < envc; ++i) {
1931 put_user_ual(p, u_envp);
1932 u_envp += n;
1933 p += target_strlen(p) + 1;
1934 }
1935 put_user_ual(0, u_envp);
edf8e2af 1936
d97ef72e 1937 return sp;
31e31b8a
FB
1938}
1939
dce10401
MI
1940unsigned long init_guest_space(unsigned long host_start,
1941 unsigned long host_size,
1942 unsigned long guest_start,
1943 bool fixed)
1944{
293f2060 1945 unsigned long current_start, aligned_start;
dce10401
MI
1946 int flags;
1947
1948 assert(host_start || host_size);
1949
1950 /* If just a starting address is given, then just verify that
1951 * address. */
1952 if (host_start && !host_size) {
8756e136 1953#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 1954 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
1955 return (unsigned long)-1;
1956 }
8756e136
LS
1957#endif
1958 return host_start;
dce10401
MI
1959 }
1960
1961 /* Setup the initial flags and start address. */
1962 current_start = host_start & qemu_host_page_mask;
1963 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1964 if (fixed) {
1965 flags |= MAP_FIXED;
1966 }
1967
1968 /* Otherwise, a non-zero size region of memory needs to be mapped
1969 * and validated. */
2a53535a
LS
1970
1971#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1972 /* On 32-bit ARM, we need to map not just the usable memory, but
1973 * also the commpage. Try to find a suitable place by allocating
1974 * a big chunk for all of it. If host_start, then the naive
1975 * strategy probably does good enough.
1976 */
1977 if (!host_start) {
1978 unsigned long guest_full_size, host_full_size, real_start;
1979
1980 guest_full_size =
1981 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1982 host_full_size = guest_full_size - guest_start;
1983 real_start = (unsigned long)
1984 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1985 if (real_start == (unsigned long)-1) {
1986 if (host_size < host_full_size - qemu_host_page_size) {
1987 /* We failed to map a continous segment, but we're
1988 * allowed to have a gap between the usable memory and
1989 * the commpage where other things can be mapped.
1990 * This sparseness gives us more flexibility to find
1991 * an address range.
1992 */
1993 goto naive;
1994 }
1995 return (unsigned long)-1;
1996 }
1997 munmap((void *)real_start, host_full_size);
1998 if (real_start & ~qemu_host_page_mask) {
1999 /* The same thing again, but with an extra qemu_host_page_size
2000 * so that we can shift around alignment.
2001 */
2002 unsigned long real_size = host_full_size + qemu_host_page_size;
2003 real_start = (unsigned long)
2004 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2005 if (real_start == (unsigned long)-1) {
2006 if (host_size < host_full_size - qemu_host_page_size) {
2007 goto naive;
2008 }
2009 return (unsigned long)-1;
2010 }
2011 munmap((void *)real_start, real_size);
2012 real_start = HOST_PAGE_ALIGN(real_start);
2013 }
2014 current_start = real_start;
2015 }
2016 naive:
2017#endif
2018
dce10401 2019 while (1) {
293f2060
LS
2020 unsigned long real_start, real_size, aligned_size;
2021 aligned_size = real_size = host_size;
806d1021 2022
dce10401
MI
2023 /* Do not use mmap_find_vma here because that is limited to the
2024 * guest address space. We are going to make the
2025 * guest address space fit whatever we're given.
2026 */
2027 real_start = (unsigned long)
2028 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2029 if (real_start == (unsigned long)-1) {
2030 return (unsigned long)-1;
2031 }
2032
aac362e4
LS
2033 /* Check to see if the address is valid. */
2034 if (host_start && real_start != current_start) {
2035 goto try_again;
2036 }
2037
806d1021
MI
2038 /* Ensure the address is properly aligned. */
2039 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2040 /* Ideally, we adjust like
2041 *
2042 * pages: [ ][ ][ ][ ][ ]
2043 * old: [ real ]
2044 * [ aligned ]
2045 * new: [ real ]
2046 * [ aligned ]
2047 *
2048 * But if there is something else mapped right after it,
2049 * then obviously it won't have room to grow, and the
2050 * kernel will put the new larger real someplace else with
2051 * unknown alignment (if we made it to here, then
2052 * fixed=false). Which is why we grow real by a full page
2053 * size, instead of by part of one; so that even if we get
2054 * moved, we can still guarantee alignment. But this does
2055 * mean that there is a padding of < 1 page both before
2056 * and after the aligned range; the "after" could could
2057 * cause problems for ARM emulation where it could butt in
2058 * to where we need to put the commpage.
2059 */
806d1021 2060 munmap((void *)real_start, host_size);
293f2060 2061 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2062 real_start = (unsigned long)
2063 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2064 if (real_start == (unsigned long)-1) {
2065 return (unsigned long)-1;
2066 }
293f2060
LS
2067 aligned_start = HOST_PAGE_ALIGN(real_start);
2068 } else {
2069 aligned_start = real_start;
806d1021
MI
2070 }
2071
8756e136 2072#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2073 /* On 32-bit ARM, we need to also be able to map the commpage. */
2074 int valid = init_guest_commpage(aligned_start - guest_start,
2075 aligned_size + guest_start);
2076 if (valid == -1) {
2077 munmap((void *)real_start, real_size);
2078 return (unsigned long)-1;
2079 } else if (valid == 0) {
2080 goto try_again;
dce10401 2081 }
7ad75eea
LS
2082#endif
2083
2084 /* If nothing has said `return -1` or `goto try_again` yet,
2085 * then the address we have is good.
2086 */
2087 break;
dce10401 2088
7ad75eea 2089 try_again:
dce10401
MI
2090 /* That address didn't work. Unmap and try a different one.
2091 * The address the host picked because is typically right at
2092 * the top of the host address space and leaves the guest with
2093 * no usable address space. Resort to a linear search. We
2094 * already compensated for mmap_min_addr, so this should not
2095 * happen often. Probably means we got unlucky and host
2096 * address space randomization put a shared library somewhere
2097 * inconvenient.
8c17d862
LS
2098 *
2099 * This is probably a good strategy if host_start, but is
2100 * probably a bad strategy if not, which means we got here
2101 * because of trouble with ARM commpage setup.
dce10401 2102 */
293f2060 2103 munmap((void *)real_start, real_size);
dce10401
MI
2104 current_start += qemu_host_page_size;
2105 if (host_start == current_start) {
2106 /* Theoretically possible if host doesn't have any suitably
2107 * aligned areas. Normally the first mmap will fail.
2108 */
2109 return (unsigned long)-1;
2110 }
2111 }
2112
13829020 2113 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2114
293f2060 2115 return aligned_start;
dce10401
MI
2116}
2117
f3ed1f5d
PM
2118static void probe_guest_base(const char *image_name,
2119 abi_ulong loaddr, abi_ulong hiaddr)
2120{
2121 /* Probe for a suitable guest base address, if the user has not set
2122 * it explicitly, and set guest_base appropriately.
2123 * In case of error we will print a suitable message and exit.
2124 */
f3ed1f5d
PM
2125 const char *errmsg;
2126 if (!have_guest_base && !reserved_va) {
2127 unsigned long host_start, real_start, host_size;
2128
2129 /* Round addresses to page boundaries. */
2130 loaddr &= qemu_host_page_mask;
2131 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2132
2133 if (loaddr < mmap_min_addr) {
2134 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2135 } else {
2136 host_start = loaddr;
2137 if (host_start != loaddr) {
2138 errmsg = "Address overflow loading ELF binary";
2139 goto exit_errmsg;
2140 }
2141 }
2142 host_size = hiaddr - loaddr;
dce10401
MI
2143
2144 /* Setup the initial guest memory space with ranges gleaned from
2145 * the ELF image that is being loaded.
2146 */
2147 real_start = init_guest_space(host_start, host_size, loaddr, false);
2148 if (real_start == (unsigned long)-1) {
2149 errmsg = "Unable to find space for application";
2150 goto exit_errmsg;
f3ed1f5d 2151 }
dce10401
MI
2152 guest_base = real_start - loaddr;
2153
13829020
PB
2154 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2155 TARGET_ABI_FMT_lx " to 0x%lx\n",
2156 loaddr, real_start);
f3ed1f5d
PM
2157 }
2158 return;
2159
f3ed1f5d
PM
2160exit_errmsg:
2161 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2162 exit(-1);
f3ed1f5d
PM
2163}
2164
2165
8e62a717 2166/* Load an ELF image into the address space.
31e31b8a 2167
8e62a717
RH
2168 IMAGE_NAME is the filename of the image, to use in error messages.
2169 IMAGE_FD is the open file descriptor for the image.
2170
2171 BPRM_BUF is a copy of the beginning of the file; this of course
2172 contains the elf file header at offset 0. It is assumed that this
2173 buffer is sufficiently aligned to present no problems to the host
2174 in accessing data at aligned offsets within the buffer.
2175
2176 On return: INFO values will be filled in, as necessary or available. */
2177
2178static void load_elf_image(const char *image_name, int image_fd,
bf858897 2179 struct image_info *info, char **pinterp_name,
8e62a717 2180 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2181{
8e62a717
RH
2182 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2183 struct elf_phdr *phdr;
2184 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2185 int i, retval;
2186 const char *errmsg;
5fafdf24 2187
8e62a717
RH
2188 /* First of all, some simple consistency checks */
2189 errmsg = "Invalid ELF image for this architecture";
2190 if (!elf_check_ident(ehdr)) {
2191 goto exit_errmsg;
2192 }
2193 bswap_ehdr(ehdr);
2194 if (!elf_check_ehdr(ehdr)) {
2195 goto exit_errmsg;
d97ef72e 2196 }
5fafdf24 2197
8e62a717
RH
2198 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2199 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2200 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2201 } else {
8e62a717
RH
2202 phdr = (struct elf_phdr *) alloca(i);
2203 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2204 if (retval != i) {
8e62a717 2205 goto exit_read;
9955ffac 2206 }
d97ef72e 2207 }
8e62a717 2208 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2209
1af02e83
MF
2210 info->nsegs = 0;
2211 info->pt_dynamic_addr = 0;
1af02e83 2212
98c1076c
AB
2213 mmap_lock();
2214
682674b8
RH
2215 /* Find the maximum size of the image and allocate an appropriate
2216 amount of memory to handle that. */
2217 loaddr = -1, hiaddr = 0;
33143c44 2218 info->alignment = 0;
8e62a717
RH
2219 for (i = 0; i < ehdr->e_phnum; ++i) {
2220 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2221 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2222 if (a < loaddr) {
2223 loaddr = a;
2224 }
ccf661f8 2225 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2226 if (a > hiaddr) {
2227 hiaddr = a;
2228 }
1af02e83 2229 ++info->nsegs;
33143c44 2230 info->alignment |= phdr[i].p_align;
682674b8
RH
2231 }
2232 }
2233
2234 load_addr = loaddr;
8e62a717 2235 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2236 /* The image indicates that it can be loaded anywhere. Find a
2237 location that can hold the memory space required. If the
2238 image is pre-linked, LOADDR will be non-zero. Since we do
2239 not supply MAP_FIXED here we'll use that address if and
2240 only if it remains available. */
2241 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2242 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2243 -1, 0);
2244 if (load_addr == -1) {
8e62a717 2245 goto exit_perror;
d97ef72e 2246 }
bf858897
RH
2247 } else if (pinterp_name != NULL) {
2248 /* This is the main executable. Make sure that the low
2249 address does not conflict with MMAP_MIN_ADDR or the
2250 QEMU application itself. */
f3ed1f5d 2251 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2252 }
682674b8 2253 load_bias = load_addr - loaddr;
d97ef72e 2254
a99856cd 2255 if (elf_is_fdpic(ehdr)) {
1af02e83 2256 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2257 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2258
2259 for (i = 0; i < ehdr->e_phnum; ++i) {
2260 switch (phdr[i].p_type) {
2261 case PT_DYNAMIC:
2262 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2263 break;
2264 case PT_LOAD:
2265 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2266 loadsegs->p_vaddr = phdr[i].p_vaddr;
2267 loadsegs->p_memsz = phdr[i].p_memsz;
2268 ++loadsegs;
2269 break;
2270 }
2271 }
2272 }
1af02e83 2273
8e62a717
RH
2274 info->load_bias = load_bias;
2275 info->load_addr = load_addr;
2276 info->entry = ehdr->e_entry + load_bias;
2277 info->start_code = -1;
2278 info->end_code = 0;
2279 info->start_data = -1;
2280 info->end_data = 0;
2281 info->brk = 0;
d8fd2954 2282 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2283
2284 for (i = 0; i < ehdr->e_phnum; i++) {
2285 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2286 if (eppnt->p_type == PT_LOAD) {
94894ff2 2287 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2288 int elf_prot = 0;
d97ef72e
RH
2289
2290 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2291 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2292 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2293
682674b8
RH
2294 vaddr = load_bias + eppnt->p_vaddr;
2295 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2296 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2297 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2298
94894ff2 2299 error = target_mmap(vaddr_ps, vaddr_len,
682674b8 2300 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2301 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2302 if (error == -1) {
8e62a717 2303 goto exit_perror;
09bfb054 2304 }
09bfb054 2305
682674b8
RH
2306 vaddr_ef = vaddr + eppnt->p_filesz;
2307 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2308
cf129f3a 2309 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2310 if (vaddr_ef < vaddr_em) {
2311 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2312 }
8e62a717
RH
2313
2314 /* Find the full program boundaries. */
2315 if (elf_prot & PROT_EXEC) {
2316 if (vaddr < info->start_code) {
2317 info->start_code = vaddr;
2318 }
2319 if (vaddr_ef > info->end_code) {
2320 info->end_code = vaddr_ef;
2321 }
2322 }
2323 if (elf_prot & PROT_WRITE) {
2324 if (vaddr < info->start_data) {
2325 info->start_data = vaddr;
2326 }
2327 if (vaddr_ef > info->end_data) {
2328 info->end_data = vaddr_ef;
2329 }
2330 if (vaddr_em > info->brk) {
2331 info->brk = vaddr_em;
2332 }
2333 }
bf858897
RH
2334 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2335 char *interp_name;
2336
2337 if (*pinterp_name) {
2338 errmsg = "Multiple PT_INTERP entries";
2339 goto exit_errmsg;
2340 }
2341 interp_name = malloc(eppnt->p_filesz);
2342 if (!interp_name) {
2343 goto exit_perror;
2344 }
2345
2346 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2347 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2348 eppnt->p_filesz);
2349 } else {
2350 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2351 eppnt->p_offset);
2352 if (retval != eppnt->p_filesz) {
2353 goto exit_perror;
2354 }
2355 }
2356 if (interp_name[eppnt->p_filesz - 1] != 0) {
2357 errmsg = "Invalid PT_INTERP entry";
2358 goto exit_errmsg;
2359 }
2360 *pinterp_name = interp_name;
d97ef72e 2361 }
682674b8 2362 }
5fafdf24 2363
8e62a717
RH
2364 if (info->end_data == 0) {
2365 info->start_data = info->end_code;
2366 info->end_data = info->end_code;
2367 info->brk = info->end_code;
2368 }
2369
682674b8 2370 if (qemu_log_enabled()) {
8e62a717 2371 load_symbols(ehdr, image_fd, load_bias);
682674b8 2372 }
31e31b8a 2373
98c1076c
AB
2374 mmap_unlock();
2375
8e62a717
RH
2376 close(image_fd);
2377 return;
2378
2379 exit_read:
2380 if (retval >= 0) {
2381 errmsg = "Incomplete read of file header";
2382 goto exit_errmsg;
2383 }
2384 exit_perror:
2385 errmsg = strerror(errno);
2386 exit_errmsg:
2387 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2388 exit(-1);
2389}
2390
2391static void load_elf_interp(const char *filename, struct image_info *info,
2392 char bprm_buf[BPRM_BUF_SIZE])
2393{
2394 int fd, retval;
2395
2396 fd = open(path(filename), O_RDONLY);
2397 if (fd < 0) {
2398 goto exit_perror;
2399 }
31e31b8a 2400
8e62a717
RH
2401 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2402 if (retval < 0) {
2403 goto exit_perror;
2404 }
2405 if (retval < BPRM_BUF_SIZE) {
2406 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2407 }
2408
bf858897 2409 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2410 return;
2411
2412 exit_perror:
2413 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2414 exit(-1);
31e31b8a
FB
2415}
2416
49918a75
PB
2417static int symfind(const void *s0, const void *s1)
2418{
c7c530cd 2419 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2420 struct elf_sym *sym = (struct elf_sym *)s1;
2421 int result = 0;
c7c530cd 2422 if (addr < sym->st_value) {
49918a75 2423 result = -1;
c7c530cd 2424 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2425 result = 1;
2426 }
2427 return result;
2428}
2429
2430static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2431{
2432#if ELF_CLASS == ELFCLASS32
2433 struct elf_sym *syms = s->disas_symtab.elf32;
2434#else
2435 struct elf_sym *syms = s->disas_symtab.elf64;
2436#endif
2437
2438 // binary search
49918a75
PB
2439 struct elf_sym *sym;
2440
c7c530cd 2441 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2442 if (sym != NULL) {
49918a75
PB
2443 return s->disas_strtab + sym->st_name;
2444 }
2445
2446 return "";
2447}
2448
2449/* FIXME: This should use elf_ops.h */
2450static int symcmp(const void *s0, const void *s1)
2451{
2452 struct elf_sym *sym0 = (struct elf_sym *)s0;
2453 struct elf_sym *sym1 = (struct elf_sym *)s1;
2454 return (sym0->st_value < sym1->st_value)
2455 ? -1
2456 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2457}
2458
689f936f 2459/* Best attempt to load symbols from this ELF object. */
682674b8 2460static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2461{
682674b8 2462 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2463 uint64_t segsz;
682674b8 2464 struct elf_shdr *shdr;
b9475279
CV
2465 char *strings = NULL;
2466 struct syminfo *s = NULL;
2467 struct elf_sym *new_syms, *syms = NULL;
689f936f 2468
682674b8
RH
2469 shnum = hdr->e_shnum;
2470 i = shnum * sizeof(struct elf_shdr);
2471 shdr = (struct elf_shdr *)alloca(i);
2472 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2473 return;
2474 }
2475
2476 bswap_shdr(shdr, shnum);
2477 for (i = 0; i < shnum; ++i) {
2478 if (shdr[i].sh_type == SHT_SYMTAB) {
2479 sym_idx = i;
2480 str_idx = shdr[i].sh_link;
49918a75
PB
2481 goto found;
2482 }
689f936f 2483 }
682674b8
RH
2484
2485 /* There will be no symbol table if the file was stripped. */
2486 return;
689f936f
FB
2487
2488 found:
682674b8 2489 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2490 s = g_try_new(struct syminfo, 1);
682674b8 2491 if (!s) {
b9475279 2492 goto give_up;
682674b8 2493 }
5fafdf24 2494
1e06262d
PM
2495 segsz = shdr[str_idx].sh_size;
2496 s->disas_strtab = strings = g_try_malloc(segsz);
2497 if (!strings ||
2498 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2499 goto give_up;
682674b8 2500 }
49918a75 2501
1e06262d
PM
2502 segsz = shdr[sym_idx].sh_size;
2503 syms = g_try_malloc(segsz);
2504 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2505 goto give_up;
682674b8 2506 }
31e31b8a 2507
1e06262d
PM
2508 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2509 /* Implausibly large symbol table: give up rather than ploughing
2510 * on with the number of symbols calculation overflowing
2511 */
2512 goto give_up;
2513 }
2514 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2515 for (i = 0; i < nsyms; ) {
49918a75 2516 bswap_sym(syms + i);
682674b8
RH
2517 /* Throw away entries which we do not need. */
2518 if (syms[i].st_shndx == SHN_UNDEF
2519 || syms[i].st_shndx >= SHN_LORESERVE
2520 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2521 if (i < --nsyms) {
49918a75
PB
2522 syms[i] = syms[nsyms];
2523 }
682674b8 2524 } else {
49918a75 2525#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2526 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2527 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2528#endif
682674b8
RH
2529 syms[i].st_value += load_bias;
2530 i++;
2531 }
0774bed1 2532 }
49918a75 2533
b9475279
CV
2534 /* No "useful" symbol. */
2535 if (nsyms == 0) {
2536 goto give_up;
2537 }
2538
5d5c9930
RH
2539 /* Attempt to free the storage associated with the local symbols
2540 that we threw away. Whether or not this has any effect on the
2541 memory allocation depends on the malloc implementation and how
2542 many symbols we managed to discard. */
0ef9ea29 2543 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2544 if (new_syms == NULL) {
b9475279 2545 goto give_up;
5d5c9930 2546 }
8d79de6e 2547 syms = new_syms;
5d5c9930 2548
49918a75 2549 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2550
49918a75
PB
2551 s->disas_num_syms = nsyms;
2552#if ELF_CLASS == ELFCLASS32
2553 s->disas_symtab.elf32 = syms;
49918a75
PB
2554#else
2555 s->disas_symtab.elf64 = syms;
49918a75 2556#endif
682674b8 2557 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2558 s->next = syminfos;
2559 syminfos = s;
b9475279
CV
2560
2561 return;
2562
2563give_up:
0ef9ea29
PM
2564 g_free(s);
2565 g_free(strings);
2566 g_free(syms);
689f936f 2567}
31e31b8a 2568
768fe76e
YS
2569uint32_t get_elf_eflags(int fd)
2570{
2571 struct elfhdr ehdr;
2572 off_t offset;
2573 int ret;
2574
2575 /* Read ELF header */
2576 offset = lseek(fd, 0, SEEK_SET);
2577 if (offset == (off_t) -1) {
2578 return 0;
2579 }
2580 ret = read(fd, &ehdr, sizeof(ehdr));
2581 if (ret < sizeof(ehdr)) {
2582 return 0;
2583 }
2584 offset = lseek(fd, offset, SEEK_SET);
2585 if (offset == (off_t) -1) {
2586 return 0;
2587 }
2588
2589 /* Check ELF signature */
2590 if (!elf_check_ident(&ehdr)) {
2591 return 0;
2592 }
2593
2594 /* check header */
2595 bswap_ehdr(&ehdr);
2596 if (!elf_check_ehdr(&ehdr)) {
2597 return 0;
2598 }
2599
2600 /* return architecture id */
2601 return ehdr.e_flags;
2602}
2603
f0116c54 2604int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2605{
8e62a717 2606 struct image_info interp_info;
31e31b8a 2607 struct elfhdr elf_ex;
8e62a717 2608 char *elf_interpreter = NULL;
59baae9a 2609 char *scratch;
31e31b8a 2610
bf858897 2611 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2612
2613 load_elf_image(bprm->filename, bprm->fd, info,
2614 &elf_interpreter, bprm->buf);
31e31b8a 2615
bf858897
RH
2616 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2617 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2618 when we load the interpreter. */
2619 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2620
59baae9a
SB
2621 /* Do this so that we can load the interpreter, if need be. We will
2622 change some of these later */
2623 bprm->p = setup_arg_pages(bprm, info);
2624
2625 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2626 if (STACK_GROWS_DOWN) {
2627 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2628 bprm->p, info->stack_limit);
2629 info->file_string = bprm->p;
2630 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2631 bprm->p, info->stack_limit);
2632 info->env_strings = bprm->p;
2633 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2634 bprm->p, info->stack_limit);
2635 info->arg_strings = bprm->p;
2636 } else {
2637 info->arg_strings = bprm->p;
2638 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2639 bprm->p, info->stack_limit);
2640 info->env_strings = bprm->p;
2641 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2642 bprm->p, info->stack_limit);
2643 info->file_string = bprm->p;
2644 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2645 bprm->p, info->stack_limit);
2646 }
2647
59baae9a
SB
2648 g_free(scratch);
2649
e5fe0c52 2650 if (!bprm->p) {
bf858897
RH
2651 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2652 exit(-1);
379f6698 2653 }
379f6698 2654
8e62a717
RH
2655 if (elf_interpreter) {
2656 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2657
8e62a717
RH
2658 /* If the program interpreter is one of these two, then assume
2659 an iBCS2 image. Otherwise assume a native linux image. */
2660
2661 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2662 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2663 info->personality = PER_SVR4;
31e31b8a 2664
8e62a717
RH
2665 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2666 and some applications "depend" upon this behavior. Since
2667 we do not have the power to recompile these, we emulate
2668 the SVr4 behavior. Sigh. */
2669 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2670 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2671 }
31e31b8a
FB
2672 }
2673
8e62a717
RH
2674 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2675 info, (elf_interpreter ? &interp_info : NULL));
2676 info->start_stack = bprm->p;
2677
2678 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2679 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2680 point as a function descriptor. Do this after creating elf tables
2681 so that we copy the original program entry point into the AUXV. */
2682 if (elf_interpreter) {
8e78064e 2683 info->load_bias = interp_info.load_bias;
8e62a717 2684 info->entry = interp_info.entry;
bf858897 2685 free(elf_interpreter);
8e62a717 2686 }
31e31b8a 2687
edf8e2af
MW
2688#ifdef USE_ELF_CORE_DUMP
2689 bprm->core_dump = &elf_core_dump;
2690#endif
2691
31e31b8a
FB
2692 return 0;
2693}
2694
edf8e2af 2695#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2696/*
2697 * Definitions to generate Intel SVR4-like core files.
a2547a13 2698 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2699 * tacked on the front to prevent clashes with linux definitions,
2700 * and the typedef forms have been avoided. This is mostly like
2701 * the SVR4 structure, but more Linuxy, with things that Linux does
2702 * not support and which gdb doesn't really use excluded.
2703 *
2704 * Fields we don't dump (their contents is zero) in linux-user qemu
2705 * are marked with XXX.
2706 *
2707 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2708 *
2709 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2710 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2711 * the target resides):
2712 *
2713 * #define USE_ELF_CORE_DUMP
2714 *
2715 * Next you define type of register set used for dumping. ELF specification
2716 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2717 *
c227f099 2718 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2719 * #define ELF_NREG <number of registers>
c227f099 2720 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2721 *
edf8e2af
MW
2722 * Last step is to implement target specific function that copies registers
2723 * from given cpu into just specified register set. Prototype is:
2724 *
c227f099 2725 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2726 * const CPUArchState *env);
edf8e2af
MW
2727 *
2728 * Parameters:
2729 * regs - copy register values into here (allocated and zeroed by caller)
2730 * env - copy registers from here
2731 *
2732 * Example for ARM target is provided in this file.
2733 */
2734
2735/* An ELF note in memory */
2736struct memelfnote {
2737 const char *name;
2738 size_t namesz;
2739 size_t namesz_rounded;
2740 int type;
2741 size_t datasz;
80f5ce75 2742 size_t datasz_rounded;
edf8e2af
MW
2743 void *data;
2744 size_t notesz;
2745};
2746
a2547a13 2747struct target_elf_siginfo {
f8fd4fc4
PB
2748 abi_int si_signo; /* signal number */
2749 abi_int si_code; /* extra code */
2750 abi_int si_errno; /* errno */
edf8e2af
MW
2751};
2752
a2547a13
LD
2753struct target_elf_prstatus {
2754 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2755 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2756 abi_ulong pr_sigpend; /* XXX */
2757 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2758 target_pid_t pr_pid;
2759 target_pid_t pr_ppid;
2760 target_pid_t pr_pgrp;
2761 target_pid_t pr_sid;
edf8e2af
MW
2762 struct target_timeval pr_utime; /* XXX User time */
2763 struct target_timeval pr_stime; /* XXX System time */
2764 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2765 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2766 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2767 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2768};
2769
2770#define ELF_PRARGSZ (80) /* Number of chars for args */
2771
a2547a13 2772struct target_elf_prpsinfo {
edf8e2af
MW
2773 char pr_state; /* numeric process state */
2774 char pr_sname; /* char for pr_state */
2775 char pr_zomb; /* zombie */
2776 char pr_nice; /* nice val */
ca98ac83 2777 abi_ulong pr_flag; /* flags */
c227f099
AL
2778 target_uid_t pr_uid;
2779 target_gid_t pr_gid;
2780 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2781 /* Lots missing */
2782 char pr_fname[16]; /* filename of executable */
2783 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2784};
2785
2786/* Here is the structure in which status of each thread is captured. */
2787struct elf_thread_status {
72cf2d4f 2788 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2789 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2790#if 0
2791 elf_fpregset_t fpu; /* NT_PRFPREG */
2792 struct task_struct *thread;
2793 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2794#endif
2795 struct memelfnote notes[1];
2796 int num_notes;
2797};
2798
2799struct elf_note_info {
2800 struct memelfnote *notes;
a2547a13
LD
2801 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2802 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2803
72cf2d4f 2804 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2805#if 0
2806 /*
2807 * Current version of ELF coredump doesn't support
2808 * dumping fp regs etc.
2809 */
2810 elf_fpregset_t *fpu;
2811 elf_fpxregset_t *xfpu;
2812 int thread_status_size;
2813#endif
2814 int notes_size;
2815 int numnote;
2816};
2817
2818struct vm_area_struct {
1a1c4db9
MI
2819 target_ulong vma_start; /* start vaddr of memory region */
2820 target_ulong vma_end; /* end vaddr of memory region */
2821 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2822 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2823};
2824
2825struct mm_struct {
72cf2d4f 2826 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2827 int mm_count; /* number of mappings */
2828};
2829
2830static struct mm_struct *vma_init(void);
2831static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2832static int vma_add_mapping(struct mm_struct *, target_ulong,
2833 target_ulong, abi_ulong);
edf8e2af
MW
2834static int vma_get_mapping_count(const struct mm_struct *);
2835static struct vm_area_struct *vma_first(const struct mm_struct *);
2836static struct vm_area_struct *vma_next(struct vm_area_struct *);
2837static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2838static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2839 unsigned long flags);
edf8e2af
MW
2840
2841static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2842static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2843 unsigned int, void *);
a2547a13
LD
2844static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2845static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2846static void fill_auxv_note(struct memelfnote *, const TaskState *);
2847static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2848static size_t note_size(const struct memelfnote *);
2849static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2850static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2851static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2852static int core_dump_filename(const TaskState *, char *, size_t);
2853
2854static int dump_write(int, const void *, size_t);
2855static int write_note(struct memelfnote *, int);
2856static int write_note_info(struct elf_note_info *, int);
2857
2858#ifdef BSWAP_NEEDED
a2547a13 2859static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2860{
ca98ac83
PB
2861 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2862 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2863 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2864 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2865 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2866 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2867 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2868 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2869 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2870 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2871 /* cpu times are not filled, so we skip them */
2872 /* regs should be in correct format already */
2873 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2874}
2875
a2547a13 2876static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2877{
ca98ac83 2878 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2879 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2880 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2881 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2882 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2883 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2884 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2885}
991f8f0c
RH
2886
2887static void bswap_note(struct elf_note *en)
2888{
2889 bswap32s(&en->n_namesz);
2890 bswap32s(&en->n_descsz);
2891 bswap32s(&en->n_type);
2892}
2893#else
2894static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2895static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2896static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2897#endif /* BSWAP_NEEDED */
2898
2899/*
2900 * Minimal support for linux memory regions. These are needed
2901 * when we are finding out what memory exactly belongs to
2902 * emulated process. No locks needed here, as long as
2903 * thread that received the signal is stopped.
2904 */
2905
2906static struct mm_struct *vma_init(void)
2907{
2908 struct mm_struct *mm;
2909
7267c094 2910 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2911 return (NULL);
2912
2913 mm->mm_count = 0;
72cf2d4f 2914 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2915
2916 return (mm);
2917}
2918
2919static void vma_delete(struct mm_struct *mm)
2920{
2921 struct vm_area_struct *vma;
2922
2923 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2924 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2925 g_free(vma);
edf8e2af 2926 }
7267c094 2927 g_free(mm);
edf8e2af
MW
2928}
2929
1a1c4db9
MI
2930static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2931 target_ulong end, abi_ulong flags)
edf8e2af
MW
2932{
2933 struct vm_area_struct *vma;
2934
7267c094 2935 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2936 return (-1);
2937
2938 vma->vma_start = start;
2939 vma->vma_end = end;
2940 vma->vma_flags = flags;
2941
72cf2d4f 2942 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2943 mm->mm_count++;
2944
2945 return (0);
2946}
2947
2948static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2949{
72cf2d4f 2950 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2951}
2952
2953static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2954{
72cf2d4f 2955 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2956}
2957
2958static int vma_get_mapping_count(const struct mm_struct *mm)
2959{
2960 return (mm->mm_count);
2961}
2962
2963/*
2964 * Calculate file (dump) size of given memory region.
2965 */
2966static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2967{
2968 /* if we cannot even read the first page, skip it */
2969 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2970 return (0);
2971
2972 /*
2973 * Usually we don't dump executable pages as they contain
2974 * non-writable code that debugger can read directly from
2975 * target library etc. However, thread stacks are marked
2976 * also executable so we read in first page of given region
2977 * and check whether it contains elf header. If there is
2978 * no elf header, we dump it.
2979 */
2980 if (vma->vma_flags & PROT_EXEC) {
2981 char page[TARGET_PAGE_SIZE];
2982
2983 copy_from_user(page, vma->vma_start, sizeof (page));
2984 if ((page[EI_MAG0] == ELFMAG0) &&
2985 (page[EI_MAG1] == ELFMAG1) &&
2986 (page[EI_MAG2] == ELFMAG2) &&
2987 (page[EI_MAG3] == ELFMAG3)) {
2988 /*
2989 * Mappings are possibly from ELF binary. Don't dump
2990 * them.
2991 */
2992 return (0);
2993 }
2994 }
2995
2996 return (vma->vma_end - vma->vma_start);
2997}
2998
1a1c4db9 2999static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3000 unsigned long flags)
edf8e2af
MW
3001{
3002 struct mm_struct *mm = (struct mm_struct *)priv;
3003
edf8e2af
MW
3004 vma_add_mapping(mm, start, end, flags);
3005 return (0);
3006}
3007
3008static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3009 unsigned int sz, void *data)
edf8e2af
MW
3010{
3011 unsigned int namesz;
3012
3013 namesz = strlen(name) + 1;
3014 note->name = name;
3015 note->namesz = namesz;
3016 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3017 note->type = type;
80f5ce75
LV
3018 note->datasz = sz;
3019 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3020
edf8e2af
MW
3021 note->data = data;
3022
3023 /*
3024 * We calculate rounded up note size here as specified by
3025 * ELF document.
3026 */
3027 note->notesz = sizeof (struct elf_note) +
80f5ce75 3028 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3029}
3030
3031static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3032 uint32_t flags)
edf8e2af
MW
3033{
3034 (void) memset(elf, 0, sizeof(*elf));
3035
3036 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3037 elf->e_ident[EI_CLASS] = ELF_CLASS;
3038 elf->e_ident[EI_DATA] = ELF_DATA;
3039 elf->e_ident[EI_VERSION] = EV_CURRENT;
3040 elf->e_ident[EI_OSABI] = ELF_OSABI;
3041
3042 elf->e_type = ET_CORE;
3043 elf->e_machine = machine;
3044 elf->e_version = EV_CURRENT;
3045 elf->e_phoff = sizeof(struct elfhdr);
3046 elf->e_flags = flags;
3047 elf->e_ehsize = sizeof(struct elfhdr);
3048 elf->e_phentsize = sizeof(struct elf_phdr);
3049 elf->e_phnum = segs;
3050
edf8e2af 3051 bswap_ehdr(elf);
edf8e2af
MW
3052}
3053
3054static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3055{
3056 phdr->p_type = PT_NOTE;
3057 phdr->p_offset = offset;
3058 phdr->p_vaddr = 0;
3059 phdr->p_paddr = 0;
3060 phdr->p_filesz = sz;
3061 phdr->p_memsz = 0;
3062 phdr->p_flags = 0;
3063 phdr->p_align = 0;
3064
991f8f0c 3065 bswap_phdr(phdr, 1);
edf8e2af
MW
3066}
3067
3068static size_t note_size(const struct memelfnote *note)
3069{
3070 return (note->notesz);
3071}
3072
a2547a13 3073static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3074 const TaskState *ts, int signr)
edf8e2af
MW
3075{
3076 (void) memset(prstatus, 0, sizeof (*prstatus));
3077 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3078 prstatus->pr_pid = ts->ts_tid;
3079 prstatus->pr_ppid = getppid();
3080 prstatus->pr_pgrp = getpgrp();
3081 prstatus->pr_sid = getsid(0);
3082
edf8e2af 3083 bswap_prstatus(prstatus);
edf8e2af
MW
3084}
3085
a2547a13 3086static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3087{
900cfbca 3088 char *base_filename;
edf8e2af
MW
3089 unsigned int i, len;
3090
3091 (void) memset(psinfo, 0, sizeof (*psinfo));
3092
3093 len = ts->info->arg_end - ts->info->arg_start;
3094 if (len >= ELF_PRARGSZ)
3095 len = ELF_PRARGSZ - 1;
3096 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3097 return -EFAULT;
3098 for (i = 0; i < len; i++)
3099 if (psinfo->pr_psargs[i] == 0)
3100 psinfo->pr_psargs[i] = ' ';
3101 psinfo->pr_psargs[len] = 0;
3102
3103 psinfo->pr_pid = getpid();
3104 psinfo->pr_ppid = getppid();
3105 psinfo->pr_pgrp = getpgrp();
3106 psinfo->pr_sid = getsid(0);
3107 psinfo->pr_uid = getuid();
3108 psinfo->pr_gid = getgid();
3109
900cfbca
JM
3110 base_filename = g_path_get_basename(ts->bprm->filename);
3111 /*
3112 * Using strncpy here is fine: at max-length,
3113 * this field is not NUL-terminated.
3114 */
edf8e2af 3115 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3116 sizeof(psinfo->pr_fname));
edf8e2af 3117
900cfbca 3118 g_free(base_filename);
edf8e2af 3119 bswap_psinfo(psinfo);
edf8e2af
MW
3120 return (0);
3121}
3122
3123static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3124{
3125 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3126 elf_addr_t orig_auxv = auxv;
edf8e2af 3127 void *ptr;
125b0f55 3128 int len = ts->info->auxv_len;
edf8e2af
MW
3129
3130 /*
3131 * Auxiliary vector is stored in target process stack. It contains
3132 * {type, value} pairs that we need to dump into note. This is not
3133 * strictly necessary but we do it here for sake of completeness.
3134 */
3135
edf8e2af
MW
3136 /* read in whole auxv vector and copy it to memelfnote */
3137 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3138 if (ptr != NULL) {
3139 fill_note(note, "CORE", NT_AUXV, len, ptr);
3140 unlock_user(ptr, auxv, len);
3141 }
3142}
3143
3144/*
3145 * Constructs name of coredump file. We have following convention
3146 * for the name:
3147 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3148 *
3149 * Returns 0 in case of success, -1 otherwise (errno is set).
3150 */
3151static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3152 size_t bufsize)
edf8e2af
MW
3153{
3154 char timestamp[64];
edf8e2af
MW
3155 char *base_filename = NULL;
3156 struct timeval tv;
3157 struct tm tm;
3158
3159 assert(bufsize >= PATH_MAX);
3160
3161 if (gettimeofday(&tv, NULL) < 0) {
3162 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3163 strerror(errno));
edf8e2af
MW
3164 return (-1);
3165 }
3166
b8da57fa 3167 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3168 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3169 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3170 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3171 base_filename, timestamp, (int)getpid());
b8da57fa 3172 g_free(base_filename);
edf8e2af
MW
3173
3174 return (0);
3175}
3176
3177static int dump_write(int fd, const void *ptr, size_t size)
3178{
3179 const char *bufp = (const char *)ptr;
3180 ssize_t bytes_written, bytes_left;
3181 struct rlimit dumpsize;
3182 off_t pos;
3183
3184 bytes_written = 0;
3185 getrlimit(RLIMIT_CORE, &dumpsize);
3186 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3187 if (errno == ESPIPE) { /* not a seekable stream */
3188 bytes_left = size;
3189 } else {
3190 return pos;
3191 }
3192 } else {
3193 if (dumpsize.rlim_cur <= pos) {
3194 return -1;
3195 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3196 bytes_left = size;
3197 } else {
3198 size_t limit_left=dumpsize.rlim_cur - pos;
3199 bytes_left = limit_left >= size ? size : limit_left ;
3200 }
3201 }
3202
3203 /*
3204 * In normal conditions, single write(2) should do but
3205 * in case of socket etc. this mechanism is more portable.
3206 */
3207 do {
3208 bytes_written = write(fd, bufp, bytes_left);
3209 if (bytes_written < 0) {
3210 if (errno == EINTR)
3211 continue;
3212 return (-1);
3213 } else if (bytes_written == 0) { /* eof */
3214 return (-1);
3215 }
3216 bufp += bytes_written;
3217 bytes_left -= bytes_written;
3218 } while (bytes_left > 0);
3219
3220 return (0);
3221}
3222
3223static int write_note(struct memelfnote *men, int fd)
3224{
3225 struct elf_note en;
3226
3227 en.n_namesz = men->namesz;
3228 en.n_type = men->type;
3229 en.n_descsz = men->datasz;
3230
edf8e2af 3231 bswap_note(&en);
edf8e2af
MW
3232
3233 if (dump_write(fd, &en, sizeof(en)) != 0)
3234 return (-1);
3235 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3236 return (-1);
80f5ce75 3237 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3238 return (-1);
3239
3240 return (0);
3241}
3242
9349b4f9 3243static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3244{
0429a971
AF
3245 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3246 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3247 struct elf_thread_status *ets;
3248
7267c094 3249 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3250 ets->num_notes = 1; /* only prstatus is dumped */
3251 fill_prstatus(&ets->prstatus, ts, 0);
3252 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3253 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3254 &ets->prstatus);
edf8e2af 3255
72cf2d4f 3256 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3257
3258 info->notes_size += note_size(&ets->notes[0]);
3259}
3260
6afafa86
PM
3261static void init_note_info(struct elf_note_info *info)
3262{
3263 /* Initialize the elf_note_info structure so that it is at
3264 * least safe to call free_note_info() on it. Must be
3265 * called before calling fill_note_info().
3266 */
3267 memset(info, 0, sizeof (*info));
3268 QTAILQ_INIT(&info->thread_list);
3269}
3270
edf8e2af 3271static int fill_note_info(struct elf_note_info *info,
9349b4f9 3272 long signr, const CPUArchState *env)
edf8e2af
MW
3273{
3274#define NUMNOTES 3
0429a971
AF
3275 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3276 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3277 int i;
3278
c78d65e8 3279 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3280 if (info->notes == NULL)
3281 return (-ENOMEM);
7267c094 3282 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3283 if (info->prstatus == NULL)
3284 return (-ENOMEM);
7267c094 3285 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3286 if (info->prstatus == NULL)
3287 return (-ENOMEM);
3288
3289 /*
3290 * First fill in status (and registers) of current thread
3291 * including process info & aux vector.
3292 */
3293 fill_prstatus(info->prstatus, ts, signr);
3294 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3295 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3296 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3297 fill_psinfo(info->psinfo, ts);
3298 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3299 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3300 fill_auxv_note(&info->notes[2], ts);
3301 info->numnote = 3;
3302
3303 info->notes_size = 0;
3304 for (i = 0; i < info->numnote; i++)
3305 info->notes_size += note_size(&info->notes[i]);
3306
3307 /* read and fill status of all threads */
3308 cpu_list_lock();
bdc44640 3309 CPU_FOREACH(cpu) {
a2247f8e 3310 if (cpu == thread_cpu) {
edf8e2af 3311 continue;
182735ef
AF
3312 }
3313 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3314 }
3315 cpu_list_unlock();
3316
3317 return (0);
3318}
3319
3320static void free_note_info(struct elf_note_info *info)
3321{
3322 struct elf_thread_status *ets;
3323
72cf2d4f
BS
3324 while (!QTAILQ_EMPTY(&info->thread_list)) {
3325 ets = QTAILQ_FIRST(&info->thread_list);
3326 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3327 g_free(ets);
edf8e2af
MW
3328 }
3329
7267c094
AL
3330 g_free(info->prstatus);
3331 g_free(info->psinfo);
3332 g_free(info->notes);
edf8e2af
MW
3333}
3334
3335static int write_note_info(struct elf_note_info *info, int fd)
3336{
3337 struct elf_thread_status *ets;
3338 int i, error = 0;
3339
3340 /* write prstatus, psinfo and auxv for current thread */
3341 for (i = 0; i < info->numnote; i++)
3342 if ((error = write_note(&info->notes[i], fd)) != 0)
3343 return (error);
3344
3345 /* write prstatus for each thread */
52a53afe 3346 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3347 if ((error = write_note(&ets->notes[0], fd)) != 0)
3348 return (error);
3349 }
3350
3351 return (0);
3352}
3353
3354/*
3355 * Write out ELF coredump.
3356 *
3357 * See documentation of ELF object file format in:
3358 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3359 *
3360 * Coredump format in linux is following:
3361 *
3362 * 0 +----------------------+ \
3363 * | ELF header | ET_CORE |
3364 * +----------------------+ |
3365 * | ELF program headers | |--- headers
3366 * | - NOTE section | |
3367 * | - PT_LOAD sections | |
3368 * +----------------------+ /
3369 * | NOTEs: |
3370 * | - NT_PRSTATUS |
3371 * | - NT_PRSINFO |
3372 * | - NT_AUXV |
3373 * +----------------------+ <-- aligned to target page
3374 * | Process memory dump |
3375 * : :
3376 * . .
3377 * : :
3378 * | |
3379 * +----------------------+
3380 *
3381 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3382 * NT_PRSINFO -> struct elf_prpsinfo
3383 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3384 *
3385 * Format follows System V format as close as possible. Current
3386 * version limitations are as follows:
3387 * - no floating point registers are dumped
3388 *
3389 * Function returns 0 in case of success, negative errno otherwise.
3390 *
3391 * TODO: make this work also during runtime: it should be
3392 * possible to force coredump from running process and then
3393 * continue processing. For example qemu could set up SIGUSR2
3394 * handler (provided that target process haven't registered
3395 * handler for that) that does the dump when signal is received.
3396 */
9349b4f9 3397static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3398{
0429a971
AF
3399 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3400 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3401 struct vm_area_struct *vma = NULL;
3402 char corefile[PATH_MAX];
3403 struct elf_note_info info;
3404 struct elfhdr elf;
3405 struct elf_phdr phdr;
3406 struct rlimit dumpsize;
3407 struct mm_struct *mm = NULL;
3408 off_t offset = 0, data_offset = 0;
3409 int segs = 0;
3410 int fd = -1;
3411
6afafa86
PM
3412 init_note_info(&info);
3413
edf8e2af
MW
3414 errno = 0;
3415 getrlimit(RLIMIT_CORE, &dumpsize);
3416 if (dumpsize.rlim_cur == 0)
d97ef72e 3417 return 0;
edf8e2af
MW
3418
3419 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3420 return (-errno);
3421
3422 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3423 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3424 return (-errno);
3425
3426 /*
3427 * Walk through target process memory mappings and
3428 * set up structure containing this information. After
3429 * this point vma_xxx functions can be used.
3430 */
3431 if ((mm = vma_init()) == NULL)
3432 goto out;
3433
3434 walk_memory_regions(mm, vma_walker);
3435 segs = vma_get_mapping_count(mm);
3436
3437 /*
3438 * Construct valid coredump ELF header. We also
3439 * add one more segment for notes.
3440 */
3441 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3442 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3443 goto out;
3444
b6af0975 3445 /* fill in the in-memory version of notes */
edf8e2af
MW
3446 if (fill_note_info(&info, signr, env) < 0)
3447 goto out;
3448
3449 offset += sizeof (elf); /* elf header */
3450 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3451
3452 /* write out notes program header */
3453 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3454
3455 offset += info.notes_size;
3456 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3457 goto out;
3458
3459 /*
3460 * ELF specification wants data to start at page boundary so
3461 * we align it here.
3462 */
80f5ce75 3463 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3464
3465 /*
3466 * Write program headers for memory regions mapped in
3467 * the target process.
3468 */
3469 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3470 (void) memset(&phdr, 0, sizeof (phdr));
3471
3472 phdr.p_type = PT_LOAD;
3473 phdr.p_offset = offset;
3474 phdr.p_vaddr = vma->vma_start;
3475 phdr.p_paddr = 0;
3476 phdr.p_filesz = vma_dump_size(vma);
3477 offset += phdr.p_filesz;
3478 phdr.p_memsz = vma->vma_end - vma->vma_start;
3479 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3480 if (vma->vma_flags & PROT_WRITE)
3481 phdr.p_flags |= PF_W;
3482 if (vma->vma_flags & PROT_EXEC)
3483 phdr.p_flags |= PF_X;
3484 phdr.p_align = ELF_EXEC_PAGESIZE;
3485
80f5ce75 3486 bswap_phdr(&phdr, 1);
772034b6
PM
3487 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3488 goto out;
3489 }
edf8e2af
MW
3490 }
3491
3492 /*
3493 * Next we write notes just after program headers. No
3494 * alignment needed here.
3495 */
3496 if (write_note_info(&info, fd) < 0)
3497 goto out;
3498
3499 /* align data to page boundary */
edf8e2af
MW
3500 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3501 goto out;
3502
3503 /*
3504 * Finally we can dump process memory into corefile as well.
3505 */
3506 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3507 abi_ulong addr;
3508 abi_ulong end;
3509
3510 end = vma->vma_start + vma_dump_size(vma);
3511
3512 for (addr = vma->vma_start; addr < end;
d97ef72e 3513 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3514 char page[TARGET_PAGE_SIZE];
3515 int error;
3516
3517 /*
3518 * Read in page from target process memory and
3519 * write it to coredump file.
3520 */
3521 error = copy_from_user(page, addr, sizeof (page));
3522 if (error != 0) {
49995e17 3523 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3524 addr);
edf8e2af
MW
3525 errno = -error;
3526 goto out;
3527 }
3528 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3529 goto out;
3530 }
3531 }
3532
d97ef72e 3533 out:
edf8e2af
MW
3534 free_note_info(&info);
3535 if (mm != NULL)
3536 vma_delete(mm);
3537 (void) close(fd);
3538
3539 if (errno != 0)
3540 return (-errno);
3541 return (0);
3542}
edf8e2af
MW
3543#endif /* USE_ELF_CORE_DUMP */
3544
e5fe0c52
PB
3545void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3546{
3547 init_thread(regs, infop);
3548}
This page took 1.298381 seconds and 4 git commands to generate.