]>
Commit | Line | Data |
---|---|---|
31e31b8a | 1 | /* This is the Linux kernel elf-loading code, ported into user space */ |
d39594e9 | 2 | #include "qemu/osdep.h" |
edf8e2af | 3 | #include <sys/param.h> |
31e31b8a | 4 | |
edf8e2af | 5 | #include <sys/resource.h> |
31e31b8a | 6 | |
3ef693a0 | 7 | #include "qemu.h" |
76cad711 | 8 | #include "disas/disas.h" |
f348b6d1 | 9 | #include "qemu/path.h" |
31e31b8a | 10 | |
e58ffeb3 | 11 | #ifdef _ARCH_PPC64 |
a6cc84f4 | 12 | #undef ARCH_DLINFO |
13 | #undef ELF_PLATFORM | |
14 | #undef ELF_HWCAP | |
ad6919dc | 15 | #undef ELF_HWCAP2 |
a6cc84f4 | 16 | #undef ELF_CLASS |
17 | #undef ELF_DATA | |
18 | #undef ELF_ARCH | |
19 | #endif | |
20 | ||
edf8e2af MW |
21 | #define ELF_OSABI ELFOSABI_SYSV |
22 | ||
cb33da57 BS |
23 | /* from personality.h */ |
24 | ||
25 | /* | |
26 | * Flags for bug emulation. | |
27 | * | |
28 | * These occupy the top three bytes. | |
29 | */ | |
30 | enum { | |
d97ef72e RH |
31 | ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
32 | FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to | |
33 | descriptors (signal handling) */ | |
34 | MMAP_PAGE_ZERO = 0x0100000, | |
35 | ADDR_COMPAT_LAYOUT = 0x0200000, | |
36 | READ_IMPLIES_EXEC = 0x0400000, | |
37 | ADDR_LIMIT_32BIT = 0x0800000, | |
38 | SHORT_INODE = 0x1000000, | |
39 | WHOLE_SECONDS = 0x2000000, | |
40 | STICKY_TIMEOUTS = 0x4000000, | |
41 | ADDR_LIMIT_3GB = 0x8000000, | |
cb33da57 BS |
42 | }; |
43 | ||
44 | /* | |
45 | * Personality types. | |
46 | * | |
47 | * These go in the low byte. Avoid using the top bit, it will | |
48 | * conflict with error returns. | |
49 | */ | |
50 | enum { | |
d97ef72e RH |
51 | PER_LINUX = 0x0000, |
52 | PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, | |
53 | PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, | |
54 | PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
55 | PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | |
56 | PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | |
57 | PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | |
58 | PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | |
59 | PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, | |
60 | PER_BSD = 0x0006, | |
61 | PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, | |
62 | PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | |
63 | PER_LINUX32 = 0x0008, | |
64 | PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, | |
65 | PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | |
66 | PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | |
67 | PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | |
68 | PER_RISCOS = 0x000c, | |
69 | PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, | |
70 | PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | |
71 | PER_OSF4 = 0x000f, /* OSF/1 v4 */ | |
72 | PER_HPUX = 0x0010, | |
73 | PER_MASK = 0x00ff, | |
cb33da57 BS |
74 | }; |
75 | ||
76 | /* | |
77 | * Return the base personality without flags. | |
78 | */ | |
d97ef72e | 79 | #define personality(pers) (pers & PER_MASK) |
cb33da57 | 80 | |
3cb10cfa CL |
81 | int info_is_fdpic(struct image_info *info) |
82 | { | |
83 | return info->personality == PER_LINUX_FDPIC; | |
84 | } | |
85 | ||
83fb7adf FB |
86 | /* this flag is uneffective under linux too, should be deleted */ |
87 | #ifndef MAP_DENYWRITE | |
88 | #define MAP_DENYWRITE 0 | |
89 | #endif | |
90 | ||
91 | /* should probably go in elf.h */ | |
92 | #ifndef ELIBBAD | |
93 | #define ELIBBAD 80 | |
94 | #endif | |
95 | ||
28490231 RH |
96 | #ifdef TARGET_WORDS_BIGENDIAN |
97 | #define ELF_DATA ELFDATA2MSB | |
98 | #else | |
99 | #define ELF_DATA ELFDATA2LSB | |
100 | #endif | |
101 | ||
a29f998d | 102 | #ifdef TARGET_ABI_MIPSN32 |
918fc54c PB |
103 | typedef abi_ullong target_elf_greg_t; |
104 | #define tswapreg(ptr) tswap64(ptr) | |
a29f998d PB |
105 | #else |
106 | typedef abi_ulong target_elf_greg_t; | |
107 | #define tswapreg(ptr) tswapal(ptr) | |
108 | #endif | |
109 | ||
21e807fa | 110 | #ifdef USE_UID16 |
1ddd592f PB |
111 | typedef abi_ushort target_uid_t; |
112 | typedef abi_ushort target_gid_t; | |
21e807fa | 113 | #else |
f8fd4fc4 PB |
114 | typedef abi_uint target_uid_t; |
115 | typedef abi_uint target_gid_t; | |
21e807fa | 116 | #endif |
f8fd4fc4 | 117 | typedef abi_int target_pid_t; |
21e807fa | 118 | |
30ac07d4 FB |
119 | #ifdef TARGET_I386 |
120 | ||
15338fd7 FB |
121 | #define ELF_PLATFORM get_elf_platform() |
122 | ||
123 | static const char *get_elf_platform(void) | |
124 | { | |
125 | static char elf_platform[] = "i386"; | |
a2247f8e | 126 | int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); |
15338fd7 FB |
127 | if (family > 6) |
128 | family = 6; | |
129 | if (family >= 3) | |
130 | elf_platform[1] = '0' + family; | |
131 | return elf_platform; | |
132 | } | |
133 | ||
134 | #define ELF_HWCAP get_elf_hwcap() | |
135 | ||
136 | static uint32_t get_elf_hwcap(void) | |
137 | { | |
a2247f8e AF |
138 | X86CPU *cpu = X86_CPU(thread_cpu); |
139 | ||
140 | return cpu->env.features[FEAT_1_EDX]; | |
15338fd7 FB |
141 | } |
142 | ||
84409ddb JM |
143 | #ifdef TARGET_X86_64 |
144 | #define ELF_START_MMAP 0x2aaaaab000ULL | |
84409ddb JM |
145 | |
146 | #define ELF_CLASS ELFCLASS64 | |
84409ddb JM |
147 | #define ELF_ARCH EM_X86_64 |
148 | ||
149 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
150 | { | |
151 | regs->rax = 0; | |
152 | regs->rsp = infop->start_stack; | |
153 | regs->rip = infop->entry; | |
154 | } | |
155 | ||
9edc5d79 | 156 | #define ELF_NREG 27 |
c227f099 | 157 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
158 | |
159 | /* | |
160 | * Note that ELF_NREG should be 29 as there should be place for | |
161 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
162 | * those. | |
163 | * | |
164 | * See linux kernel: arch/x86/include/asm/elf.h | |
165 | */ | |
05390248 | 166 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
9edc5d79 MW |
167 | { |
168 | (*regs)[0] = env->regs[15]; | |
169 | (*regs)[1] = env->regs[14]; | |
170 | (*regs)[2] = env->regs[13]; | |
171 | (*regs)[3] = env->regs[12]; | |
172 | (*regs)[4] = env->regs[R_EBP]; | |
173 | (*regs)[5] = env->regs[R_EBX]; | |
174 | (*regs)[6] = env->regs[11]; | |
175 | (*regs)[7] = env->regs[10]; | |
176 | (*regs)[8] = env->regs[9]; | |
177 | (*regs)[9] = env->regs[8]; | |
178 | (*regs)[10] = env->regs[R_EAX]; | |
179 | (*regs)[11] = env->regs[R_ECX]; | |
180 | (*regs)[12] = env->regs[R_EDX]; | |
181 | (*regs)[13] = env->regs[R_ESI]; | |
182 | (*regs)[14] = env->regs[R_EDI]; | |
183 | (*regs)[15] = env->regs[R_EAX]; /* XXX */ | |
184 | (*regs)[16] = env->eip; | |
185 | (*regs)[17] = env->segs[R_CS].selector & 0xffff; | |
186 | (*regs)[18] = env->eflags; | |
187 | (*regs)[19] = env->regs[R_ESP]; | |
188 | (*regs)[20] = env->segs[R_SS].selector & 0xffff; | |
189 | (*regs)[21] = env->segs[R_FS].selector & 0xffff; | |
190 | (*regs)[22] = env->segs[R_GS].selector & 0xffff; | |
191 | (*regs)[23] = env->segs[R_DS].selector & 0xffff; | |
192 | (*regs)[24] = env->segs[R_ES].selector & 0xffff; | |
193 | (*regs)[25] = env->segs[R_FS].selector & 0xffff; | |
194 | (*regs)[26] = env->segs[R_GS].selector & 0xffff; | |
195 | } | |
196 | ||
84409ddb JM |
197 | #else |
198 | ||
30ac07d4 FB |
199 | #define ELF_START_MMAP 0x80000000 |
200 | ||
30ac07d4 FB |
201 | /* |
202 | * This is used to ensure we don't load something for the wrong architecture. | |
203 | */ | |
204 | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | |
205 | ||
206 | /* | |
207 | * These are used to set parameters in the core dumps. | |
208 | */ | |
d97ef72e | 209 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 210 | #define ELF_ARCH EM_386 |
30ac07d4 | 211 | |
d97ef72e RH |
212 | static inline void init_thread(struct target_pt_regs *regs, |
213 | struct image_info *infop) | |
b346ff46 FB |
214 | { |
215 | regs->esp = infop->start_stack; | |
216 | regs->eip = infop->entry; | |
e5fe0c52 PB |
217 | |
218 | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | |
219 | starts %edx contains a pointer to a function which might be | |
220 | registered using `atexit'. This provides a mean for the | |
221 | dynamic linker to call DT_FINI functions for shared libraries | |
222 | that have been loaded before the code runs. | |
223 | ||
224 | A value of 0 tells we have no such handler. */ | |
225 | regs->edx = 0; | |
b346ff46 | 226 | } |
9edc5d79 | 227 | |
9edc5d79 | 228 | #define ELF_NREG 17 |
c227f099 | 229 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
9edc5d79 MW |
230 | |
231 | /* | |
232 | * Note that ELF_NREG should be 19 as there should be place for | |
233 | * TRAPNO and ERR "registers" as well but linux doesn't dump | |
234 | * those. | |
235 | * | |
236 | * See linux kernel: arch/x86/include/asm/elf.h | |
237 | */ | |
05390248 | 238 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
9edc5d79 MW |
239 | { |
240 | (*regs)[0] = env->regs[R_EBX]; | |
241 | (*regs)[1] = env->regs[R_ECX]; | |
242 | (*regs)[2] = env->regs[R_EDX]; | |
243 | (*regs)[3] = env->regs[R_ESI]; | |
244 | (*regs)[4] = env->regs[R_EDI]; | |
245 | (*regs)[5] = env->regs[R_EBP]; | |
246 | (*regs)[6] = env->regs[R_EAX]; | |
247 | (*regs)[7] = env->segs[R_DS].selector & 0xffff; | |
248 | (*regs)[8] = env->segs[R_ES].selector & 0xffff; | |
249 | (*regs)[9] = env->segs[R_FS].selector & 0xffff; | |
250 | (*regs)[10] = env->segs[R_GS].selector & 0xffff; | |
251 | (*regs)[11] = env->regs[R_EAX]; /* XXX */ | |
252 | (*regs)[12] = env->eip; | |
253 | (*regs)[13] = env->segs[R_CS].selector & 0xffff; | |
254 | (*regs)[14] = env->eflags; | |
255 | (*regs)[15] = env->regs[R_ESP]; | |
256 | (*regs)[16] = env->segs[R_SS].selector & 0xffff; | |
257 | } | |
84409ddb | 258 | #endif |
b346ff46 | 259 | |
9edc5d79 | 260 | #define USE_ELF_CORE_DUMP |
d97ef72e | 261 | #define ELF_EXEC_PAGESIZE 4096 |
b346ff46 FB |
262 | |
263 | #endif | |
264 | ||
265 | #ifdef TARGET_ARM | |
266 | ||
24e76ff0 PM |
267 | #ifndef TARGET_AARCH64 |
268 | /* 32 bit ARM definitions */ | |
269 | ||
b346ff46 FB |
270 | #define ELF_START_MMAP 0x80000000 |
271 | ||
b597c3f7 | 272 | #define ELF_ARCH EM_ARM |
d97ef72e | 273 | #define ELF_CLASS ELFCLASS32 |
b346ff46 | 274 | |
d97ef72e RH |
275 | static inline void init_thread(struct target_pt_regs *regs, |
276 | struct image_info *infop) | |
b346ff46 | 277 | { |
992f48a0 | 278 | abi_long stack = infop->start_stack; |
b346ff46 | 279 | memset(regs, 0, sizeof(*regs)); |
99033cae | 280 | |
167e4cdc PM |
281 | regs->uregs[16] = ARM_CPU_MODE_USR; |
282 | if (infop->entry & 1) { | |
283 | regs->uregs[16] |= CPSR_T; | |
284 | } | |
285 | regs->uregs[15] = infop->entry & 0xfffffffe; | |
286 | regs->uregs[13] = infop->start_stack; | |
2f619698 | 287 | /* FIXME - what to for failure of get_user()? */ |
167e4cdc PM |
288 | get_user_ual(regs->uregs[2], stack + 8); /* envp */ |
289 | get_user_ual(regs->uregs[1], stack + 4); /* envp */ | |
a1516e92 | 290 | /* XXX: it seems that r0 is zeroed after ! */ |
167e4cdc | 291 | regs->uregs[0] = 0; |
e5fe0c52 | 292 | /* For uClinux PIC binaries. */ |
863cf0b7 | 293 | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
167e4cdc | 294 | regs->uregs[10] = infop->start_data; |
3cb10cfa CL |
295 | |
296 | /* Support ARM FDPIC. */ | |
297 | if (info_is_fdpic(infop)) { | |
298 | /* As described in the ABI document, r7 points to the loadmap info | |
299 | * prepared by the kernel. If an interpreter is needed, r8 points | |
300 | * to the interpreter loadmap and r9 points to the interpreter | |
301 | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and | |
302 | * r9 points to the main program PT_DYNAMIC info. | |
303 | */ | |
304 | regs->uregs[7] = infop->loadmap_addr; | |
305 | if (infop->interpreter_loadmap_addr) { | |
306 | /* Executable is dynamically loaded. */ | |
307 | regs->uregs[8] = infop->interpreter_loadmap_addr; | |
308 | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; | |
309 | } else { | |
310 | regs->uregs[8] = 0; | |
311 | regs->uregs[9] = infop->pt_dynamic_addr; | |
312 | } | |
313 | } | |
b346ff46 FB |
314 | } |
315 | ||
edf8e2af | 316 | #define ELF_NREG 18 |
c227f099 | 317 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 318 | |
05390248 | 319 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
edf8e2af | 320 | { |
86cd7b2d PB |
321 | (*regs)[0] = tswapreg(env->regs[0]); |
322 | (*regs)[1] = tswapreg(env->regs[1]); | |
323 | (*regs)[2] = tswapreg(env->regs[2]); | |
324 | (*regs)[3] = tswapreg(env->regs[3]); | |
325 | (*regs)[4] = tswapreg(env->regs[4]); | |
326 | (*regs)[5] = tswapreg(env->regs[5]); | |
327 | (*regs)[6] = tswapreg(env->regs[6]); | |
328 | (*regs)[7] = tswapreg(env->regs[7]); | |
329 | (*regs)[8] = tswapreg(env->regs[8]); | |
330 | (*regs)[9] = tswapreg(env->regs[9]); | |
331 | (*regs)[10] = tswapreg(env->regs[10]); | |
332 | (*regs)[11] = tswapreg(env->regs[11]); | |
333 | (*regs)[12] = tswapreg(env->regs[12]); | |
334 | (*regs)[13] = tswapreg(env->regs[13]); | |
335 | (*regs)[14] = tswapreg(env->regs[14]); | |
336 | (*regs)[15] = tswapreg(env->regs[15]); | |
337 | ||
338 | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | |
339 | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | |
edf8e2af MW |
340 | } |
341 | ||
30ac07d4 | 342 | #define USE_ELF_CORE_DUMP |
d97ef72e | 343 | #define ELF_EXEC_PAGESIZE 4096 |
30ac07d4 | 344 | |
afce2927 FB |
345 | enum |
346 | { | |
d97ef72e RH |
347 | ARM_HWCAP_ARM_SWP = 1 << 0, |
348 | ARM_HWCAP_ARM_HALF = 1 << 1, | |
349 | ARM_HWCAP_ARM_THUMB = 1 << 2, | |
350 | ARM_HWCAP_ARM_26BIT = 1 << 3, | |
351 | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | |
352 | ARM_HWCAP_ARM_FPA = 1 << 5, | |
353 | ARM_HWCAP_ARM_VFP = 1 << 6, | |
354 | ARM_HWCAP_ARM_EDSP = 1 << 7, | |
355 | ARM_HWCAP_ARM_JAVA = 1 << 8, | |
356 | ARM_HWCAP_ARM_IWMMXT = 1 << 9, | |
43ce393e PM |
357 | ARM_HWCAP_ARM_CRUNCH = 1 << 10, |
358 | ARM_HWCAP_ARM_THUMBEE = 1 << 11, | |
359 | ARM_HWCAP_ARM_NEON = 1 << 12, | |
360 | ARM_HWCAP_ARM_VFPv3 = 1 << 13, | |
361 | ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, | |
24682654 PM |
362 | ARM_HWCAP_ARM_TLS = 1 << 15, |
363 | ARM_HWCAP_ARM_VFPv4 = 1 << 16, | |
364 | ARM_HWCAP_ARM_IDIVA = 1 << 17, | |
365 | ARM_HWCAP_ARM_IDIVT = 1 << 18, | |
366 | ARM_HWCAP_ARM_VFPD32 = 1 << 19, | |
367 | ARM_HWCAP_ARM_LPAE = 1 << 20, | |
368 | ARM_HWCAP_ARM_EVTSTRM = 1 << 21, | |
afce2927 FB |
369 | }; |
370 | ||
ad6919dc PM |
371 | enum { |
372 | ARM_HWCAP2_ARM_AES = 1 << 0, | |
373 | ARM_HWCAP2_ARM_PMULL = 1 << 1, | |
374 | ARM_HWCAP2_ARM_SHA1 = 1 << 2, | |
375 | ARM_HWCAP2_ARM_SHA2 = 1 << 3, | |
376 | ARM_HWCAP2_ARM_CRC32 = 1 << 4, | |
377 | }; | |
378 | ||
6b1275ff PM |
379 | /* The commpage only exists for 32 bit kernels */ |
380 | ||
806d1021 MI |
381 | /* Return 1 if the proposed guest space is suitable for the guest. |
382 | * Return 0 if the proposed guest space isn't suitable, but another | |
383 | * address space should be tried. | |
384 | * Return -1 if there is no way the proposed guest space can be | |
385 | * valid regardless of the base. | |
386 | * The guest code may leave a page mapped and populate it if the | |
387 | * address is suitable. | |
388 | */ | |
c3637eaf LS |
389 | static int init_guest_commpage(unsigned long guest_base, |
390 | unsigned long guest_size) | |
97cc7560 DDAG |
391 | { |
392 | unsigned long real_start, test_page_addr; | |
393 | ||
394 | /* We need to check that we can force a fault on access to the | |
395 | * commpage at 0xffff0fxx | |
396 | */ | |
397 | test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); | |
806d1021 MI |
398 | |
399 | /* If the commpage lies within the already allocated guest space, | |
400 | * then there is no way we can allocate it. | |
955e304f LS |
401 | * |
402 | * You may be thinking that that this check is redundant because | |
403 | * we already validated the guest size against MAX_RESERVED_VA; | |
404 | * but if qemu_host_page_mask is unusually large, then | |
405 | * test_page_addr may be lower. | |
806d1021 MI |
406 | */ |
407 | if (test_page_addr >= guest_base | |
e568f9df | 408 | && test_page_addr < (guest_base + guest_size)) { |
806d1021 MI |
409 | return -1; |
410 | } | |
411 | ||
97cc7560 DDAG |
412 | /* Note it needs to be writeable to let us initialise it */ |
413 | real_start = (unsigned long) | |
414 | mmap((void *)test_page_addr, qemu_host_page_size, | |
415 | PROT_READ | PROT_WRITE, | |
416 | MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
417 | ||
418 | /* If we can't map it then try another address */ | |
419 | if (real_start == -1ul) { | |
420 | return 0; | |
421 | } | |
422 | ||
423 | if (real_start != test_page_addr) { | |
424 | /* OS didn't put the page where we asked - unmap and reject */ | |
425 | munmap((void *)real_start, qemu_host_page_size); | |
426 | return 0; | |
427 | } | |
428 | ||
429 | /* Leave the page mapped | |
430 | * Populate it (mmap should have left it all 0'd) | |
431 | */ | |
432 | ||
433 | /* Kernel helper versions */ | |
434 | __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); | |
435 | ||
436 | /* Now it's populated make it RO */ | |
437 | if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { | |
438 | perror("Protecting guest commpage"); | |
439 | exit(-1); | |
440 | } | |
441 | ||
442 | return 1; /* All good */ | |
443 | } | |
adf050b1 BC |
444 | |
445 | #define ELF_HWCAP get_elf_hwcap() | |
ad6919dc | 446 | #define ELF_HWCAP2 get_elf_hwcap2() |
adf050b1 BC |
447 | |
448 | static uint32_t get_elf_hwcap(void) | |
449 | { | |
a2247f8e | 450 | ARMCPU *cpu = ARM_CPU(thread_cpu); |
adf050b1 BC |
451 | uint32_t hwcaps = 0; |
452 | ||
453 | hwcaps |= ARM_HWCAP_ARM_SWP; | |
454 | hwcaps |= ARM_HWCAP_ARM_HALF; | |
455 | hwcaps |= ARM_HWCAP_ARM_THUMB; | |
456 | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | |
adf050b1 BC |
457 | |
458 | /* probe for the extra features */ | |
459 | #define GET_FEATURE(feat, hwcap) \ | |
a2247f8e | 460 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) |
24682654 PM |
461 | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ |
462 | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); | |
adf050b1 BC |
463 | GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); |
464 | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); | |
465 | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | |
466 | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | |
467 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); | |
24682654 PM |
468 | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); |
469 | GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); | |
470 | GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); | |
471 | GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); | |
472 | /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. | |
473 | * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of | |
474 | * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated | |
475 | * to our VFP_FP16 feature bit. | |
476 | */ | |
477 | GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); | |
478 | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); | |
adf050b1 BC |
479 | |
480 | return hwcaps; | |
481 | } | |
afce2927 | 482 | |
ad6919dc PM |
483 | static uint32_t get_elf_hwcap2(void) |
484 | { | |
485 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
486 | uint32_t hwcaps = 0; | |
487 | ||
488 | GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); | |
4e624eda | 489 | GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); |
f1ecb913 AB |
490 | GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); |
491 | GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); | |
ad6919dc PM |
492 | GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); |
493 | return hwcaps; | |
494 | } | |
495 | ||
496 | #undef GET_FEATURE | |
497 | ||
24e76ff0 PM |
498 | #else |
499 | /* 64 bit ARM definitions */ | |
500 | #define ELF_START_MMAP 0x80000000 | |
501 | ||
b597c3f7 | 502 | #define ELF_ARCH EM_AARCH64 |
24e76ff0 PM |
503 | #define ELF_CLASS ELFCLASS64 |
504 | #define ELF_PLATFORM "aarch64" | |
505 | ||
506 | static inline void init_thread(struct target_pt_regs *regs, | |
507 | struct image_info *infop) | |
508 | { | |
509 | abi_long stack = infop->start_stack; | |
510 | memset(regs, 0, sizeof(*regs)); | |
511 | ||
512 | regs->pc = infop->entry & ~0x3ULL; | |
513 | regs->sp = stack; | |
514 | } | |
515 | ||
516 | #define ELF_NREG 34 | |
517 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
518 | ||
519 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
520 | const CPUARMState *env) | |
521 | { | |
522 | int i; | |
523 | ||
524 | for (i = 0; i < 32; i++) { | |
525 | (*regs)[i] = tswapreg(env->xregs[i]); | |
526 | } | |
527 | (*regs)[32] = tswapreg(env->pc); | |
528 | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); | |
529 | } | |
530 | ||
531 | #define USE_ELF_CORE_DUMP | |
532 | #define ELF_EXEC_PAGESIZE 4096 | |
533 | ||
534 | enum { | |
535 | ARM_HWCAP_A64_FP = 1 << 0, | |
536 | ARM_HWCAP_A64_ASIMD = 1 << 1, | |
537 | ARM_HWCAP_A64_EVTSTRM = 1 << 2, | |
538 | ARM_HWCAP_A64_AES = 1 << 3, | |
539 | ARM_HWCAP_A64_PMULL = 1 << 4, | |
540 | ARM_HWCAP_A64_SHA1 = 1 << 5, | |
541 | ARM_HWCAP_A64_SHA2 = 1 << 6, | |
542 | ARM_HWCAP_A64_CRC32 = 1 << 7, | |
955f56d4 AB |
543 | ARM_HWCAP_A64_ATOMICS = 1 << 8, |
544 | ARM_HWCAP_A64_FPHP = 1 << 9, | |
545 | ARM_HWCAP_A64_ASIMDHP = 1 << 10, | |
546 | ARM_HWCAP_A64_CPUID = 1 << 11, | |
547 | ARM_HWCAP_A64_ASIMDRDM = 1 << 12, | |
548 | ARM_HWCAP_A64_JSCVT = 1 << 13, | |
549 | ARM_HWCAP_A64_FCMA = 1 << 14, | |
550 | ARM_HWCAP_A64_LRCPC = 1 << 15, | |
551 | ARM_HWCAP_A64_DCPOP = 1 << 16, | |
552 | ARM_HWCAP_A64_SHA3 = 1 << 17, | |
553 | ARM_HWCAP_A64_SM3 = 1 << 18, | |
554 | ARM_HWCAP_A64_SM4 = 1 << 19, | |
555 | ARM_HWCAP_A64_ASIMDDP = 1 << 20, | |
556 | ARM_HWCAP_A64_SHA512 = 1 << 21, | |
557 | ARM_HWCAP_A64_SVE = 1 << 22, | |
24e76ff0 PM |
558 | }; |
559 | ||
560 | #define ELF_HWCAP get_elf_hwcap() | |
561 | ||
562 | static uint32_t get_elf_hwcap(void) | |
563 | { | |
564 | ARMCPU *cpu = ARM_CPU(thread_cpu); | |
565 | uint32_t hwcaps = 0; | |
566 | ||
567 | hwcaps |= ARM_HWCAP_A64_FP; | |
568 | hwcaps |= ARM_HWCAP_A64_ASIMD; | |
569 | ||
570 | /* probe for the extra features */ | |
571 | #define GET_FEATURE(feat, hwcap) \ | |
572 | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) | |
5acc765c | 573 | GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); |
411bdc78 | 574 | GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); |
f6fe04d5 PM |
575 | GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); |
576 | GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); | |
130f2e7d | 577 | GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); |
955f56d4 AB |
578 | GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); |
579 | GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); | |
580 | GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); | |
581 | GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); | |
201b19d5 PM |
582 | GET_FEATURE(ARM_FEATURE_V8_FP16, |
583 | ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); | |
68412d2e | 584 | GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS); |
1dc81c15 | 585 | GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); |
26c470a7 | 586 | GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP); |
0438f037 | 587 | GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); |
802ac0e1 | 588 | GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE); |
24e76ff0 PM |
589 | #undef GET_FEATURE |
590 | ||
591 | return hwcaps; | |
592 | } | |
593 | ||
594 | #endif /* not TARGET_AARCH64 */ | |
595 | #endif /* TARGET_ARM */ | |
30ac07d4 | 596 | |
853d6f7a | 597 | #ifdef TARGET_SPARC |
a315a145 | 598 | #ifdef TARGET_SPARC64 |
853d6f7a FB |
599 | |
600 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
601 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
602 | | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) | |
992f48a0 | 603 | #ifndef TARGET_ABI32 |
cb33da57 | 604 | #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
992f48a0 BS |
605 | #else |
606 | #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) | |
607 | #endif | |
853d6f7a | 608 | |
a315a145 | 609 | #define ELF_CLASS ELFCLASS64 |
5ef54116 FB |
610 | #define ELF_ARCH EM_SPARCV9 |
611 | ||
d97ef72e | 612 | #define STACK_BIAS 2047 |
a315a145 | 613 | |
d97ef72e RH |
614 | static inline void init_thread(struct target_pt_regs *regs, |
615 | struct image_info *infop) | |
a315a145 | 616 | { |
992f48a0 | 617 | #ifndef TARGET_ABI32 |
a315a145 | 618 | regs->tstate = 0; |
992f48a0 | 619 | #endif |
a315a145 FB |
620 | regs->pc = infop->entry; |
621 | regs->npc = regs->pc + 4; | |
622 | regs->y = 0; | |
992f48a0 BS |
623 | #ifdef TARGET_ABI32 |
624 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
625 | #else | |
cb33da57 BS |
626 | if (personality(infop->personality) == PER_LINUX32) |
627 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
628 | else | |
629 | regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; | |
992f48a0 | 630 | #endif |
a315a145 FB |
631 | } |
632 | ||
633 | #else | |
634 | #define ELF_START_MMAP 0x80000000 | |
cf973e46 AT |
635 | #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
636 | | HWCAP_SPARC_MULDIV) | |
a315a145 | 637 | |
853d6f7a | 638 | #define ELF_CLASS ELFCLASS32 |
853d6f7a FB |
639 | #define ELF_ARCH EM_SPARC |
640 | ||
d97ef72e RH |
641 | static inline void init_thread(struct target_pt_regs *regs, |
642 | struct image_info *infop) | |
853d6f7a | 643 | { |
f5155289 FB |
644 | regs->psr = 0; |
645 | regs->pc = infop->entry; | |
646 | regs->npc = regs->pc + 4; | |
647 | regs->y = 0; | |
648 | regs->u_regs[14] = infop->start_stack - 16 * 4; | |
853d6f7a FB |
649 | } |
650 | ||
a315a145 | 651 | #endif |
853d6f7a FB |
652 | #endif |
653 | ||
67867308 FB |
654 | #ifdef TARGET_PPC |
655 | ||
4ecd4d16 | 656 | #define ELF_MACHINE PPC_ELF_MACHINE |
67867308 FB |
657 | #define ELF_START_MMAP 0x80000000 |
658 | ||
e85e7c6e | 659 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
84409ddb JM |
660 | |
661 | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | |
662 | ||
d97ef72e | 663 | #define ELF_CLASS ELFCLASS64 |
84409ddb JM |
664 | |
665 | #else | |
666 | ||
d97ef72e | 667 | #define ELF_CLASS ELFCLASS32 |
84409ddb JM |
668 | |
669 | #endif | |
670 | ||
d97ef72e | 671 | #define ELF_ARCH EM_PPC |
67867308 | 672 | |
df84e4f3 NF |
673 | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
674 | See arch/powerpc/include/asm/cputable.h. */ | |
675 | enum { | |
3efa9a67 | 676 | QEMU_PPC_FEATURE_32 = 0x80000000, |
677 | QEMU_PPC_FEATURE_64 = 0x40000000, | |
678 | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | |
679 | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | |
680 | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | |
681 | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | |
682 | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | |
683 | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | |
684 | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | |
685 | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | |
686 | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | |
687 | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | |
688 | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | |
689 | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | |
690 | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | |
691 | QEMU_PPC_FEATURE_CELL = 0x00010000, | |
692 | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | |
693 | QEMU_PPC_FEATURE_SMT = 0x00004000, | |
694 | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | |
695 | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | |
696 | QEMU_PPC_FEATURE_PA6T = 0x00000800, | |
697 | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | |
698 | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | |
699 | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | |
700 | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | |
701 | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | |
702 | ||
703 | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | |
704 | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | |
a60438dd TM |
705 | |
706 | /* Feature definitions in AT_HWCAP2. */ | |
707 | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ | |
708 | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ | |
709 | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ | |
710 | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ | |
711 | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ | |
712 | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ | |
be0c46d4 | 713 | QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ |
df84e4f3 NF |
714 | }; |
715 | ||
716 | #define ELF_HWCAP get_elf_hwcap() | |
717 | ||
718 | static uint32_t get_elf_hwcap(void) | |
719 | { | |
a2247f8e | 720 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
df84e4f3 NF |
721 | uint32_t features = 0; |
722 | ||
723 | /* We don't have to be terribly complete here; the high points are | |
724 | Altivec/FP/SPE support. Anything else is just a bonus. */ | |
d97ef72e | 725 | #define GET_FEATURE(flag, feature) \ |
a2247f8e | 726 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
58eb5308 MW |
727 | #define GET_FEATURE2(flags, feature) \ |
728 | do { \ | |
729 | if ((cpu->env.insns_flags2 & flags) == flags) { \ | |
730 | features |= feature; \ | |
731 | } \ | |
732 | } while (0) | |
3efa9a67 | 733 | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
734 | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | |
735 | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | |
736 | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | |
737 | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | |
738 | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | |
739 | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | |
740 | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | |
0e019746 TM |
741 | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); |
742 | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); | |
743 | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | | |
744 | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), | |
745 | QEMU_PPC_FEATURE_ARCH_2_06); | |
df84e4f3 | 746 | #undef GET_FEATURE |
0e019746 | 747 | #undef GET_FEATURE2 |
df84e4f3 NF |
748 | |
749 | return features; | |
750 | } | |
751 | ||
a60438dd TM |
752 | #define ELF_HWCAP2 get_elf_hwcap2() |
753 | ||
754 | static uint32_t get_elf_hwcap2(void) | |
755 | { | |
756 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | |
757 | uint32_t features = 0; | |
758 | ||
759 | #define GET_FEATURE(flag, feature) \ | |
760 | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | |
761 | #define GET_FEATURE2(flag, feature) \ | |
762 | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) | |
763 | ||
764 | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); | |
765 | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); | |
766 | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | | |
767 | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); | |
be0c46d4 | 768 | GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); |
a60438dd TM |
769 | |
770 | #undef GET_FEATURE | |
771 | #undef GET_FEATURE2 | |
772 | ||
773 | return features; | |
774 | } | |
775 | ||
f5155289 FB |
776 | /* |
777 | * The requirements here are: | |
778 | * - keep the final alignment of sp (sp & 0xf) | |
779 | * - make sure the 32-bit value at the first 16 byte aligned position of | |
780 | * AUXV is greater than 16 for glibc compatibility. | |
781 | * AT_IGNOREPPC is used for that. | |
782 | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | |
783 | * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | |
784 | */ | |
0bccf03d | 785 | #define DLINFO_ARCH_ITEMS 5 |
d97ef72e RH |
786 | #define ARCH_DLINFO \ |
787 | do { \ | |
623e250a | 788 | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ |
d97ef72e | 789 | /* \ |
82991bed PM |
790 | * Handle glibc compatibility: these magic entries must \ |
791 | * be at the lowest addresses in the final auxv. \ | |
d97ef72e RH |
792 | */ \ |
793 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
794 | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ | |
82991bed PM |
795 | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ |
796 | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ | |
797 | NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ | |
d97ef72e | 798 | } while (0) |
f5155289 | 799 | |
67867308 FB |
800 | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
801 | { | |
67867308 | 802 | _regs->gpr[1] = infop->start_stack; |
e85e7c6e | 803 | #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
d90b94cd | 804 | if (get_ppc64_abi(infop) < 2) { |
2ccf97ec PM |
805 | uint64_t val; |
806 | get_user_u64(val, infop->entry + 8); | |
807 | _regs->gpr[2] = val + infop->load_bias; | |
808 | get_user_u64(val, infop->entry); | |
809 | infop->entry = val + infop->load_bias; | |
d90b94cd DK |
810 | } else { |
811 | _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ | |
812 | } | |
84409ddb | 813 | #endif |
67867308 FB |
814 | _regs->nip = infop->entry; |
815 | } | |
816 | ||
e2f3e741 NF |
817 | /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
818 | #define ELF_NREG 48 | |
819 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
820 | ||
05390248 | 821 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
e2f3e741 NF |
822 | { |
823 | int i; | |
824 | target_ulong ccr = 0; | |
825 | ||
826 | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | |
86cd7b2d | 827 | (*regs)[i] = tswapreg(env->gpr[i]); |
e2f3e741 NF |
828 | } |
829 | ||
86cd7b2d PB |
830 | (*regs)[32] = tswapreg(env->nip); |
831 | (*regs)[33] = tswapreg(env->msr); | |
832 | (*regs)[35] = tswapreg(env->ctr); | |
833 | (*regs)[36] = tswapreg(env->lr); | |
834 | (*regs)[37] = tswapreg(env->xer); | |
e2f3e741 NF |
835 | |
836 | for (i = 0; i < ARRAY_SIZE(env->crf); i++) { | |
837 | ccr |= env->crf[i] << (32 - ((i + 1) * 4)); | |
838 | } | |
86cd7b2d | 839 | (*regs)[38] = tswapreg(ccr); |
e2f3e741 NF |
840 | } |
841 | ||
842 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 843 | #define ELF_EXEC_PAGESIZE 4096 |
67867308 FB |
844 | |
845 | #endif | |
846 | ||
048f6b4d FB |
847 | #ifdef TARGET_MIPS |
848 | ||
849 | #define ELF_START_MMAP 0x80000000 | |
850 | ||
388bb21a TS |
851 | #ifdef TARGET_MIPS64 |
852 | #define ELF_CLASS ELFCLASS64 | |
853 | #else | |
048f6b4d | 854 | #define ELF_CLASS ELFCLASS32 |
388bb21a | 855 | #endif |
048f6b4d FB |
856 | #define ELF_ARCH EM_MIPS |
857 | ||
f72541f3 AM |
858 | #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) |
859 | ||
d97ef72e RH |
860 | static inline void init_thread(struct target_pt_regs *regs, |
861 | struct image_info *infop) | |
048f6b4d | 862 | { |
623a930e | 863 | regs->cp0_status = 2 << CP0St_KSU; |
048f6b4d FB |
864 | regs->cp0_epc = infop->entry; |
865 | regs->regs[29] = infop->start_stack; | |
866 | } | |
867 | ||
51e52606 NF |
868 | /* See linux kernel: arch/mips/include/asm/elf.h. */ |
869 | #define ELF_NREG 45 | |
870 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
871 | ||
872 | /* See linux kernel: arch/mips/include/asm/reg.h. */ | |
873 | enum { | |
874 | #ifdef TARGET_MIPS64 | |
875 | TARGET_EF_R0 = 0, | |
876 | #else | |
877 | TARGET_EF_R0 = 6, | |
878 | #endif | |
879 | TARGET_EF_R26 = TARGET_EF_R0 + 26, | |
880 | TARGET_EF_R27 = TARGET_EF_R0 + 27, | |
881 | TARGET_EF_LO = TARGET_EF_R0 + 32, | |
882 | TARGET_EF_HI = TARGET_EF_R0 + 33, | |
883 | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | |
884 | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | |
885 | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | |
886 | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | |
887 | }; | |
888 | ||
889 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
05390248 | 890 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
51e52606 NF |
891 | { |
892 | int i; | |
893 | ||
894 | for (i = 0; i < TARGET_EF_R0; i++) { | |
895 | (*regs)[i] = 0; | |
896 | } | |
897 | (*regs)[TARGET_EF_R0] = 0; | |
898 | ||
899 | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | |
a29f998d | 900 | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); |
51e52606 NF |
901 | } |
902 | ||
903 | (*regs)[TARGET_EF_R26] = 0; | |
904 | (*regs)[TARGET_EF_R27] = 0; | |
a29f998d PB |
905 | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); |
906 | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | |
907 | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | |
908 | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | |
909 | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | |
910 | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | |
51e52606 NF |
911 | } |
912 | ||
913 | #define USE_ELF_CORE_DUMP | |
388bb21a TS |
914 | #define ELF_EXEC_PAGESIZE 4096 |
915 | ||
46a1ee4f JC |
916 | /* See arch/mips/include/uapi/asm/hwcap.h. */ |
917 | enum { | |
918 | HWCAP_MIPS_R6 = (1 << 0), | |
919 | HWCAP_MIPS_MSA = (1 << 1), | |
920 | }; | |
921 | ||
922 | #define ELF_HWCAP get_elf_hwcap() | |
923 | ||
924 | static uint32_t get_elf_hwcap(void) | |
925 | { | |
926 | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | |
927 | uint32_t hwcaps = 0; | |
928 | ||
929 | #define GET_FEATURE(flag, hwcap) \ | |
930 | do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) | |
931 | ||
932 | GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); | |
933 | GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); | |
934 | ||
935 | #undef GET_FEATURE | |
936 | ||
937 | return hwcaps; | |
938 | } | |
939 | ||
048f6b4d FB |
940 | #endif /* TARGET_MIPS */ |
941 | ||
b779e29e EI |
942 | #ifdef TARGET_MICROBLAZE |
943 | ||
944 | #define ELF_START_MMAP 0x80000000 | |
945 | ||
0d5d4699 | 946 | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
b779e29e EI |
947 | |
948 | #define ELF_CLASS ELFCLASS32 | |
0d5d4699 | 949 | #define ELF_ARCH EM_MICROBLAZE |
b779e29e | 950 | |
d97ef72e RH |
951 | static inline void init_thread(struct target_pt_regs *regs, |
952 | struct image_info *infop) | |
b779e29e EI |
953 | { |
954 | regs->pc = infop->entry; | |
955 | regs->r1 = infop->start_stack; | |
956 | ||
957 | } | |
958 | ||
b779e29e EI |
959 | #define ELF_EXEC_PAGESIZE 4096 |
960 | ||
e4cbd44d EI |
961 | #define USE_ELF_CORE_DUMP |
962 | #define ELF_NREG 38 | |
963 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
964 | ||
965 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
05390248 | 966 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
e4cbd44d EI |
967 | { |
968 | int i, pos = 0; | |
969 | ||
970 | for (i = 0; i < 32; i++) { | |
86cd7b2d | 971 | (*regs)[pos++] = tswapreg(env->regs[i]); |
e4cbd44d EI |
972 | } |
973 | ||
974 | for (i = 0; i < 6; i++) { | |
86cd7b2d | 975 | (*regs)[pos++] = tswapreg(env->sregs[i]); |
e4cbd44d EI |
976 | } |
977 | } | |
978 | ||
b779e29e EI |
979 | #endif /* TARGET_MICROBLAZE */ |
980 | ||
a0a839b6 MV |
981 | #ifdef TARGET_NIOS2 |
982 | ||
983 | #define ELF_START_MMAP 0x80000000 | |
984 | ||
985 | #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) | |
986 | ||
987 | #define ELF_CLASS ELFCLASS32 | |
988 | #define ELF_ARCH EM_ALTERA_NIOS2 | |
989 | ||
990 | static void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
991 | { | |
992 | regs->ea = infop->entry; | |
993 | regs->sp = infop->start_stack; | |
994 | regs->estatus = 0x3; | |
995 | } | |
996 | ||
997 | #define ELF_EXEC_PAGESIZE 4096 | |
998 | ||
999 | #define USE_ELF_CORE_DUMP | |
1000 | #define ELF_NREG 49 | |
1001 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1002 | ||
1003 | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ | |
1004 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1005 | const CPUNios2State *env) | |
1006 | { | |
1007 | int i; | |
1008 | ||
1009 | (*regs)[0] = -1; | |
1010 | for (i = 1; i < 8; i++) /* r0-r7 */ | |
1011 | (*regs)[i] = tswapreg(env->regs[i + 7]); | |
1012 | ||
1013 | for (i = 8; i < 16; i++) /* r8-r15 */ | |
1014 | (*regs)[i] = tswapreg(env->regs[i - 8]); | |
1015 | ||
1016 | for (i = 16; i < 24; i++) /* r16-r23 */ | |
1017 | (*regs)[i] = tswapreg(env->regs[i + 7]); | |
1018 | (*regs)[24] = -1; /* R_ET */ | |
1019 | (*regs)[25] = -1; /* R_BT */ | |
1020 | (*regs)[26] = tswapreg(env->regs[R_GP]); | |
1021 | (*regs)[27] = tswapreg(env->regs[R_SP]); | |
1022 | (*regs)[28] = tswapreg(env->regs[R_FP]); | |
1023 | (*regs)[29] = tswapreg(env->regs[R_EA]); | |
1024 | (*regs)[30] = -1; /* R_SSTATUS */ | |
1025 | (*regs)[31] = tswapreg(env->regs[R_RA]); | |
1026 | ||
1027 | (*regs)[32] = tswapreg(env->regs[R_PC]); | |
1028 | ||
1029 | (*regs)[33] = -1; /* R_STATUS */ | |
1030 | (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); | |
1031 | ||
1032 | for (i = 35; i < 49; i++) /* ... */ | |
1033 | (*regs)[i] = -1; | |
1034 | } | |
1035 | ||
1036 | #endif /* TARGET_NIOS2 */ | |
1037 | ||
d962783e JL |
1038 | #ifdef TARGET_OPENRISC |
1039 | ||
1040 | #define ELF_START_MMAP 0x08000000 | |
1041 | ||
d962783e JL |
1042 | #define ELF_ARCH EM_OPENRISC |
1043 | #define ELF_CLASS ELFCLASS32 | |
1044 | #define ELF_DATA ELFDATA2MSB | |
1045 | ||
1046 | static inline void init_thread(struct target_pt_regs *regs, | |
1047 | struct image_info *infop) | |
1048 | { | |
1049 | regs->pc = infop->entry; | |
1050 | regs->gpr[1] = infop->start_stack; | |
1051 | } | |
1052 | ||
1053 | #define USE_ELF_CORE_DUMP | |
1054 | #define ELF_EXEC_PAGESIZE 8192 | |
1055 | ||
1056 | /* See linux kernel arch/openrisc/include/asm/elf.h. */ | |
1057 | #define ELF_NREG 34 /* gprs and pc, sr */ | |
1058 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1059 | ||
1060 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1061 | const CPUOpenRISCState *env) | |
1062 | { | |
1063 | int i; | |
1064 | ||
1065 | for (i = 0; i < 32; i++) { | |
d89e71e8 | 1066 | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); |
d962783e | 1067 | } |
86cd7b2d | 1068 | (*regs)[32] = tswapreg(env->pc); |
84775c43 | 1069 | (*regs)[33] = tswapreg(cpu_get_sr(env)); |
d962783e JL |
1070 | } |
1071 | #define ELF_HWCAP 0 | |
1072 | #define ELF_PLATFORM NULL | |
1073 | ||
1074 | #endif /* TARGET_OPENRISC */ | |
1075 | ||
fdf9b3e8 FB |
1076 | #ifdef TARGET_SH4 |
1077 | ||
1078 | #define ELF_START_MMAP 0x80000000 | |
1079 | ||
fdf9b3e8 | 1080 | #define ELF_CLASS ELFCLASS32 |
fdf9b3e8 FB |
1081 | #define ELF_ARCH EM_SH |
1082 | ||
d97ef72e RH |
1083 | static inline void init_thread(struct target_pt_regs *regs, |
1084 | struct image_info *infop) | |
fdf9b3e8 | 1085 | { |
d97ef72e RH |
1086 | /* Check other registers XXXXX */ |
1087 | regs->pc = infop->entry; | |
1088 | regs->regs[15] = infop->start_stack; | |
fdf9b3e8 FB |
1089 | } |
1090 | ||
7631c97e NF |
1091 | /* See linux kernel: arch/sh/include/asm/elf.h. */ |
1092 | #define ELF_NREG 23 | |
1093 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1094 | ||
1095 | /* See linux kernel: arch/sh/include/asm/ptrace.h. */ | |
1096 | enum { | |
1097 | TARGET_REG_PC = 16, | |
1098 | TARGET_REG_PR = 17, | |
1099 | TARGET_REG_SR = 18, | |
1100 | TARGET_REG_GBR = 19, | |
1101 | TARGET_REG_MACH = 20, | |
1102 | TARGET_REG_MACL = 21, | |
1103 | TARGET_REG_SYSCALL = 22 | |
1104 | }; | |
1105 | ||
d97ef72e | 1106 | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
05390248 | 1107 | const CPUSH4State *env) |
7631c97e NF |
1108 | { |
1109 | int i; | |
1110 | ||
1111 | for (i = 0; i < 16; i++) { | |
72cd500b | 1112 | (*regs)[i] = tswapreg(env->gregs[i]); |
7631c97e NF |
1113 | } |
1114 | ||
86cd7b2d PB |
1115 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
1116 | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | |
1117 | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | |
1118 | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | |
1119 | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | |
1120 | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | |
7631c97e NF |
1121 | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
1122 | } | |
1123 | ||
1124 | #define USE_ELF_CORE_DUMP | |
fdf9b3e8 FB |
1125 | #define ELF_EXEC_PAGESIZE 4096 |
1126 | ||
e42fd944 RH |
1127 | enum { |
1128 | SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ | |
1129 | SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ | |
1130 | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ | |
1131 | SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ | |
1132 | SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ | |
1133 | SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ | |
1134 | SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ | |
1135 | SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ | |
1136 | SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ | |
1137 | SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ | |
1138 | }; | |
1139 | ||
1140 | #define ELF_HWCAP get_elf_hwcap() | |
1141 | ||
1142 | static uint32_t get_elf_hwcap(void) | |
1143 | { | |
1144 | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); | |
1145 | uint32_t hwcap = 0; | |
1146 | ||
1147 | hwcap |= SH_CPU_HAS_FPU; | |
1148 | ||
1149 | if (cpu->env.features & SH_FEATURE_SH4A) { | |
1150 | hwcap |= SH_CPU_HAS_LLSC; | |
1151 | } | |
1152 | ||
1153 | return hwcap; | |
1154 | } | |
1155 | ||
fdf9b3e8 FB |
1156 | #endif |
1157 | ||
48733d19 TS |
1158 | #ifdef TARGET_CRIS |
1159 | ||
1160 | #define ELF_START_MMAP 0x80000000 | |
1161 | ||
48733d19 | 1162 | #define ELF_CLASS ELFCLASS32 |
48733d19 TS |
1163 | #define ELF_ARCH EM_CRIS |
1164 | ||
d97ef72e RH |
1165 | static inline void init_thread(struct target_pt_regs *regs, |
1166 | struct image_info *infop) | |
48733d19 | 1167 | { |
d97ef72e | 1168 | regs->erp = infop->entry; |
48733d19 TS |
1169 | } |
1170 | ||
48733d19 TS |
1171 | #define ELF_EXEC_PAGESIZE 8192 |
1172 | ||
1173 | #endif | |
1174 | ||
e6e5906b PB |
1175 | #ifdef TARGET_M68K |
1176 | ||
1177 | #define ELF_START_MMAP 0x80000000 | |
1178 | ||
d97ef72e | 1179 | #define ELF_CLASS ELFCLASS32 |
d97ef72e | 1180 | #define ELF_ARCH EM_68K |
e6e5906b PB |
1181 | |
1182 | /* ??? Does this need to do anything? | |
d97ef72e | 1183 | #define ELF_PLAT_INIT(_r) */ |
e6e5906b | 1184 | |
d97ef72e RH |
1185 | static inline void init_thread(struct target_pt_regs *regs, |
1186 | struct image_info *infop) | |
e6e5906b PB |
1187 | { |
1188 | regs->usp = infop->start_stack; | |
1189 | regs->sr = 0; | |
1190 | regs->pc = infop->entry; | |
1191 | } | |
1192 | ||
7a93cc55 NF |
1193 | /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
1194 | #define ELF_NREG 20 | |
1195 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1196 | ||
05390248 | 1197 | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
7a93cc55 | 1198 | { |
86cd7b2d PB |
1199 | (*regs)[0] = tswapreg(env->dregs[1]); |
1200 | (*regs)[1] = tswapreg(env->dregs[2]); | |
1201 | (*regs)[2] = tswapreg(env->dregs[3]); | |
1202 | (*regs)[3] = tswapreg(env->dregs[4]); | |
1203 | (*regs)[4] = tswapreg(env->dregs[5]); | |
1204 | (*regs)[5] = tswapreg(env->dregs[6]); | |
1205 | (*regs)[6] = tswapreg(env->dregs[7]); | |
1206 | (*regs)[7] = tswapreg(env->aregs[0]); | |
1207 | (*regs)[8] = tswapreg(env->aregs[1]); | |
1208 | (*regs)[9] = tswapreg(env->aregs[2]); | |
1209 | (*regs)[10] = tswapreg(env->aregs[3]); | |
1210 | (*regs)[11] = tswapreg(env->aregs[4]); | |
1211 | (*regs)[12] = tswapreg(env->aregs[5]); | |
1212 | (*regs)[13] = tswapreg(env->aregs[6]); | |
1213 | (*regs)[14] = tswapreg(env->dregs[0]); | |
1214 | (*regs)[15] = tswapreg(env->aregs[7]); | |
1215 | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | |
1216 | (*regs)[17] = tswapreg(env->sr); | |
1217 | (*regs)[18] = tswapreg(env->pc); | |
7a93cc55 NF |
1218 | (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
1219 | } | |
1220 | ||
1221 | #define USE_ELF_CORE_DUMP | |
d97ef72e | 1222 | #define ELF_EXEC_PAGESIZE 8192 |
e6e5906b PB |
1223 | |
1224 | #endif | |
1225 | ||
7a3148a9 JM |
1226 | #ifdef TARGET_ALPHA |
1227 | ||
1228 | #define ELF_START_MMAP (0x30000000000ULL) | |
1229 | ||
7a3148a9 | 1230 | #define ELF_CLASS ELFCLASS64 |
7a3148a9 JM |
1231 | #define ELF_ARCH EM_ALPHA |
1232 | ||
d97ef72e RH |
1233 | static inline void init_thread(struct target_pt_regs *regs, |
1234 | struct image_info *infop) | |
7a3148a9 JM |
1235 | { |
1236 | regs->pc = infop->entry; | |
1237 | regs->ps = 8; | |
1238 | regs->usp = infop->start_stack; | |
7a3148a9 JM |
1239 | } |
1240 | ||
7a3148a9 JM |
1241 | #define ELF_EXEC_PAGESIZE 8192 |
1242 | ||
1243 | #endif /* TARGET_ALPHA */ | |
1244 | ||
a4c075f1 UH |
1245 | #ifdef TARGET_S390X |
1246 | ||
1247 | #define ELF_START_MMAP (0x20000000000ULL) | |
1248 | ||
a4c075f1 UH |
1249 | #define ELF_CLASS ELFCLASS64 |
1250 | #define ELF_DATA ELFDATA2MSB | |
1251 | #define ELF_ARCH EM_S390 | |
1252 | ||
1253 | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | |
1254 | { | |
1255 | regs->psw.addr = infop->entry; | |
1256 | regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; | |
1257 | regs->gprs[15] = infop->start_stack; | |
1258 | } | |
1259 | ||
1260 | #endif /* TARGET_S390X */ | |
1261 | ||
b16189b2 CG |
1262 | #ifdef TARGET_TILEGX |
1263 | ||
1264 | /* 42 bits real used address, a half for user mode */ | |
1265 | #define ELF_START_MMAP (0x00000020000000000ULL) | |
1266 | ||
1267 | #define elf_check_arch(x) ((x) == EM_TILEGX) | |
1268 | ||
1269 | #define ELF_CLASS ELFCLASS64 | |
1270 | #define ELF_DATA ELFDATA2LSB | |
1271 | #define ELF_ARCH EM_TILEGX | |
1272 | ||
1273 | static inline void init_thread(struct target_pt_regs *regs, | |
1274 | struct image_info *infop) | |
1275 | { | |
1276 | regs->pc = infop->entry; | |
1277 | regs->sp = infop->start_stack; | |
1278 | ||
1279 | } | |
1280 | ||
1281 | #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ | |
1282 | ||
1283 | #endif /* TARGET_TILEGX */ | |
1284 | ||
47ae93cd MC |
1285 | #ifdef TARGET_RISCV |
1286 | ||
1287 | #define ELF_START_MMAP 0x80000000 | |
1288 | #define ELF_ARCH EM_RISCV | |
1289 | ||
1290 | #ifdef TARGET_RISCV32 | |
1291 | #define ELF_CLASS ELFCLASS32 | |
1292 | #else | |
1293 | #define ELF_CLASS ELFCLASS64 | |
1294 | #endif | |
1295 | ||
1296 | static inline void init_thread(struct target_pt_regs *regs, | |
1297 | struct image_info *infop) | |
1298 | { | |
1299 | regs->sepc = infop->entry; | |
1300 | regs->sp = infop->start_stack; | |
1301 | } | |
1302 | ||
1303 | #define ELF_EXEC_PAGESIZE 4096 | |
1304 | ||
1305 | #endif /* TARGET_RISCV */ | |
1306 | ||
7c248bcd RH |
1307 | #ifdef TARGET_HPPA |
1308 | ||
1309 | #define ELF_START_MMAP 0x80000000 | |
1310 | #define ELF_CLASS ELFCLASS32 | |
1311 | #define ELF_ARCH EM_PARISC | |
1312 | #define ELF_PLATFORM "PARISC" | |
1313 | #define STACK_GROWS_DOWN 0 | |
1314 | #define STACK_ALIGNMENT 64 | |
1315 | ||
1316 | static inline void init_thread(struct target_pt_regs *regs, | |
1317 | struct image_info *infop) | |
1318 | { | |
1319 | regs->iaoq[0] = infop->entry; | |
1320 | regs->iaoq[1] = infop->entry + 4; | |
1321 | regs->gr[23] = 0; | |
1322 | regs->gr[24] = infop->arg_start; | |
1323 | regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); | |
1324 | /* The top-of-stack contains a linkage buffer. */ | |
1325 | regs->gr[30] = infop->start_stack + 64; | |
1326 | regs->gr[31] = infop->entry; | |
1327 | } | |
1328 | ||
1329 | #endif /* TARGET_HPPA */ | |
1330 | ||
ba7651fb MF |
1331 | #ifdef TARGET_XTENSA |
1332 | ||
1333 | #define ELF_START_MMAP 0x20000000 | |
1334 | ||
1335 | #define ELF_CLASS ELFCLASS32 | |
1336 | #define ELF_ARCH EM_XTENSA | |
1337 | ||
1338 | static inline void init_thread(struct target_pt_regs *regs, | |
1339 | struct image_info *infop) | |
1340 | { | |
1341 | regs->windowbase = 0; | |
1342 | regs->windowstart = 1; | |
1343 | regs->areg[1] = infop->start_stack; | |
1344 | regs->pc = infop->entry; | |
1345 | } | |
1346 | ||
1347 | /* See linux kernel: arch/xtensa/include/asm/elf.h. */ | |
1348 | #define ELF_NREG 128 | |
1349 | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | |
1350 | ||
1351 | enum { | |
1352 | TARGET_REG_PC, | |
1353 | TARGET_REG_PS, | |
1354 | TARGET_REG_LBEG, | |
1355 | TARGET_REG_LEND, | |
1356 | TARGET_REG_LCOUNT, | |
1357 | TARGET_REG_SAR, | |
1358 | TARGET_REG_WINDOWSTART, | |
1359 | TARGET_REG_WINDOWBASE, | |
1360 | TARGET_REG_THREADPTR, | |
1361 | TARGET_REG_AR0 = 64, | |
1362 | }; | |
1363 | ||
1364 | static void elf_core_copy_regs(target_elf_gregset_t *regs, | |
1365 | const CPUXtensaState *env) | |
1366 | { | |
1367 | unsigned i; | |
1368 | ||
1369 | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | |
1370 | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); | |
1371 | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); | |
1372 | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); | |
1373 | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); | |
1374 | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); | |
1375 | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); | |
1376 | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); | |
1377 | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); | |
1378 | xtensa_sync_phys_from_window((CPUXtensaState *)env); | |
1379 | for (i = 0; i < env->config->nareg; ++i) { | |
1380 | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); | |
1381 | } | |
1382 | } | |
1383 | ||
1384 | #define USE_ELF_CORE_DUMP | |
1385 | #define ELF_EXEC_PAGESIZE 4096 | |
1386 | ||
1387 | #endif /* TARGET_XTENSA */ | |
1388 | ||
15338fd7 FB |
1389 | #ifndef ELF_PLATFORM |
1390 | #define ELF_PLATFORM (NULL) | |
1391 | #endif | |
1392 | ||
75be901c PC |
1393 | #ifndef ELF_MACHINE |
1394 | #define ELF_MACHINE ELF_ARCH | |
1395 | #endif | |
1396 | ||
d276a604 PC |
1397 | #ifndef elf_check_arch |
1398 | #define elf_check_arch(x) ((x) == ELF_ARCH) | |
1399 | #endif | |
1400 | ||
15338fd7 FB |
1401 | #ifndef ELF_HWCAP |
1402 | #define ELF_HWCAP 0 | |
1403 | #endif | |
1404 | ||
7c4ee5bc RH |
1405 | #ifndef STACK_GROWS_DOWN |
1406 | #define STACK_GROWS_DOWN 1 | |
1407 | #endif | |
1408 | ||
1409 | #ifndef STACK_ALIGNMENT | |
1410 | #define STACK_ALIGNMENT 16 | |
1411 | #endif | |
1412 | ||
992f48a0 | 1413 | #ifdef TARGET_ABI32 |
cb33da57 | 1414 | #undef ELF_CLASS |
992f48a0 | 1415 | #define ELF_CLASS ELFCLASS32 |
cb33da57 BS |
1416 | #undef bswaptls |
1417 | #define bswaptls(ptr) bswap32s(ptr) | |
1418 | #endif | |
1419 | ||
31e31b8a | 1420 | #include "elf.h" |
09bfb054 | 1421 | |
09bfb054 FB |
1422 | struct exec |
1423 | { | |
d97ef72e RH |
1424 | unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
1425 | unsigned int a_text; /* length of text, in bytes */ | |
1426 | unsigned int a_data; /* length of data, in bytes */ | |
1427 | unsigned int a_bss; /* length of uninitialized data area, in bytes */ | |
1428 | unsigned int a_syms; /* length of symbol table data in file, in bytes */ | |
1429 | unsigned int a_entry; /* start address */ | |
1430 | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | |
1431 | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | |
09bfb054 FB |
1432 | }; |
1433 | ||
1434 | ||
1435 | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | |
1436 | #define OMAGIC 0407 | |
1437 | #define NMAGIC 0410 | |
1438 | #define ZMAGIC 0413 | |
1439 | #define QMAGIC 0314 | |
1440 | ||
31e31b8a | 1441 | /* Necessary parameters */ |
94894ff2 SB |
1442 | #define TARGET_ELF_EXEC_PAGESIZE \ |
1443 | (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ | |
1444 | TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) | |
1445 | #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) | |
79cb1f1d YK |
1446 | #define TARGET_ELF_PAGESTART(_v) ((_v) & \ |
1447 | ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) | |
54936004 | 1448 | #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) |
31e31b8a | 1449 | |
444cd5c3 | 1450 | #define DLINFO_ITEMS 15 |
31e31b8a | 1451 | |
09bfb054 FB |
1452 | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
1453 | { | |
d97ef72e | 1454 | memcpy(to, from, n); |
09bfb054 | 1455 | } |
d691f669 | 1456 | |
31e31b8a | 1457 | #ifdef BSWAP_NEEDED |
92a31b1f | 1458 | static void bswap_ehdr(struct elfhdr *ehdr) |
31e31b8a | 1459 | { |
d97ef72e RH |
1460 | bswap16s(&ehdr->e_type); /* Object file type */ |
1461 | bswap16s(&ehdr->e_machine); /* Architecture */ | |
1462 | bswap32s(&ehdr->e_version); /* Object file version */ | |
1463 | bswaptls(&ehdr->e_entry); /* Entry point virtual address */ | |
1464 | bswaptls(&ehdr->e_phoff); /* Program header table file offset */ | |
1465 | bswaptls(&ehdr->e_shoff); /* Section header table file offset */ | |
1466 | bswap32s(&ehdr->e_flags); /* Processor-specific flags */ | |
1467 | bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ | |
1468 | bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ | |
1469 | bswap16s(&ehdr->e_phnum); /* Program header table entry count */ | |
1470 | bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ | |
1471 | bswap16s(&ehdr->e_shnum); /* Section header table entry count */ | |
1472 | bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ | |
31e31b8a FB |
1473 | } |
1474 | ||
991f8f0c | 1475 | static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
31e31b8a | 1476 | { |
991f8f0c RH |
1477 | int i; |
1478 | for (i = 0; i < phnum; ++i, ++phdr) { | |
1479 | bswap32s(&phdr->p_type); /* Segment type */ | |
1480 | bswap32s(&phdr->p_flags); /* Segment flags */ | |
1481 | bswaptls(&phdr->p_offset); /* Segment file offset */ | |
1482 | bswaptls(&phdr->p_vaddr); /* Segment virtual address */ | |
1483 | bswaptls(&phdr->p_paddr); /* Segment physical address */ | |
1484 | bswaptls(&phdr->p_filesz); /* Segment size in file */ | |
1485 | bswaptls(&phdr->p_memsz); /* Segment size in memory */ | |
1486 | bswaptls(&phdr->p_align); /* Segment alignment */ | |
1487 | } | |
31e31b8a | 1488 | } |
689f936f | 1489 | |
991f8f0c | 1490 | static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
689f936f | 1491 | { |
991f8f0c RH |
1492 | int i; |
1493 | for (i = 0; i < shnum; ++i, ++shdr) { | |
1494 | bswap32s(&shdr->sh_name); | |
1495 | bswap32s(&shdr->sh_type); | |
1496 | bswaptls(&shdr->sh_flags); | |
1497 | bswaptls(&shdr->sh_addr); | |
1498 | bswaptls(&shdr->sh_offset); | |
1499 | bswaptls(&shdr->sh_size); | |
1500 | bswap32s(&shdr->sh_link); | |
1501 | bswap32s(&shdr->sh_info); | |
1502 | bswaptls(&shdr->sh_addralign); | |
1503 | bswaptls(&shdr->sh_entsize); | |
1504 | } | |
689f936f FB |
1505 | } |
1506 | ||
7a3148a9 | 1507 | static void bswap_sym(struct elf_sym *sym) |
689f936f FB |
1508 | { |
1509 | bswap32s(&sym->st_name); | |
7a3148a9 JM |
1510 | bswaptls(&sym->st_value); |
1511 | bswaptls(&sym->st_size); | |
689f936f FB |
1512 | bswap16s(&sym->st_shndx); |
1513 | } | |
991f8f0c RH |
1514 | #else |
1515 | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | |
1516 | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | |
1517 | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | |
1518 | static inline void bswap_sym(struct elf_sym *sym) { } | |
31e31b8a FB |
1519 | #endif |
1520 | ||
edf8e2af | 1521 | #ifdef USE_ELF_CORE_DUMP |
9349b4f9 | 1522 | static int elf_core_dump(int, const CPUArchState *); |
edf8e2af | 1523 | #endif /* USE_ELF_CORE_DUMP */ |
682674b8 | 1524 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
edf8e2af | 1525 | |
9058abdd RH |
1526 | /* Verify the portions of EHDR within E_IDENT for the target. |
1527 | This can be performed before bswapping the entire header. */ | |
1528 | static bool elf_check_ident(struct elfhdr *ehdr) | |
1529 | { | |
1530 | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | |
1531 | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | |
1532 | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | |
1533 | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | |
1534 | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | |
1535 | && ehdr->e_ident[EI_DATA] == ELF_DATA | |
1536 | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | |
1537 | } | |
1538 | ||
1539 | /* Verify the portions of EHDR outside of E_IDENT for the target. | |
1540 | This has to wait until after bswapping the header. */ | |
1541 | static bool elf_check_ehdr(struct elfhdr *ehdr) | |
1542 | { | |
1543 | return (elf_check_arch(ehdr->e_machine) | |
1544 | && ehdr->e_ehsize == sizeof(struct elfhdr) | |
1545 | && ehdr->e_phentsize == sizeof(struct elf_phdr) | |
9058abdd RH |
1546 | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); |
1547 | } | |
1548 | ||
31e31b8a | 1549 | /* |
e5fe0c52 | 1550 | * 'copy_elf_strings()' copies argument/envelope strings from user |
31e31b8a FB |
1551 | * memory to free pages in kernel mem. These are in a format ready |
1552 | * to be put directly into the top of new user memory. | |
1553 | * | |
1554 | */ | |
59baae9a SB |
1555 | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, |
1556 | abi_ulong p, abi_ulong stack_limit) | |
31e31b8a | 1557 | { |
59baae9a | 1558 | char *tmp; |
7c4ee5bc | 1559 | int len, i; |
59baae9a | 1560 | abi_ulong top = p; |
31e31b8a FB |
1561 | |
1562 | if (!p) { | |
d97ef72e | 1563 | return 0; /* bullet-proofing */ |
31e31b8a | 1564 | } |
59baae9a | 1565 | |
7c4ee5bc RH |
1566 | if (STACK_GROWS_DOWN) { |
1567 | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; | |
1568 | for (i = argc - 1; i >= 0; --i) { | |
1569 | tmp = argv[i]; | |
1570 | if (!tmp) { | |
1571 | fprintf(stderr, "VFS: argc is wrong"); | |
1572 | exit(-1); | |
1573 | } | |
1574 | len = strlen(tmp) + 1; | |
1575 | tmp += len; | |
59baae9a | 1576 | |
7c4ee5bc RH |
1577 | if (len > (p - stack_limit)) { |
1578 | return 0; | |
1579 | } | |
1580 | while (len) { | |
1581 | int bytes_to_copy = (len > offset) ? offset : len; | |
1582 | tmp -= bytes_to_copy; | |
1583 | p -= bytes_to_copy; | |
1584 | offset -= bytes_to_copy; | |
1585 | len -= bytes_to_copy; | |
1586 | ||
1587 | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); | |
1588 | ||
1589 | if (offset == 0) { | |
1590 | memcpy_to_target(p, scratch, top - p); | |
1591 | top = p; | |
1592 | offset = TARGET_PAGE_SIZE; | |
1593 | } | |
1594 | } | |
d97ef72e | 1595 | } |
7c4ee5bc RH |
1596 | if (p != top) { |
1597 | memcpy_to_target(p, scratch + offset, top - p); | |
d97ef72e | 1598 | } |
7c4ee5bc RH |
1599 | } else { |
1600 | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); | |
1601 | for (i = 0; i < argc; ++i) { | |
1602 | tmp = argv[i]; | |
1603 | if (!tmp) { | |
1604 | fprintf(stderr, "VFS: argc is wrong"); | |
1605 | exit(-1); | |
1606 | } | |
1607 | len = strlen(tmp) + 1; | |
1608 | if (len > (stack_limit - p)) { | |
1609 | return 0; | |
1610 | } | |
1611 | while (len) { | |
1612 | int bytes_to_copy = (len > remaining) ? remaining : len; | |
1613 | ||
1614 | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); | |
1615 | ||
1616 | tmp += bytes_to_copy; | |
1617 | remaining -= bytes_to_copy; | |
1618 | p += bytes_to_copy; | |
1619 | len -= bytes_to_copy; | |
1620 | ||
1621 | if (remaining == 0) { | |
1622 | memcpy_to_target(top, scratch, p - top); | |
1623 | top = p; | |
1624 | remaining = TARGET_PAGE_SIZE; | |
1625 | } | |
d97ef72e RH |
1626 | } |
1627 | } | |
7c4ee5bc RH |
1628 | if (p != top) { |
1629 | memcpy_to_target(top, scratch, p - top); | |
1630 | } | |
59baae9a SB |
1631 | } |
1632 | ||
31e31b8a FB |
1633 | return p; |
1634 | } | |
1635 | ||
59baae9a SB |
1636 | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of |
1637 | * argument/environment space. Newer kernels (>2.6.33) allow more, | |
1638 | * dependent on stack size, but guarantee at least 32 pages for | |
1639 | * backwards compatibility. | |
1640 | */ | |
1641 | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) | |
1642 | ||
1643 | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, | |
992f48a0 | 1644 | struct image_info *info) |
53a5960a | 1645 | { |
59baae9a | 1646 | abi_ulong size, error, guard; |
31e31b8a | 1647 | |
703e0e89 | 1648 | size = guest_stack_size; |
59baae9a SB |
1649 | if (size < STACK_LOWER_LIMIT) { |
1650 | size = STACK_LOWER_LIMIT; | |
60dcbcb5 RH |
1651 | } |
1652 | guard = TARGET_PAGE_SIZE; | |
1653 | if (guard < qemu_real_host_page_size) { | |
1654 | guard = qemu_real_host_page_size; | |
1655 | } | |
1656 | ||
1657 | error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, | |
1658 | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
09bfb054 | 1659 | if (error == -1) { |
60dcbcb5 | 1660 | perror("mmap stack"); |
09bfb054 FB |
1661 | exit(-1); |
1662 | } | |
31e31b8a | 1663 | |
60dcbcb5 | 1664 | /* We reserve one extra page at the top of the stack as guard. */ |
7c4ee5bc RH |
1665 | if (STACK_GROWS_DOWN) { |
1666 | target_mprotect(error, guard, PROT_NONE); | |
1667 | info->stack_limit = error + guard; | |
1668 | return info->stack_limit + size - sizeof(void *); | |
1669 | } else { | |
1670 | target_mprotect(error + size, guard, PROT_NONE); | |
1671 | info->stack_limit = error + size; | |
1672 | return error; | |
1673 | } | |
31e31b8a FB |
1674 | } |
1675 | ||
cf129f3a RH |
1676 | /* Map and zero the bss. We need to explicitly zero any fractional pages |
1677 | after the data section (i.e. bss). */ | |
1678 | static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) | |
31e31b8a | 1679 | { |
cf129f3a RH |
1680 | uintptr_t host_start, host_map_start, host_end; |
1681 | ||
1682 | last_bss = TARGET_PAGE_ALIGN(last_bss); | |
1683 | ||
1684 | /* ??? There is confusion between qemu_real_host_page_size and | |
1685 | qemu_host_page_size here and elsewhere in target_mmap, which | |
1686 | may lead to the end of the data section mapping from the file | |
1687 | not being mapped. At least there was an explicit test and | |
1688 | comment for that here, suggesting that "the file size must | |
1689 | be known". The comment probably pre-dates the introduction | |
1690 | of the fstat system call in target_mmap which does in fact | |
1691 | find out the size. What isn't clear is if the workaround | |
1692 | here is still actually needed. For now, continue with it, | |
1693 | but merge it with the "normal" mmap that would allocate the bss. */ | |
1694 | ||
1695 | host_start = (uintptr_t) g2h(elf_bss); | |
1696 | host_end = (uintptr_t) g2h(last_bss); | |
0c2d70c4 | 1697 | host_map_start = REAL_HOST_PAGE_ALIGN(host_start); |
cf129f3a RH |
1698 | |
1699 | if (host_map_start < host_end) { | |
1700 | void *p = mmap((void *)host_map_start, host_end - host_map_start, | |
1701 | prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | |
1702 | if (p == MAP_FAILED) { | |
1703 | perror("cannot mmap brk"); | |
1704 | exit(-1); | |
853d6f7a | 1705 | } |
f46e9a0b | 1706 | } |
853d6f7a | 1707 | |
f46e9a0b TM |
1708 | /* Ensure that the bss page(s) are valid */ |
1709 | if ((page_get_flags(last_bss-1) & prot) != prot) { | |
1710 | page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); | |
cf129f3a | 1711 | } |
31e31b8a | 1712 | |
cf129f3a RH |
1713 | if (host_start < host_map_start) { |
1714 | memset((void *)host_start, 0, host_map_start - host_start); | |
1715 | } | |
1716 | } | |
53a5960a | 1717 | |
cf58affe CL |
1718 | #ifdef TARGET_ARM |
1719 | static int elf_is_fdpic(struct elfhdr *exec) | |
1720 | { | |
1721 | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; | |
1722 | } | |
1723 | #else | |
a99856cd CL |
1724 | /* Default implementation, always false. */ |
1725 | static int elf_is_fdpic(struct elfhdr *exec) | |
1726 | { | |
1727 | return 0; | |
1728 | } | |
cf58affe | 1729 | #endif |
a99856cd | 1730 | |
1af02e83 MF |
1731 | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) |
1732 | { | |
1733 | uint16_t n; | |
1734 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | |
1735 | ||
1736 | /* elf32_fdpic_loadseg */ | |
1737 | n = info->nsegs; | |
1738 | while (n--) { | |
1739 | sp -= 12; | |
1740 | put_user_u32(loadsegs[n].addr, sp+0); | |
1741 | put_user_u32(loadsegs[n].p_vaddr, sp+4); | |
1742 | put_user_u32(loadsegs[n].p_memsz, sp+8); | |
1743 | } | |
1744 | ||
1745 | /* elf32_fdpic_loadmap */ | |
1746 | sp -= 4; | |
1747 | put_user_u16(0, sp+0); /* version */ | |
1748 | put_user_u16(info->nsegs, sp+2); /* nsegs */ | |
1749 | ||
1750 | info->personality = PER_LINUX_FDPIC; | |
1751 | info->loadmap_addr = sp; | |
1752 | ||
1753 | return sp; | |
1754 | } | |
1af02e83 | 1755 | |
992f48a0 | 1756 | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
8e62a717 RH |
1757 | struct elfhdr *exec, |
1758 | struct image_info *info, | |
1759 | struct image_info *interp_info) | |
31e31b8a | 1760 | { |
d97ef72e | 1761 | abi_ulong sp; |
7c4ee5bc | 1762 | abi_ulong u_argc, u_argv, u_envp, u_auxv; |
d97ef72e | 1763 | int size; |
14322bad LA |
1764 | int i; |
1765 | abi_ulong u_rand_bytes; | |
1766 | uint8_t k_rand_bytes[16]; | |
d97ef72e RH |
1767 | abi_ulong u_platform; |
1768 | const char *k_platform; | |
1769 | const int n = sizeof(elf_addr_t); | |
1770 | ||
1771 | sp = p; | |
1af02e83 | 1772 | |
1af02e83 MF |
1773 | /* Needs to be before we load the env/argc/... */ |
1774 | if (elf_is_fdpic(exec)) { | |
1775 | /* Need 4 byte alignment for these structs */ | |
1776 | sp &= ~3; | |
1777 | sp = loader_build_fdpic_loadmap(info, sp); | |
1778 | info->other_info = interp_info; | |
1779 | if (interp_info) { | |
1780 | interp_info->other_info = info; | |
1781 | sp = loader_build_fdpic_loadmap(interp_info, sp); | |
3cb10cfa CL |
1782 | info->interpreter_loadmap_addr = interp_info->loadmap_addr; |
1783 | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; | |
1784 | } else { | |
1785 | info->interpreter_loadmap_addr = 0; | |
1786 | info->interpreter_pt_dynamic_addr = 0; | |
1af02e83 MF |
1787 | } |
1788 | } | |
1af02e83 | 1789 | |
d97ef72e RH |
1790 | u_platform = 0; |
1791 | k_platform = ELF_PLATFORM; | |
1792 | if (k_platform) { | |
1793 | size_t len = strlen(k_platform) + 1; | |
7c4ee5bc RH |
1794 | if (STACK_GROWS_DOWN) { |
1795 | sp -= (len + n - 1) & ~(n - 1); | |
1796 | u_platform = sp; | |
1797 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1798 | memcpy_to_target(sp, k_platform, len); | |
1799 | } else { | |
1800 | memcpy_to_target(sp, k_platform, len); | |
1801 | u_platform = sp; | |
1802 | sp += len + 1; | |
1803 | } | |
1804 | } | |
1805 | ||
1806 | /* Provide 16 byte alignment for the PRNG, and basic alignment for | |
1807 | * the argv and envp pointers. | |
1808 | */ | |
1809 | if (STACK_GROWS_DOWN) { | |
1810 | sp = QEMU_ALIGN_DOWN(sp, 16); | |
1811 | } else { | |
1812 | sp = QEMU_ALIGN_UP(sp, 16); | |
d97ef72e | 1813 | } |
14322bad LA |
1814 | |
1815 | /* | |
1816 | * Generate 16 random bytes for userspace PRNG seeding (not | |
1817 | * cryptically secure but it's not the aim of QEMU). | |
1818 | */ | |
14322bad LA |
1819 | for (i = 0; i < 16; i++) { |
1820 | k_rand_bytes[i] = rand(); | |
1821 | } | |
7c4ee5bc RH |
1822 | if (STACK_GROWS_DOWN) { |
1823 | sp -= 16; | |
1824 | u_rand_bytes = sp; | |
1825 | /* FIXME - check return value of memcpy_to_target() for failure */ | |
1826 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1827 | } else { | |
1828 | memcpy_to_target(sp, k_rand_bytes, 16); | |
1829 | u_rand_bytes = sp; | |
1830 | sp += 16; | |
1831 | } | |
14322bad | 1832 | |
d97ef72e RH |
1833 | size = (DLINFO_ITEMS + 1) * 2; |
1834 | if (k_platform) | |
1835 | size += 2; | |
f5155289 | 1836 | #ifdef DLINFO_ARCH_ITEMS |
d97ef72e | 1837 | size += DLINFO_ARCH_ITEMS * 2; |
ad6919dc PM |
1838 | #endif |
1839 | #ifdef ELF_HWCAP2 | |
1840 | size += 2; | |
f5155289 | 1841 | #endif |
f516511e PM |
1842 | info->auxv_len = size * n; |
1843 | ||
d97ef72e | 1844 | size += envc + argc + 2; |
b9329d4b | 1845 | size += 1; /* argc itself */ |
d97ef72e | 1846 | size *= n; |
7c4ee5bc RH |
1847 | |
1848 | /* Allocate space and finalize stack alignment for entry now. */ | |
1849 | if (STACK_GROWS_DOWN) { | |
1850 | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); | |
1851 | sp = u_argc; | |
1852 | } else { | |
1853 | u_argc = sp; | |
1854 | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); | |
1855 | } | |
1856 | ||
1857 | u_argv = u_argc + n; | |
1858 | u_envp = u_argv + (argc + 1) * n; | |
1859 | u_auxv = u_envp + (envc + 1) * n; | |
1860 | info->saved_auxv = u_auxv; | |
1861 | info->arg_start = u_argv; | |
1862 | info->arg_end = u_argv + argc * n; | |
d97ef72e RH |
1863 | |
1864 | /* This is correct because Linux defines | |
1865 | * elf_addr_t as Elf32_Off / Elf64_Off | |
1866 | */ | |
1867 | #define NEW_AUX_ENT(id, val) do { \ | |
7c4ee5bc RH |
1868 | put_user_ual(id, u_auxv); u_auxv += n; \ |
1869 | put_user_ual(val, u_auxv); u_auxv += n; \ | |
d97ef72e RH |
1870 | } while(0) |
1871 | ||
82991bed PM |
1872 | #ifdef ARCH_DLINFO |
1873 | /* | |
1874 | * ARCH_DLINFO must come first so platform specific code can enforce | |
1875 | * special alignment requirements on the AUXV if necessary (eg. PPC). | |
1876 | */ | |
1877 | ARCH_DLINFO; | |
1878 | #endif | |
f516511e PM |
1879 | /* There must be exactly DLINFO_ITEMS entries here, or the assert |
1880 | * on info->auxv_len will trigger. | |
1881 | */ | |
8e62a717 | 1882 | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
d97ef72e RH |
1883 | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
1884 | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | |
33143c44 LV |
1885 | if ((info->alignment & ~qemu_host_page_mask) != 0) { |
1886 | /* Target doesn't support host page size alignment */ | |
1887 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | |
1888 | } else { | |
1889 | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, | |
1890 | qemu_host_page_size))); | |
1891 | } | |
8e62a717 | 1892 | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
d97ef72e | 1893 | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
8e62a717 | 1894 | NEW_AUX_ENT(AT_ENTRY, info->entry); |
d97ef72e RH |
1895 | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
1896 | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | |
1897 | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | |
1898 | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | |
1899 | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | |
1900 | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | |
14322bad | 1901 | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); |
444cd5c3 | 1902 | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); |
14322bad | 1903 | |
ad6919dc PM |
1904 | #ifdef ELF_HWCAP2 |
1905 | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); | |
1906 | #endif | |
1907 | ||
7c4ee5bc | 1908 | if (u_platform) { |
d97ef72e | 1909 | NEW_AUX_ENT(AT_PLATFORM, u_platform); |
7c4ee5bc | 1910 | } |
7c4ee5bc | 1911 | NEW_AUX_ENT (AT_NULL, 0); |
f5155289 FB |
1912 | #undef NEW_AUX_ENT |
1913 | ||
f516511e PM |
1914 | /* Check that our initial calculation of the auxv length matches how much |
1915 | * we actually put into it. | |
1916 | */ | |
1917 | assert(info->auxv_len == u_auxv - info->saved_auxv); | |
7c4ee5bc RH |
1918 | |
1919 | put_user_ual(argc, u_argc); | |
1920 | ||
1921 | p = info->arg_strings; | |
1922 | for (i = 0; i < argc; ++i) { | |
1923 | put_user_ual(p, u_argv); | |
1924 | u_argv += n; | |
1925 | p += target_strlen(p) + 1; | |
1926 | } | |
1927 | put_user_ual(0, u_argv); | |
1928 | ||
1929 | p = info->env_strings; | |
1930 | for (i = 0; i < envc; ++i) { | |
1931 | put_user_ual(p, u_envp); | |
1932 | u_envp += n; | |
1933 | p += target_strlen(p) + 1; | |
1934 | } | |
1935 | put_user_ual(0, u_envp); | |
edf8e2af | 1936 | |
d97ef72e | 1937 | return sp; |
31e31b8a FB |
1938 | } |
1939 | ||
dce10401 MI |
1940 | unsigned long init_guest_space(unsigned long host_start, |
1941 | unsigned long host_size, | |
1942 | unsigned long guest_start, | |
1943 | bool fixed) | |
1944 | { | |
293f2060 | 1945 | unsigned long current_start, aligned_start; |
dce10401 MI |
1946 | int flags; |
1947 | ||
1948 | assert(host_start || host_size); | |
1949 | ||
1950 | /* If just a starting address is given, then just verify that | |
1951 | * address. */ | |
1952 | if (host_start && !host_size) { | |
8756e136 | 1953 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) |
c3637eaf | 1954 | if (init_guest_commpage(host_start, host_size) != 1) { |
dce10401 MI |
1955 | return (unsigned long)-1; |
1956 | } | |
8756e136 LS |
1957 | #endif |
1958 | return host_start; | |
dce10401 MI |
1959 | } |
1960 | ||
1961 | /* Setup the initial flags and start address. */ | |
1962 | current_start = host_start & qemu_host_page_mask; | |
1963 | flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; | |
1964 | if (fixed) { | |
1965 | flags |= MAP_FIXED; | |
1966 | } | |
1967 | ||
1968 | /* Otherwise, a non-zero size region of memory needs to be mapped | |
1969 | * and validated. */ | |
2a53535a LS |
1970 | |
1971 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) | |
1972 | /* On 32-bit ARM, we need to map not just the usable memory, but | |
1973 | * also the commpage. Try to find a suitable place by allocating | |
1974 | * a big chunk for all of it. If host_start, then the naive | |
1975 | * strategy probably does good enough. | |
1976 | */ | |
1977 | if (!host_start) { | |
1978 | unsigned long guest_full_size, host_full_size, real_start; | |
1979 | ||
1980 | guest_full_size = | |
1981 | (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; | |
1982 | host_full_size = guest_full_size - guest_start; | |
1983 | real_start = (unsigned long) | |
1984 | mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); | |
1985 | if (real_start == (unsigned long)-1) { | |
1986 | if (host_size < host_full_size - qemu_host_page_size) { | |
1987 | /* We failed to map a continous segment, but we're | |
1988 | * allowed to have a gap between the usable memory and | |
1989 | * the commpage where other things can be mapped. | |
1990 | * This sparseness gives us more flexibility to find | |
1991 | * an address range. | |
1992 | */ | |
1993 | goto naive; | |
1994 | } | |
1995 | return (unsigned long)-1; | |
1996 | } | |
1997 | munmap((void *)real_start, host_full_size); | |
1998 | if (real_start & ~qemu_host_page_mask) { | |
1999 | /* The same thing again, but with an extra qemu_host_page_size | |
2000 | * so that we can shift around alignment. | |
2001 | */ | |
2002 | unsigned long real_size = host_full_size + qemu_host_page_size; | |
2003 | real_start = (unsigned long) | |
2004 | mmap(NULL, real_size, PROT_NONE, flags, -1, 0); | |
2005 | if (real_start == (unsigned long)-1) { | |
2006 | if (host_size < host_full_size - qemu_host_page_size) { | |
2007 | goto naive; | |
2008 | } | |
2009 | return (unsigned long)-1; | |
2010 | } | |
2011 | munmap((void *)real_start, real_size); | |
2012 | real_start = HOST_PAGE_ALIGN(real_start); | |
2013 | } | |
2014 | current_start = real_start; | |
2015 | } | |
2016 | naive: | |
2017 | #endif | |
2018 | ||
dce10401 | 2019 | while (1) { |
293f2060 LS |
2020 | unsigned long real_start, real_size, aligned_size; |
2021 | aligned_size = real_size = host_size; | |
806d1021 | 2022 | |
dce10401 MI |
2023 | /* Do not use mmap_find_vma here because that is limited to the |
2024 | * guest address space. We are going to make the | |
2025 | * guest address space fit whatever we're given. | |
2026 | */ | |
2027 | real_start = (unsigned long) | |
2028 | mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); | |
2029 | if (real_start == (unsigned long)-1) { | |
2030 | return (unsigned long)-1; | |
2031 | } | |
2032 | ||
aac362e4 LS |
2033 | /* Check to see if the address is valid. */ |
2034 | if (host_start && real_start != current_start) { | |
2035 | goto try_again; | |
2036 | } | |
2037 | ||
806d1021 MI |
2038 | /* Ensure the address is properly aligned. */ |
2039 | if (real_start & ~qemu_host_page_mask) { | |
293f2060 LS |
2040 | /* Ideally, we adjust like |
2041 | * | |
2042 | * pages: [ ][ ][ ][ ][ ] | |
2043 | * old: [ real ] | |
2044 | * [ aligned ] | |
2045 | * new: [ real ] | |
2046 | * [ aligned ] | |
2047 | * | |
2048 | * But if there is something else mapped right after it, | |
2049 | * then obviously it won't have room to grow, and the | |
2050 | * kernel will put the new larger real someplace else with | |
2051 | * unknown alignment (if we made it to here, then | |
2052 | * fixed=false). Which is why we grow real by a full page | |
2053 | * size, instead of by part of one; so that even if we get | |
2054 | * moved, we can still guarantee alignment. But this does | |
2055 | * mean that there is a padding of < 1 page both before | |
2056 | * and after the aligned range; the "after" could could | |
2057 | * cause problems for ARM emulation where it could butt in | |
2058 | * to where we need to put the commpage. | |
2059 | */ | |
806d1021 | 2060 | munmap((void *)real_start, host_size); |
293f2060 | 2061 | real_size = aligned_size + qemu_host_page_size; |
806d1021 MI |
2062 | real_start = (unsigned long) |
2063 | mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); | |
2064 | if (real_start == (unsigned long)-1) { | |
2065 | return (unsigned long)-1; | |
2066 | } | |
293f2060 LS |
2067 | aligned_start = HOST_PAGE_ALIGN(real_start); |
2068 | } else { | |
2069 | aligned_start = real_start; | |
806d1021 MI |
2070 | } |
2071 | ||
8756e136 | 2072 | #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) |
7ad75eea LS |
2073 | /* On 32-bit ARM, we need to also be able to map the commpage. */ |
2074 | int valid = init_guest_commpage(aligned_start - guest_start, | |
2075 | aligned_size + guest_start); | |
2076 | if (valid == -1) { | |
2077 | munmap((void *)real_start, real_size); | |
2078 | return (unsigned long)-1; | |
2079 | } else if (valid == 0) { | |
2080 | goto try_again; | |
dce10401 | 2081 | } |
7ad75eea LS |
2082 | #endif |
2083 | ||
2084 | /* If nothing has said `return -1` or `goto try_again` yet, | |
2085 | * then the address we have is good. | |
2086 | */ | |
2087 | break; | |
dce10401 | 2088 | |
7ad75eea | 2089 | try_again: |
dce10401 MI |
2090 | /* That address didn't work. Unmap and try a different one. |
2091 | * The address the host picked because is typically right at | |
2092 | * the top of the host address space and leaves the guest with | |
2093 | * no usable address space. Resort to a linear search. We | |
2094 | * already compensated for mmap_min_addr, so this should not | |
2095 | * happen often. Probably means we got unlucky and host | |
2096 | * address space randomization put a shared library somewhere | |
2097 | * inconvenient. | |
8c17d862 LS |
2098 | * |
2099 | * This is probably a good strategy if host_start, but is | |
2100 | * probably a bad strategy if not, which means we got here | |
2101 | * because of trouble with ARM commpage setup. | |
dce10401 | 2102 | */ |
293f2060 | 2103 | munmap((void *)real_start, real_size); |
dce10401 MI |
2104 | current_start += qemu_host_page_size; |
2105 | if (host_start == current_start) { | |
2106 | /* Theoretically possible if host doesn't have any suitably | |
2107 | * aligned areas. Normally the first mmap will fail. | |
2108 | */ | |
2109 | return (unsigned long)-1; | |
2110 | } | |
2111 | } | |
2112 | ||
13829020 | 2113 | qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); |
806d1021 | 2114 | |
293f2060 | 2115 | return aligned_start; |
dce10401 MI |
2116 | } |
2117 | ||
f3ed1f5d PM |
2118 | static void probe_guest_base(const char *image_name, |
2119 | abi_ulong loaddr, abi_ulong hiaddr) | |
2120 | { | |
2121 | /* Probe for a suitable guest base address, if the user has not set | |
2122 | * it explicitly, and set guest_base appropriately. | |
2123 | * In case of error we will print a suitable message and exit. | |
2124 | */ | |
f3ed1f5d PM |
2125 | const char *errmsg; |
2126 | if (!have_guest_base && !reserved_va) { | |
2127 | unsigned long host_start, real_start, host_size; | |
2128 | ||
2129 | /* Round addresses to page boundaries. */ | |
2130 | loaddr &= qemu_host_page_mask; | |
2131 | hiaddr = HOST_PAGE_ALIGN(hiaddr); | |
2132 | ||
2133 | if (loaddr < mmap_min_addr) { | |
2134 | host_start = HOST_PAGE_ALIGN(mmap_min_addr); | |
2135 | } else { | |
2136 | host_start = loaddr; | |
2137 | if (host_start != loaddr) { | |
2138 | errmsg = "Address overflow loading ELF binary"; | |
2139 | goto exit_errmsg; | |
2140 | } | |
2141 | } | |
2142 | host_size = hiaddr - loaddr; | |
dce10401 MI |
2143 | |
2144 | /* Setup the initial guest memory space with ranges gleaned from | |
2145 | * the ELF image that is being loaded. | |
2146 | */ | |
2147 | real_start = init_guest_space(host_start, host_size, loaddr, false); | |
2148 | if (real_start == (unsigned long)-1) { | |
2149 | errmsg = "Unable to find space for application"; | |
2150 | goto exit_errmsg; | |
f3ed1f5d | 2151 | } |
dce10401 MI |
2152 | guest_base = real_start - loaddr; |
2153 | ||
13829020 PB |
2154 | qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" |
2155 | TARGET_ABI_FMT_lx " to 0x%lx\n", | |
2156 | loaddr, real_start); | |
f3ed1f5d PM |
2157 | } |
2158 | return; | |
2159 | ||
f3ed1f5d PM |
2160 | exit_errmsg: |
2161 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
2162 | exit(-1); | |
f3ed1f5d PM |
2163 | } |
2164 | ||
2165 | ||
8e62a717 | 2166 | /* Load an ELF image into the address space. |
31e31b8a | 2167 | |
8e62a717 RH |
2168 | IMAGE_NAME is the filename of the image, to use in error messages. |
2169 | IMAGE_FD is the open file descriptor for the image. | |
2170 | ||
2171 | BPRM_BUF is a copy of the beginning of the file; this of course | |
2172 | contains the elf file header at offset 0. It is assumed that this | |
2173 | buffer is sufficiently aligned to present no problems to the host | |
2174 | in accessing data at aligned offsets within the buffer. | |
2175 | ||
2176 | On return: INFO values will be filled in, as necessary or available. */ | |
2177 | ||
2178 | static void load_elf_image(const char *image_name, int image_fd, | |
bf858897 | 2179 | struct image_info *info, char **pinterp_name, |
8e62a717 | 2180 | char bprm_buf[BPRM_BUF_SIZE]) |
31e31b8a | 2181 | { |
8e62a717 RH |
2182 | struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
2183 | struct elf_phdr *phdr; | |
2184 | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | |
2185 | int i, retval; | |
2186 | const char *errmsg; | |
5fafdf24 | 2187 | |
8e62a717 RH |
2188 | /* First of all, some simple consistency checks */ |
2189 | errmsg = "Invalid ELF image for this architecture"; | |
2190 | if (!elf_check_ident(ehdr)) { | |
2191 | goto exit_errmsg; | |
2192 | } | |
2193 | bswap_ehdr(ehdr); | |
2194 | if (!elf_check_ehdr(ehdr)) { | |
2195 | goto exit_errmsg; | |
d97ef72e | 2196 | } |
5fafdf24 | 2197 | |
8e62a717 RH |
2198 | i = ehdr->e_phnum * sizeof(struct elf_phdr); |
2199 | if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { | |
2200 | phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); | |
9955ffac | 2201 | } else { |
8e62a717 RH |
2202 | phdr = (struct elf_phdr *) alloca(i); |
2203 | retval = pread(image_fd, phdr, i, ehdr->e_phoff); | |
9955ffac | 2204 | if (retval != i) { |
8e62a717 | 2205 | goto exit_read; |
9955ffac | 2206 | } |
d97ef72e | 2207 | } |
8e62a717 | 2208 | bswap_phdr(phdr, ehdr->e_phnum); |
09bfb054 | 2209 | |
1af02e83 MF |
2210 | info->nsegs = 0; |
2211 | info->pt_dynamic_addr = 0; | |
1af02e83 | 2212 | |
98c1076c AB |
2213 | mmap_lock(); |
2214 | ||
682674b8 RH |
2215 | /* Find the maximum size of the image and allocate an appropriate |
2216 | amount of memory to handle that. */ | |
2217 | loaddr = -1, hiaddr = 0; | |
33143c44 | 2218 | info->alignment = 0; |
8e62a717 RH |
2219 | for (i = 0; i < ehdr->e_phnum; ++i) { |
2220 | if (phdr[i].p_type == PT_LOAD) { | |
a93934fe | 2221 | abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; |
682674b8 RH |
2222 | if (a < loaddr) { |
2223 | loaddr = a; | |
2224 | } | |
ccf661f8 | 2225 | a = phdr[i].p_vaddr + phdr[i].p_memsz; |
682674b8 RH |
2226 | if (a > hiaddr) { |
2227 | hiaddr = a; | |
2228 | } | |
1af02e83 | 2229 | ++info->nsegs; |
33143c44 | 2230 | info->alignment |= phdr[i].p_align; |
682674b8 RH |
2231 | } |
2232 | } | |
2233 | ||
2234 | load_addr = loaddr; | |
8e62a717 | 2235 | if (ehdr->e_type == ET_DYN) { |
682674b8 RH |
2236 | /* The image indicates that it can be loaded anywhere. Find a |
2237 | location that can hold the memory space required. If the | |
2238 | image is pre-linked, LOADDR will be non-zero. Since we do | |
2239 | not supply MAP_FIXED here we'll use that address if and | |
2240 | only if it remains available. */ | |
2241 | load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, | |
2242 | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, | |
2243 | -1, 0); | |
2244 | if (load_addr == -1) { | |
8e62a717 | 2245 | goto exit_perror; |
d97ef72e | 2246 | } |
bf858897 RH |
2247 | } else if (pinterp_name != NULL) { |
2248 | /* This is the main executable. Make sure that the low | |
2249 | address does not conflict with MMAP_MIN_ADDR or the | |
2250 | QEMU application itself. */ | |
f3ed1f5d | 2251 | probe_guest_base(image_name, loaddr, hiaddr); |
d97ef72e | 2252 | } |
682674b8 | 2253 | load_bias = load_addr - loaddr; |
d97ef72e | 2254 | |
a99856cd | 2255 | if (elf_is_fdpic(ehdr)) { |
1af02e83 | 2256 | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = |
7267c094 | 2257 | g_malloc(sizeof(*loadsegs) * info->nsegs); |
1af02e83 MF |
2258 | |
2259 | for (i = 0; i < ehdr->e_phnum; ++i) { | |
2260 | switch (phdr[i].p_type) { | |
2261 | case PT_DYNAMIC: | |
2262 | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | |
2263 | break; | |
2264 | case PT_LOAD: | |
2265 | loadsegs->addr = phdr[i].p_vaddr + load_bias; | |
2266 | loadsegs->p_vaddr = phdr[i].p_vaddr; | |
2267 | loadsegs->p_memsz = phdr[i].p_memsz; | |
2268 | ++loadsegs; | |
2269 | break; | |
2270 | } | |
2271 | } | |
2272 | } | |
1af02e83 | 2273 | |
8e62a717 RH |
2274 | info->load_bias = load_bias; |
2275 | info->load_addr = load_addr; | |
2276 | info->entry = ehdr->e_entry + load_bias; | |
2277 | info->start_code = -1; | |
2278 | info->end_code = 0; | |
2279 | info->start_data = -1; | |
2280 | info->end_data = 0; | |
2281 | info->brk = 0; | |
d8fd2954 | 2282 | info->elf_flags = ehdr->e_flags; |
8e62a717 RH |
2283 | |
2284 | for (i = 0; i < ehdr->e_phnum; i++) { | |
2285 | struct elf_phdr *eppnt = phdr + i; | |
d97ef72e | 2286 | if (eppnt->p_type == PT_LOAD) { |
94894ff2 | 2287 | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; |
d97ef72e | 2288 | int elf_prot = 0; |
d97ef72e RH |
2289 | |
2290 | if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; | |
2291 | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | |
2292 | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | |
d97ef72e | 2293 | |
682674b8 RH |
2294 | vaddr = load_bias + eppnt->p_vaddr; |
2295 | vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); | |
2296 | vaddr_ps = TARGET_ELF_PAGESTART(vaddr); | |
94894ff2 | 2297 | vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); |
682674b8 | 2298 | |
94894ff2 | 2299 | error = target_mmap(vaddr_ps, vaddr_len, |
682674b8 | 2300 | elf_prot, MAP_PRIVATE | MAP_FIXED, |
8e62a717 | 2301 | image_fd, eppnt->p_offset - vaddr_po); |
09bfb054 | 2302 | if (error == -1) { |
8e62a717 | 2303 | goto exit_perror; |
09bfb054 | 2304 | } |
09bfb054 | 2305 | |
682674b8 RH |
2306 | vaddr_ef = vaddr + eppnt->p_filesz; |
2307 | vaddr_em = vaddr + eppnt->p_memsz; | |
31e31b8a | 2308 | |
cf129f3a | 2309 | /* If the load segment requests extra zeros (e.g. bss), map it. */ |
682674b8 RH |
2310 | if (vaddr_ef < vaddr_em) { |
2311 | zero_bss(vaddr_ef, vaddr_em, elf_prot); | |
cf129f3a | 2312 | } |
8e62a717 RH |
2313 | |
2314 | /* Find the full program boundaries. */ | |
2315 | if (elf_prot & PROT_EXEC) { | |
2316 | if (vaddr < info->start_code) { | |
2317 | info->start_code = vaddr; | |
2318 | } | |
2319 | if (vaddr_ef > info->end_code) { | |
2320 | info->end_code = vaddr_ef; | |
2321 | } | |
2322 | } | |
2323 | if (elf_prot & PROT_WRITE) { | |
2324 | if (vaddr < info->start_data) { | |
2325 | info->start_data = vaddr; | |
2326 | } | |
2327 | if (vaddr_ef > info->end_data) { | |
2328 | info->end_data = vaddr_ef; | |
2329 | } | |
2330 | if (vaddr_em > info->brk) { | |
2331 | info->brk = vaddr_em; | |
2332 | } | |
2333 | } | |
bf858897 RH |
2334 | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
2335 | char *interp_name; | |
2336 | ||
2337 | if (*pinterp_name) { | |
2338 | errmsg = "Multiple PT_INTERP entries"; | |
2339 | goto exit_errmsg; | |
2340 | } | |
2341 | interp_name = malloc(eppnt->p_filesz); | |
2342 | if (!interp_name) { | |
2343 | goto exit_perror; | |
2344 | } | |
2345 | ||
2346 | if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { | |
2347 | memcpy(interp_name, bprm_buf + eppnt->p_offset, | |
2348 | eppnt->p_filesz); | |
2349 | } else { | |
2350 | retval = pread(image_fd, interp_name, eppnt->p_filesz, | |
2351 | eppnt->p_offset); | |
2352 | if (retval != eppnt->p_filesz) { | |
2353 | goto exit_perror; | |
2354 | } | |
2355 | } | |
2356 | if (interp_name[eppnt->p_filesz - 1] != 0) { | |
2357 | errmsg = "Invalid PT_INTERP entry"; | |
2358 | goto exit_errmsg; | |
2359 | } | |
2360 | *pinterp_name = interp_name; | |
d97ef72e | 2361 | } |
682674b8 | 2362 | } |
5fafdf24 | 2363 | |
8e62a717 RH |
2364 | if (info->end_data == 0) { |
2365 | info->start_data = info->end_code; | |
2366 | info->end_data = info->end_code; | |
2367 | info->brk = info->end_code; | |
2368 | } | |
2369 | ||
682674b8 | 2370 | if (qemu_log_enabled()) { |
8e62a717 | 2371 | load_symbols(ehdr, image_fd, load_bias); |
682674b8 | 2372 | } |
31e31b8a | 2373 | |
98c1076c AB |
2374 | mmap_unlock(); |
2375 | ||
8e62a717 RH |
2376 | close(image_fd); |
2377 | return; | |
2378 | ||
2379 | exit_read: | |
2380 | if (retval >= 0) { | |
2381 | errmsg = "Incomplete read of file header"; | |
2382 | goto exit_errmsg; | |
2383 | } | |
2384 | exit_perror: | |
2385 | errmsg = strerror(errno); | |
2386 | exit_errmsg: | |
2387 | fprintf(stderr, "%s: %s\n", image_name, errmsg); | |
2388 | exit(-1); | |
2389 | } | |
2390 | ||
2391 | static void load_elf_interp(const char *filename, struct image_info *info, | |
2392 | char bprm_buf[BPRM_BUF_SIZE]) | |
2393 | { | |
2394 | int fd, retval; | |
2395 | ||
2396 | fd = open(path(filename), O_RDONLY); | |
2397 | if (fd < 0) { | |
2398 | goto exit_perror; | |
2399 | } | |
31e31b8a | 2400 | |
8e62a717 RH |
2401 | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
2402 | if (retval < 0) { | |
2403 | goto exit_perror; | |
2404 | } | |
2405 | if (retval < BPRM_BUF_SIZE) { | |
2406 | memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); | |
2407 | } | |
2408 | ||
bf858897 | 2409 | load_elf_image(filename, fd, info, NULL, bprm_buf); |
8e62a717 RH |
2410 | return; |
2411 | ||
2412 | exit_perror: | |
2413 | fprintf(stderr, "%s: %s\n", filename, strerror(errno)); | |
2414 | exit(-1); | |
31e31b8a FB |
2415 | } |
2416 | ||
49918a75 PB |
2417 | static int symfind(const void *s0, const void *s1) |
2418 | { | |
c7c530cd | 2419 | target_ulong addr = *(target_ulong *)s0; |
49918a75 PB |
2420 | struct elf_sym *sym = (struct elf_sym *)s1; |
2421 | int result = 0; | |
c7c530cd | 2422 | if (addr < sym->st_value) { |
49918a75 | 2423 | result = -1; |
c7c530cd | 2424 | } else if (addr >= sym->st_value + sym->st_size) { |
49918a75 PB |
2425 | result = 1; |
2426 | } | |
2427 | return result; | |
2428 | } | |
2429 | ||
2430 | static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) | |
2431 | { | |
2432 | #if ELF_CLASS == ELFCLASS32 | |
2433 | struct elf_sym *syms = s->disas_symtab.elf32; | |
2434 | #else | |
2435 | struct elf_sym *syms = s->disas_symtab.elf64; | |
2436 | #endif | |
2437 | ||
2438 | // binary search | |
49918a75 PB |
2439 | struct elf_sym *sym; |
2440 | ||
c7c530cd | 2441 | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
7cba04f6 | 2442 | if (sym != NULL) { |
49918a75 PB |
2443 | return s->disas_strtab + sym->st_name; |
2444 | } | |
2445 | ||
2446 | return ""; | |
2447 | } | |
2448 | ||
2449 | /* FIXME: This should use elf_ops.h */ | |
2450 | static int symcmp(const void *s0, const void *s1) | |
2451 | { | |
2452 | struct elf_sym *sym0 = (struct elf_sym *)s0; | |
2453 | struct elf_sym *sym1 = (struct elf_sym *)s1; | |
2454 | return (sym0->st_value < sym1->st_value) | |
2455 | ? -1 | |
2456 | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | |
2457 | } | |
2458 | ||
689f936f | 2459 | /* Best attempt to load symbols from this ELF object. */ |
682674b8 | 2460 | static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
689f936f | 2461 | { |
682674b8 | 2462 | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
1e06262d | 2463 | uint64_t segsz; |
682674b8 | 2464 | struct elf_shdr *shdr; |
b9475279 CV |
2465 | char *strings = NULL; |
2466 | struct syminfo *s = NULL; | |
2467 | struct elf_sym *new_syms, *syms = NULL; | |
689f936f | 2468 | |
682674b8 RH |
2469 | shnum = hdr->e_shnum; |
2470 | i = shnum * sizeof(struct elf_shdr); | |
2471 | shdr = (struct elf_shdr *)alloca(i); | |
2472 | if (pread(fd, shdr, i, hdr->e_shoff) != i) { | |
2473 | return; | |
2474 | } | |
2475 | ||
2476 | bswap_shdr(shdr, shnum); | |
2477 | for (i = 0; i < shnum; ++i) { | |
2478 | if (shdr[i].sh_type == SHT_SYMTAB) { | |
2479 | sym_idx = i; | |
2480 | str_idx = shdr[i].sh_link; | |
49918a75 PB |
2481 | goto found; |
2482 | } | |
689f936f | 2483 | } |
682674b8 RH |
2484 | |
2485 | /* There will be no symbol table if the file was stripped. */ | |
2486 | return; | |
689f936f FB |
2487 | |
2488 | found: | |
682674b8 | 2489 | /* Now know where the strtab and symtab are. Snarf them. */ |
0ef9ea29 | 2490 | s = g_try_new(struct syminfo, 1); |
682674b8 | 2491 | if (!s) { |
b9475279 | 2492 | goto give_up; |
682674b8 | 2493 | } |
5fafdf24 | 2494 | |
1e06262d PM |
2495 | segsz = shdr[str_idx].sh_size; |
2496 | s->disas_strtab = strings = g_try_malloc(segsz); | |
2497 | if (!strings || | |
2498 | pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { | |
b9475279 | 2499 | goto give_up; |
682674b8 | 2500 | } |
49918a75 | 2501 | |
1e06262d PM |
2502 | segsz = shdr[sym_idx].sh_size; |
2503 | syms = g_try_malloc(segsz); | |
2504 | if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { | |
b9475279 | 2505 | goto give_up; |
682674b8 | 2506 | } |
31e31b8a | 2507 | |
1e06262d PM |
2508 | if (segsz / sizeof(struct elf_sym) > INT_MAX) { |
2509 | /* Implausibly large symbol table: give up rather than ploughing | |
2510 | * on with the number of symbols calculation overflowing | |
2511 | */ | |
2512 | goto give_up; | |
2513 | } | |
2514 | nsyms = segsz / sizeof(struct elf_sym); | |
682674b8 | 2515 | for (i = 0; i < nsyms; ) { |
49918a75 | 2516 | bswap_sym(syms + i); |
682674b8 RH |
2517 | /* Throw away entries which we do not need. */ |
2518 | if (syms[i].st_shndx == SHN_UNDEF | |
2519 | || syms[i].st_shndx >= SHN_LORESERVE | |
2520 | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | |
2521 | if (i < --nsyms) { | |
49918a75 PB |
2522 | syms[i] = syms[nsyms]; |
2523 | } | |
682674b8 | 2524 | } else { |
49918a75 | 2525 | #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
682674b8 RH |
2526 | /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
2527 | syms[i].st_value &= ~(target_ulong)1; | |
0774bed1 | 2528 | #endif |
682674b8 RH |
2529 | syms[i].st_value += load_bias; |
2530 | i++; | |
2531 | } | |
0774bed1 | 2532 | } |
49918a75 | 2533 | |
b9475279 CV |
2534 | /* No "useful" symbol. */ |
2535 | if (nsyms == 0) { | |
2536 | goto give_up; | |
2537 | } | |
2538 | ||
5d5c9930 RH |
2539 | /* Attempt to free the storage associated with the local symbols |
2540 | that we threw away. Whether or not this has any effect on the | |
2541 | memory allocation depends on the malloc implementation and how | |
2542 | many symbols we managed to discard. */ | |
0ef9ea29 | 2543 | new_syms = g_try_renew(struct elf_sym, syms, nsyms); |
8d79de6e | 2544 | if (new_syms == NULL) { |
b9475279 | 2545 | goto give_up; |
5d5c9930 | 2546 | } |
8d79de6e | 2547 | syms = new_syms; |
5d5c9930 | 2548 | |
49918a75 | 2549 | qsort(syms, nsyms, sizeof(*syms), symcmp); |
689f936f | 2550 | |
49918a75 PB |
2551 | s->disas_num_syms = nsyms; |
2552 | #if ELF_CLASS == ELFCLASS32 | |
2553 | s->disas_symtab.elf32 = syms; | |
49918a75 PB |
2554 | #else |
2555 | s->disas_symtab.elf64 = syms; | |
49918a75 | 2556 | #endif |
682674b8 | 2557 | s->lookup_symbol = lookup_symbolxx; |
e80cfcfc FB |
2558 | s->next = syminfos; |
2559 | syminfos = s; | |
b9475279 CV |
2560 | |
2561 | return; | |
2562 | ||
2563 | give_up: | |
0ef9ea29 PM |
2564 | g_free(s); |
2565 | g_free(strings); | |
2566 | g_free(syms); | |
689f936f | 2567 | } |
31e31b8a | 2568 | |
768fe76e YS |
2569 | uint32_t get_elf_eflags(int fd) |
2570 | { | |
2571 | struct elfhdr ehdr; | |
2572 | off_t offset; | |
2573 | int ret; | |
2574 | ||
2575 | /* Read ELF header */ | |
2576 | offset = lseek(fd, 0, SEEK_SET); | |
2577 | if (offset == (off_t) -1) { | |
2578 | return 0; | |
2579 | } | |
2580 | ret = read(fd, &ehdr, sizeof(ehdr)); | |
2581 | if (ret < sizeof(ehdr)) { | |
2582 | return 0; | |
2583 | } | |
2584 | offset = lseek(fd, offset, SEEK_SET); | |
2585 | if (offset == (off_t) -1) { | |
2586 | return 0; | |
2587 | } | |
2588 | ||
2589 | /* Check ELF signature */ | |
2590 | if (!elf_check_ident(&ehdr)) { | |
2591 | return 0; | |
2592 | } | |
2593 | ||
2594 | /* check header */ | |
2595 | bswap_ehdr(&ehdr); | |
2596 | if (!elf_check_ehdr(&ehdr)) { | |
2597 | return 0; | |
2598 | } | |
2599 | ||
2600 | /* return architecture id */ | |
2601 | return ehdr.e_flags; | |
2602 | } | |
2603 | ||
f0116c54 | 2604 | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) |
31e31b8a | 2605 | { |
8e62a717 | 2606 | struct image_info interp_info; |
31e31b8a | 2607 | struct elfhdr elf_ex; |
8e62a717 | 2608 | char *elf_interpreter = NULL; |
59baae9a | 2609 | char *scratch; |
31e31b8a | 2610 | |
bf858897 | 2611 | info->start_mmap = (abi_ulong)ELF_START_MMAP; |
bf858897 RH |
2612 | |
2613 | load_elf_image(bprm->filename, bprm->fd, info, | |
2614 | &elf_interpreter, bprm->buf); | |
31e31b8a | 2615 | |
bf858897 RH |
2616 | /* ??? We need a copy of the elf header for passing to create_elf_tables. |
2617 | If we do nothing, we'll have overwritten this when we re-use bprm->buf | |
2618 | when we load the interpreter. */ | |
2619 | elf_ex = *(struct elfhdr *)bprm->buf; | |
31e31b8a | 2620 | |
59baae9a SB |
2621 | /* Do this so that we can load the interpreter, if need be. We will |
2622 | change some of these later */ | |
2623 | bprm->p = setup_arg_pages(bprm, info); | |
2624 | ||
2625 | scratch = g_new0(char, TARGET_PAGE_SIZE); | |
7c4ee5bc RH |
2626 | if (STACK_GROWS_DOWN) { |
2627 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
2628 | bprm->p, info->stack_limit); | |
2629 | info->file_string = bprm->p; | |
2630 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
2631 | bprm->p, info->stack_limit); | |
2632 | info->env_strings = bprm->p; | |
2633 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
2634 | bprm->p, info->stack_limit); | |
2635 | info->arg_strings = bprm->p; | |
2636 | } else { | |
2637 | info->arg_strings = bprm->p; | |
2638 | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | |
2639 | bprm->p, info->stack_limit); | |
2640 | info->env_strings = bprm->p; | |
2641 | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | |
2642 | bprm->p, info->stack_limit); | |
2643 | info->file_string = bprm->p; | |
2644 | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | |
2645 | bprm->p, info->stack_limit); | |
2646 | } | |
2647 | ||
59baae9a SB |
2648 | g_free(scratch); |
2649 | ||
e5fe0c52 | 2650 | if (!bprm->p) { |
bf858897 RH |
2651 | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
2652 | exit(-1); | |
379f6698 | 2653 | } |
379f6698 | 2654 | |
8e62a717 RH |
2655 | if (elf_interpreter) { |
2656 | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | |
31e31b8a | 2657 | |
8e62a717 RH |
2658 | /* If the program interpreter is one of these two, then assume |
2659 | an iBCS2 image. Otherwise assume a native linux image. */ | |
2660 | ||
2661 | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | |
2662 | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | |
2663 | info->personality = PER_SVR4; | |
31e31b8a | 2664 | |
8e62a717 RH |
2665 | /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
2666 | and some applications "depend" upon this behavior. Since | |
2667 | we do not have the power to recompile these, we emulate | |
2668 | the SVr4 behavior. Sigh. */ | |
2669 | target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, | |
68754b44 | 2670 | MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
8e62a717 | 2671 | } |
31e31b8a FB |
2672 | } |
2673 | ||
8e62a717 RH |
2674 | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
2675 | info, (elf_interpreter ? &interp_info : NULL)); | |
2676 | info->start_stack = bprm->p; | |
2677 | ||
2678 | /* If we have an interpreter, set that as the program's entry point. | |
8e78064e | 2679 | Copy the load_bias as well, to help PPC64 interpret the entry |
8e62a717 RH |
2680 | point as a function descriptor. Do this after creating elf tables |
2681 | so that we copy the original program entry point into the AUXV. */ | |
2682 | if (elf_interpreter) { | |
8e78064e | 2683 | info->load_bias = interp_info.load_bias; |
8e62a717 | 2684 | info->entry = interp_info.entry; |
bf858897 | 2685 | free(elf_interpreter); |
8e62a717 | 2686 | } |
31e31b8a | 2687 | |
edf8e2af MW |
2688 | #ifdef USE_ELF_CORE_DUMP |
2689 | bprm->core_dump = &elf_core_dump; | |
2690 | #endif | |
2691 | ||
31e31b8a FB |
2692 | return 0; |
2693 | } | |
2694 | ||
edf8e2af | 2695 | #ifdef USE_ELF_CORE_DUMP |
edf8e2af MW |
2696 | /* |
2697 | * Definitions to generate Intel SVR4-like core files. | |
a2547a13 | 2698 | * These mostly have the same names as the SVR4 types with "target_elf_" |
edf8e2af MW |
2699 | * tacked on the front to prevent clashes with linux definitions, |
2700 | * and the typedef forms have been avoided. This is mostly like | |
2701 | * the SVR4 structure, but more Linuxy, with things that Linux does | |
2702 | * not support and which gdb doesn't really use excluded. | |
2703 | * | |
2704 | * Fields we don't dump (their contents is zero) in linux-user qemu | |
2705 | * are marked with XXX. | |
2706 | * | |
2707 | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | |
2708 | * | |
2709 | * Porting ELF coredump for target is (quite) simple process. First you | |
dd0a3651 | 2710 | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
edf8e2af MW |
2711 | * the target resides): |
2712 | * | |
2713 | * #define USE_ELF_CORE_DUMP | |
2714 | * | |
2715 | * Next you define type of register set used for dumping. ELF specification | |
2716 | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | |
2717 | * | |
c227f099 | 2718 | * typedef <target_regtype> target_elf_greg_t; |
edf8e2af | 2719 | * #define ELF_NREG <number of registers> |
c227f099 | 2720 | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
edf8e2af | 2721 | * |
edf8e2af MW |
2722 | * Last step is to implement target specific function that copies registers |
2723 | * from given cpu into just specified register set. Prototype is: | |
2724 | * | |
c227f099 | 2725 | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
9349b4f9 | 2726 | * const CPUArchState *env); |
edf8e2af MW |
2727 | * |
2728 | * Parameters: | |
2729 | * regs - copy register values into here (allocated and zeroed by caller) | |
2730 | * env - copy registers from here | |
2731 | * | |
2732 | * Example for ARM target is provided in this file. | |
2733 | */ | |
2734 | ||
2735 | /* An ELF note in memory */ | |
2736 | struct memelfnote { | |
2737 | const char *name; | |
2738 | size_t namesz; | |
2739 | size_t namesz_rounded; | |
2740 | int type; | |
2741 | size_t datasz; | |
80f5ce75 | 2742 | size_t datasz_rounded; |
edf8e2af MW |
2743 | void *data; |
2744 | size_t notesz; | |
2745 | }; | |
2746 | ||
a2547a13 | 2747 | struct target_elf_siginfo { |
f8fd4fc4 PB |
2748 | abi_int si_signo; /* signal number */ |
2749 | abi_int si_code; /* extra code */ | |
2750 | abi_int si_errno; /* errno */ | |
edf8e2af MW |
2751 | }; |
2752 | ||
a2547a13 LD |
2753 | struct target_elf_prstatus { |
2754 | struct target_elf_siginfo pr_info; /* Info associated with signal */ | |
1ddd592f | 2755 | abi_short pr_cursig; /* Current signal */ |
ca98ac83 PB |
2756 | abi_ulong pr_sigpend; /* XXX */ |
2757 | abi_ulong pr_sighold; /* XXX */ | |
c227f099 AL |
2758 | target_pid_t pr_pid; |
2759 | target_pid_t pr_ppid; | |
2760 | target_pid_t pr_pgrp; | |
2761 | target_pid_t pr_sid; | |
edf8e2af MW |
2762 | struct target_timeval pr_utime; /* XXX User time */ |
2763 | struct target_timeval pr_stime; /* XXX System time */ | |
2764 | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | |
2765 | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | |
c227f099 | 2766 | target_elf_gregset_t pr_reg; /* GP registers */ |
f8fd4fc4 | 2767 | abi_int pr_fpvalid; /* XXX */ |
edf8e2af MW |
2768 | }; |
2769 | ||
2770 | #define ELF_PRARGSZ (80) /* Number of chars for args */ | |
2771 | ||
a2547a13 | 2772 | struct target_elf_prpsinfo { |
edf8e2af MW |
2773 | char pr_state; /* numeric process state */ |
2774 | char pr_sname; /* char for pr_state */ | |
2775 | char pr_zomb; /* zombie */ | |
2776 | char pr_nice; /* nice val */ | |
ca98ac83 | 2777 | abi_ulong pr_flag; /* flags */ |
c227f099 AL |
2778 | target_uid_t pr_uid; |
2779 | target_gid_t pr_gid; | |
2780 | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | |
edf8e2af MW |
2781 | /* Lots missing */ |
2782 | char pr_fname[16]; /* filename of executable */ | |
2783 | char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | |
2784 | }; | |
2785 | ||
2786 | /* Here is the structure in which status of each thread is captured. */ | |
2787 | struct elf_thread_status { | |
72cf2d4f | 2788 | QTAILQ_ENTRY(elf_thread_status) ets_link; |
a2547a13 | 2789 | struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
edf8e2af MW |
2790 | #if 0 |
2791 | elf_fpregset_t fpu; /* NT_PRFPREG */ | |
2792 | struct task_struct *thread; | |
2793 | elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ | |
2794 | #endif | |
2795 | struct memelfnote notes[1]; | |
2796 | int num_notes; | |
2797 | }; | |
2798 | ||
2799 | struct elf_note_info { | |
2800 | struct memelfnote *notes; | |
a2547a13 LD |
2801 | struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
2802 | struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ | |
edf8e2af | 2803 | |
72cf2d4f | 2804 | QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; |
edf8e2af MW |
2805 | #if 0 |
2806 | /* | |
2807 | * Current version of ELF coredump doesn't support | |
2808 | * dumping fp regs etc. | |
2809 | */ | |
2810 | elf_fpregset_t *fpu; | |
2811 | elf_fpxregset_t *xfpu; | |
2812 | int thread_status_size; | |
2813 | #endif | |
2814 | int notes_size; | |
2815 | int numnote; | |
2816 | }; | |
2817 | ||
2818 | struct vm_area_struct { | |
1a1c4db9 MI |
2819 | target_ulong vma_start; /* start vaddr of memory region */ |
2820 | target_ulong vma_end; /* end vaddr of memory region */ | |
2821 | abi_ulong vma_flags; /* protection etc. flags for the region */ | |
72cf2d4f | 2822 | QTAILQ_ENTRY(vm_area_struct) vma_link; |
edf8e2af MW |
2823 | }; |
2824 | ||
2825 | struct mm_struct { | |
72cf2d4f | 2826 | QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
edf8e2af MW |
2827 | int mm_count; /* number of mappings */ |
2828 | }; | |
2829 | ||
2830 | static struct mm_struct *vma_init(void); | |
2831 | static void vma_delete(struct mm_struct *); | |
1a1c4db9 MI |
2832 | static int vma_add_mapping(struct mm_struct *, target_ulong, |
2833 | target_ulong, abi_ulong); | |
edf8e2af MW |
2834 | static int vma_get_mapping_count(const struct mm_struct *); |
2835 | static struct vm_area_struct *vma_first(const struct mm_struct *); | |
2836 | static struct vm_area_struct *vma_next(struct vm_area_struct *); | |
2837 | static abi_ulong vma_dump_size(const struct vm_area_struct *); | |
1a1c4db9 | 2838 | static int vma_walker(void *priv, target_ulong start, target_ulong end, |
d97ef72e | 2839 | unsigned long flags); |
edf8e2af MW |
2840 | |
2841 | static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); | |
2842 | static void fill_note(struct memelfnote *, const char *, int, | |
d97ef72e | 2843 | unsigned int, void *); |
a2547a13 LD |
2844 | static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
2845 | static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); | |
edf8e2af MW |
2846 | static void fill_auxv_note(struct memelfnote *, const TaskState *); |
2847 | static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); | |
2848 | static size_t note_size(const struct memelfnote *); | |
2849 | static void free_note_info(struct elf_note_info *); | |
9349b4f9 AF |
2850 | static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); |
2851 | static void fill_thread_info(struct elf_note_info *, const CPUArchState *); | |
edf8e2af MW |
2852 | static int core_dump_filename(const TaskState *, char *, size_t); |
2853 | ||
2854 | static int dump_write(int, const void *, size_t); | |
2855 | static int write_note(struct memelfnote *, int); | |
2856 | static int write_note_info(struct elf_note_info *, int); | |
2857 | ||
2858 | #ifdef BSWAP_NEEDED | |
a2547a13 | 2859 | static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
edf8e2af | 2860 | { |
ca98ac83 PB |
2861 | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
2862 | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | |
2863 | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | |
edf8e2af | 2864 | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
ca98ac83 PB |
2865 | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
2866 | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | |
edf8e2af MW |
2867 | prstatus->pr_pid = tswap32(prstatus->pr_pid); |
2868 | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | |
2869 | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | |
2870 | prstatus->pr_sid = tswap32(prstatus->pr_sid); | |
2871 | /* cpu times are not filled, so we skip them */ | |
2872 | /* regs should be in correct format already */ | |
2873 | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | |
2874 | } | |
2875 | ||
a2547a13 | 2876 | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
edf8e2af | 2877 | { |
ca98ac83 | 2878 | psinfo->pr_flag = tswapal(psinfo->pr_flag); |
edf8e2af MW |
2879 | psinfo->pr_uid = tswap16(psinfo->pr_uid); |
2880 | psinfo->pr_gid = tswap16(psinfo->pr_gid); | |
2881 | psinfo->pr_pid = tswap32(psinfo->pr_pid); | |
2882 | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | |
2883 | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | |
2884 | psinfo->pr_sid = tswap32(psinfo->pr_sid); | |
2885 | } | |
991f8f0c RH |
2886 | |
2887 | static void bswap_note(struct elf_note *en) | |
2888 | { | |
2889 | bswap32s(&en->n_namesz); | |
2890 | bswap32s(&en->n_descsz); | |
2891 | bswap32s(&en->n_type); | |
2892 | } | |
2893 | #else | |
2894 | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | |
2895 | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | |
2896 | static inline void bswap_note(struct elf_note *en) { } | |
edf8e2af MW |
2897 | #endif /* BSWAP_NEEDED */ |
2898 | ||
2899 | /* | |
2900 | * Minimal support for linux memory regions. These are needed | |
2901 | * when we are finding out what memory exactly belongs to | |
2902 | * emulated process. No locks needed here, as long as | |
2903 | * thread that received the signal is stopped. | |
2904 | */ | |
2905 | ||
2906 | static struct mm_struct *vma_init(void) | |
2907 | { | |
2908 | struct mm_struct *mm; | |
2909 | ||
7267c094 | 2910 | if ((mm = g_malloc(sizeof (*mm))) == NULL) |
edf8e2af MW |
2911 | return (NULL); |
2912 | ||
2913 | mm->mm_count = 0; | |
72cf2d4f | 2914 | QTAILQ_INIT(&mm->mm_mmap); |
edf8e2af MW |
2915 | |
2916 | return (mm); | |
2917 | } | |
2918 | ||
2919 | static void vma_delete(struct mm_struct *mm) | |
2920 | { | |
2921 | struct vm_area_struct *vma; | |
2922 | ||
2923 | while ((vma = vma_first(mm)) != NULL) { | |
72cf2d4f | 2924 | QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
7267c094 | 2925 | g_free(vma); |
edf8e2af | 2926 | } |
7267c094 | 2927 | g_free(mm); |
edf8e2af MW |
2928 | } |
2929 | ||
1a1c4db9 MI |
2930 | static int vma_add_mapping(struct mm_struct *mm, target_ulong start, |
2931 | target_ulong end, abi_ulong flags) | |
edf8e2af MW |
2932 | { |
2933 | struct vm_area_struct *vma; | |
2934 | ||
7267c094 | 2935 | if ((vma = g_malloc0(sizeof (*vma))) == NULL) |
edf8e2af MW |
2936 | return (-1); |
2937 | ||
2938 | vma->vma_start = start; | |
2939 | vma->vma_end = end; | |
2940 | vma->vma_flags = flags; | |
2941 | ||
72cf2d4f | 2942 | QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
edf8e2af MW |
2943 | mm->mm_count++; |
2944 | ||
2945 | return (0); | |
2946 | } | |
2947 | ||
2948 | static struct vm_area_struct *vma_first(const struct mm_struct *mm) | |
2949 | { | |
72cf2d4f | 2950 | return (QTAILQ_FIRST(&mm->mm_mmap)); |
edf8e2af MW |
2951 | } |
2952 | ||
2953 | static struct vm_area_struct *vma_next(struct vm_area_struct *vma) | |
2954 | { | |
72cf2d4f | 2955 | return (QTAILQ_NEXT(vma, vma_link)); |
edf8e2af MW |
2956 | } |
2957 | ||
2958 | static int vma_get_mapping_count(const struct mm_struct *mm) | |
2959 | { | |
2960 | return (mm->mm_count); | |
2961 | } | |
2962 | ||
2963 | /* | |
2964 | * Calculate file (dump) size of given memory region. | |
2965 | */ | |
2966 | static abi_ulong vma_dump_size(const struct vm_area_struct *vma) | |
2967 | { | |
2968 | /* if we cannot even read the first page, skip it */ | |
2969 | if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) | |
2970 | return (0); | |
2971 | ||
2972 | /* | |
2973 | * Usually we don't dump executable pages as they contain | |
2974 | * non-writable code that debugger can read directly from | |
2975 | * target library etc. However, thread stacks are marked | |
2976 | * also executable so we read in first page of given region | |
2977 | * and check whether it contains elf header. If there is | |
2978 | * no elf header, we dump it. | |
2979 | */ | |
2980 | if (vma->vma_flags & PROT_EXEC) { | |
2981 | char page[TARGET_PAGE_SIZE]; | |
2982 | ||
2983 | copy_from_user(page, vma->vma_start, sizeof (page)); | |
2984 | if ((page[EI_MAG0] == ELFMAG0) && | |
2985 | (page[EI_MAG1] == ELFMAG1) && | |
2986 | (page[EI_MAG2] == ELFMAG2) && | |
2987 | (page[EI_MAG3] == ELFMAG3)) { | |
2988 | /* | |
2989 | * Mappings are possibly from ELF binary. Don't dump | |
2990 | * them. | |
2991 | */ | |
2992 | return (0); | |
2993 | } | |
2994 | } | |
2995 | ||
2996 | return (vma->vma_end - vma->vma_start); | |
2997 | } | |
2998 | ||
1a1c4db9 | 2999 | static int vma_walker(void *priv, target_ulong start, target_ulong end, |
d97ef72e | 3000 | unsigned long flags) |
edf8e2af MW |
3001 | { |
3002 | struct mm_struct *mm = (struct mm_struct *)priv; | |
3003 | ||
edf8e2af MW |
3004 | vma_add_mapping(mm, start, end, flags); |
3005 | return (0); | |
3006 | } | |
3007 | ||
3008 | static void fill_note(struct memelfnote *note, const char *name, int type, | |
d97ef72e | 3009 | unsigned int sz, void *data) |
edf8e2af MW |
3010 | { |
3011 | unsigned int namesz; | |
3012 | ||
3013 | namesz = strlen(name) + 1; | |
3014 | note->name = name; | |
3015 | note->namesz = namesz; | |
3016 | note->namesz_rounded = roundup(namesz, sizeof (int32_t)); | |
3017 | note->type = type; | |
80f5ce75 LV |
3018 | note->datasz = sz; |
3019 | note->datasz_rounded = roundup(sz, sizeof (int32_t)); | |
3020 | ||
edf8e2af MW |
3021 | note->data = data; |
3022 | ||
3023 | /* | |
3024 | * We calculate rounded up note size here as specified by | |
3025 | * ELF document. | |
3026 | */ | |
3027 | note->notesz = sizeof (struct elf_note) + | |
80f5ce75 | 3028 | note->namesz_rounded + note->datasz_rounded; |
edf8e2af MW |
3029 | } |
3030 | ||
3031 | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | |
d97ef72e | 3032 | uint32_t flags) |
edf8e2af MW |
3033 | { |
3034 | (void) memset(elf, 0, sizeof(*elf)); | |
3035 | ||
3036 | (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); | |
3037 | elf->e_ident[EI_CLASS] = ELF_CLASS; | |
3038 | elf->e_ident[EI_DATA] = ELF_DATA; | |
3039 | elf->e_ident[EI_VERSION] = EV_CURRENT; | |
3040 | elf->e_ident[EI_OSABI] = ELF_OSABI; | |
3041 | ||
3042 | elf->e_type = ET_CORE; | |
3043 | elf->e_machine = machine; | |
3044 | elf->e_version = EV_CURRENT; | |
3045 | elf->e_phoff = sizeof(struct elfhdr); | |
3046 | elf->e_flags = flags; | |
3047 | elf->e_ehsize = sizeof(struct elfhdr); | |
3048 | elf->e_phentsize = sizeof(struct elf_phdr); | |
3049 | elf->e_phnum = segs; | |
3050 | ||
edf8e2af | 3051 | bswap_ehdr(elf); |
edf8e2af MW |
3052 | } |
3053 | ||
3054 | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) | |
3055 | { | |
3056 | phdr->p_type = PT_NOTE; | |
3057 | phdr->p_offset = offset; | |
3058 | phdr->p_vaddr = 0; | |
3059 | phdr->p_paddr = 0; | |
3060 | phdr->p_filesz = sz; | |
3061 | phdr->p_memsz = 0; | |
3062 | phdr->p_flags = 0; | |
3063 | phdr->p_align = 0; | |
3064 | ||
991f8f0c | 3065 | bswap_phdr(phdr, 1); |
edf8e2af MW |
3066 | } |
3067 | ||
3068 | static size_t note_size(const struct memelfnote *note) | |
3069 | { | |
3070 | return (note->notesz); | |
3071 | } | |
3072 | ||
a2547a13 | 3073 | static void fill_prstatus(struct target_elf_prstatus *prstatus, |
d97ef72e | 3074 | const TaskState *ts, int signr) |
edf8e2af MW |
3075 | { |
3076 | (void) memset(prstatus, 0, sizeof (*prstatus)); | |
3077 | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | |
3078 | prstatus->pr_pid = ts->ts_tid; | |
3079 | prstatus->pr_ppid = getppid(); | |
3080 | prstatus->pr_pgrp = getpgrp(); | |
3081 | prstatus->pr_sid = getsid(0); | |
3082 | ||
edf8e2af | 3083 | bswap_prstatus(prstatus); |
edf8e2af MW |
3084 | } |
3085 | ||
a2547a13 | 3086 | static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
edf8e2af | 3087 | { |
900cfbca | 3088 | char *base_filename; |
edf8e2af MW |
3089 | unsigned int i, len; |
3090 | ||
3091 | (void) memset(psinfo, 0, sizeof (*psinfo)); | |
3092 | ||
3093 | len = ts->info->arg_end - ts->info->arg_start; | |
3094 | if (len >= ELF_PRARGSZ) | |
3095 | len = ELF_PRARGSZ - 1; | |
3096 | if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) | |
3097 | return -EFAULT; | |
3098 | for (i = 0; i < len; i++) | |
3099 | if (psinfo->pr_psargs[i] == 0) | |
3100 | psinfo->pr_psargs[i] = ' '; | |
3101 | psinfo->pr_psargs[len] = 0; | |
3102 | ||
3103 | psinfo->pr_pid = getpid(); | |
3104 | psinfo->pr_ppid = getppid(); | |
3105 | psinfo->pr_pgrp = getpgrp(); | |
3106 | psinfo->pr_sid = getsid(0); | |
3107 | psinfo->pr_uid = getuid(); | |
3108 | psinfo->pr_gid = getgid(); | |
3109 | ||
900cfbca JM |
3110 | base_filename = g_path_get_basename(ts->bprm->filename); |
3111 | /* | |
3112 | * Using strncpy here is fine: at max-length, | |
3113 | * this field is not NUL-terminated. | |
3114 | */ | |
edf8e2af | 3115 | (void) strncpy(psinfo->pr_fname, base_filename, |
d97ef72e | 3116 | sizeof(psinfo->pr_fname)); |
edf8e2af | 3117 | |
900cfbca | 3118 | g_free(base_filename); |
edf8e2af | 3119 | bswap_psinfo(psinfo); |
edf8e2af MW |
3120 | return (0); |
3121 | } | |
3122 | ||
3123 | static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) | |
3124 | { | |
3125 | elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; | |
3126 | elf_addr_t orig_auxv = auxv; | |
edf8e2af | 3127 | void *ptr; |
125b0f55 | 3128 | int len = ts->info->auxv_len; |
edf8e2af MW |
3129 | |
3130 | /* | |
3131 | * Auxiliary vector is stored in target process stack. It contains | |
3132 | * {type, value} pairs that we need to dump into note. This is not | |
3133 | * strictly necessary but we do it here for sake of completeness. | |
3134 | */ | |
3135 | ||
edf8e2af MW |
3136 | /* read in whole auxv vector and copy it to memelfnote */ |
3137 | ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); | |
3138 | if (ptr != NULL) { | |
3139 | fill_note(note, "CORE", NT_AUXV, len, ptr); | |
3140 | unlock_user(ptr, auxv, len); | |
3141 | } | |
3142 | } | |
3143 | ||
3144 | /* | |
3145 | * Constructs name of coredump file. We have following convention | |
3146 | * for the name: | |
3147 | * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | |
3148 | * | |
3149 | * Returns 0 in case of success, -1 otherwise (errno is set). | |
3150 | */ | |
3151 | static int core_dump_filename(const TaskState *ts, char *buf, | |
d97ef72e | 3152 | size_t bufsize) |
edf8e2af MW |
3153 | { |
3154 | char timestamp[64]; | |
edf8e2af MW |
3155 | char *base_filename = NULL; |
3156 | struct timeval tv; | |
3157 | struct tm tm; | |
3158 | ||
3159 | assert(bufsize >= PATH_MAX); | |
3160 | ||
3161 | if (gettimeofday(&tv, NULL) < 0) { | |
3162 | (void) fprintf(stderr, "unable to get current timestamp: %s", | |
d97ef72e | 3163 | strerror(errno)); |
edf8e2af MW |
3164 | return (-1); |
3165 | } | |
3166 | ||
b8da57fa | 3167 | base_filename = g_path_get_basename(ts->bprm->filename); |
edf8e2af | 3168 | (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", |
d97ef72e | 3169 | localtime_r(&tv.tv_sec, &tm)); |
edf8e2af | 3170 | (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
d97ef72e | 3171 | base_filename, timestamp, (int)getpid()); |
b8da57fa | 3172 | g_free(base_filename); |
edf8e2af MW |
3173 | |
3174 | return (0); | |
3175 | } | |
3176 | ||
3177 | static int dump_write(int fd, const void *ptr, size_t size) | |
3178 | { | |
3179 | const char *bufp = (const char *)ptr; | |
3180 | ssize_t bytes_written, bytes_left; | |
3181 | struct rlimit dumpsize; | |
3182 | off_t pos; | |
3183 | ||
3184 | bytes_written = 0; | |
3185 | getrlimit(RLIMIT_CORE, &dumpsize); | |
3186 | if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { | |
3187 | if (errno == ESPIPE) { /* not a seekable stream */ | |
3188 | bytes_left = size; | |
3189 | } else { | |
3190 | return pos; | |
3191 | } | |
3192 | } else { | |
3193 | if (dumpsize.rlim_cur <= pos) { | |
3194 | return -1; | |
3195 | } else if (dumpsize.rlim_cur == RLIM_INFINITY) { | |
3196 | bytes_left = size; | |
3197 | } else { | |
3198 | size_t limit_left=dumpsize.rlim_cur - pos; | |
3199 | bytes_left = limit_left >= size ? size : limit_left ; | |
3200 | } | |
3201 | } | |
3202 | ||
3203 | /* | |
3204 | * In normal conditions, single write(2) should do but | |
3205 | * in case of socket etc. this mechanism is more portable. | |
3206 | */ | |
3207 | do { | |
3208 | bytes_written = write(fd, bufp, bytes_left); | |
3209 | if (bytes_written < 0) { | |
3210 | if (errno == EINTR) | |
3211 | continue; | |
3212 | return (-1); | |
3213 | } else if (bytes_written == 0) { /* eof */ | |
3214 | return (-1); | |
3215 | } | |
3216 | bufp += bytes_written; | |
3217 | bytes_left -= bytes_written; | |
3218 | } while (bytes_left > 0); | |
3219 | ||
3220 | return (0); | |
3221 | } | |
3222 | ||
3223 | static int write_note(struct memelfnote *men, int fd) | |
3224 | { | |
3225 | struct elf_note en; | |
3226 | ||
3227 | en.n_namesz = men->namesz; | |
3228 | en.n_type = men->type; | |
3229 | en.n_descsz = men->datasz; | |
3230 | ||
edf8e2af | 3231 | bswap_note(&en); |
edf8e2af MW |
3232 | |
3233 | if (dump_write(fd, &en, sizeof(en)) != 0) | |
3234 | return (-1); | |
3235 | if (dump_write(fd, men->name, men->namesz_rounded) != 0) | |
3236 | return (-1); | |
80f5ce75 | 3237 | if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
edf8e2af MW |
3238 | return (-1); |
3239 | ||
3240 | return (0); | |
3241 | } | |
3242 | ||
9349b4f9 | 3243 | static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) |
edf8e2af | 3244 | { |
0429a971 AF |
3245 | CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); |
3246 | TaskState *ts = (TaskState *)cpu->opaque; | |
edf8e2af MW |
3247 | struct elf_thread_status *ets; |
3248 | ||
7267c094 | 3249 | ets = g_malloc0(sizeof (*ets)); |
edf8e2af MW |
3250 | ets->num_notes = 1; /* only prstatus is dumped */ |
3251 | fill_prstatus(&ets->prstatus, ts, 0); | |
3252 | elf_core_copy_regs(&ets->prstatus.pr_reg, env); | |
3253 | fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), | |
d97ef72e | 3254 | &ets->prstatus); |
edf8e2af | 3255 | |
72cf2d4f | 3256 | QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
edf8e2af MW |
3257 | |
3258 | info->notes_size += note_size(&ets->notes[0]); | |
3259 | } | |
3260 | ||
6afafa86 PM |
3261 | static void init_note_info(struct elf_note_info *info) |
3262 | { | |
3263 | /* Initialize the elf_note_info structure so that it is at | |
3264 | * least safe to call free_note_info() on it. Must be | |
3265 | * called before calling fill_note_info(). | |
3266 | */ | |
3267 | memset(info, 0, sizeof (*info)); | |
3268 | QTAILQ_INIT(&info->thread_list); | |
3269 | } | |
3270 | ||
edf8e2af | 3271 | static int fill_note_info(struct elf_note_info *info, |
9349b4f9 | 3272 | long signr, const CPUArchState *env) |
edf8e2af MW |
3273 | { |
3274 | #define NUMNOTES 3 | |
0429a971 AF |
3275 | CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); |
3276 | TaskState *ts = (TaskState *)cpu->opaque; | |
edf8e2af MW |
3277 | int i; |
3278 | ||
c78d65e8 | 3279 | info->notes = g_new0(struct memelfnote, NUMNOTES); |
edf8e2af MW |
3280 | if (info->notes == NULL) |
3281 | return (-ENOMEM); | |
7267c094 | 3282 | info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
edf8e2af MW |
3283 | if (info->prstatus == NULL) |
3284 | return (-ENOMEM); | |
7267c094 | 3285 | info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
edf8e2af MW |
3286 | if (info->prstatus == NULL) |
3287 | return (-ENOMEM); | |
3288 | ||
3289 | /* | |
3290 | * First fill in status (and registers) of current thread | |
3291 | * including process info & aux vector. | |
3292 | */ | |
3293 | fill_prstatus(info->prstatus, ts, signr); | |
3294 | elf_core_copy_regs(&info->prstatus->pr_reg, env); | |
3295 | fill_note(&info->notes[0], "CORE", NT_PRSTATUS, | |
d97ef72e | 3296 | sizeof (*info->prstatus), info->prstatus); |
edf8e2af MW |
3297 | fill_psinfo(info->psinfo, ts); |
3298 | fill_note(&info->notes[1], "CORE", NT_PRPSINFO, | |
d97ef72e | 3299 | sizeof (*info->psinfo), info->psinfo); |
edf8e2af MW |
3300 | fill_auxv_note(&info->notes[2], ts); |
3301 | info->numnote = 3; | |
3302 | ||
3303 | info->notes_size = 0; | |
3304 | for (i = 0; i < info->numnote; i++) | |
3305 | info->notes_size += note_size(&info->notes[i]); | |
3306 | ||
3307 | /* read and fill status of all threads */ | |
3308 | cpu_list_lock(); | |
bdc44640 | 3309 | CPU_FOREACH(cpu) { |
a2247f8e | 3310 | if (cpu == thread_cpu) { |
edf8e2af | 3311 | continue; |
182735ef AF |
3312 | } |
3313 | fill_thread_info(info, (CPUArchState *)cpu->env_ptr); | |
edf8e2af MW |
3314 | } |
3315 | cpu_list_unlock(); | |
3316 | ||
3317 | return (0); | |
3318 | } | |
3319 | ||
3320 | static void free_note_info(struct elf_note_info *info) | |
3321 | { | |
3322 | struct elf_thread_status *ets; | |
3323 | ||
72cf2d4f BS |
3324 | while (!QTAILQ_EMPTY(&info->thread_list)) { |
3325 | ets = QTAILQ_FIRST(&info->thread_list); | |
3326 | QTAILQ_REMOVE(&info->thread_list, ets, ets_link); | |
7267c094 | 3327 | g_free(ets); |
edf8e2af MW |
3328 | } |
3329 | ||
7267c094 AL |
3330 | g_free(info->prstatus); |
3331 | g_free(info->psinfo); | |
3332 | g_free(info->notes); | |
edf8e2af MW |
3333 | } |
3334 | ||
3335 | static int write_note_info(struct elf_note_info *info, int fd) | |
3336 | { | |
3337 | struct elf_thread_status *ets; | |
3338 | int i, error = 0; | |
3339 | ||
3340 | /* write prstatus, psinfo and auxv for current thread */ | |
3341 | for (i = 0; i < info->numnote; i++) | |
3342 | if ((error = write_note(&info->notes[i], fd)) != 0) | |
3343 | return (error); | |
3344 | ||
3345 | /* write prstatus for each thread */ | |
52a53afe | 3346 | QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { |
edf8e2af MW |
3347 | if ((error = write_note(&ets->notes[0], fd)) != 0) |
3348 | return (error); | |
3349 | } | |
3350 | ||
3351 | return (0); | |
3352 | } | |
3353 | ||
3354 | /* | |
3355 | * Write out ELF coredump. | |
3356 | * | |
3357 | * See documentation of ELF object file format in: | |
3358 | * http://www.caldera.com/developers/devspecs/gabi41.pdf | |
3359 | * | |
3360 | * Coredump format in linux is following: | |
3361 | * | |
3362 | * 0 +----------------------+ \ | |
3363 | * | ELF header | ET_CORE | | |
3364 | * +----------------------+ | | |
3365 | * | ELF program headers | |--- headers | |
3366 | * | - NOTE section | | | |
3367 | * | - PT_LOAD sections | | | |
3368 | * +----------------------+ / | |
3369 | * | NOTEs: | | |
3370 | * | - NT_PRSTATUS | | |
3371 | * | - NT_PRSINFO | | |
3372 | * | - NT_AUXV | | |
3373 | * +----------------------+ <-- aligned to target page | |
3374 | * | Process memory dump | | |
3375 | * : : | |
3376 | * . . | |
3377 | * : : | |
3378 | * | | | |
3379 | * +----------------------+ | |
3380 | * | |
3381 | * NT_PRSTATUS -> struct elf_prstatus (per thread) | |
3382 | * NT_PRSINFO -> struct elf_prpsinfo | |
3383 | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | |
3384 | * | |
3385 | * Format follows System V format as close as possible. Current | |
3386 | * version limitations are as follows: | |
3387 | * - no floating point registers are dumped | |
3388 | * | |
3389 | * Function returns 0 in case of success, negative errno otherwise. | |
3390 | * | |
3391 | * TODO: make this work also during runtime: it should be | |
3392 | * possible to force coredump from running process and then | |
3393 | * continue processing. For example qemu could set up SIGUSR2 | |
3394 | * handler (provided that target process haven't registered | |
3395 | * handler for that) that does the dump when signal is received. | |
3396 | */ | |
9349b4f9 | 3397 | static int elf_core_dump(int signr, const CPUArchState *env) |
edf8e2af | 3398 | { |
0429a971 AF |
3399 | const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); |
3400 | const TaskState *ts = (const TaskState *)cpu->opaque; | |
edf8e2af MW |
3401 | struct vm_area_struct *vma = NULL; |
3402 | char corefile[PATH_MAX]; | |
3403 | struct elf_note_info info; | |
3404 | struct elfhdr elf; | |
3405 | struct elf_phdr phdr; | |
3406 | struct rlimit dumpsize; | |
3407 | struct mm_struct *mm = NULL; | |
3408 | off_t offset = 0, data_offset = 0; | |
3409 | int segs = 0; | |
3410 | int fd = -1; | |
3411 | ||
6afafa86 PM |
3412 | init_note_info(&info); |
3413 | ||
edf8e2af MW |
3414 | errno = 0; |
3415 | getrlimit(RLIMIT_CORE, &dumpsize); | |
3416 | if (dumpsize.rlim_cur == 0) | |
d97ef72e | 3417 | return 0; |
edf8e2af MW |
3418 | |
3419 | if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) | |
3420 | return (-errno); | |
3421 | ||
3422 | if ((fd = open(corefile, O_WRONLY | O_CREAT, | |
d97ef72e | 3423 | S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
edf8e2af MW |
3424 | return (-errno); |
3425 | ||
3426 | /* | |
3427 | * Walk through target process memory mappings and | |
3428 | * set up structure containing this information. After | |
3429 | * this point vma_xxx functions can be used. | |
3430 | */ | |
3431 | if ((mm = vma_init()) == NULL) | |
3432 | goto out; | |
3433 | ||
3434 | walk_memory_regions(mm, vma_walker); | |
3435 | segs = vma_get_mapping_count(mm); | |
3436 | ||
3437 | /* | |
3438 | * Construct valid coredump ELF header. We also | |
3439 | * add one more segment for notes. | |
3440 | */ | |
3441 | fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); | |
3442 | if (dump_write(fd, &elf, sizeof (elf)) != 0) | |
3443 | goto out; | |
3444 | ||
b6af0975 | 3445 | /* fill in the in-memory version of notes */ |
edf8e2af MW |
3446 | if (fill_note_info(&info, signr, env) < 0) |
3447 | goto out; | |
3448 | ||
3449 | offset += sizeof (elf); /* elf header */ | |
3450 | offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ | |
3451 | ||
3452 | /* write out notes program header */ | |
3453 | fill_elf_note_phdr(&phdr, info.notes_size, offset); | |
3454 | ||
3455 | offset += info.notes_size; | |
3456 | if (dump_write(fd, &phdr, sizeof (phdr)) != 0) | |
3457 | goto out; | |
3458 | ||
3459 | /* | |
3460 | * ELF specification wants data to start at page boundary so | |
3461 | * we align it here. | |
3462 | */ | |
80f5ce75 | 3463 | data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
edf8e2af MW |
3464 | |
3465 | /* | |
3466 | * Write program headers for memory regions mapped in | |
3467 | * the target process. | |
3468 | */ | |
3469 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
3470 | (void) memset(&phdr, 0, sizeof (phdr)); | |
3471 | ||
3472 | phdr.p_type = PT_LOAD; | |
3473 | phdr.p_offset = offset; | |
3474 | phdr.p_vaddr = vma->vma_start; | |
3475 | phdr.p_paddr = 0; | |
3476 | phdr.p_filesz = vma_dump_size(vma); | |
3477 | offset += phdr.p_filesz; | |
3478 | phdr.p_memsz = vma->vma_end - vma->vma_start; | |
3479 | phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; | |
3480 | if (vma->vma_flags & PROT_WRITE) | |
3481 | phdr.p_flags |= PF_W; | |
3482 | if (vma->vma_flags & PROT_EXEC) | |
3483 | phdr.p_flags |= PF_X; | |
3484 | phdr.p_align = ELF_EXEC_PAGESIZE; | |
3485 | ||
80f5ce75 | 3486 | bswap_phdr(&phdr, 1); |
772034b6 PM |
3487 | if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { |
3488 | goto out; | |
3489 | } | |
edf8e2af MW |
3490 | } |
3491 | ||
3492 | /* | |
3493 | * Next we write notes just after program headers. No | |
3494 | * alignment needed here. | |
3495 | */ | |
3496 | if (write_note_info(&info, fd) < 0) | |
3497 | goto out; | |
3498 | ||
3499 | /* align data to page boundary */ | |
edf8e2af MW |
3500 | if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
3501 | goto out; | |
3502 | ||
3503 | /* | |
3504 | * Finally we can dump process memory into corefile as well. | |
3505 | */ | |
3506 | for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { | |
3507 | abi_ulong addr; | |
3508 | abi_ulong end; | |
3509 | ||
3510 | end = vma->vma_start + vma_dump_size(vma); | |
3511 | ||
3512 | for (addr = vma->vma_start; addr < end; | |
d97ef72e | 3513 | addr += TARGET_PAGE_SIZE) { |
edf8e2af MW |
3514 | char page[TARGET_PAGE_SIZE]; |
3515 | int error; | |
3516 | ||
3517 | /* | |
3518 | * Read in page from target process memory and | |
3519 | * write it to coredump file. | |
3520 | */ | |
3521 | error = copy_from_user(page, addr, sizeof (page)); | |
3522 | if (error != 0) { | |
49995e17 | 3523 | (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
d97ef72e | 3524 | addr); |
edf8e2af MW |
3525 | errno = -error; |
3526 | goto out; | |
3527 | } | |
3528 | if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) | |
3529 | goto out; | |
3530 | } | |
3531 | } | |
3532 | ||
d97ef72e | 3533 | out: |
edf8e2af MW |
3534 | free_note_info(&info); |
3535 | if (mm != NULL) | |
3536 | vma_delete(mm); | |
3537 | (void) close(fd); | |
3538 | ||
3539 | if (errno != 0) | |
3540 | return (-errno); | |
3541 | return (0); | |
3542 | } | |
edf8e2af MW |
3543 | #endif /* USE_ELF_CORE_DUMP */ |
3544 | ||
e5fe0c52 PB |
3545 | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
3546 | { | |
3547 | init_thread(regs, infop); | |
3548 | } |