]>
Commit | Line | Data |
---|---|---|
9fdf0c29 DG |
1 | /* |
2 | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | |
3 | * | |
4 | * Copyright (c) 2004-2007 Fabrice Bellard | |
5 | * Copyright (c) 2007 Jocelyn Mayer | |
6 | * Copyright (c) 2010 David Gibson, IBM Corporation. | |
7 | * | |
8 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
9 | * of this software and associated documentation files (the "Software"), to deal | |
10 | * in the Software without restriction, including without limitation the rights | |
11 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
12 | * copies of the Software, and to permit persons to whom the Software is | |
13 | * furnished to do so, subject to the following conditions: | |
14 | * | |
15 | * The above copyright notice and this permission notice shall be included in | |
16 | * all copies or substantial portions of the Software. | |
17 | * | |
18 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
19 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
20 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
21 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
22 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
23 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
24 | * THE SOFTWARE. | |
25 | * | |
26 | */ | |
27 | #include "sysemu.h" | |
9fdf0c29 DG |
28 | #include "hw.h" |
29 | #include "elf.h" | |
8d90ad90 | 30 | #include "net.h" |
6e270446 | 31 | #include "blockdev.h" |
e97c3636 DG |
32 | #include "cpus.h" |
33 | #include "kvm.h" | |
34 | #include "kvm_ppc.h" | |
9fdf0c29 DG |
35 | |
36 | #include "hw/boards.h" | |
37 | #include "hw/ppc.h" | |
38 | #include "hw/loader.h" | |
39 | ||
40 | #include "hw/spapr.h" | |
4040ab72 | 41 | #include "hw/spapr_vio.h" |
3384f95c | 42 | #include "hw/spapr_pci.h" |
b5cec4c5 | 43 | #include "hw/xics.h" |
0ee2c058 | 44 | #include "hw/msi.h" |
9fdf0c29 | 45 | |
f61b4bed AG |
46 | #include "kvm.h" |
47 | #include "kvm_ppc.h" | |
3384f95c | 48 | #include "pci.h" |
f61b4bed | 49 | |
890c2b77 | 50 | #include "exec-memory.h" |
35139a59 | 51 | #include "hw/usb.h" |
890c2b77 | 52 | |
9fdf0c29 DG |
53 | #include <libfdt.h> |
54 | ||
4d8d5467 BH |
55 | /* SLOF memory layout: |
56 | * | |
57 | * SLOF raw image loaded at 0, copies its romfs right below the flat | |
58 | * device-tree, then position SLOF itself 31M below that | |
59 | * | |
60 | * So we set FW_OVERHEAD to 40MB which should account for all of that | |
61 | * and more | |
62 | * | |
63 | * We load our kernel at 4M, leaving space for SLOF initial image | |
64 | */ | |
9fdf0c29 | 65 | #define FDT_MAX_SIZE 0x10000 |
39ac8455 | 66 | #define RTAS_MAX_SIZE 0x10000 |
a9f8ad8f DG |
67 | #define FW_MAX_SIZE 0x400000 |
68 | #define FW_FILE_NAME "slof.bin" | |
4d8d5467 BH |
69 | #define FW_OVERHEAD 0x2800000 |
70 | #define KERNEL_LOAD_ADDR FW_MAX_SIZE | |
a9f8ad8f | 71 | |
4d8d5467 | 72 | #define MIN_RMA_SLOF 128UL |
9fdf0c29 DG |
73 | |
74 | #define TIMEBASE_FREQ 512000000ULL | |
75 | ||
41019fec | 76 | #define MAX_CPUS 256 |
4d8d5467 | 77 | #define XICS_IRQS 1024 |
9fdf0c29 | 78 | |
3384f95c DG |
79 | #define SPAPR_PCI_BUID 0x800000020000001ULL |
80 | #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000) | |
81 | #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000 | |
82 | #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000) | |
0ee2c058 | 83 | #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000) |
3384f95c | 84 | |
0c103f8e DG |
85 | #define PHANDLE_XICP 0x00001111 |
86 | ||
7f763a5d DG |
87 | #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift)) |
88 | ||
9fdf0c29 DG |
89 | sPAPREnvironment *spapr; |
90 | ||
ff9d2afa | 91 | int spapr_allocate_irq(int hint, bool lsi) |
e6c866d4 | 92 | { |
a307d594 | 93 | int irq; |
e6c866d4 DG |
94 | |
95 | if (hint) { | |
96 | irq = hint; | |
97 | /* FIXME: we should probably check for collisions somehow */ | |
98 | } else { | |
99 | irq = spapr->next_irq++; | |
100 | } | |
101 | ||
a307d594 AK |
102 | /* Configure irq type */ |
103 | if (!xics_get_qirq(spapr->icp, irq)) { | |
104 | return 0; | |
e6c866d4 DG |
105 | } |
106 | ||
ff9d2afa | 107 | xics_set_irq_type(spapr->icp, irq, lsi); |
e6c866d4 | 108 | |
a307d594 | 109 | return irq; |
e6c866d4 DG |
110 | } |
111 | ||
f4b9523b | 112 | /* Allocate block of consequtive IRQs, returns a number of the first */ |
ff9d2afa | 113 | int spapr_allocate_irq_block(int num, bool lsi) |
f4b9523b AK |
114 | { |
115 | int first = -1; | |
116 | int i; | |
117 | ||
118 | for (i = 0; i < num; ++i) { | |
119 | int irq; | |
120 | ||
ff9d2afa | 121 | irq = spapr_allocate_irq(0, lsi); |
f4b9523b AK |
122 | if (!irq) { |
123 | return -1; | |
124 | } | |
125 | ||
126 | if (0 == i) { | |
127 | first = irq; | |
128 | } | |
129 | ||
130 | /* If the above doesn't create a consecutive block then that's | |
131 | * an internal bug */ | |
132 | assert(irq == (first + i)); | |
133 | } | |
134 | ||
135 | return first; | |
136 | } | |
137 | ||
7f763a5d | 138 | static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr) |
6e806cc3 BR |
139 | { |
140 | int ret = 0, offset; | |
e2684c0b | 141 | CPUPPCState *env; |
6e806cc3 BR |
142 | char cpu_model[32]; |
143 | int smt = kvmppc_smt_threads(); | |
7f763a5d | 144 | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; |
6e806cc3 BR |
145 | |
146 | assert(spapr->cpu_model); | |
147 | ||
148 | for (env = first_cpu; env != NULL; env = env->next_cpu) { | |
149 | uint32_t associativity[] = {cpu_to_be32(0x5), | |
150 | cpu_to_be32(0x0), | |
151 | cpu_to_be32(0x0), | |
152 | cpu_to_be32(0x0), | |
153 | cpu_to_be32(env->numa_node), | |
154 | cpu_to_be32(env->cpu_index)}; | |
155 | ||
156 | if ((env->cpu_index % smt) != 0) { | |
157 | continue; | |
158 | } | |
159 | ||
160 | snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model, | |
161 | env->cpu_index); | |
162 | ||
163 | offset = fdt_path_offset(fdt, cpu_model); | |
164 | if (offset < 0) { | |
165 | return offset; | |
166 | } | |
167 | ||
7f763a5d DG |
168 | if (nb_numa_nodes > 1) { |
169 | ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, | |
170 | sizeof(associativity)); | |
171 | if (ret < 0) { | |
172 | return ret; | |
173 | } | |
174 | } | |
175 | ||
176 | ret = fdt_setprop(fdt, offset, "ibm,pft-size", | |
177 | pft_size_prop, sizeof(pft_size_prop)); | |
6e806cc3 BR |
178 | if (ret < 0) { |
179 | return ret; | |
180 | } | |
181 | } | |
182 | return ret; | |
183 | } | |
184 | ||
5af9873d BH |
185 | |
186 | static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, | |
187 | size_t maxsize) | |
188 | { | |
189 | size_t maxcells = maxsize / sizeof(uint32_t); | |
190 | int i, j, count; | |
191 | uint32_t *p = prop; | |
192 | ||
193 | for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { | |
194 | struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; | |
195 | ||
196 | if (!sps->page_shift) { | |
197 | break; | |
198 | } | |
199 | for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { | |
200 | if (sps->enc[count].page_shift == 0) { | |
201 | break; | |
202 | } | |
203 | } | |
204 | if ((p - prop) >= (maxcells - 3 - count * 2)) { | |
205 | break; | |
206 | } | |
207 | *(p++) = cpu_to_be32(sps->page_shift); | |
208 | *(p++) = cpu_to_be32(sps->slb_enc); | |
209 | *(p++) = cpu_to_be32(count); | |
210 | for (j = 0; j < count; j++) { | |
211 | *(p++) = cpu_to_be32(sps->enc[j].page_shift); | |
212 | *(p++) = cpu_to_be32(sps->enc[j].pte_enc); | |
213 | } | |
214 | } | |
215 | ||
216 | return (p - prop) * sizeof(uint32_t); | |
217 | } | |
218 | ||
7f763a5d DG |
219 | #define _FDT(exp) \ |
220 | do { \ | |
221 | int ret = (exp); \ | |
222 | if (ret < 0) { \ | |
223 | fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ | |
224 | #exp, fdt_strerror(ret)); \ | |
225 | exit(1); \ | |
226 | } \ | |
227 | } while (0) | |
228 | ||
229 | ||
a3467baa DG |
230 | static void *spapr_create_fdt_skel(const char *cpu_model, |
231 | target_phys_addr_t initrd_base, | |
232 | target_phys_addr_t initrd_size, | |
4d8d5467 | 233 | target_phys_addr_t kernel_size, |
a3467baa | 234 | const char *boot_device, |
7f763a5d | 235 | const char *kernel_cmdline) |
9fdf0c29 DG |
236 | { |
237 | void *fdt; | |
e2684c0b | 238 | CPUPPCState *env; |
9fdf0c29 DG |
239 | uint32_t start_prop = cpu_to_be32(initrd_base); |
240 | uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); | |
ee86dfee | 241 | char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
a3d0abae | 242 | "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; |
c73e3771 | 243 | char qemu_hypertas_prop[] = "hcall-memop1"; |
7f763a5d | 244 | uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; |
b5cec4c5 | 245 | uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
9fdf0c29 | 246 | char *modelname; |
7f763a5d | 247 | int i, smt = kvmppc_smt_threads(); |
6e806cc3 | 248 | unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
9fdf0c29 | 249 | |
7267c094 | 250 | fdt = g_malloc0(FDT_MAX_SIZE); |
9fdf0c29 DG |
251 | _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
252 | ||
4d8d5467 BH |
253 | if (kernel_size) { |
254 | _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); | |
255 | } | |
256 | if (initrd_size) { | |
257 | _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); | |
258 | } | |
9fdf0c29 DG |
259 | _FDT((fdt_finish_reservemap(fdt))); |
260 | ||
261 | /* Root node */ | |
262 | _FDT((fdt_begin_node(fdt, ""))); | |
263 | _FDT((fdt_property_string(fdt, "device_type", "chrp"))); | |
5d73dd66 | 264 | _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
9fdf0c29 DG |
265 | |
266 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); | |
267 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); | |
268 | ||
269 | /* /chosen */ | |
270 | _FDT((fdt_begin_node(fdt, "chosen"))); | |
271 | ||
6e806cc3 BR |
272 | /* Set Form1_affinity */ |
273 | _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); | |
274 | ||
9fdf0c29 DG |
275 | _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
276 | _FDT((fdt_property(fdt, "linux,initrd-start", | |
277 | &start_prop, sizeof(start_prop)))); | |
278 | _FDT((fdt_property(fdt, "linux,initrd-end", | |
279 | &end_prop, sizeof(end_prop)))); | |
4d8d5467 BH |
280 | if (kernel_size) { |
281 | uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), | |
282 | cpu_to_be64(kernel_size) }; | |
9fdf0c29 | 283 | |
4d8d5467 BH |
284 | _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); |
285 | } | |
286 | _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); | |
f28359d8 LZ |
287 | _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); |
288 | _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); | |
289 | _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); | |
3384f95c | 290 | |
9fdf0c29 DG |
291 | _FDT((fdt_end_node(fdt))); |
292 | ||
9fdf0c29 DG |
293 | /* cpus */ |
294 | _FDT((fdt_begin_node(fdt, "cpus"))); | |
295 | ||
296 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
297 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
298 | ||
7267c094 | 299 | modelname = g_strdup(cpu_model); |
9fdf0c29 DG |
300 | |
301 | for (i = 0; i < strlen(modelname); i++) { | |
302 | modelname[i] = toupper(modelname[i]); | |
303 | } | |
304 | ||
6e806cc3 BR |
305 | /* This is needed during FDT finalization */ |
306 | spapr->cpu_model = g_strdup(modelname); | |
307 | ||
c7a5c0c9 DG |
308 | for (env = first_cpu; env != NULL; env = env->next_cpu) { |
309 | int index = env->cpu_index; | |
e97c3636 DG |
310 | uint32_t servers_prop[smp_threads]; |
311 | uint32_t gservers_prop[smp_threads * 2]; | |
9fdf0c29 DG |
312 | char *nodename; |
313 | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | |
314 | 0xffffffff, 0xffffffff}; | |
0a8b2938 AG |
315 | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
316 | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | |
5af9873d BH |
317 | uint32_t page_sizes_prop[64]; |
318 | size_t page_sizes_prop_size; | |
9fdf0c29 | 319 | |
e97c3636 DG |
320 | if ((index % smt) != 0) { |
321 | continue; | |
322 | } | |
323 | ||
c7a5c0c9 | 324 | if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { |
9fdf0c29 DG |
325 | fprintf(stderr, "Allocation failure\n"); |
326 | exit(1); | |
327 | } | |
328 | ||
329 | _FDT((fdt_begin_node(fdt, nodename))); | |
330 | ||
331 | free(nodename); | |
332 | ||
c7a5c0c9 | 333 | _FDT((fdt_property_cell(fdt, "reg", index))); |
9fdf0c29 DG |
334 | _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
335 | ||
336 | _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); | |
337 | _FDT((fdt_property_cell(fdt, "dcache-block-size", | |
338 | env->dcache_line_size))); | |
339 | _FDT((fdt_property_cell(fdt, "icache-block-size", | |
340 | env->icache_line_size))); | |
0a8b2938 AG |
341 | _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
342 | _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); | |
9fdf0c29 DG |
343 | _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
344 | _FDT((fdt_property_string(fdt, "status", "okay"))); | |
345 | _FDT((fdt_property(fdt, "64-bit", NULL, 0))); | |
e97c3636 DG |
346 | |
347 | /* Build interrupt servers and gservers properties */ | |
348 | for (i = 0; i < smp_threads; i++) { | |
349 | servers_prop[i] = cpu_to_be32(index + i); | |
350 | /* Hack, direct the group queues back to cpu 0 */ | |
351 | gservers_prop[i*2] = cpu_to_be32(index + i); | |
352 | gservers_prop[i*2 + 1] = 0; | |
353 | } | |
354 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", | |
355 | servers_prop, sizeof(servers_prop)))); | |
b5cec4c5 | 356 | _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", |
e97c3636 | 357 | gservers_prop, sizeof(gservers_prop)))); |
9fdf0c29 | 358 | |
c7a5c0c9 | 359 | if (env->mmu_model & POWERPC_MMU_1TSEG) { |
9fdf0c29 DG |
360 | _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
361 | segs, sizeof(segs)))); | |
362 | } | |
363 | ||
6659394f DG |
364 | /* Advertise VMX/VSX (vector extensions) if available |
365 | * 0 / no property == no vector extensions | |
366 | * 1 == VMX / Altivec available | |
367 | * 2 == VSX available */ | |
a7342588 DG |
368 | if (env->insns_flags & PPC_ALTIVEC) { |
369 | uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; | |
370 | ||
6659394f DG |
371 | _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
372 | } | |
373 | ||
374 | /* Advertise DFP (Decimal Floating Point) if available | |
375 | * 0 / no property == no DFP | |
376 | * 1 == DFP available */ | |
a7342588 DG |
377 | if (env->insns_flags2 & PPC2_DFP) { |
378 | _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); | |
6659394f DG |
379 | } |
380 | ||
5af9873d BH |
381 | page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, |
382 | sizeof(page_sizes_prop)); | |
383 | if (page_sizes_prop_size) { | |
384 | _FDT((fdt_property(fdt, "ibm,segment-page-sizes", | |
385 | page_sizes_prop, page_sizes_prop_size))); | |
386 | } | |
387 | ||
9fdf0c29 DG |
388 | _FDT((fdt_end_node(fdt))); |
389 | } | |
390 | ||
7267c094 | 391 | g_free(modelname); |
9fdf0c29 DG |
392 | |
393 | _FDT((fdt_end_node(fdt))); | |
394 | ||
f43e3525 DG |
395 | /* RTAS */ |
396 | _FDT((fdt_begin_node(fdt, "rtas"))); | |
397 | ||
398 | _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, | |
399 | sizeof(hypertas_prop)))); | |
c73e3771 BH |
400 | _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, |
401 | sizeof(qemu_hypertas_prop)))); | |
f43e3525 | 402 | |
6e806cc3 BR |
403 | _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
404 | refpoints, sizeof(refpoints)))); | |
405 | ||
f43e3525 DG |
406 | _FDT((fdt_end_node(fdt))); |
407 | ||
b5cec4c5 | 408 | /* interrupt controller */ |
9dfef5aa | 409 | _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
b5cec4c5 DG |
410 | |
411 | _FDT((fdt_property_string(fdt, "device_type", | |
412 | "PowerPC-External-Interrupt-Presentation"))); | |
413 | _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); | |
b5cec4c5 DG |
414 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
415 | _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", | |
416 | interrupt_server_ranges_prop, | |
417 | sizeof(interrupt_server_ranges_prop)))); | |
0c103f8e DG |
418 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
419 | _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); | |
420 | _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); | |
b5cec4c5 DG |
421 | |
422 | _FDT((fdt_end_node(fdt))); | |
423 | ||
4040ab72 DG |
424 | /* vdevice */ |
425 | _FDT((fdt_begin_node(fdt, "vdevice"))); | |
426 | ||
427 | _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); | |
428 | _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); | |
429 | _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); | |
430 | _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); | |
b5cec4c5 DG |
431 | _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
432 | _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); | |
4040ab72 DG |
433 | |
434 | _FDT((fdt_end_node(fdt))); | |
435 | ||
9fdf0c29 DG |
436 | _FDT((fdt_end_node(fdt))); /* close root node */ |
437 | _FDT((fdt_finish(fdt))); | |
438 | ||
a3467baa DG |
439 | return fdt; |
440 | } | |
441 | ||
7f763a5d DG |
442 | static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt) |
443 | { | |
444 | uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), | |
445 | cpu_to_be32(0x0), cpu_to_be32(0x0), | |
446 | cpu_to_be32(0x0)}; | |
447 | char mem_name[32]; | |
448 | target_phys_addr_t node0_size, mem_start; | |
449 | uint64_t mem_reg_property[2]; | |
450 | int i, off; | |
451 | ||
452 | /* memory node(s) */ | |
453 | node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; | |
454 | if (spapr->rma_size > node0_size) { | |
455 | spapr->rma_size = node0_size; | |
456 | } | |
457 | ||
458 | /* RMA */ | |
459 | mem_reg_property[0] = 0; | |
460 | mem_reg_property[1] = cpu_to_be64(spapr->rma_size); | |
461 | off = fdt_add_subnode(fdt, 0, "memory@0"); | |
462 | _FDT(off); | |
463 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
464 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
465 | sizeof(mem_reg_property)))); | |
466 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
467 | sizeof(associativity)))); | |
468 | ||
469 | /* RAM: Node 0 */ | |
470 | if (node0_size > spapr->rma_size) { | |
471 | mem_reg_property[0] = cpu_to_be64(spapr->rma_size); | |
472 | mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size); | |
473 | ||
474 | sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size); | |
475 | off = fdt_add_subnode(fdt, 0, mem_name); | |
476 | _FDT(off); | |
477 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
478 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
479 | sizeof(mem_reg_property)))); | |
480 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
481 | sizeof(associativity)))); | |
482 | } | |
483 | ||
484 | /* RAM: Node 1 and beyond */ | |
485 | mem_start = node0_size; | |
486 | for (i = 1; i < nb_numa_nodes; i++) { | |
487 | mem_reg_property[0] = cpu_to_be64(mem_start); | |
488 | mem_reg_property[1] = cpu_to_be64(node_mem[i]); | |
489 | associativity[3] = associativity[4] = cpu_to_be32(i); | |
490 | sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); | |
491 | off = fdt_add_subnode(fdt, 0, mem_name); | |
492 | _FDT(off); | |
493 | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | |
494 | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | |
495 | sizeof(mem_reg_property)))); | |
496 | _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, | |
497 | sizeof(associativity)))); | |
498 | mem_start += node_mem[i]; | |
499 | } | |
500 | ||
501 | return 0; | |
502 | } | |
503 | ||
a3467baa DG |
504 | static void spapr_finalize_fdt(sPAPREnvironment *spapr, |
505 | target_phys_addr_t fdt_addr, | |
506 | target_phys_addr_t rtas_addr, | |
507 | target_phys_addr_t rtas_size) | |
508 | { | |
509 | int ret; | |
510 | void *fdt; | |
3384f95c | 511 | sPAPRPHBState *phb; |
a3467baa | 512 | |
7267c094 | 513 | fdt = g_malloc(FDT_MAX_SIZE); |
a3467baa DG |
514 | |
515 | /* open out the base tree into a temp buffer for the final tweaks */ | |
516 | _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); | |
4040ab72 | 517 | |
7f763a5d DG |
518 | ret = spapr_populate_memory(spapr, fdt); |
519 | if (ret < 0) { | |
520 | fprintf(stderr, "couldn't setup memory nodes in fdt\n"); | |
521 | exit(1); | |
522 | } | |
523 | ||
4040ab72 DG |
524 | ret = spapr_populate_vdevice(spapr->vio_bus, fdt); |
525 | if (ret < 0) { | |
526 | fprintf(stderr, "couldn't setup vio devices in fdt\n"); | |
527 | exit(1); | |
528 | } | |
529 | ||
3384f95c | 530 | QLIST_FOREACH(phb, &spapr->phbs, list) { |
e0fdbd7c | 531 | ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); |
3384f95c DG |
532 | } |
533 | ||
534 | if (ret < 0) { | |
535 | fprintf(stderr, "couldn't setup PCI devices in fdt\n"); | |
536 | exit(1); | |
537 | } | |
538 | ||
39ac8455 DG |
539 | /* RTAS */ |
540 | ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); | |
541 | if (ret < 0) { | |
542 | fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); | |
543 | } | |
544 | ||
6e806cc3 | 545 | /* Advertise NUMA via ibm,associativity */ |
7f763a5d DG |
546 | ret = spapr_fixup_cpu_dt(fdt, spapr); |
547 | if (ret < 0) { | |
548 | fprintf(stderr, "Couldn't finalize CPU device tree properties\n"); | |
6e806cc3 BR |
549 | } |
550 | ||
3fc5acde | 551 | if (!spapr->has_graphics) { |
f28359d8 LZ |
552 | spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
553 | } | |
68f3a94c | 554 | |
4040ab72 DG |
555 | _FDT((fdt_pack(fdt))); |
556 | ||
4d8d5467 BH |
557 | if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { |
558 | hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", | |
559 | fdt_totalsize(fdt), FDT_MAX_SIZE); | |
560 | exit(1); | |
561 | } | |
562 | ||
a3467baa | 563 | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
9fdf0c29 | 564 | |
7267c094 | 565 | g_free(fdt); |
9fdf0c29 DG |
566 | } |
567 | ||
568 | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | |
569 | { | |
570 | return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; | |
571 | } | |
572 | ||
e2684c0b | 573 | static void emulate_spapr_hypercall(CPUPPCState *env) |
9fdf0c29 | 574 | { |
efcb9383 DG |
575 | if (msr_pr) { |
576 | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | |
577 | env->gpr[3] = H_PRIVILEGE; | |
578 | } else { | |
579 | env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); | |
580 | } | |
9fdf0c29 DG |
581 | } |
582 | ||
7f763a5d DG |
583 | static void spapr_reset_htab(sPAPREnvironment *spapr) |
584 | { | |
585 | long shift; | |
586 | ||
587 | /* allocate hash page table. For now we always make this 16mb, | |
588 | * later we should probably make it scale to the size of guest | |
589 | * RAM */ | |
590 | ||
591 | shift = kvmppc_reset_htab(spapr->htab_shift); | |
592 | ||
593 | if (shift > 0) { | |
594 | /* Kernel handles htab, we don't need to allocate one */ | |
595 | spapr->htab_shift = shift; | |
596 | } else { | |
597 | if (!spapr->htab) { | |
598 | /* Allocate an htab if we don't yet have one */ | |
599 | spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr)); | |
600 | } | |
601 | ||
602 | /* And clear it */ | |
603 | memset(spapr->htab, 0, HTAB_SIZE(spapr)); | |
604 | } | |
605 | ||
606 | /* Update the RMA size if necessary */ | |
607 | if (spapr->vrma_adjust) { | |
608 | spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift); | |
609 | } | |
9fdf0c29 DG |
610 | } |
611 | ||
c8787ad4 | 612 | static void ppc_spapr_reset(void) |
a3467baa | 613 | { |
7f763a5d DG |
614 | /* Reset the hash table & recalc the RMA */ |
615 | spapr_reset_htab(spapr); | |
a3467baa | 616 | |
c8787ad4 | 617 | qemu_devices_reset(); |
a3467baa DG |
618 | |
619 | /* Load the fdt */ | |
620 | spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, | |
621 | spapr->rtas_size); | |
622 | ||
623 | /* Set up the entry state */ | |
624 | first_cpu->gpr[3] = spapr->fdt_addr; | |
625 | first_cpu->gpr[5] = 0; | |
626 | first_cpu->halted = 0; | |
627 | first_cpu->nip = spapr->entry_point; | |
628 | ||
629 | } | |
630 | ||
1bba0dc9 AF |
631 | static void spapr_cpu_reset(void *opaque) |
632 | { | |
5b2038e0 | 633 | PowerPCCPU *cpu = opaque; |
048706d9 | 634 | CPUPPCState *env = &cpu->env; |
1bba0dc9 | 635 | |
5b2038e0 | 636 | cpu_reset(CPU(cpu)); |
048706d9 DG |
637 | |
638 | /* All CPUs start halted. CPU0 is unhalted from the machine level | |
639 | * reset code and the rest are explicitly started up by the guest | |
640 | * using an RTAS call */ | |
641 | env->halted = 1; | |
642 | ||
643 | env->spr[SPR_HIOR] = 0; | |
7f763a5d DG |
644 | |
645 | env->external_htab = spapr->htab; | |
646 | env->htab_base = -1; | |
647 | env->htab_mask = HTAB_SIZE(spapr) - 1; | |
648 | env->spr[SPR_SDR1] = (unsigned long)spapr->htab | | |
649 | (spapr->htab_shift - 18); | |
1bba0dc9 AF |
650 | } |
651 | ||
8c57b867 | 652 | /* Returns whether we want to use VGA or not */ |
f28359d8 LZ |
653 | static int spapr_vga_init(PCIBus *pci_bus) |
654 | { | |
8c57b867 | 655 | switch (vga_interface_type) { |
8c57b867 | 656 | case VGA_NONE: |
1ddcae82 AJ |
657 | case VGA_STD: |
658 | return pci_vga_init(pci_bus) != NULL; | |
8c57b867 | 659 | default: |
f28359d8 LZ |
660 | fprintf(stderr, "This vga model is not supported," |
661 | "currently it only supports -vga std\n"); | |
8c57b867 AG |
662 | exit(0); |
663 | break; | |
f28359d8 | 664 | } |
f28359d8 LZ |
665 | } |
666 | ||
9fdf0c29 | 667 | /* pSeries LPAR / sPAPR hardware init */ |
5f072e1f | 668 | static void ppc_spapr_init(QEMUMachineInitArgs *args) |
9fdf0c29 | 669 | { |
5f072e1f EH |
670 | ram_addr_t ram_size = args->ram_size; |
671 | const char *cpu_model = args->cpu_model; | |
672 | const char *kernel_filename = args->kernel_filename; | |
673 | const char *kernel_cmdline = args->kernel_cmdline; | |
674 | const char *initrd_filename = args->initrd_filename; | |
675 | const char *boot_device = args->boot_device; | |
05769733 | 676 | PowerPCCPU *cpu; |
e2684c0b | 677 | CPUPPCState *env; |
8c9f64df | 678 | PCIHostState *phb; |
9fdf0c29 | 679 | int i; |
890c2b77 AK |
680 | MemoryRegion *sysmem = get_system_memory(); |
681 | MemoryRegion *ram = g_new(MemoryRegion, 1); | |
7f763a5d | 682 | target_phys_addr_t rma_alloc_size; |
4d8d5467 BH |
683 | uint32_t initrd_base = 0; |
684 | long kernel_size = 0, initrd_size = 0; | |
685 | long load_limit, rtas_limit, fw_size; | |
39ac8455 | 686 | char *filename; |
9fdf0c29 | 687 | |
0ee2c058 AK |
688 | msi_supported = true; |
689 | ||
d43b45e2 DG |
690 | spapr = g_malloc0(sizeof(*spapr)); |
691 | QLIST_INIT(&spapr->phbs); | |
692 | ||
9fdf0c29 DG |
693 | cpu_ppc_hypercall = emulate_spapr_hypercall; |
694 | ||
354ac20a DG |
695 | /* Allocate RMA if necessary */ |
696 | rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); | |
697 | ||
698 | if (rma_alloc_size == -1) { | |
699 | hw_error("qemu: Unable to create RMA\n"); | |
700 | exit(1); | |
701 | } | |
7f763a5d | 702 | |
354ac20a | 703 | if (rma_alloc_size && (rma_alloc_size < ram_size)) { |
7f763a5d | 704 | spapr->rma_size = rma_alloc_size; |
354ac20a | 705 | } else { |
7f763a5d DG |
706 | spapr->rma_size = ram_size; |
707 | ||
708 | /* With KVM, we don't actually know whether KVM supports an | |
709 | * unbounded RMA (PR KVM) or is limited by the hash table size | |
710 | * (HV KVM using VRMA), so we always assume the latter | |
711 | * | |
712 | * In that case, we also limit the initial allocations for RTAS | |
713 | * etc... to 256M since we have no way to know what the VRMA size | |
714 | * is going to be as it depends on the size of the hash table | |
715 | * isn't determined yet. | |
716 | */ | |
717 | if (kvm_enabled()) { | |
718 | spapr->vrma_adjust = 1; | |
719 | spapr->rma_size = MIN(spapr->rma_size, 0x10000000); | |
720 | } | |
354ac20a DG |
721 | } |
722 | ||
4d8d5467 | 723 | /* We place the device tree and RTAS just below either the top of the RMA, |
354ac20a DG |
724 | * or just below 2GB, whichever is lowere, so that it can be |
725 | * processed with 32-bit real mode code if necessary */ | |
7f763a5d | 726 | rtas_limit = MIN(spapr->rma_size, 0x80000000); |
4d8d5467 BH |
727 | spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; |
728 | spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; | |
729 | load_limit = spapr->fdt_addr - FW_OVERHEAD; | |
9fdf0c29 | 730 | |
382be75d DG |
731 | /* We aim for a hash table of size 1/128 the size of RAM. The |
732 | * normal rule of thumb is 1/64 the size of RAM, but that's much | |
733 | * more than needed for the Linux guests we support. */ | |
734 | spapr->htab_shift = 18; /* Minimum architected size */ | |
735 | while (spapr->htab_shift <= 46) { | |
736 | if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) { | |
737 | break; | |
738 | } | |
739 | spapr->htab_shift++; | |
740 | } | |
7f763a5d | 741 | |
9fdf0c29 DG |
742 | /* init CPUs */ |
743 | if (cpu_model == NULL) { | |
6b7a2cf6 | 744 | cpu_model = kvm_enabled() ? "host" : "POWER7"; |
9fdf0c29 DG |
745 | } |
746 | for (i = 0; i < smp_cpus; i++) { | |
05769733 AF |
747 | cpu = cpu_ppc_init(cpu_model); |
748 | if (cpu == NULL) { | |
9fdf0c29 DG |
749 | fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
750 | exit(1); | |
751 | } | |
05769733 AF |
752 | env = &cpu->env; |
753 | ||
9fdf0c29 DG |
754 | /* Set time-base frequency to 512 MHz */ |
755 | cpu_ppc_tb_init(env, TIMEBASE_FREQ); | |
9fdf0c29 | 756 | |
048706d9 | 757 | /* PAPR always has exception vectors in RAM not ROM */ |
9fdf0c29 | 758 | env->hreset_excp_prefix = 0; |
048706d9 DG |
759 | |
760 | /* Tell KVM that we're in PAPR mode */ | |
761 | if (kvm_enabled()) { | |
762 | kvmppc_set_papr(env); | |
763 | } | |
764 | ||
765 | qemu_register_reset(spapr_cpu_reset, cpu); | |
9fdf0c29 DG |
766 | } |
767 | ||
768 | /* allocate RAM */ | |
f73a2575 | 769 | spapr->ram_limit = ram_size; |
354ac20a DG |
770 | if (spapr->ram_limit > rma_alloc_size) { |
771 | ram_addr_t nonrma_base = rma_alloc_size; | |
772 | ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; | |
773 | ||
c5705a77 AK |
774 | memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size); |
775 | vmstate_register_ram_global(ram); | |
354ac20a DG |
776 | memory_region_add_subregion(sysmem, nonrma_base, ram); |
777 | } | |
9fdf0c29 | 778 | |
39ac8455 | 779 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
a3467baa | 780 | spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
4d8d5467 | 781 | rtas_limit - spapr->rtas_addr); |
a3467baa | 782 | if (spapr->rtas_size < 0) { |
39ac8455 DG |
783 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
784 | exit(1); | |
785 | } | |
4d8d5467 BH |
786 | if (spapr->rtas_size > RTAS_MAX_SIZE) { |
787 | hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", | |
788 | spapr->rtas_size, RTAS_MAX_SIZE); | |
789 | exit(1); | |
790 | } | |
7267c094 | 791 | g_free(filename); |
39ac8455 | 792 | |
4d8d5467 | 793 | |
b5cec4c5 | 794 | /* Set up Interrupt Controller */ |
c7a5c0c9 | 795 | spapr->icp = xics_system_init(XICS_IRQS); |
e6c866d4 | 796 | spapr->next_irq = 16; |
b5cec4c5 | 797 | |
ad0ebb91 DG |
798 | /* Set up IOMMU */ |
799 | spapr_iommu_init(); | |
800 | ||
b5cec4c5 | 801 | /* Set up VIO bus */ |
4040ab72 DG |
802 | spapr->vio_bus = spapr_vio_bus_init(); |
803 | ||
277f9acf | 804 | for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
4040ab72 | 805 | if (serial_hds[i]) { |
d601fac4 | 806 | spapr_vty_create(spapr->vio_bus, serial_hds[i]); |
4040ab72 DG |
807 | } |
808 | } | |
9fdf0c29 | 809 | |
3384f95c | 810 | /* Set up PCI */ |
fa28f71b AK |
811 | spapr_pci_rtas_init(); |
812 | ||
3384f95c DG |
813 | spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID, |
814 | SPAPR_PCI_MEM_WIN_ADDR, | |
815 | SPAPR_PCI_MEM_WIN_SIZE, | |
0ee2c058 AK |
816 | SPAPR_PCI_IO_WIN_ADDR, |
817 | SPAPR_PCI_MSI_WIN_ADDR); | |
8558d942 | 818 | phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs)); |
3384f95c | 819 | |
277f9acf | 820 | for (i = 0; i < nb_nics; i++) { |
8d90ad90 DG |
821 | NICInfo *nd = &nd_table[i]; |
822 | ||
823 | if (!nd->model) { | |
7267c094 | 824 | nd->model = g_strdup("ibmveth"); |
8d90ad90 DG |
825 | } |
826 | ||
827 | if (strcmp(nd->model, "ibmveth") == 0) { | |
d601fac4 | 828 | spapr_vlan_create(spapr->vio_bus, nd); |
8d90ad90 | 829 | } else { |
3384f95c | 830 | pci_nic_init_nofail(&nd_table[i], nd->model, NULL); |
8d90ad90 DG |
831 | } |
832 | } | |
833 | ||
6e270446 | 834 | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
d601fac4 | 835 | spapr_vscsi_create(spapr->vio_bus); |
6e270446 BH |
836 | } |
837 | ||
f28359d8 | 838 | /* Graphics */ |
8c9f64df | 839 | if (spapr_vga_init(phb->bus)) { |
3fc5acde | 840 | spapr->has_graphics = true; |
f28359d8 LZ |
841 | } |
842 | ||
35139a59 | 843 | if (usb_enabled) { |
8c9f64df | 844 | pci_create_simple(phb->bus, -1, "pci-ohci"); |
35139a59 DG |
845 | if (spapr->has_graphics) { |
846 | usbdevice_create("keyboard"); | |
847 | usbdevice_create("mouse"); | |
848 | } | |
849 | } | |
850 | ||
7f763a5d | 851 | if (spapr->rma_size < (MIN_RMA_SLOF << 20)) { |
4d8d5467 BH |
852 | fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " |
853 | "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); | |
854 | exit(1); | |
855 | } | |
856 | ||
9fdf0c29 DG |
857 | if (kernel_filename) { |
858 | uint64_t lowaddr = 0; | |
859 | ||
9fdf0c29 DG |
860 | kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
861 | NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); | |
862 | if (kernel_size < 0) { | |
a3467baa DG |
863 | kernel_size = load_image_targphys(kernel_filename, |
864 | KERNEL_LOAD_ADDR, | |
4d8d5467 | 865 | load_limit - KERNEL_LOAD_ADDR); |
9fdf0c29 DG |
866 | } |
867 | if (kernel_size < 0) { | |
868 | fprintf(stderr, "qemu: could not load kernel '%s'\n", | |
869 | kernel_filename); | |
870 | exit(1); | |
871 | } | |
872 | ||
873 | /* load initrd */ | |
874 | if (initrd_filename) { | |
4d8d5467 BH |
875 | /* Try to locate the initrd in the gap between the kernel |
876 | * and the firmware. Add a bit of space just in case | |
877 | */ | |
878 | initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; | |
9fdf0c29 | 879 | initrd_size = load_image_targphys(initrd_filename, initrd_base, |
4d8d5467 | 880 | load_limit - initrd_base); |
9fdf0c29 DG |
881 | if (initrd_size < 0) { |
882 | fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", | |
883 | initrd_filename); | |
884 | exit(1); | |
885 | } | |
886 | } else { | |
887 | initrd_base = 0; | |
888 | initrd_size = 0; | |
889 | } | |
4d8d5467 | 890 | } |
a3467baa | 891 | |
4d8d5467 BH |
892 | filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME); |
893 | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | |
894 | if (fw_size < 0) { | |
895 | hw_error("qemu: could not load LPAR rtas '%s'\n", filename); | |
896 | exit(1); | |
897 | } | |
898 | g_free(filename); | |
4d8d5467 BH |
899 | |
900 | spapr->entry_point = 0x100; | |
901 | ||
9fdf0c29 | 902 | /* Prepare the device tree */ |
7f763a5d | 903 | spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, |
a3467baa | 904 | initrd_base, initrd_size, |
4d8d5467 | 905 | kernel_size, |
7f763a5d | 906 | boot_device, kernel_cmdline); |
a3467baa | 907 | assert(spapr->fdt_skel != NULL); |
9fdf0c29 DG |
908 | } |
909 | ||
910 | static QEMUMachine spapr_machine = { | |
911 | .name = "pseries", | |
912 | .desc = "pSeries Logical Partition (PAPR compliant)", | |
913 | .init = ppc_spapr_init, | |
c8787ad4 | 914 | .reset = ppc_spapr_reset, |
9fdf0c29 | 915 | .max_cpus = MAX_CPUS, |
9fdf0c29 | 916 | .no_parallel = 1, |
6e270446 | 917 | .use_scsi = 1, |
9fdf0c29 DG |
918 | }; |
919 | ||
920 | static void spapr_machine_init(void) | |
921 | { | |
922 | qemu_register_machine(&spapr_machine); | |
923 | } | |
924 | ||
925 | machine_init(spapr_machine_init); |