]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include <zlib.h> | |
26 | ||
27 | #include "qemu-common.h" | |
737e150e | 28 | #include "block/block_int.h" |
45aba42f | 29 | #include "block/qcow2.h" |
3cce16f4 | 30 | #include "trace.h" |
45aba42f | 31 | |
2cf7cfa1 KW |
32 | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, |
33 | bool exact_size) | |
45aba42f KW |
34 | { |
35 | BDRVQcowState *s = bs->opaque; | |
2cf7cfa1 | 36 | int new_l1_size2, ret, i; |
45aba42f | 37 | uint64_t *new_l1_table; |
fda74f82 | 38 | int64_t old_l1_table_offset, old_l1_size; |
2cf7cfa1 | 39 | int64_t new_l1_table_offset, new_l1_size; |
45aba42f KW |
40 | uint8_t data[12]; |
41 | ||
72893756 | 42 | if (min_size <= s->l1_size) |
45aba42f | 43 | return 0; |
72893756 | 44 | |
b93f9950 HR |
45 | /* Do a sanity check on min_size before trying to calculate new_l1_size |
46 | * (this prevents overflows during the while loop for the calculation of | |
47 | * new_l1_size) */ | |
48 | if (min_size > INT_MAX / sizeof(uint64_t)) { | |
49 | return -EFBIG; | |
50 | } | |
51 | ||
72893756 SH |
52 | if (exact_size) { |
53 | new_l1_size = min_size; | |
54 | } else { | |
55 | /* Bump size up to reduce the number of times we have to grow */ | |
56 | new_l1_size = s->l1_size; | |
57 | if (new_l1_size == 0) { | |
58 | new_l1_size = 1; | |
59 | } | |
60 | while (min_size > new_l1_size) { | |
61 | new_l1_size = (new_l1_size * 3 + 1) / 2; | |
62 | } | |
45aba42f | 63 | } |
72893756 | 64 | |
cab60de9 | 65 | if (new_l1_size > INT_MAX / sizeof(uint64_t)) { |
2cf7cfa1 KW |
66 | return -EFBIG; |
67 | } | |
68 | ||
45aba42f | 69 | #ifdef DEBUG_ALLOC2 |
2cf7cfa1 KW |
70 | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", |
71 | s->l1_size, new_l1_size); | |
45aba42f KW |
72 | #endif |
73 | ||
74 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
de82815d KW |
75 | new_l1_table = qemu_try_blockalign(bs->file, |
76 | align_offset(new_l1_size2, 512)); | |
77 | if (new_l1_table == NULL) { | |
78 | return -ENOMEM; | |
79 | } | |
80 | memset(new_l1_table, 0, align_offset(new_l1_size2, 512)); | |
81 | ||
45aba42f KW |
82 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); |
83 | ||
84 | /* write new table (align to cluster) */ | |
66f82cee | 85 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 86 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 87 | if (new_l1_table_offset < 0) { |
de82815d | 88 | qemu_vfree(new_l1_table); |
5d757b56 KW |
89 | return new_l1_table_offset; |
90 | } | |
29c1a730 KW |
91 | |
92 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
93 | if (ret < 0) { | |
80fa3341 | 94 | goto fail; |
29c1a730 | 95 | } |
45aba42f | 96 | |
cf93980e HR |
97 | /* the L1 position has not yet been updated, so these clusters must |
98 | * indeed be completely free */ | |
231bb267 HR |
99 | ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset, |
100 | new_l1_size2); | |
cf93980e HR |
101 | if (ret < 0) { |
102 | goto fail; | |
103 | } | |
104 | ||
66f82cee | 105 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
106 | for(i = 0; i < s->l1_size; i++) |
107 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
8b3b7206 KW |
108 | ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); |
109 | if (ret < 0) | |
45aba42f KW |
110 | goto fail; |
111 | for(i = 0; i < s->l1_size; i++) | |
112 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
113 | ||
114 | /* set new table */ | |
66f82cee | 115 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
45aba42f | 116 | cpu_to_be32w((uint32_t*)data, new_l1_size); |
e4ef9f46 | 117 | stq_be_p(data + 4, new_l1_table_offset); |
8b3b7206 KW |
118 | ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); |
119 | if (ret < 0) { | |
45aba42f | 120 | goto fail; |
fb8fa77c | 121 | } |
de82815d | 122 | qemu_vfree(s->l1_table); |
fda74f82 | 123 | old_l1_table_offset = s->l1_table_offset; |
45aba42f KW |
124 | s->l1_table_offset = new_l1_table_offset; |
125 | s->l1_table = new_l1_table; | |
fda74f82 | 126 | old_l1_size = s->l1_size; |
45aba42f | 127 | s->l1_size = new_l1_size; |
fda74f82 HR |
128 | qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t), |
129 | QCOW2_DISCARD_OTHER); | |
45aba42f KW |
130 | return 0; |
131 | fail: | |
de82815d | 132 | qemu_vfree(new_l1_table); |
6cfcb9b8 KW |
133 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, |
134 | QCOW2_DISCARD_OTHER); | |
8b3b7206 | 135 | return ret; |
45aba42f KW |
136 | } |
137 | ||
45aba42f KW |
138 | /* |
139 | * l2_load | |
140 | * | |
141 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
142 | * is used; otherwise the L2 table is loaded from the image file. | |
143 | * | |
144 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
145 | * the image file failed. | |
146 | */ | |
147 | ||
55c17e98 KW |
148 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
149 | uint64_t **l2_table) | |
45aba42f KW |
150 | { |
151 | BDRVQcowState *s = bs->opaque; | |
55c17e98 | 152 | int ret; |
45aba42f | 153 | |
29c1a730 | 154 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); |
45aba42f | 155 | |
29c1a730 | 156 | return ret; |
45aba42f KW |
157 | } |
158 | ||
6583e3c7 KW |
159 | /* |
160 | * Writes one sector of the L1 table to the disk (can't update single entries | |
161 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
162 | */ | |
163 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
e23e400e | 164 | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 165 | { |
66f82cee | 166 | BDRVQcowState *s = bs->opaque; |
6583e3c7 KW |
167 | uint64_t buf[L1_ENTRIES_PER_SECTOR]; |
168 | int l1_start_index; | |
f7defcb6 | 169 | int i, ret; |
6583e3c7 KW |
170 | |
171 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
172 | for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { | |
173 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); | |
174 | } | |
175 | ||
231bb267 | 176 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1, |
cf93980e HR |
177 | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); |
178 | if (ret < 0) { | |
179 | return ret; | |
180 | } | |
181 | ||
66f82cee | 182 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
8b3b7206 | 183 | ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, |
f7defcb6 KW |
184 | buf, sizeof(buf)); |
185 | if (ret < 0) { | |
186 | return ret; | |
6583e3c7 KW |
187 | } |
188 | ||
189 | return 0; | |
190 | } | |
191 | ||
45aba42f KW |
192 | /* |
193 | * l2_allocate | |
194 | * | |
195 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
196 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
197 | * table) copy the contents of the old L2 table into the newly allocated one. | |
198 | * Otherwise the new table is initialized with zeros. | |
199 | * | |
200 | */ | |
201 | ||
c46e1167 | 202 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f KW |
203 | { |
204 | BDRVQcowState *s = bs->opaque; | |
6583e3c7 | 205 | uint64_t old_l2_offset; |
8585afd8 | 206 | uint64_t *l2_table = NULL; |
f4f0d391 | 207 | int64_t l2_offset; |
c46e1167 | 208 | int ret; |
45aba42f KW |
209 | |
210 | old_l2_offset = s->l1_table[l1_index]; | |
211 | ||
3cce16f4 KW |
212 | trace_qcow2_l2_allocate(bs, l1_index); |
213 | ||
45aba42f KW |
214 | /* allocate a new l2 entry */ |
215 | ||
ed6ccf0f | 216 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 217 | if (l2_offset < 0) { |
be0b742e HR |
218 | ret = l2_offset; |
219 | goto fail; | |
5d757b56 | 220 | } |
29c1a730 KW |
221 | |
222 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
223 | if (ret < 0) { | |
224 | goto fail; | |
225 | } | |
45aba42f | 226 | |
45aba42f KW |
227 | /* allocate a new entry in the l2 cache */ |
228 | ||
3cce16f4 | 229 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
230 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
231 | if (ret < 0) { | |
be0b742e | 232 | goto fail; |
29c1a730 KW |
233 | } |
234 | ||
235 | l2_table = *table; | |
45aba42f | 236 | |
8e37f681 | 237 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
238 | /* if there was no old l2 table, clear the new table */ |
239 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
240 | } else { | |
29c1a730 KW |
241 | uint64_t* old_table; |
242 | ||
45aba42f | 243 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 244 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
245 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
246 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
247 | (void**) &old_table); |
248 | if (ret < 0) { | |
249 | goto fail; | |
250 | } | |
251 | ||
252 | memcpy(l2_table, old_table, s->cluster_size); | |
253 | ||
254 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); | |
c46e1167 | 255 | if (ret < 0) { |
175e1152 | 256 | goto fail; |
c46e1167 | 257 | } |
45aba42f | 258 | } |
29c1a730 | 259 | |
45aba42f | 260 | /* write the l2 table to the file */ |
66f82cee | 261 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 262 | |
3cce16f4 | 263 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
29c1a730 KW |
264 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
265 | ret = qcow2_cache_flush(bs, s->l2_table_cache); | |
c46e1167 | 266 | if (ret < 0) { |
175e1152 KW |
267 | goto fail; |
268 | } | |
269 | ||
270 | /* update the L1 entry */ | |
3cce16f4 | 271 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 | 272 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
e23e400e | 273 | ret = qcow2_write_l1_entry(bs, l1_index); |
175e1152 KW |
274 | if (ret < 0) { |
275 | goto fail; | |
c46e1167 | 276 | } |
45aba42f | 277 | |
c46e1167 | 278 | *table = l2_table; |
3cce16f4 | 279 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 280 | return 0; |
175e1152 KW |
281 | |
282 | fail: | |
3cce16f4 | 283 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
8585afd8 HR |
284 | if (l2_table != NULL) { |
285 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); | |
286 | } | |
68dba0bf | 287 | s->l1_table[l1_index] = old_l2_offset; |
e3b21ef9 HR |
288 | if (l2_offset > 0) { |
289 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), | |
290 | QCOW2_DISCARD_ALWAYS); | |
291 | } | |
175e1152 | 292 | return ret; |
45aba42f KW |
293 | } |
294 | ||
2bfcc4a0 KW |
295 | /* |
296 | * Checks how many clusters in a given L2 table are contiguous in the image | |
297 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
298 | * to the first cluster, the search is stopped and the cluster is not counted | |
299 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
300 | * cluster which may require a different handling) | |
301 | */ | |
45aba42f | 302 | static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, |
61653008 | 303 | uint64_t *l2_table, uint64_t stop_flags) |
45aba42f KW |
304 | { |
305 | int i; | |
78a52ad5 | 306 | uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED; |
15684a47 HR |
307 | uint64_t first_entry = be64_to_cpu(l2_table[0]); |
308 | uint64_t offset = first_entry & mask; | |
45aba42f KW |
309 | |
310 | if (!offset) | |
311 | return 0; | |
312 | ||
15684a47 HR |
313 | assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED); |
314 | ||
61653008 | 315 | for (i = 0; i < nb_clusters; i++) { |
2bfcc4a0 KW |
316 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; |
317 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 318 | break; |
2bfcc4a0 KW |
319 | } |
320 | } | |
45aba42f | 321 | |
61653008 | 322 | return i; |
45aba42f KW |
323 | } |
324 | ||
325 | static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) | |
326 | { | |
2bfcc4a0 KW |
327 | int i; |
328 | ||
329 | for (i = 0; i < nb_clusters; i++) { | |
330 | int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); | |
45aba42f | 331 | |
2bfcc4a0 KW |
332 | if (type != QCOW2_CLUSTER_UNALLOCATED) { |
333 | break; | |
334 | } | |
335 | } | |
45aba42f KW |
336 | |
337 | return i; | |
338 | } | |
339 | ||
340 | /* The crypt function is compatible with the linux cryptoloop | |
341 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
342 | supported */ | |
ed6ccf0f KW |
343 | void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, |
344 | uint8_t *out_buf, const uint8_t *in_buf, | |
345 | int nb_sectors, int enc, | |
346 | const AES_KEY *key) | |
45aba42f KW |
347 | { |
348 | union { | |
349 | uint64_t ll[2]; | |
350 | uint8_t b[16]; | |
351 | } ivec; | |
352 | int i; | |
353 | ||
354 | for(i = 0; i < nb_sectors; i++) { | |
355 | ivec.ll[0] = cpu_to_le64(sector_num); | |
356 | ivec.ll[1] = 0; | |
357 | AES_cbc_encrypt(in_buf, out_buf, 512, key, | |
358 | ivec.b, enc); | |
359 | sector_num++; | |
360 | in_buf += 512; | |
361 | out_buf += 512; | |
362 | } | |
363 | } | |
364 | ||
aef4acb6 SH |
365 | static int coroutine_fn copy_sectors(BlockDriverState *bs, |
366 | uint64_t start_sect, | |
367 | uint64_t cluster_offset, | |
368 | int n_start, int n_end) | |
45aba42f KW |
369 | { |
370 | BDRVQcowState *s = bs->opaque; | |
aef4acb6 SH |
371 | QEMUIOVector qiov; |
372 | struct iovec iov; | |
45aba42f | 373 | int n, ret; |
1b9f1491 | 374 | |
45aba42f | 375 | n = n_end - n_start; |
1b9f1491 | 376 | if (n <= 0) { |
45aba42f | 377 | return 0; |
1b9f1491 KW |
378 | } |
379 | ||
aef4acb6 | 380 | iov.iov_len = n * BDRV_SECTOR_SIZE; |
de82815d KW |
381 | iov.iov_base = qemu_try_blockalign(bs, iov.iov_len); |
382 | if (iov.iov_base == NULL) { | |
383 | return -ENOMEM; | |
384 | } | |
aef4acb6 SH |
385 | |
386 | qemu_iovec_init_external(&qiov, &iov, 1); | |
1b9f1491 | 387 | |
66f82cee | 388 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 | 389 | |
dba28555 | 390 | if (!bs->drv) { |
bd604369 KW |
391 | ret = -ENOMEDIUM; |
392 | goto out; | |
dba28555 HR |
393 | } |
394 | ||
aef4acb6 SH |
395 | /* Call .bdrv_co_readv() directly instead of using the public block-layer |
396 | * interface. This avoids double I/O throttling and request tracking, | |
397 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
398 | */ | |
399 | ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); | |
1b9f1491 KW |
400 | if (ret < 0) { |
401 | goto out; | |
402 | } | |
403 | ||
45aba42f | 404 | if (s->crypt_method) { |
ed6ccf0f | 405 | qcow2_encrypt_sectors(s, start_sect + n_start, |
aef4acb6 | 406 | iov.iov_base, iov.iov_base, n, 1, |
45aba42f KW |
407 | &s->aes_encrypt_key); |
408 | } | |
1b9f1491 | 409 | |
231bb267 | 410 | ret = qcow2_pre_write_overlap_check(bs, 0, |
cf93980e HR |
411 | cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); |
412 | if (ret < 0) { | |
413 | goto out; | |
414 | } | |
415 | ||
66f82cee | 416 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
aef4acb6 | 417 | ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); |
1b9f1491 KW |
418 | if (ret < 0) { |
419 | goto out; | |
420 | } | |
421 | ||
422 | ret = 0; | |
423 | out: | |
aef4acb6 | 424 | qemu_vfree(iov.iov_base); |
1b9f1491 | 425 | return ret; |
45aba42f KW |
426 | } |
427 | ||
428 | ||
429 | /* | |
430 | * get_cluster_offset | |
431 | * | |
1c46efaa KW |
432 | * For a given offset of the disk image, find the cluster offset in |
433 | * qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 434 | * |
d57237f2 | 435 | * on entry, *num is the number of contiguous sectors we'd like to |
45aba42f KW |
436 | * access following offset. |
437 | * | |
d57237f2 | 438 | * on exit, *num is the number of contiguous sectors we can read. |
45aba42f | 439 | * |
68d000a3 KW |
440 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
441 | * cases. | |
45aba42f | 442 | */ |
1c46efaa KW |
443 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
444 | int *num, uint64_t *cluster_offset) | |
45aba42f KW |
445 | { |
446 | BDRVQcowState *s = bs->opaque; | |
2cf7cfa1 KW |
447 | unsigned int l2_index; |
448 | uint64_t l1_index, l2_offset, *l2_table; | |
45aba42f | 449 | int l1_bits, c; |
80ee15a6 KW |
450 | unsigned int index_in_cluster, nb_clusters; |
451 | uint64_t nb_available, nb_needed; | |
55c17e98 | 452 | int ret; |
45aba42f KW |
453 | |
454 | index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); | |
455 | nb_needed = *num + index_in_cluster; | |
456 | ||
457 | l1_bits = s->l2_bits + s->cluster_bits; | |
458 | ||
459 | /* compute how many bytes there are between the offset and | |
460 | * the end of the l1 entry | |
461 | */ | |
462 | ||
80ee15a6 | 463 | nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); |
45aba42f KW |
464 | |
465 | /* compute the number of available sectors */ | |
466 | ||
467 | nb_available = (nb_available >> 9) + index_in_cluster; | |
468 | ||
469 | if (nb_needed > nb_available) { | |
470 | nb_needed = nb_available; | |
471 | } | |
472 | ||
1c46efaa | 473 | *cluster_offset = 0; |
45aba42f KW |
474 | |
475 | /* seek the the l2 offset in the l1 table */ | |
476 | ||
477 | l1_index = offset >> l1_bits; | |
68d000a3 KW |
478 | if (l1_index >= s->l1_size) { |
479 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 480 | goto out; |
68d000a3 | 481 | } |
45aba42f | 482 | |
68d000a3 KW |
483 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
484 | if (!l2_offset) { | |
485 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 486 | goto out; |
68d000a3 | 487 | } |
45aba42f KW |
488 | |
489 | /* load the l2 table in memory */ | |
490 | ||
55c17e98 KW |
491 | ret = l2_load(bs, l2_offset, &l2_table); |
492 | if (ret < 0) { | |
493 | return ret; | |
1c46efaa | 494 | } |
45aba42f KW |
495 | |
496 | /* find the cluster offset for the given disk offset */ | |
497 | ||
498 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
1c46efaa | 499 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
45aba42f KW |
500 | nb_clusters = size_to_clusters(s, nb_needed << 9); |
501 | ||
68d000a3 KW |
502 | ret = qcow2_get_cluster_type(*cluster_offset); |
503 | switch (ret) { | |
504 | case QCOW2_CLUSTER_COMPRESSED: | |
505 | /* Compressed clusters can only be processed one by one */ | |
506 | c = 1; | |
507 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
508 | break; | |
6377af48 | 509 | case QCOW2_CLUSTER_ZERO: |
381b487d | 510 | if (s->qcow_version < 3) { |
8885eade | 511 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
381b487d PB |
512 | return -EIO; |
513 | } | |
6377af48 | 514 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, |
61653008 | 515 | &l2_table[l2_index], QCOW_OFLAG_ZERO); |
6377af48 KW |
516 | *cluster_offset = 0; |
517 | break; | |
68d000a3 | 518 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f KW |
519 | /* how many empty clusters ? */ |
520 | c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); | |
68d000a3 KW |
521 | *cluster_offset = 0; |
522 | break; | |
523 | case QCOW2_CLUSTER_NORMAL: | |
45aba42f KW |
524 | /* how many allocated clusters ? */ |
525 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
61653008 | 526 | &l2_table[l2_index], QCOW_OFLAG_ZERO); |
68d000a3 KW |
527 | *cluster_offset &= L2E_OFFSET_MASK; |
528 | break; | |
1417d7e4 KW |
529 | default: |
530 | abort(); | |
45aba42f KW |
531 | } |
532 | ||
29c1a730 KW |
533 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
534 | ||
68d000a3 KW |
535 | nb_available = (c * s->cluster_sectors); |
536 | ||
45aba42f KW |
537 | out: |
538 | if (nb_available > nb_needed) | |
539 | nb_available = nb_needed; | |
540 | ||
541 | *num = nb_available - index_in_cluster; | |
542 | ||
68d000a3 | 543 | return ret; |
45aba42f KW |
544 | } |
545 | ||
546 | /* | |
547 | * get_cluster_table | |
548 | * | |
549 | * for a given disk offset, load (and allocate if needed) | |
550 | * the l2 table. | |
551 | * | |
552 | * the l2 table offset in the qcow2 file and the cluster index | |
553 | * in the l2 table are given to the caller. | |
554 | * | |
1e3e8f1a | 555 | * Returns 0 on success, -errno in failure case |
45aba42f | 556 | */ |
45aba42f KW |
557 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
558 | uint64_t **new_l2_table, | |
45aba42f KW |
559 | int *new_l2_index) |
560 | { | |
561 | BDRVQcowState *s = bs->opaque; | |
2cf7cfa1 KW |
562 | unsigned int l2_index; |
563 | uint64_t l1_index, l2_offset; | |
c46e1167 | 564 | uint64_t *l2_table = NULL; |
80ee15a6 | 565 | int ret; |
45aba42f KW |
566 | |
567 | /* seek the the l2 offset in the l1 table */ | |
568 | ||
569 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
570 | if (l1_index >= s->l1_size) { | |
72893756 | 571 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
572 | if (ret < 0) { |
573 | return ret; | |
574 | } | |
45aba42f | 575 | } |
8e37f681 | 576 | |
2cf7cfa1 | 577 | assert(l1_index < s->l1_size); |
8e37f681 | 578 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
45aba42f KW |
579 | |
580 | /* seek the l2 table of the given l2 offset */ | |
581 | ||
8e37f681 | 582 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 583 | /* load the l2 table in memory */ |
55c17e98 KW |
584 | ret = l2_load(bs, l2_offset, &l2_table); |
585 | if (ret < 0) { | |
586 | return ret; | |
1e3e8f1a | 587 | } |
45aba42f | 588 | } else { |
16fde5f2 | 589 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
590 | ret = l2_allocate(bs, l1_index, &l2_table); |
591 | if (ret < 0) { | |
592 | return ret; | |
1e3e8f1a | 593 | } |
16fde5f2 KW |
594 | |
595 | /* Then decrease the refcount of the old table */ | |
596 | if (l2_offset) { | |
6cfcb9b8 KW |
597 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), |
598 | QCOW2_DISCARD_OTHER); | |
16fde5f2 | 599 | } |
45aba42f KW |
600 | } |
601 | ||
602 | /* find the cluster offset for the given disk offset */ | |
603 | ||
604 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
605 | ||
606 | *new_l2_table = l2_table; | |
45aba42f KW |
607 | *new_l2_index = l2_index; |
608 | ||
1e3e8f1a | 609 | return 0; |
45aba42f KW |
610 | } |
611 | ||
612 | /* | |
613 | * alloc_compressed_cluster_offset | |
614 | * | |
615 | * For a given offset of the disk image, return cluster offset in | |
616 | * qcow2 file. | |
617 | * | |
618 | * If the offset is not found, allocate a new compressed cluster. | |
619 | * | |
620 | * Return the cluster offset if successful, | |
621 | * Return 0, otherwise. | |
622 | * | |
623 | */ | |
624 | ||
ed6ccf0f KW |
625 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
626 | uint64_t offset, | |
627 | int compressed_size) | |
45aba42f KW |
628 | { |
629 | BDRVQcowState *s = bs->opaque; | |
630 | int l2_index, ret; | |
3948d1d4 | 631 | uint64_t *l2_table; |
f4f0d391 | 632 | int64_t cluster_offset; |
45aba42f KW |
633 | int nb_csectors; |
634 | ||
3948d1d4 | 635 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 636 | if (ret < 0) { |
45aba42f | 637 | return 0; |
1e3e8f1a | 638 | } |
45aba42f | 639 | |
b0b6862e KW |
640 | /* Compression can't overwrite anything. Fail if the cluster was already |
641 | * allocated. */ | |
45aba42f | 642 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 643 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
644 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
645 | return 0; | |
646 | } | |
45aba42f | 647 | |
ed6ccf0f | 648 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 649 | if (cluster_offset < 0) { |
29c1a730 | 650 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
651 | return 0; |
652 | } | |
653 | ||
45aba42f KW |
654 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
655 | (cluster_offset >> 9); | |
656 | ||
657 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
658 | ((uint64_t)nb_csectors << s->csize_shift); | |
659 | ||
660 | /* update L2 table */ | |
661 | ||
662 | /* compressed clusters never have the copied flag */ | |
663 | ||
66f82cee | 664 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
29c1a730 | 665 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
45aba42f | 666 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
29c1a730 | 667 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
79a31189 | 668 | if (ret < 0) { |
29c1a730 | 669 | return 0; |
4c1612d9 KW |
670 | } |
671 | ||
29c1a730 | 672 | return cluster_offset; |
4c1612d9 KW |
673 | } |
674 | ||
593fb83c KW |
675 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) |
676 | { | |
677 | BDRVQcowState *s = bs->opaque; | |
678 | int ret; | |
679 | ||
680 | if (r->nb_sectors == 0) { | |
681 | return 0; | |
682 | } | |
683 | ||
684 | qemu_co_mutex_unlock(&s->lock); | |
685 | ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, | |
686 | r->offset / BDRV_SECTOR_SIZE, | |
687 | r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); | |
688 | qemu_co_mutex_lock(&s->lock); | |
689 | ||
690 | if (ret < 0) { | |
691 | return ret; | |
692 | } | |
693 | ||
694 | /* | |
695 | * Before we update the L2 table to actually point to the new cluster, we | |
696 | * need to be sure that the refcounts have been increased and COW was | |
697 | * handled. | |
698 | */ | |
699 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
700 | ||
701 | return 0; | |
702 | } | |
703 | ||
148da7ea | 704 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f KW |
705 | { |
706 | BDRVQcowState *s = bs->opaque; | |
707 | int i, j = 0, l2_index, ret; | |
593fb83c | 708 | uint64_t *old_cluster, *l2_table; |
250196f1 | 709 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 710 | |
3cce16f4 | 711 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 712 | assert(m->nb_clusters > 0); |
45aba42f | 713 | |
5839e53b | 714 | old_cluster = g_try_new(uint64_t, m->nb_clusters); |
de82815d KW |
715 | if (old_cluster == NULL) { |
716 | ret = -ENOMEM; | |
717 | goto err; | |
718 | } | |
45aba42f KW |
719 | |
720 | /* copy content of unmodified sectors */ | |
593fb83c KW |
721 | ret = perform_cow(bs, m, &m->cow_start); |
722 | if (ret < 0) { | |
723 | goto err; | |
45aba42f KW |
724 | } |
725 | ||
593fb83c KW |
726 | ret = perform_cow(bs, m, &m->cow_end); |
727 | if (ret < 0) { | |
728 | goto err; | |
29c1a730 KW |
729 | } |
730 | ||
593fb83c | 731 | /* Update L2 table. */ |
74c4510a | 732 | if (s->use_lazy_refcounts) { |
280d3735 KW |
733 | qcow2_mark_dirty(bs); |
734 | } | |
bfe8043e SH |
735 | if (qcow2_need_accurate_refcounts(s)) { |
736 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
737 | s->refcount_block_cache); | |
738 | } | |
280d3735 | 739 | |
3948d1d4 | 740 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 741 | if (ret < 0) { |
45aba42f | 742 | goto err; |
1e3e8f1a | 743 | } |
29c1a730 | 744 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
45aba42f | 745 | |
c01dbccb | 746 | assert(l2_index + m->nb_clusters <= s->l2_size); |
45aba42f KW |
747 | for (i = 0; i < m->nb_clusters; i++) { |
748 | /* if two concurrent writes happen to the same unallocated cluster | |
749 | * each write allocates separate cluster and writes data concurrently. | |
750 | * The first one to complete updates l2 table with pointer to its | |
751 | * cluster the second one has to do RMW (which is done above by | |
752 | * copy_sectors()), update l2 table with its cluster pointer and free | |
753 | * old cluster. This is what this loop does */ | |
754 | if(l2_table[l2_index + i] != 0) | |
755 | old_cluster[j++] = l2_table[l2_index + i]; | |
756 | ||
757 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
758 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
759 | } | |
760 | ||
9f8e668e | 761 | |
29c1a730 | 762 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
c835d00f | 763 | if (ret < 0) { |
45aba42f | 764 | goto err; |
4c1612d9 | 765 | } |
45aba42f | 766 | |
7ec5e6a4 KW |
767 | /* |
768 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
769 | * Also flush bs->file to get the right order for L2 and refcount update. | |
6cfcb9b8 KW |
770 | * |
771 | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | |
772 | * clusters), the next write will reuse them anyway. | |
7ec5e6a4 KW |
773 | */ |
774 | if (j != 0) { | |
7ec5e6a4 | 775 | for (i = 0; i < j; i++) { |
6cfcb9b8 KW |
776 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, |
777 | QCOW2_DISCARD_NEVER); | |
7ec5e6a4 KW |
778 | } |
779 | } | |
45aba42f KW |
780 | |
781 | ret = 0; | |
782 | err: | |
7267c094 | 783 | g_free(old_cluster); |
45aba42f KW |
784 | return ret; |
785 | } | |
786 | ||
bf319ece KW |
787 | /* |
788 | * Returns the number of contiguous clusters that can be used for an allocating | |
789 | * write, but require COW to be performed (this includes yet unallocated space, | |
790 | * which must copy from the backing file) | |
791 | */ | |
792 | static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, | |
793 | uint64_t *l2_table, int l2_index) | |
794 | { | |
143550a8 | 795 | int i; |
bf319ece | 796 | |
143550a8 KW |
797 | for (i = 0; i < nb_clusters; i++) { |
798 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
799 | int cluster_type = qcow2_get_cluster_type(l2_entry); | |
800 | ||
801 | switch(cluster_type) { | |
802 | case QCOW2_CLUSTER_NORMAL: | |
803 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
804 | goto out; | |
805 | } | |
bf319ece | 806 | break; |
143550a8 KW |
807 | case QCOW2_CLUSTER_UNALLOCATED: |
808 | case QCOW2_CLUSTER_COMPRESSED: | |
6377af48 | 809 | case QCOW2_CLUSTER_ZERO: |
bf319ece | 810 | break; |
143550a8 KW |
811 | default: |
812 | abort(); | |
813 | } | |
bf319ece KW |
814 | } |
815 | ||
143550a8 | 816 | out: |
bf319ece KW |
817 | assert(i <= nb_clusters); |
818 | return i; | |
819 | } | |
820 | ||
250196f1 | 821 | /* |
226c3c26 KW |
822 | * Check if there already is an AIO write request in flight which allocates |
823 | * the same cluster. In this case we need to wait until the previous | |
824 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
825 | * |
826 | * Returns: | |
827 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
828 | * bytes from guest_offset that can be read before the next | |
829 | * dependency must be processed (or the request is complete) | |
830 | * | |
831 | * -EAGAIN if we had to wait for another request, previously gathered | |
832 | * information on cluster allocation may be invalid now. The caller | |
833 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 834 | */ |
226c3c26 | 835 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 836 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 KW |
837 | { |
838 | BDRVQcowState *s = bs->opaque; | |
250196f1 | 839 | QCowL2Meta *old_alloc; |
65eb2e35 | 840 | uint64_t bytes = *cur_bytes; |
250196f1 | 841 | |
250196f1 KW |
842 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
843 | ||
65eb2e35 KW |
844 | uint64_t start = guest_offset; |
845 | uint64_t end = start + bytes; | |
846 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
847 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 848 | |
d9d74f41 | 849 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
850 | /* No intersection */ |
851 | } else { | |
852 | if (start < old_start) { | |
853 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 854 | bytes = old_start - start; |
250196f1 | 855 | } else { |
65eb2e35 | 856 | bytes = 0; |
250196f1 KW |
857 | } |
858 | ||
ecdd5333 KW |
859 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
860 | * be valid any more, so we'd have to clean up the old L2Metas | |
861 | * and deal with requests depending on them before starting to | |
862 | * gather new ones. Not worth the trouble. */ | |
863 | if (bytes == 0 && *m) { | |
864 | *cur_bytes = 0; | |
865 | return 0; | |
866 | } | |
867 | ||
65eb2e35 | 868 | if (bytes == 0) { |
250196f1 KW |
869 | /* Wait for the dependency to complete. We need to recheck |
870 | * the free/allocated clusters when we continue. */ | |
871 | qemu_co_mutex_unlock(&s->lock); | |
872 | qemu_co_queue_wait(&old_alloc->dependent_requests); | |
873 | qemu_co_mutex_lock(&s->lock); | |
874 | return -EAGAIN; | |
875 | } | |
876 | } | |
877 | } | |
878 | ||
65eb2e35 KW |
879 | /* Make sure that existing clusters and new allocations are only used up to |
880 | * the next dependency if we shortened the request above */ | |
881 | *cur_bytes = bytes; | |
250196f1 | 882 | |
226c3c26 KW |
883 | return 0; |
884 | } | |
885 | ||
0af729ec KW |
886 | /* |
887 | * Checks how many already allocated clusters that don't require a copy on | |
888 | * write there are at the given guest_offset (up to *bytes). If | |
889 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
890 | * this host offset are counted. | |
891 | * | |
411d62b0 KW |
892 | * Note that guest_offset may not be cluster aligned. In this case, the |
893 | * returned *host_offset points to exact byte referenced by guest_offset and | |
894 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
895 | * |
896 | * Returns: | |
897 | * 0: if no allocated clusters are available at the given offset. | |
898 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
899 | * is allocated and doesn't need COW, but doesn't have the right | |
900 | * physical offset. | |
901 | * | |
902 | * 1: if allocated clusters that don't require a COW are available at | |
903 | * the requested offset. *bytes may have decreased and describes | |
904 | * the length of the area that can be written to. | |
905 | * | |
906 | * -errno: in error cases | |
0af729ec KW |
907 | */ |
908 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 909 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec KW |
910 | { |
911 | BDRVQcowState *s = bs->opaque; | |
912 | int l2_index; | |
913 | uint64_t cluster_offset; | |
914 | uint64_t *l2_table; | |
acb0467f | 915 | unsigned int nb_clusters; |
c53ede9f | 916 | unsigned int keep_clusters; |
0af729ec KW |
917 | int ret, pret; |
918 | ||
919 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
920 | *bytes); | |
0af729ec | 921 | |
411d62b0 KW |
922 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
923 | == offset_into_cluster(s, *host_offset)); | |
924 | ||
acb0467f KW |
925 | /* |
926 | * Calculate the number of clusters to look for. We stop at L2 table | |
927 | * boundaries to keep things simple. | |
928 | */ | |
929 | nb_clusters = | |
930 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
931 | ||
932 | l2_index = offset_to_l2_index(s, guest_offset); | |
933 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
934 | ||
0af729ec KW |
935 | /* Find L2 entry for the first involved cluster */ |
936 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
937 | if (ret < 0) { | |
938 | return ret; | |
939 | } | |
940 | ||
941 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
942 | ||
943 | /* Check how many clusters are already allocated and don't need COW */ | |
944 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
945 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
946 | { | |
e62daaf6 KW |
947 | /* If a specific host_offset is required, check it */ |
948 | bool offset_matches = | |
949 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
950 | ||
951 | if (*host_offset != 0 && !offset_matches) { | |
952 | *bytes = 0; | |
953 | ret = 0; | |
954 | goto out; | |
955 | } | |
956 | ||
0af729ec | 957 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 958 | keep_clusters = |
acb0467f | 959 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
61653008 | 960 | &l2_table[l2_index], |
0af729ec | 961 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); |
c53ede9f KW |
962 | assert(keep_clusters <= nb_clusters); |
963 | ||
964 | *bytes = MIN(*bytes, | |
965 | keep_clusters * s->cluster_size | |
966 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
967 | |
968 | ret = 1; | |
969 | } else { | |
0af729ec KW |
970 | ret = 0; |
971 | } | |
972 | ||
0af729ec | 973 | /* Cleanup */ |
e62daaf6 | 974 | out: |
0af729ec KW |
975 | pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
976 | if (pret < 0) { | |
977 | return pret; | |
978 | } | |
979 | ||
e62daaf6 KW |
980 | /* Only return a host offset if we actually made progress. Otherwise we |
981 | * would make requirements for handle_alloc() that it can't fulfill */ | |
982 | if (ret) { | |
411d62b0 KW |
983 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
984 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
985 | } |
986 | ||
0af729ec KW |
987 | return ret; |
988 | } | |
989 | ||
226c3c26 KW |
990 | /* |
991 | * Allocates new clusters for the given guest_offset. | |
992 | * | |
993 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
994 | * contain the number of clusters that have been allocated and are contiguous | |
995 | * in the image file. | |
996 | * | |
997 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
998 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
999 | * case if the cluster at host_offset is already in use. If *host_offset is | |
1000 | * zero, the clusters can be allocated anywhere in the image file. | |
1001 | * | |
1002 | * *host_offset is updated to contain the offset into the image file at which | |
1003 | * the first allocated cluster starts. | |
1004 | * | |
1005 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
1006 | * function has been waiting for another request and the allocation must be | |
1007 | * restarted, but the whole request should not be failed. | |
1008 | */ | |
1009 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
1010 | uint64_t *host_offset, unsigned int *nb_clusters) | |
1011 | { | |
1012 | BDRVQcowState *s = bs->opaque; | |
226c3c26 KW |
1013 | |
1014 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
1015 | *host_offset, *nb_clusters); | |
1016 | ||
250196f1 KW |
1017 | /* Allocate new clusters */ |
1018 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
1019 | if (*host_offset == 0) { | |
df021791 KW |
1020 | int64_t cluster_offset = |
1021 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
1022 | if (cluster_offset < 0) { | |
1023 | return cluster_offset; | |
1024 | } | |
1025 | *host_offset = cluster_offset; | |
1026 | return 0; | |
250196f1 | 1027 | } else { |
17a71e58 | 1028 | int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
1029 | if (ret < 0) { |
1030 | return ret; | |
1031 | } | |
1032 | *nb_clusters = ret; | |
1033 | return 0; | |
250196f1 | 1034 | } |
250196f1 KW |
1035 | } |
1036 | ||
10f0ed8b KW |
1037 | /* |
1038 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
1039 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
1040 | * the new allocation can match the specified host offset. | |
1041 | * | |
411d62b0 KW |
1042 | * Note that guest_offset may not be cluster aligned. In this case, the |
1043 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1044 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
1045 | * |
1046 | * Returns: | |
1047 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
1048 | * *host_offset is left unchanged. | |
1049 | * | |
1050 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
1051 | * new allocation doesn't cover all of the requested area. | |
1052 | * *host_offset is updated to contain the host offset of the first | |
1053 | * newly allocated cluster. | |
1054 | * | |
1055 | * -errno: in error cases | |
10f0ed8b KW |
1056 | */ |
1057 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 1058 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b KW |
1059 | { |
1060 | BDRVQcowState *s = bs->opaque; | |
1061 | int l2_index; | |
1062 | uint64_t *l2_table; | |
1063 | uint64_t entry; | |
f5bc6350 | 1064 | unsigned int nb_clusters; |
10f0ed8b KW |
1065 | int ret; |
1066 | ||
10f0ed8b | 1067 | uint64_t alloc_cluster_offset; |
10f0ed8b KW |
1068 | |
1069 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1070 | *bytes); | |
1071 | assert(*bytes > 0); | |
1072 | ||
f5bc6350 KW |
1073 | /* |
1074 | * Calculate the number of clusters to look for. We stop at L2 table | |
1075 | * boundaries to keep things simple. | |
1076 | */ | |
c37f4cd7 KW |
1077 | nb_clusters = |
1078 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1079 | ||
f5bc6350 | 1080 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1081 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
f5bc6350 | 1082 | |
10f0ed8b KW |
1083 | /* Find L2 entry for the first involved cluster */ |
1084 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1085 | if (ret < 0) { | |
1086 | return ret; | |
1087 | } | |
1088 | ||
3b8e2e26 | 1089 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1090 | |
1091 | /* For the moment, overwrite compressed clusters one by one */ | |
1092 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1093 | nb_clusters = 1; | |
1094 | } else { | |
3b8e2e26 | 1095 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1096 | } |
1097 | ||
ecdd5333 KW |
1098 | /* This function is only called when there were no non-COW clusters, so if |
1099 | * we can't find any unallocated or COW clusters either, something is | |
1100 | * wrong with our code. */ | |
1101 | assert(nb_clusters > 0); | |
1102 | ||
10f0ed8b KW |
1103 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
1104 | if (ret < 0) { | |
1105 | return ret; | |
1106 | } | |
1107 | ||
10f0ed8b | 1108 | /* Allocate, if necessary at a given offset in the image file */ |
411d62b0 | 1109 | alloc_cluster_offset = start_of_cluster(s, *host_offset); |
83baa9a4 | 1110 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, |
10f0ed8b KW |
1111 | &nb_clusters); |
1112 | if (ret < 0) { | |
1113 | goto fail; | |
1114 | } | |
1115 | ||
83baa9a4 KW |
1116 | /* Can't extend contiguous allocation */ |
1117 | if (nb_clusters == 0) { | |
10f0ed8b KW |
1118 | *bytes = 0; |
1119 | return 0; | |
1120 | } | |
1121 | ||
ff52aab2 HR |
1122 | /* !*host_offset would overwrite the image header and is reserved for "no |
1123 | * host offset preferred". If 0 was a valid host offset, it'd trigger the | |
1124 | * following overlap check; do that now to avoid having an invalid value in | |
1125 | * *host_offset. */ | |
1126 | if (!alloc_cluster_offset) { | |
1127 | ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset, | |
1128 | nb_clusters * s->cluster_size); | |
1129 | assert(ret < 0); | |
1130 | goto fail; | |
1131 | } | |
1132 | ||
83baa9a4 KW |
1133 | /* |
1134 | * Save info needed for meta data update. | |
1135 | * | |
1136 | * requested_sectors: Number of sectors from the start of the first | |
1137 | * newly allocated cluster to the end of the (possibly shortened | |
1138 | * before) write request. | |
1139 | * | |
1140 | * avail_sectors: Number of sectors from the start of the first | |
1141 | * newly allocated to the end of the last newly allocated cluster. | |
1142 | * | |
1143 | * nb_sectors: The number of sectors from the start of the first | |
1144 | * newly allocated cluster to the end of the area that the write | |
1145 | * request actually writes to (excluding COW at the end) | |
1146 | */ | |
1147 | int requested_sectors = | |
1148 | (*bytes + offset_into_cluster(s, guest_offset)) | |
1149 | >> BDRV_SECTOR_BITS; | |
1150 | int avail_sectors = nb_clusters | |
1151 | << (s->cluster_bits - BDRV_SECTOR_BITS); | |
1152 | int alloc_n_start = offset_into_cluster(s, guest_offset) | |
1153 | >> BDRV_SECTOR_BITS; | |
1154 | int nb_sectors = MIN(requested_sectors, avail_sectors); | |
88c6588c | 1155 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1156 | |
83baa9a4 KW |
1157 | *m = g_malloc0(sizeof(**m)); |
1158 | ||
1159 | **m = (QCowL2Meta) { | |
88c6588c KW |
1160 | .next = old_m, |
1161 | ||
411d62b0 | 1162 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1163 | .offset = start_of_cluster(s, guest_offset), |
1164 | .nb_clusters = nb_clusters, | |
1165 | .nb_available = nb_sectors, | |
1166 | ||
1167 | .cow_start = { | |
1168 | .offset = 0, | |
1169 | .nb_sectors = alloc_n_start, | |
1170 | }, | |
1171 | .cow_end = { | |
1172 | .offset = nb_sectors * BDRV_SECTOR_SIZE, | |
1173 | .nb_sectors = avail_sectors - nb_sectors, | |
1174 | }, | |
1175 | }; | |
1176 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1177 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1178 | ||
411d62b0 | 1179 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
83baa9a4 KW |
1180 | *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) |
1181 | - offset_into_cluster(s, guest_offset)); | |
1182 | assert(*bytes != 0); | |
1183 | ||
10f0ed8b KW |
1184 | return 1; |
1185 | ||
1186 | fail: | |
1187 | if (*m && (*m)->nb_clusters > 0) { | |
1188 | QLIST_REMOVE(*m, next_in_flight); | |
1189 | } | |
1190 | return ret; | |
1191 | } | |
1192 | ||
45aba42f KW |
1193 | /* |
1194 | * alloc_cluster_offset | |
1195 | * | |
250196f1 KW |
1196 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1197 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1198 | * |
250196f1 | 1199 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1200 | * other fields in m are meaningless. |
148da7ea KW |
1201 | * |
1202 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1203 | * contiguous clusters that have been allocated. In this case, the other |
1204 | * fields of m are valid and contain information about the first allocated | |
1205 | * cluster. | |
45aba42f | 1206 | * |
68d100e9 KW |
1207 | * If the request conflicts with another write request in flight, the coroutine |
1208 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1209 | * |
1210 | * Return 0 on success and -errno in error cases | |
45aba42f | 1211 | */ |
f4f0d391 | 1212 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
16f0587e | 1213 | int *num, uint64_t *host_offset, QCowL2Meta **m) |
45aba42f KW |
1214 | { |
1215 | BDRVQcowState *s = bs->opaque; | |
710c2496 | 1216 | uint64_t start, remaining; |
250196f1 | 1217 | uint64_t cluster_offset; |
65eb2e35 | 1218 | uint64_t cur_bytes; |
710c2496 | 1219 | int ret; |
45aba42f | 1220 | |
16f0587e | 1221 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num); |
3cce16f4 | 1222 | |
16f0587e | 1223 | assert((offset & ~BDRV_SECTOR_MASK) == 0); |
710c2496 | 1224 | |
72424114 | 1225 | again: |
16f0587e HT |
1226 | start = offset; |
1227 | remaining = *num << BDRV_SECTOR_BITS; | |
0af729ec KW |
1228 | cluster_offset = 0; |
1229 | *host_offset = 0; | |
ecdd5333 KW |
1230 | cur_bytes = 0; |
1231 | *m = NULL; | |
0af729ec | 1232 | |
2c3b32d2 | 1233 | while (true) { |
ecdd5333 KW |
1234 | |
1235 | if (!*host_offset) { | |
1236 | *host_offset = start_of_cluster(s, cluster_offset); | |
1237 | } | |
1238 | ||
1239 | assert(remaining >= cur_bytes); | |
1240 | ||
1241 | start += cur_bytes; | |
1242 | remaining -= cur_bytes; | |
1243 | cluster_offset += cur_bytes; | |
1244 | ||
1245 | if (remaining == 0) { | |
1246 | break; | |
1247 | } | |
1248 | ||
1249 | cur_bytes = remaining; | |
1250 | ||
2c3b32d2 KW |
1251 | /* |
1252 | * Now start gathering as many contiguous clusters as possible: | |
1253 | * | |
1254 | * 1. Check for overlaps with in-flight allocations | |
1255 | * | |
1256 | * a) Overlap not in the first cluster -> shorten this request and | |
1257 | * let the caller handle the rest in its next loop iteration. | |
1258 | * | |
1259 | * b) Real overlaps of two requests. Yield and restart the search | |
1260 | * for contiguous clusters (the situation could have changed | |
1261 | * while we were sleeping) | |
1262 | * | |
1263 | * c) TODO: Request starts in the same cluster as the in-flight | |
1264 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1265 | * set cluster_offset to write to the same cluster and set up | |
1266 | * the right synchronisation between the in-flight request and | |
1267 | * the new one. | |
1268 | */ | |
ecdd5333 | 1269 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1270 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1271 | /* Currently handle_dependencies() doesn't yield if we already had |
1272 | * an allocation. If it did, we would have to clean up the L2Meta | |
1273 | * structs before starting over. */ | |
1274 | assert(*m == NULL); | |
2c3b32d2 KW |
1275 | goto again; |
1276 | } else if (ret < 0) { | |
1277 | return ret; | |
ecdd5333 KW |
1278 | } else if (cur_bytes == 0) { |
1279 | break; | |
2c3b32d2 KW |
1280 | } else { |
1281 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1282 | * the allocations below) so that the next dependency is processed | |
1283 | * correctly during the next loop iteration. */ | |
0af729ec | 1284 | } |
710c2496 | 1285 | |
2c3b32d2 KW |
1286 | /* |
1287 | * 2. Count contiguous COPIED clusters. | |
1288 | */ | |
1289 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1290 | if (ret < 0) { | |
1291 | return ret; | |
1292 | } else if (ret) { | |
ecdd5333 | 1293 | continue; |
2c3b32d2 KW |
1294 | } else if (cur_bytes == 0) { |
1295 | break; | |
1296 | } | |
060bee89 | 1297 | |
2c3b32d2 KW |
1298 | /* |
1299 | * 3. If the request still hasn't completed, allocate new clusters, | |
1300 | * considering any cluster_offset of steps 1c or 2. | |
1301 | */ | |
1302 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1303 | if (ret < 0) { | |
1304 | return ret; | |
1305 | } else if (ret) { | |
ecdd5333 | 1306 | continue; |
2c3b32d2 KW |
1307 | } else { |
1308 | assert(cur_bytes == 0); | |
1309 | break; | |
1310 | } | |
f5bc6350 | 1311 | } |
10f0ed8b | 1312 | |
16f0587e | 1313 | *num -= remaining >> BDRV_SECTOR_BITS; |
710c2496 KW |
1314 | assert(*num > 0); |
1315 | assert(*host_offset != 0); | |
45aba42f | 1316 | |
148da7ea | 1317 | return 0; |
45aba42f KW |
1318 | } |
1319 | ||
1320 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1321 | const uint8_t *buf, int buf_size) | |
1322 | { | |
1323 | z_stream strm1, *strm = &strm1; | |
1324 | int ret, out_len; | |
1325 | ||
1326 | memset(strm, 0, sizeof(*strm)); | |
1327 | ||
1328 | strm->next_in = (uint8_t *)buf; | |
1329 | strm->avail_in = buf_size; | |
1330 | strm->next_out = out_buf; | |
1331 | strm->avail_out = out_buf_size; | |
1332 | ||
1333 | ret = inflateInit2(strm, -12); | |
1334 | if (ret != Z_OK) | |
1335 | return -1; | |
1336 | ret = inflate(strm, Z_FINISH); | |
1337 | out_len = strm->next_out - out_buf; | |
1338 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1339 | out_len != out_buf_size) { | |
1340 | inflateEnd(strm); | |
1341 | return -1; | |
1342 | } | |
1343 | inflateEnd(strm); | |
1344 | return 0; | |
1345 | } | |
1346 | ||
66f82cee | 1347 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1348 | { |
66f82cee | 1349 | BDRVQcowState *s = bs->opaque; |
45aba42f KW |
1350 | int ret, csize, nb_csectors, sector_offset; |
1351 | uint64_t coffset; | |
1352 | ||
1353 | coffset = cluster_offset & s->cluster_offset_mask; | |
1354 | if (s->cluster_cache_offset != coffset) { | |
1355 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1356 | sector_offset = coffset & 511; | |
1357 | csize = nb_csectors * 512 - sector_offset; | |
66f82cee KW |
1358 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
1359 | ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); | |
45aba42f | 1360 | if (ret < 0) { |
8af36488 | 1361 | return ret; |
45aba42f KW |
1362 | } |
1363 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1364 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1365 | return -EIO; |
45aba42f KW |
1366 | } |
1367 | s->cluster_cache_offset = coffset; | |
1368 | } | |
1369 | return 0; | |
1370 | } | |
5ea929e3 KW |
1371 | |
1372 | /* | |
1373 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1374 | * all clusters in the same L2 table) and returns the number of discarded | |
1375 | * clusters. | |
1376 | */ | |
1377 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
670df5e3 | 1378 | unsigned int nb_clusters, enum qcow2_discard_type type) |
5ea929e3 KW |
1379 | { |
1380 | BDRVQcowState *s = bs->opaque; | |
3948d1d4 | 1381 | uint64_t *l2_table; |
5ea929e3 KW |
1382 | int l2_index; |
1383 | int ret; | |
1384 | int i; | |
1385 | ||
3948d1d4 | 1386 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1387 | if (ret < 0) { |
1388 | return ret; | |
1389 | } | |
1390 | ||
1391 | /* Limit nb_clusters to one L2 table */ | |
1392 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
1393 | ||
1394 | for (i = 0; i < nb_clusters; i++) { | |
c883db0d | 1395 | uint64_t old_l2_entry; |
5ea929e3 | 1396 | |
c883db0d | 1397 | old_l2_entry = be64_to_cpu(l2_table[l2_index + i]); |
a71835a0 KW |
1398 | |
1399 | /* | |
1400 | * Make sure that a discarded area reads back as zeroes for v3 images | |
1401 | * (we cannot do it for v2 without actually writing a zero-filled | |
1402 | * buffer). We can skip the operation if the cluster is already marked | |
1403 | * as zero, or if it's unallocated and we don't have a backing file. | |
1404 | * | |
1405 | * TODO We might want to use bdrv_get_block_status(bs) here, but we're | |
1406 | * holding s->lock, so that doesn't work today. | |
1407 | */ | |
c883db0d HR |
1408 | switch (qcow2_get_cluster_type(old_l2_entry)) { |
1409 | case QCOW2_CLUSTER_UNALLOCATED: | |
1410 | if (!bs->backing_hd) { | |
1411 | continue; | |
1412 | } | |
1413 | break; | |
1414 | ||
1415 | case QCOW2_CLUSTER_ZERO: | |
1416 | continue; | |
1417 | ||
1418 | case QCOW2_CLUSTER_NORMAL: | |
1419 | case QCOW2_CLUSTER_COMPRESSED: | |
1420 | break; | |
1421 | ||
1422 | default: | |
1423 | abort(); | |
5ea929e3 KW |
1424 | } |
1425 | ||
1426 | /* First remove L2 entries */ | |
1427 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
a71835a0 KW |
1428 | if (s->qcow_version >= 3) { |
1429 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | |
1430 | } else { | |
1431 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1432 | } | |
5ea929e3 KW |
1433 | |
1434 | /* Then decrease the refcount */ | |
c883db0d | 1435 | qcow2_free_any_clusters(bs, old_l2_entry, 1, type); |
5ea929e3 KW |
1436 | } |
1437 | ||
1438 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | |
1439 | if (ret < 0) { | |
1440 | return ret; | |
1441 | } | |
1442 | ||
1443 | return nb_clusters; | |
1444 | } | |
1445 | ||
1446 | int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, | |
670df5e3 | 1447 | int nb_sectors, enum qcow2_discard_type type) |
5ea929e3 KW |
1448 | { |
1449 | BDRVQcowState *s = bs->opaque; | |
1450 | uint64_t end_offset; | |
1451 | unsigned int nb_clusters; | |
1452 | int ret; | |
1453 | ||
1454 | end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); | |
1455 | ||
1456 | /* Round start up and end down */ | |
1457 | offset = align_offset(offset, s->cluster_size); | |
ac95acdb | 1458 | end_offset = start_of_cluster(s, end_offset); |
5ea929e3 KW |
1459 | |
1460 | if (offset > end_offset) { | |
1461 | return 0; | |
1462 | } | |
1463 | ||
1464 | nb_clusters = size_to_clusters(s, end_offset - offset); | |
1465 | ||
0b919fae KW |
1466 | s->cache_discards = true; |
1467 | ||
5ea929e3 KW |
1468 | /* Each L2 table is handled by its own loop iteration */ |
1469 | while (nb_clusters > 0) { | |
670df5e3 | 1470 | ret = discard_single_l2(bs, offset, nb_clusters, type); |
5ea929e3 | 1471 | if (ret < 0) { |
0b919fae | 1472 | goto fail; |
5ea929e3 KW |
1473 | } |
1474 | ||
1475 | nb_clusters -= ret; | |
1476 | offset += (ret * s->cluster_size); | |
1477 | } | |
1478 | ||
0b919fae KW |
1479 | ret = 0; |
1480 | fail: | |
1481 | s->cache_discards = false; | |
1482 | qcow2_process_discards(bs, ret); | |
1483 | ||
1484 | return ret; | |
5ea929e3 | 1485 | } |
621f0589 KW |
1486 | |
1487 | /* | |
1488 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1489 | * all clusters in the same L2 table) and returns the number of zeroed | |
1490 | * clusters. | |
1491 | */ | |
1492 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
1493 | unsigned int nb_clusters) | |
1494 | { | |
1495 | BDRVQcowState *s = bs->opaque; | |
1496 | uint64_t *l2_table; | |
1497 | int l2_index; | |
1498 | int ret; | |
1499 | int i; | |
1500 | ||
1501 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1502 | if (ret < 0) { | |
1503 | return ret; | |
1504 | } | |
1505 | ||
1506 | /* Limit nb_clusters to one L2 table */ | |
1507 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
1508 | ||
1509 | for (i = 0; i < nb_clusters; i++) { | |
1510 | uint64_t old_offset; | |
1511 | ||
1512 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1513 | ||
1514 | /* Update L2 entries */ | |
1515 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
1516 | if (old_offset & QCOW_OFLAG_COMPRESSED) { | |
1517 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | |
6cfcb9b8 | 1518 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
621f0589 KW |
1519 | } else { |
1520 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1521 | } | |
1522 | } | |
1523 | ||
1524 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | |
1525 | if (ret < 0) { | |
1526 | return ret; | |
1527 | } | |
1528 | ||
1529 | return nb_clusters; | |
1530 | } | |
1531 | ||
1532 | int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) | |
1533 | { | |
1534 | BDRVQcowState *s = bs->opaque; | |
1535 | unsigned int nb_clusters; | |
1536 | int ret; | |
1537 | ||
1538 | /* The zero flag is only supported by version 3 and newer */ | |
1539 | if (s->qcow_version < 3) { | |
1540 | return -ENOTSUP; | |
1541 | } | |
1542 | ||
1543 | /* Each L2 table is handled by its own loop iteration */ | |
1544 | nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); | |
1545 | ||
0b919fae KW |
1546 | s->cache_discards = true; |
1547 | ||
621f0589 KW |
1548 | while (nb_clusters > 0) { |
1549 | ret = zero_single_l2(bs, offset, nb_clusters); | |
1550 | if (ret < 0) { | |
0b919fae | 1551 | goto fail; |
621f0589 KW |
1552 | } |
1553 | ||
1554 | nb_clusters -= ret; | |
1555 | offset += (ret * s->cluster_size); | |
1556 | } | |
1557 | ||
0b919fae KW |
1558 | ret = 0; |
1559 | fail: | |
1560 | s->cache_discards = false; | |
1561 | qcow2_process_discards(bs, ret); | |
1562 | ||
1563 | return ret; | |
621f0589 | 1564 | } |
32b6444d HR |
1565 | |
1566 | /* | |
1567 | * Expands all zero clusters in a specific L1 table (or deallocates them, for | |
1568 | * non-backed non-pre-allocated zero clusters). | |
1569 | * | |
1570 | * expanded_clusters is a bitmap where every bit corresponds to one cluster in | |
1571 | * the image file; a bit gets set if the corresponding cluster has been used for | |
1572 | * zero expansion (i.e., has been filled with zeroes and is referenced from an | |
1573 | * L2 table). nb_clusters contains the total cluster count of the image file, | |
1574 | * i.e., the number of bits in expanded_clusters. | |
1575 | */ | |
1576 | static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table, | |
e390cf5a HR |
1577 | int l1_size, uint8_t **expanded_clusters, |
1578 | uint64_t *nb_clusters) | |
32b6444d HR |
1579 | { |
1580 | BDRVQcowState *s = bs->opaque; | |
1581 | bool is_active_l1 = (l1_table == s->l1_table); | |
1582 | uint64_t *l2_table = NULL; | |
1583 | int ret; | |
1584 | int i, j; | |
1585 | ||
1586 | if (!is_active_l1) { | |
1587 | /* inactive L2 tables require a buffer to be stored in when loading | |
1588 | * them from disk */ | |
de82815d KW |
1589 | l2_table = qemu_try_blockalign(bs->file, s->cluster_size); |
1590 | if (l2_table == NULL) { | |
1591 | return -ENOMEM; | |
1592 | } | |
32b6444d HR |
1593 | } |
1594 | ||
1595 | for (i = 0; i < l1_size; i++) { | |
1596 | uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK; | |
1597 | bool l2_dirty = false; | |
1598 | ||
1599 | if (!l2_offset) { | |
1600 | /* unallocated */ | |
1601 | continue; | |
1602 | } | |
1603 | ||
1604 | if (is_active_l1) { | |
1605 | /* get active L2 tables from cache */ | |
1606 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, | |
1607 | (void **)&l2_table); | |
1608 | } else { | |
1609 | /* load inactive L2 tables from disk */ | |
1610 | ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE, | |
1611 | (void *)l2_table, s->cluster_sectors); | |
1612 | } | |
1613 | if (ret < 0) { | |
1614 | goto fail; | |
1615 | } | |
1616 | ||
1617 | for (j = 0; j < s->l2_size; j++) { | |
1618 | uint64_t l2_entry = be64_to_cpu(l2_table[j]); | |
1619 | int64_t offset = l2_entry & L2E_OFFSET_MASK, cluster_index; | |
1620 | int cluster_type = qcow2_get_cluster_type(l2_entry); | |
320c7066 | 1621 | bool preallocated = offset != 0; |
32b6444d HR |
1622 | |
1623 | if (cluster_type == QCOW2_CLUSTER_NORMAL) { | |
1624 | cluster_index = offset >> s->cluster_bits; | |
e390cf5a HR |
1625 | assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); |
1626 | if ((*expanded_clusters)[cluster_index / 8] & | |
32b6444d HR |
1627 | (1 << (cluster_index % 8))) { |
1628 | /* Probably a shared L2 table; this cluster was a zero | |
1629 | * cluster which has been expanded, its refcount | |
1630 | * therefore most likely requires an update. */ | |
1631 | ret = qcow2_update_cluster_refcount(bs, cluster_index, 1, | |
1632 | QCOW2_DISCARD_NEVER); | |
1633 | if (ret < 0) { | |
1634 | goto fail; | |
1635 | } | |
1636 | /* Since we just increased the refcount, the COPIED flag may | |
1637 | * no longer be set. */ | |
1638 | l2_table[j] = cpu_to_be64(l2_entry & ~QCOW_OFLAG_COPIED); | |
1639 | l2_dirty = true; | |
1640 | } | |
1641 | continue; | |
1642 | } | |
1643 | else if (qcow2_get_cluster_type(l2_entry) != QCOW2_CLUSTER_ZERO) { | |
1644 | continue; | |
1645 | } | |
1646 | ||
320c7066 | 1647 | if (!preallocated) { |
32b6444d HR |
1648 | if (!bs->backing_hd) { |
1649 | /* not backed; therefore we can simply deallocate the | |
1650 | * cluster */ | |
1651 | l2_table[j] = 0; | |
1652 | l2_dirty = true; | |
1653 | continue; | |
1654 | } | |
1655 | ||
1656 | offset = qcow2_alloc_clusters(bs, s->cluster_size); | |
1657 | if (offset < 0) { | |
1658 | ret = offset; | |
1659 | goto fail; | |
1660 | } | |
1661 | } | |
1662 | ||
231bb267 | 1663 | ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size); |
32b6444d | 1664 | if (ret < 0) { |
320c7066 HR |
1665 | if (!preallocated) { |
1666 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1667 | QCOW2_DISCARD_ALWAYS); | |
1668 | } | |
32b6444d HR |
1669 | goto fail; |
1670 | } | |
1671 | ||
1672 | ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE, | |
aa7bfbff | 1673 | s->cluster_sectors, 0); |
32b6444d | 1674 | if (ret < 0) { |
320c7066 HR |
1675 | if (!preallocated) { |
1676 | qcow2_free_clusters(bs, offset, s->cluster_size, | |
1677 | QCOW2_DISCARD_ALWAYS); | |
1678 | } | |
32b6444d HR |
1679 | goto fail; |
1680 | } | |
1681 | ||
1682 | l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED); | |
1683 | l2_dirty = true; | |
1684 | ||
1685 | cluster_index = offset >> s->cluster_bits; | |
e390cf5a HR |
1686 | |
1687 | if (cluster_index >= *nb_clusters) { | |
1688 | uint64_t old_bitmap_size = (*nb_clusters + 7) / 8; | |
1689 | uint64_t new_bitmap_size; | |
1690 | /* The offset may lie beyond the old end of the underlying image | |
1691 | * file for growable files only */ | |
1692 | assert(bs->file->growable); | |
1693 | *nb_clusters = size_to_clusters(s, bs->file->total_sectors * | |
1694 | BDRV_SECTOR_SIZE); | |
1695 | new_bitmap_size = (*nb_clusters + 7) / 8; | |
1696 | *expanded_clusters = g_realloc(*expanded_clusters, | |
1697 | new_bitmap_size); | |
1698 | /* clear the newly allocated space */ | |
1699 | memset(&(*expanded_clusters)[old_bitmap_size], 0, | |
1700 | new_bitmap_size - old_bitmap_size); | |
1701 | } | |
1702 | ||
1703 | assert((cluster_index >= 0) && (cluster_index < *nb_clusters)); | |
1704 | (*expanded_clusters)[cluster_index / 8] |= 1 << (cluster_index % 8); | |
32b6444d HR |
1705 | } |
1706 | ||
1707 | if (is_active_l1) { | |
1708 | if (l2_dirty) { | |
1709 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
1710 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
1711 | } | |
1712 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | |
1713 | if (ret < 0) { | |
1714 | l2_table = NULL; | |
1715 | goto fail; | |
1716 | } | |
1717 | } else { | |
1718 | if (l2_dirty) { | |
231bb267 HR |
1719 | ret = qcow2_pre_write_overlap_check(bs, |
1720 | QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset, | |
32b6444d HR |
1721 | s->cluster_size); |
1722 | if (ret < 0) { | |
1723 | goto fail; | |
1724 | } | |
1725 | ||
1726 | ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE, | |
1727 | (void *)l2_table, s->cluster_sectors); | |
1728 | if (ret < 0) { | |
1729 | goto fail; | |
1730 | } | |
1731 | } | |
1732 | } | |
1733 | } | |
1734 | ||
1735 | ret = 0; | |
1736 | ||
1737 | fail: | |
1738 | if (l2_table) { | |
1739 | if (!is_active_l1) { | |
1740 | qemu_vfree(l2_table); | |
1741 | } else { | |
1742 | if (ret < 0) { | |
1743 | qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table); | |
1744 | } else { | |
1745 | ret = qcow2_cache_put(bs, s->l2_table_cache, | |
1746 | (void **)&l2_table); | |
1747 | } | |
1748 | } | |
1749 | } | |
1750 | return ret; | |
1751 | } | |
1752 | ||
1753 | /* | |
1754 | * For backed images, expands all zero clusters on the image. For non-backed | |
1755 | * images, deallocates all non-pre-allocated zero clusters (and claims the | |
1756 | * allocation for pre-allocated ones). This is important for downgrading to a | |
1757 | * qcow2 version which doesn't yet support metadata zero clusters. | |
1758 | */ | |
1759 | int qcow2_expand_zero_clusters(BlockDriverState *bs) | |
1760 | { | |
1761 | BDRVQcowState *s = bs->opaque; | |
1762 | uint64_t *l1_table = NULL; | |
32b6444d HR |
1763 | uint64_t nb_clusters; |
1764 | uint8_t *expanded_clusters; | |
1765 | int ret; | |
1766 | int i, j; | |
1767 | ||
e390cf5a HR |
1768 | nb_clusters = size_to_clusters(s, bs->file->total_sectors * |
1769 | BDRV_SECTOR_SIZE); | |
de82815d KW |
1770 | expanded_clusters = g_try_malloc0((nb_clusters + 7) / 8); |
1771 | if (expanded_clusters == NULL) { | |
1772 | ret = -ENOMEM; | |
1773 | goto fail; | |
1774 | } | |
32b6444d HR |
1775 | |
1776 | ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size, | |
e390cf5a | 1777 | &expanded_clusters, &nb_clusters); |
32b6444d HR |
1778 | if (ret < 0) { |
1779 | goto fail; | |
1780 | } | |
1781 | ||
1782 | /* Inactive L1 tables may point to active L2 tables - therefore it is | |
1783 | * necessary to flush the L2 table cache before trying to access the L2 | |
1784 | * tables pointed to by inactive L1 entries (else we might try to expand | |
1785 | * zero clusters that have already been expanded); furthermore, it is also | |
1786 | * necessary to empty the L2 table cache, since it may contain tables which | |
1787 | * are now going to be modified directly on disk, bypassing the cache. | |
1788 | * qcow2_cache_empty() does both for us. */ | |
1789 | ret = qcow2_cache_empty(bs, s->l2_table_cache); | |
1790 | if (ret < 0) { | |
1791 | goto fail; | |
1792 | } | |
1793 | ||
1794 | for (i = 0; i < s->nb_snapshots; i++) { | |
1795 | int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) + | |
1796 | BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE; | |
1797 | ||
1798 | l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE); | |
1799 | ||
1800 | ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset / | |
1801 | BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors); | |
1802 | if (ret < 0) { | |
1803 | goto fail; | |
1804 | } | |
1805 | ||
1806 | for (j = 0; j < s->snapshots[i].l1_size; j++) { | |
1807 | be64_to_cpus(&l1_table[j]); | |
1808 | } | |
1809 | ||
1810 | ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size, | |
e390cf5a | 1811 | &expanded_clusters, &nb_clusters); |
32b6444d HR |
1812 | if (ret < 0) { |
1813 | goto fail; | |
1814 | } | |
1815 | } | |
1816 | ||
1817 | ret = 0; | |
1818 | ||
1819 | fail: | |
1820 | g_free(expanded_clusters); | |
1821 | g_free(l1_table); | |
1822 | return ret; | |
1823 | } |