]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include <zlib.h> | |
26 | ||
27 | #include "qemu-common.h" | |
737e150e | 28 | #include "block/block_int.h" |
45aba42f | 29 | #include "block/qcow2.h" |
3cce16f4 | 30 | #include "trace.h" |
45aba42f | 31 | |
2cf7cfa1 KW |
32 | int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size, |
33 | bool exact_size) | |
45aba42f KW |
34 | { |
35 | BDRVQcowState *s = bs->opaque; | |
2cf7cfa1 | 36 | int new_l1_size2, ret, i; |
45aba42f | 37 | uint64_t *new_l1_table; |
2cf7cfa1 | 38 | int64_t new_l1_table_offset, new_l1_size; |
45aba42f KW |
39 | uint8_t data[12]; |
40 | ||
72893756 | 41 | if (min_size <= s->l1_size) |
45aba42f | 42 | return 0; |
72893756 SH |
43 | |
44 | if (exact_size) { | |
45 | new_l1_size = min_size; | |
46 | } else { | |
47 | /* Bump size up to reduce the number of times we have to grow */ | |
48 | new_l1_size = s->l1_size; | |
49 | if (new_l1_size == 0) { | |
50 | new_l1_size = 1; | |
51 | } | |
52 | while (min_size > new_l1_size) { | |
53 | new_l1_size = (new_l1_size * 3 + 1) / 2; | |
54 | } | |
45aba42f | 55 | } |
72893756 | 56 | |
2cf7cfa1 KW |
57 | if (new_l1_size > INT_MAX) { |
58 | return -EFBIG; | |
59 | } | |
60 | ||
45aba42f | 61 | #ifdef DEBUG_ALLOC2 |
2cf7cfa1 KW |
62 | fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n", |
63 | s->l1_size, new_l1_size); | |
45aba42f KW |
64 | #endif |
65 | ||
66 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
7267c094 | 67 | new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); |
45aba42f KW |
68 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); |
69 | ||
70 | /* write new table (align to cluster) */ | |
66f82cee | 71 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 72 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 73 | if (new_l1_table_offset < 0) { |
7267c094 | 74 | g_free(new_l1_table); |
5d757b56 KW |
75 | return new_l1_table_offset; |
76 | } | |
29c1a730 KW |
77 | |
78 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
79 | if (ret < 0) { | |
80fa3341 | 80 | goto fail; |
29c1a730 | 81 | } |
45aba42f | 82 | |
cf93980e HR |
83 | /* the L1 position has not yet been updated, so these clusters must |
84 | * indeed be completely free */ | |
85 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, | |
86 | new_l1_table_offset, new_l1_size2); | |
87 | if (ret < 0) { | |
88 | goto fail; | |
89 | } | |
90 | ||
66f82cee | 91 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
92 | for(i = 0; i < s->l1_size; i++) |
93 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
8b3b7206 KW |
94 | ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); |
95 | if (ret < 0) | |
45aba42f KW |
96 | goto fail; |
97 | for(i = 0; i < s->l1_size; i++) | |
98 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
99 | ||
100 | /* set new table */ | |
66f82cee | 101 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
45aba42f | 102 | cpu_to_be32w((uint32_t*)data, new_l1_size); |
653df36b | 103 | cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); |
8b3b7206 KW |
104 | ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); |
105 | if (ret < 0) { | |
45aba42f | 106 | goto fail; |
fb8fa77c | 107 | } |
7267c094 | 108 | g_free(s->l1_table); |
6cfcb9b8 KW |
109 | qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t), |
110 | QCOW2_DISCARD_OTHER); | |
45aba42f KW |
111 | s->l1_table_offset = new_l1_table_offset; |
112 | s->l1_table = new_l1_table; | |
113 | s->l1_size = new_l1_size; | |
114 | return 0; | |
115 | fail: | |
7267c094 | 116 | g_free(new_l1_table); |
6cfcb9b8 KW |
117 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2, |
118 | QCOW2_DISCARD_OTHER); | |
8b3b7206 | 119 | return ret; |
45aba42f KW |
120 | } |
121 | ||
45aba42f KW |
122 | /* |
123 | * l2_load | |
124 | * | |
125 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
126 | * is used; otherwise the L2 table is loaded from the image file. | |
127 | * | |
128 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
129 | * the image file failed. | |
130 | */ | |
131 | ||
55c17e98 KW |
132 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
133 | uint64_t **l2_table) | |
45aba42f KW |
134 | { |
135 | BDRVQcowState *s = bs->opaque; | |
55c17e98 | 136 | int ret; |
45aba42f | 137 | |
29c1a730 | 138 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); |
45aba42f | 139 | |
29c1a730 | 140 | return ret; |
45aba42f KW |
141 | } |
142 | ||
6583e3c7 KW |
143 | /* |
144 | * Writes one sector of the L1 table to the disk (can't update single entries | |
145 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
146 | */ | |
147 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
e23e400e | 148 | int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 149 | { |
66f82cee | 150 | BDRVQcowState *s = bs->opaque; |
6583e3c7 KW |
151 | uint64_t buf[L1_ENTRIES_PER_SECTOR]; |
152 | int l1_start_index; | |
f7defcb6 | 153 | int i, ret; |
6583e3c7 KW |
154 | |
155 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
156 | for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { | |
157 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); | |
158 | } | |
159 | ||
cf93980e HR |
160 | ret = qcow2_pre_write_overlap_check(bs, |
161 | QCOW2_OL_DEFAULT & ~QCOW2_OL_ACTIVE_L1, | |
162 | s->l1_table_offset + 8 * l1_start_index, sizeof(buf)); | |
163 | if (ret < 0) { | |
164 | return ret; | |
165 | } | |
166 | ||
66f82cee | 167 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
8b3b7206 | 168 | ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, |
f7defcb6 KW |
169 | buf, sizeof(buf)); |
170 | if (ret < 0) { | |
171 | return ret; | |
6583e3c7 KW |
172 | } |
173 | ||
174 | return 0; | |
175 | } | |
176 | ||
45aba42f KW |
177 | /* |
178 | * l2_allocate | |
179 | * | |
180 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
181 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
182 | * table) copy the contents of the old L2 table into the newly allocated one. | |
183 | * Otherwise the new table is initialized with zeros. | |
184 | * | |
185 | */ | |
186 | ||
c46e1167 | 187 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f KW |
188 | { |
189 | BDRVQcowState *s = bs->opaque; | |
6583e3c7 | 190 | uint64_t old_l2_offset; |
f4f0d391 KW |
191 | uint64_t *l2_table; |
192 | int64_t l2_offset; | |
c46e1167 | 193 | int ret; |
45aba42f KW |
194 | |
195 | old_l2_offset = s->l1_table[l1_index]; | |
196 | ||
3cce16f4 KW |
197 | trace_qcow2_l2_allocate(bs, l1_index); |
198 | ||
45aba42f KW |
199 | /* allocate a new l2 entry */ |
200 | ||
ed6ccf0f | 201 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 202 | if (l2_offset < 0) { |
c46e1167 | 203 | return l2_offset; |
5d757b56 | 204 | } |
29c1a730 KW |
205 | |
206 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
207 | if (ret < 0) { | |
208 | goto fail; | |
209 | } | |
45aba42f | 210 | |
45aba42f KW |
211 | /* allocate a new entry in the l2 cache */ |
212 | ||
3cce16f4 | 213 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
214 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
215 | if (ret < 0) { | |
216 | return ret; | |
217 | } | |
218 | ||
219 | l2_table = *table; | |
45aba42f | 220 | |
8e37f681 | 221 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
222 | /* if there was no old l2 table, clear the new table */ |
223 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
224 | } else { | |
29c1a730 KW |
225 | uint64_t* old_table; |
226 | ||
45aba42f | 227 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 228 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
229 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
230 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
231 | (void**) &old_table); |
232 | if (ret < 0) { | |
233 | goto fail; | |
234 | } | |
235 | ||
236 | memcpy(l2_table, old_table, s->cluster_size); | |
237 | ||
238 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); | |
c46e1167 | 239 | if (ret < 0) { |
175e1152 | 240 | goto fail; |
c46e1167 | 241 | } |
45aba42f | 242 | } |
29c1a730 | 243 | |
45aba42f | 244 | /* write the l2 table to the file */ |
66f82cee | 245 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 246 | |
3cce16f4 | 247 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
29c1a730 KW |
248 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
249 | ret = qcow2_cache_flush(bs, s->l2_table_cache); | |
c46e1167 | 250 | if (ret < 0) { |
175e1152 KW |
251 | goto fail; |
252 | } | |
253 | ||
254 | /* update the L1 entry */ | |
3cce16f4 | 255 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 | 256 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
e23e400e | 257 | ret = qcow2_write_l1_entry(bs, l1_index); |
175e1152 KW |
258 | if (ret < 0) { |
259 | goto fail; | |
c46e1167 | 260 | } |
45aba42f | 261 | |
c46e1167 | 262 | *table = l2_table; |
3cce16f4 | 263 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 264 | return 0; |
175e1152 KW |
265 | |
266 | fail: | |
3cce16f4 | 267 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
29c1a730 | 268 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); |
68dba0bf | 269 | s->l1_table[l1_index] = old_l2_offset; |
175e1152 | 270 | return ret; |
45aba42f KW |
271 | } |
272 | ||
2bfcc4a0 KW |
273 | /* |
274 | * Checks how many clusters in a given L2 table are contiguous in the image | |
275 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
276 | * to the first cluster, the search is stopped and the cluster is not counted | |
277 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
278 | * cluster which may require a different handling) | |
279 | */ | |
45aba42f | 280 | static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, |
2bfcc4a0 | 281 | uint64_t *l2_table, uint64_t start, uint64_t stop_flags) |
45aba42f KW |
282 | { |
283 | int i; | |
2bfcc4a0 KW |
284 | uint64_t mask = stop_flags | L2E_OFFSET_MASK; |
285 | uint64_t offset = be64_to_cpu(l2_table[0]) & mask; | |
45aba42f KW |
286 | |
287 | if (!offset) | |
288 | return 0; | |
289 | ||
2bfcc4a0 KW |
290 | for (i = start; i < start + nb_clusters; i++) { |
291 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; | |
292 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 293 | break; |
2bfcc4a0 KW |
294 | } |
295 | } | |
45aba42f KW |
296 | |
297 | return (i - start); | |
298 | } | |
299 | ||
300 | static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) | |
301 | { | |
2bfcc4a0 KW |
302 | int i; |
303 | ||
304 | for (i = 0; i < nb_clusters; i++) { | |
305 | int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); | |
45aba42f | 306 | |
2bfcc4a0 KW |
307 | if (type != QCOW2_CLUSTER_UNALLOCATED) { |
308 | break; | |
309 | } | |
310 | } | |
45aba42f KW |
311 | |
312 | return i; | |
313 | } | |
314 | ||
315 | /* The crypt function is compatible with the linux cryptoloop | |
316 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
317 | supported */ | |
ed6ccf0f KW |
318 | void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, |
319 | uint8_t *out_buf, const uint8_t *in_buf, | |
320 | int nb_sectors, int enc, | |
321 | const AES_KEY *key) | |
45aba42f KW |
322 | { |
323 | union { | |
324 | uint64_t ll[2]; | |
325 | uint8_t b[16]; | |
326 | } ivec; | |
327 | int i; | |
328 | ||
329 | for(i = 0; i < nb_sectors; i++) { | |
330 | ivec.ll[0] = cpu_to_le64(sector_num); | |
331 | ivec.ll[1] = 0; | |
332 | AES_cbc_encrypt(in_buf, out_buf, 512, key, | |
333 | ivec.b, enc); | |
334 | sector_num++; | |
335 | in_buf += 512; | |
336 | out_buf += 512; | |
337 | } | |
338 | } | |
339 | ||
aef4acb6 SH |
340 | static int coroutine_fn copy_sectors(BlockDriverState *bs, |
341 | uint64_t start_sect, | |
342 | uint64_t cluster_offset, | |
343 | int n_start, int n_end) | |
45aba42f KW |
344 | { |
345 | BDRVQcowState *s = bs->opaque; | |
aef4acb6 SH |
346 | QEMUIOVector qiov; |
347 | struct iovec iov; | |
45aba42f | 348 | int n, ret; |
1b9f1491 KW |
349 | |
350 | /* | |
351 | * If this is the last cluster and it is only partially used, we must only | |
352 | * copy until the end of the image, or bdrv_check_request will fail for the | |
353 | * bdrv_read/write calls below. | |
354 | */ | |
355 | if (start_sect + n_end > bs->total_sectors) { | |
356 | n_end = bs->total_sectors - start_sect; | |
357 | } | |
45aba42f KW |
358 | |
359 | n = n_end - n_start; | |
1b9f1491 | 360 | if (n <= 0) { |
45aba42f | 361 | return 0; |
1b9f1491 KW |
362 | } |
363 | ||
aef4acb6 SH |
364 | iov.iov_len = n * BDRV_SECTOR_SIZE; |
365 | iov.iov_base = qemu_blockalign(bs, iov.iov_len); | |
366 | ||
367 | qemu_iovec_init_external(&qiov, &iov, 1); | |
1b9f1491 | 368 | |
66f82cee | 369 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 SH |
370 | |
371 | /* Call .bdrv_co_readv() directly instead of using the public block-layer | |
372 | * interface. This avoids double I/O throttling and request tracking, | |
373 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
374 | */ | |
375 | ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); | |
1b9f1491 KW |
376 | if (ret < 0) { |
377 | goto out; | |
378 | } | |
379 | ||
45aba42f | 380 | if (s->crypt_method) { |
ed6ccf0f | 381 | qcow2_encrypt_sectors(s, start_sect + n_start, |
aef4acb6 | 382 | iov.iov_base, iov.iov_base, n, 1, |
45aba42f KW |
383 | &s->aes_encrypt_key); |
384 | } | |
1b9f1491 | 385 | |
cf93980e HR |
386 | ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_DEFAULT, |
387 | cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE); | |
388 | if (ret < 0) { | |
389 | goto out; | |
390 | } | |
391 | ||
66f82cee | 392 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
aef4acb6 | 393 | ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); |
1b9f1491 KW |
394 | if (ret < 0) { |
395 | goto out; | |
396 | } | |
397 | ||
398 | ret = 0; | |
399 | out: | |
aef4acb6 | 400 | qemu_vfree(iov.iov_base); |
1b9f1491 | 401 | return ret; |
45aba42f KW |
402 | } |
403 | ||
404 | ||
405 | /* | |
406 | * get_cluster_offset | |
407 | * | |
1c46efaa KW |
408 | * For a given offset of the disk image, find the cluster offset in |
409 | * qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 410 | * |
d57237f2 | 411 | * on entry, *num is the number of contiguous sectors we'd like to |
45aba42f KW |
412 | * access following offset. |
413 | * | |
d57237f2 | 414 | * on exit, *num is the number of contiguous sectors we can read. |
45aba42f | 415 | * |
68d000a3 KW |
416 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
417 | * cases. | |
45aba42f | 418 | */ |
1c46efaa KW |
419 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
420 | int *num, uint64_t *cluster_offset) | |
45aba42f KW |
421 | { |
422 | BDRVQcowState *s = bs->opaque; | |
2cf7cfa1 KW |
423 | unsigned int l2_index; |
424 | uint64_t l1_index, l2_offset, *l2_table; | |
45aba42f | 425 | int l1_bits, c; |
80ee15a6 KW |
426 | unsigned int index_in_cluster, nb_clusters; |
427 | uint64_t nb_available, nb_needed; | |
55c17e98 | 428 | int ret; |
45aba42f KW |
429 | |
430 | index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); | |
431 | nb_needed = *num + index_in_cluster; | |
432 | ||
433 | l1_bits = s->l2_bits + s->cluster_bits; | |
434 | ||
435 | /* compute how many bytes there are between the offset and | |
436 | * the end of the l1 entry | |
437 | */ | |
438 | ||
80ee15a6 | 439 | nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); |
45aba42f KW |
440 | |
441 | /* compute the number of available sectors */ | |
442 | ||
443 | nb_available = (nb_available >> 9) + index_in_cluster; | |
444 | ||
445 | if (nb_needed > nb_available) { | |
446 | nb_needed = nb_available; | |
447 | } | |
448 | ||
1c46efaa | 449 | *cluster_offset = 0; |
45aba42f KW |
450 | |
451 | /* seek the the l2 offset in the l1 table */ | |
452 | ||
453 | l1_index = offset >> l1_bits; | |
68d000a3 KW |
454 | if (l1_index >= s->l1_size) { |
455 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 456 | goto out; |
68d000a3 | 457 | } |
45aba42f | 458 | |
68d000a3 KW |
459 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
460 | if (!l2_offset) { | |
461 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 462 | goto out; |
68d000a3 | 463 | } |
45aba42f KW |
464 | |
465 | /* load the l2 table in memory */ | |
466 | ||
55c17e98 KW |
467 | ret = l2_load(bs, l2_offset, &l2_table); |
468 | if (ret < 0) { | |
469 | return ret; | |
1c46efaa | 470 | } |
45aba42f KW |
471 | |
472 | /* find the cluster offset for the given disk offset */ | |
473 | ||
474 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
1c46efaa | 475 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
45aba42f KW |
476 | nb_clusters = size_to_clusters(s, nb_needed << 9); |
477 | ||
68d000a3 KW |
478 | ret = qcow2_get_cluster_type(*cluster_offset); |
479 | switch (ret) { | |
480 | case QCOW2_CLUSTER_COMPRESSED: | |
481 | /* Compressed clusters can only be processed one by one */ | |
482 | c = 1; | |
483 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
484 | break; | |
6377af48 | 485 | case QCOW2_CLUSTER_ZERO: |
381b487d PB |
486 | if (s->qcow_version < 3) { |
487 | return -EIO; | |
488 | } | |
6377af48 KW |
489 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, |
490 | &l2_table[l2_index], 0, | |
491 | QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); | |
492 | *cluster_offset = 0; | |
493 | break; | |
68d000a3 | 494 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f KW |
495 | /* how many empty clusters ? */ |
496 | c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); | |
68d000a3 KW |
497 | *cluster_offset = 0; |
498 | break; | |
499 | case QCOW2_CLUSTER_NORMAL: | |
45aba42f KW |
500 | /* how many allocated clusters ? */ |
501 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
6377af48 KW |
502 | &l2_table[l2_index], 0, |
503 | QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); | |
68d000a3 KW |
504 | *cluster_offset &= L2E_OFFSET_MASK; |
505 | break; | |
1417d7e4 KW |
506 | default: |
507 | abort(); | |
45aba42f KW |
508 | } |
509 | ||
29c1a730 KW |
510 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
511 | ||
68d000a3 KW |
512 | nb_available = (c * s->cluster_sectors); |
513 | ||
45aba42f KW |
514 | out: |
515 | if (nb_available > nb_needed) | |
516 | nb_available = nb_needed; | |
517 | ||
518 | *num = nb_available - index_in_cluster; | |
519 | ||
68d000a3 | 520 | return ret; |
45aba42f KW |
521 | } |
522 | ||
523 | /* | |
524 | * get_cluster_table | |
525 | * | |
526 | * for a given disk offset, load (and allocate if needed) | |
527 | * the l2 table. | |
528 | * | |
529 | * the l2 table offset in the qcow2 file and the cluster index | |
530 | * in the l2 table are given to the caller. | |
531 | * | |
1e3e8f1a | 532 | * Returns 0 on success, -errno in failure case |
45aba42f | 533 | */ |
45aba42f KW |
534 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
535 | uint64_t **new_l2_table, | |
45aba42f KW |
536 | int *new_l2_index) |
537 | { | |
538 | BDRVQcowState *s = bs->opaque; | |
2cf7cfa1 KW |
539 | unsigned int l2_index; |
540 | uint64_t l1_index, l2_offset; | |
c46e1167 | 541 | uint64_t *l2_table = NULL; |
80ee15a6 | 542 | int ret; |
45aba42f KW |
543 | |
544 | /* seek the the l2 offset in the l1 table */ | |
545 | ||
546 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
547 | if (l1_index >= s->l1_size) { | |
72893756 | 548 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
549 | if (ret < 0) { |
550 | return ret; | |
551 | } | |
45aba42f | 552 | } |
8e37f681 | 553 | |
2cf7cfa1 | 554 | assert(l1_index < s->l1_size); |
8e37f681 | 555 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
45aba42f KW |
556 | |
557 | /* seek the l2 table of the given l2 offset */ | |
558 | ||
8e37f681 | 559 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 560 | /* load the l2 table in memory */ |
55c17e98 KW |
561 | ret = l2_load(bs, l2_offset, &l2_table); |
562 | if (ret < 0) { | |
563 | return ret; | |
1e3e8f1a | 564 | } |
45aba42f | 565 | } else { |
16fde5f2 | 566 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
567 | ret = l2_allocate(bs, l1_index, &l2_table); |
568 | if (ret < 0) { | |
569 | return ret; | |
1e3e8f1a | 570 | } |
16fde5f2 KW |
571 | |
572 | /* Then decrease the refcount of the old table */ | |
573 | if (l2_offset) { | |
6cfcb9b8 KW |
574 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t), |
575 | QCOW2_DISCARD_OTHER); | |
16fde5f2 | 576 | } |
45aba42f KW |
577 | } |
578 | ||
579 | /* find the cluster offset for the given disk offset */ | |
580 | ||
581 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
582 | ||
583 | *new_l2_table = l2_table; | |
45aba42f KW |
584 | *new_l2_index = l2_index; |
585 | ||
1e3e8f1a | 586 | return 0; |
45aba42f KW |
587 | } |
588 | ||
589 | /* | |
590 | * alloc_compressed_cluster_offset | |
591 | * | |
592 | * For a given offset of the disk image, return cluster offset in | |
593 | * qcow2 file. | |
594 | * | |
595 | * If the offset is not found, allocate a new compressed cluster. | |
596 | * | |
597 | * Return the cluster offset if successful, | |
598 | * Return 0, otherwise. | |
599 | * | |
600 | */ | |
601 | ||
ed6ccf0f KW |
602 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
603 | uint64_t offset, | |
604 | int compressed_size) | |
45aba42f KW |
605 | { |
606 | BDRVQcowState *s = bs->opaque; | |
607 | int l2_index, ret; | |
3948d1d4 | 608 | uint64_t *l2_table; |
f4f0d391 | 609 | int64_t cluster_offset; |
45aba42f KW |
610 | int nb_csectors; |
611 | ||
3948d1d4 | 612 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 613 | if (ret < 0) { |
45aba42f | 614 | return 0; |
1e3e8f1a | 615 | } |
45aba42f | 616 | |
b0b6862e KW |
617 | /* Compression can't overwrite anything. Fail if the cluster was already |
618 | * allocated. */ | |
45aba42f | 619 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 620 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
621 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
622 | return 0; | |
623 | } | |
45aba42f | 624 | |
ed6ccf0f | 625 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 626 | if (cluster_offset < 0) { |
29c1a730 | 627 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
628 | return 0; |
629 | } | |
630 | ||
45aba42f KW |
631 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
632 | (cluster_offset >> 9); | |
633 | ||
634 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
635 | ((uint64_t)nb_csectors << s->csize_shift); | |
636 | ||
637 | /* update L2 table */ | |
638 | ||
639 | /* compressed clusters never have the copied flag */ | |
640 | ||
66f82cee | 641 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
29c1a730 | 642 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
45aba42f | 643 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
29c1a730 | 644 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
79a31189 | 645 | if (ret < 0) { |
29c1a730 | 646 | return 0; |
4c1612d9 KW |
647 | } |
648 | ||
29c1a730 | 649 | return cluster_offset; |
4c1612d9 KW |
650 | } |
651 | ||
593fb83c KW |
652 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) |
653 | { | |
654 | BDRVQcowState *s = bs->opaque; | |
655 | int ret; | |
656 | ||
657 | if (r->nb_sectors == 0) { | |
658 | return 0; | |
659 | } | |
660 | ||
661 | qemu_co_mutex_unlock(&s->lock); | |
662 | ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, | |
663 | r->offset / BDRV_SECTOR_SIZE, | |
664 | r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); | |
665 | qemu_co_mutex_lock(&s->lock); | |
666 | ||
667 | if (ret < 0) { | |
668 | return ret; | |
669 | } | |
670 | ||
671 | /* | |
672 | * Before we update the L2 table to actually point to the new cluster, we | |
673 | * need to be sure that the refcounts have been increased and COW was | |
674 | * handled. | |
675 | */ | |
676 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
677 | ||
678 | return 0; | |
679 | } | |
680 | ||
148da7ea | 681 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f KW |
682 | { |
683 | BDRVQcowState *s = bs->opaque; | |
684 | int i, j = 0, l2_index, ret; | |
593fb83c | 685 | uint64_t *old_cluster, *l2_table; |
250196f1 | 686 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 687 | |
3cce16f4 | 688 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 689 | assert(m->nb_clusters > 0); |
45aba42f | 690 | |
7267c094 | 691 | old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); |
45aba42f KW |
692 | |
693 | /* copy content of unmodified sectors */ | |
593fb83c KW |
694 | ret = perform_cow(bs, m, &m->cow_start); |
695 | if (ret < 0) { | |
696 | goto err; | |
45aba42f KW |
697 | } |
698 | ||
593fb83c KW |
699 | ret = perform_cow(bs, m, &m->cow_end); |
700 | if (ret < 0) { | |
701 | goto err; | |
29c1a730 KW |
702 | } |
703 | ||
593fb83c | 704 | /* Update L2 table. */ |
74c4510a | 705 | if (s->use_lazy_refcounts) { |
280d3735 KW |
706 | qcow2_mark_dirty(bs); |
707 | } | |
bfe8043e SH |
708 | if (qcow2_need_accurate_refcounts(s)) { |
709 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
710 | s->refcount_block_cache); | |
711 | } | |
280d3735 | 712 | |
3948d1d4 | 713 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 714 | if (ret < 0) { |
45aba42f | 715 | goto err; |
1e3e8f1a | 716 | } |
29c1a730 | 717 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
45aba42f KW |
718 | |
719 | for (i = 0; i < m->nb_clusters; i++) { | |
720 | /* if two concurrent writes happen to the same unallocated cluster | |
721 | * each write allocates separate cluster and writes data concurrently. | |
722 | * The first one to complete updates l2 table with pointer to its | |
723 | * cluster the second one has to do RMW (which is done above by | |
724 | * copy_sectors()), update l2 table with its cluster pointer and free | |
725 | * old cluster. This is what this loop does */ | |
726 | if(l2_table[l2_index + i] != 0) | |
727 | old_cluster[j++] = l2_table[l2_index + i]; | |
728 | ||
729 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
730 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
731 | } | |
732 | ||
9f8e668e | 733 | |
29c1a730 | 734 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
c835d00f | 735 | if (ret < 0) { |
45aba42f | 736 | goto err; |
4c1612d9 | 737 | } |
45aba42f | 738 | |
7ec5e6a4 KW |
739 | /* |
740 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
741 | * Also flush bs->file to get the right order for L2 and refcount update. | |
6cfcb9b8 KW |
742 | * |
743 | * Don't discard clusters that reach a refcount of 0 (e.g. compressed | |
744 | * clusters), the next write will reuse them anyway. | |
7ec5e6a4 KW |
745 | */ |
746 | if (j != 0) { | |
7ec5e6a4 | 747 | for (i = 0; i < j; i++) { |
6cfcb9b8 KW |
748 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1, |
749 | QCOW2_DISCARD_NEVER); | |
7ec5e6a4 KW |
750 | } |
751 | } | |
45aba42f KW |
752 | |
753 | ret = 0; | |
754 | err: | |
7267c094 | 755 | g_free(old_cluster); |
45aba42f KW |
756 | return ret; |
757 | } | |
758 | ||
bf319ece KW |
759 | /* |
760 | * Returns the number of contiguous clusters that can be used for an allocating | |
761 | * write, but require COW to be performed (this includes yet unallocated space, | |
762 | * which must copy from the backing file) | |
763 | */ | |
764 | static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, | |
765 | uint64_t *l2_table, int l2_index) | |
766 | { | |
143550a8 | 767 | int i; |
bf319ece | 768 | |
143550a8 KW |
769 | for (i = 0; i < nb_clusters; i++) { |
770 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
771 | int cluster_type = qcow2_get_cluster_type(l2_entry); | |
772 | ||
773 | switch(cluster_type) { | |
774 | case QCOW2_CLUSTER_NORMAL: | |
775 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
776 | goto out; | |
777 | } | |
bf319ece | 778 | break; |
143550a8 KW |
779 | case QCOW2_CLUSTER_UNALLOCATED: |
780 | case QCOW2_CLUSTER_COMPRESSED: | |
6377af48 | 781 | case QCOW2_CLUSTER_ZERO: |
bf319ece | 782 | break; |
143550a8 KW |
783 | default: |
784 | abort(); | |
785 | } | |
bf319ece KW |
786 | } |
787 | ||
143550a8 | 788 | out: |
bf319ece KW |
789 | assert(i <= nb_clusters); |
790 | return i; | |
791 | } | |
792 | ||
250196f1 | 793 | /* |
226c3c26 KW |
794 | * Check if there already is an AIO write request in flight which allocates |
795 | * the same cluster. In this case we need to wait until the previous | |
796 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
797 | * |
798 | * Returns: | |
799 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
800 | * bytes from guest_offset that can be read before the next | |
801 | * dependency must be processed (or the request is complete) | |
802 | * | |
803 | * -EAGAIN if we had to wait for another request, previously gathered | |
804 | * information on cluster allocation may be invalid now. The caller | |
805 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 806 | */ |
226c3c26 | 807 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 808 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 KW |
809 | { |
810 | BDRVQcowState *s = bs->opaque; | |
250196f1 | 811 | QCowL2Meta *old_alloc; |
65eb2e35 | 812 | uint64_t bytes = *cur_bytes; |
250196f1 | 813 | |
250196f1 KW |
814 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
815 | ||
65eb2e35 KW |
816 | uint64_t start = guest_offset; |
817 | uint64_t end = start + bytes; | |
818 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
819 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 820 | |
d9d74f41 | 821 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
822 | /* No intersection */ |
823 | } else { | |
824 | if (start < old_start) { | |
825 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 826 | bytes = old_start - start; |
250196f1 | 827 | } else { |
65eb2e35 | 828 | bytes = 0; |
250196f1 KW |
829 | } |
830 | ||
ecdd5333 KW |
831 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
832 | * be valid any more, so we'd have to clean up the old L2Metas | |
833 | * and deal with requests depending on them before starting to | |
834 | * gather new ones. Not worth the trouble. */ | |
835 | if (bytes == 0 && *m) { | |
836 | *cur_bytes = 0; | |
837 | return 0; | |
838 | } | |
839 | ||
65eb2e35 | 840 | if (bytes == 0) { |
250196f1 KW |
841 | /* Wait for the dependency to complete. We need to recheck |
842 | * the free/allocated clusters when we continue. */ | |
843 | qemu_co_mutex_unlock(&s->lock); | |
844 | qemu_co_queue_wait(&old_alloc->dependent_requests); | |
845 | qemu_co_mutex_lock(&s->lock); | |
846 | return -EAGAIN; | |
847 | } | |
848 | } | |
849 | } | |
850 | ||
65eb2e35 KW |
851 | /* Make sure that existing clusters and new allocations are only used up to |
852 | * the next dependency if we shortened the request above */ | |
853 | *cur_bytes = bytes; | |
250196f1 | 854 | |
226c3c26 KW |
855 | return 0; |
856 | } | |
857 | ||
0af729ec KW |
858 | /* |
859 | * Checks how many already allocated clusters that don't require a copy on | |
860 | * write there are at the given guest_offset (up to *bytes). If | |
861 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
862 | * this host offset are counted. | |
863 | * | |
411d62b0 KW |
864 | * Note that guest_offset may not be cluster aligned. In this case, the |
865 | * returned *host_offset points to exact byte referenced by guest_offset and | |
866 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
867 | * |
868 | * Returns: | |
869 | * 0: if no allocated clusters are available at the given offset. | |
870 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
871 | * is allocated and doesn't need COW, but doesn't have the right | |
872 | * physical offset. | |
873 | * | |
874 | * 1: if allocated clusters that don't require a COW are available at | |
875 | * the requested offset. *bytes may have decreased and describes | |
876 | * the length of the area that can be written to. | |
877 | * | |
878 | * -errno: in error cases | |
0af729ec KW |
879 | */ |
880 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 881 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec KW |
882 | { |
883 | BDRVQcowState *s = bs->opaque; | |
884 | int l2_index; | |
885 | uint64_t cluster_offset; | |
886 | uint64_t *l2_table; | |
acb0467f | 887 | unsigned int nb_clusters; |
c53ede9f | 888 | unsigned int keep_clusters; |
0af729ec KW |
889 | int ret, pret; |
890 | ||
891 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
892 | *bytes); | |
0af729ec | 893 | |
411d62b0 KW |
894 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
895 | == offset_into_cluster(s, *host_offset)); | |
896 | ||
acb0467f KW |
897 | /* |
898 | * Calculate the number of clusters to look for. We stop at L2 table | |
899 | * boundaries to keep things simple. | |
900 | */ | |
901 | nb_clusters = | |
902 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
903 | ||
904 | l2_index = offset_to_l2_index(s, guest_offset); | |
905 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
906 | ||
0af729ec KW |
907 | /* Find L2 entry for the first involved cluster */ |
908 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
909 | if (ret < 0) { | |
910 | return ret; | |
911 | } | |
912 | ||
913 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
914 | ||
915 | /* Check how many clusters are already allocated and don't need COW */ | |
916 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
917 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
918 | { | |
e62daaf6 KW |
919 | /* If a specific host_offset is required, check it */ |
920 | bool offset_matches = | |
921 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
922 | ||
923 | if (*host_offset != 0 && !offset_matches) { | |
924 | *bytes = 0; | |
925 | ret = 0; | |
926 | goto out; | |
927 | } | |
928 | ||
0af729ec | 929 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 930 | keep_clusters = |
acb0467f | 931 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
0af729ec KW |
932 | &l2_table[l2_index], 0, |
933 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); | |
c53ede9f KW |
934 | assert(keep_clusters <= nb_clusters); |
935 | ||
936 | *bytes = MIN(*bytes, | |
937 | keep_clusters * s->cluster_size | |
938 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
939 | |
940 | ret = 1; | |
941 | } else { | |
0af729ec KW |
942 | ret = 0; |
943 | } | |
944 | ||
0af729ec | 945 | /* Cleanup */ |
e62daaf6 | 946 | out: |
0af729ec KW |
947 | pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
948 | if (pret < 0) { | |
949 | return pret; | |
950 | } | |
951 | ||
e62daaf6 KW |
952 | /* Only return a host offset if we actually made progress. Otherwise we |
953 | * would make requirements for handle_alloc() that it can't fulfill */ | |
954 | if (ret) { | |
411d62b0 KW |
955 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
956 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
957 | } |
958 | ||
0af729ec KW |
959 | return ret; |
960 | } | |
961 | ||
226c3c26 KW |
962 | /* |
963 | * Allocates new clusters for the given guest_offset. | |
964 | * | |
965 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
966 | * contain the number of clusters that have been allocated and are contiguous | |
967 | * in the image file. | |
968 | * | |
969 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
970 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
971 | * case if the cluster at host_offset is already in use. If *host_offset is | |
972 | * zero, the clusters can be allocated anywhere in the image file. | |
973 | * | |
974 | * *host_offset is updated to contain the offset into the image file at which | |
975 | * the first allocated cluster starts. | |
976 | * | |
977 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
978 | * function has been waiting for another request and the allocation must be | |
979 | * restarted, but the whole request should not be failed. | |
980 | */ | |
981 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
982 | uint64_t *host_offset, unsigned int *nb_clusters) | |
983 | { | |
984 | BDRVQcowState *s = bs->opaque; | |
226c3c26 KW |
985 | |
986 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
987 | *host_offset, *nb_clusters); | |
988 | ||
250196f1 KW |
989 | /* Allocate new clusters */ |
990 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
991 | if (*host_offset == 0) { | |
df021791 KW |
992 | int64_t cluster_offset = |
993 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
994 | if (cluster_offset < 0) { | |
995 | return cluster_offset; | |
996 | } | |
997 | *host_offset = cluster_offset; | |
998 | return 0; | |
250196f1 | 999 | } else { |
17a71e58 | 1000 | int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
1001 | if (ret < 0) { |
1002 | return ret; | |
1003 | } | |
1004 | *nb_clusters = ret; | |
1005 | return 0; | |
250196f1 | 1006 | } |
250196f1 KW |
1007 | } |
1008 | ||
10f0ed8b KW |
1009 | /* |
1010 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
1011 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
1012 | * the new allocation can match the specified host offset. | |
1013 | * | |
411d62b0 KW |
1014 | * Note that guest_offset may not be cluster aligned. In this case, the |
1015 | * returned *host_offset points to exact byte referenced by guest_offset and | |
1016 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
1017 | * |
1018 | * Returns: | |
1019 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
1020 | * *host_offset is left unchanged. | |
1021 | * | |
1022 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
1023 | * new allocation doesn't cover all of the requested area. | |
1024 | * *host_offset is updated to contain the host offset of the first | |
1025 | * newly allocated cluster. | |
1026 | * | |
1027 | * -errno: in error cases | |
10f0ed8b KW |
1028 | */ |
1029 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 1030 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b KW |
1031 | { |
1032 | BDRVQcowState *s = bs->opaque; | |
1033 | int l2_index; | |
1034 | uint64_t *l2_table; | |
1035 | uint64_t entry; | |
f5bc6350 | 1036 | unsigned int nb_clusters; |
10f0ed8b KW |
1037 | int ret; |
1038 | ||
10f0ed8b | 1039 | uint64_t alloc_cluster_offset; |
10f0ed8b KW |
1040 | |
1041 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1042 | *bytes); | |
1043 | assert(*bytes > 0); | |
1044 | ||
f5bc6350 KW |
1045 | /* |
1046 | * Calculate the number of clusters to look for. We stop at L2 table | |
1047 | * boundaries to keep things simple. | |
1048 | */ | |
c37f4cd7 KW |
1049 | nb_clusters = |
1050 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1051 | ||
f5bc6350 | 1052 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1053 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
f5bc6350 | 1054 | |
10f0ed8b KW |
1055 | /* Find L2 entry for the first involved cluster */ |
1056 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1057 | if (ret < 0) { | |
1058 | return ret; | |
1059 | } | |
1060 | ||
3b8e2e26 | 1061 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1062 | |
1063 | /* For the moment, overwrite compressed clusters one by one */ | |
1064 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1065 | nb_clusters = 1; | |
1066 | } else { | |
3b8e2e26 | 1067 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1068 | } |
1069 | ||
ecdd5333 KW |
1070 | /* This function is only called when there were no non-COW clusters, so if |
1071 | * we can't find any unallocated or COW clusters either, something is | |
1072 | * wrong with our code. */ | |
1073 | assert(nb_clusters > 0); | |
1074 | ||
10f0ed8b KW |
1075 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
1076 | if (ret < 0) { | |
1077 | return ret; | |
1078 | } | |
1079 | ||
10f0ed8b | 1080 | /* Allocate, if necessary at a given offset in the image file */ |
411d62b0 | 1081 | alloc_cluster_offset = start_of_cluster(s, *host_offset); |
83baa9a4 | 1082 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, |
10f0ed8b KW |
1083 | &nb_clusters); |
1084 | if (ret < 0) { | |
1085 | goto fail; | |
1086 | } | |
1087 | ||
83baa9a4 KW |
1088 | /* Can't extend contiguous allocation */ |
1089 | if (nb_clusters == 0) { | |
10f0ed8b KW |
1090 | *bytes = 0; |
1091 | return 0; | |
1092 | } | |
1093 | ||
83baa9a4 KW |
1094 | /* |
1095 | * Save info needed for meta data update. | |
1096 | * | |
1097 | * requested_sectors: Number of sectors from the start of the first | |
1098 | * newly allocated cluster to the end of the (possibly shortened | |
1099 | * before) write request. | |
1100 | * | |
1101 | * avail_sectors: Number of sectors from the start of the first | |
1102 | * newly allocated to the end of the last newly allocated cluster. | |
1103 | * | |
1104 | * nb_sectors: The number of sectors from the start of the first | |
1105 | * newly allocated cluster to the end of the area that the write | |
1106 | * request actually writes to (excluding COW at the end) | |
1107 | */ | |
1108 | int requested_sectors = | |
1109 | (*bytes + offset_into_cluster(s, guest_offset)) | |
1110 | >> BDRV_SECTOR_BITS; | |
1111 | int avail_sectors = nb_clusters | |
1112 | << (s->cluster_bits - BDRV_SECTOR_BITS); | |
1113 | int alloc_n_start = offset_into_cluster(s, guest_offset) | |
1114 | >> BDRV_SECTOR_BITS; | |
1115 | int nb_sectors = MIN(requested_sectors, avail_sectors); | |
88c6588c | 1116 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1117 | |
83baa9a4 KW |
1118 | *m = g_malloc0(sizeof(**m)); |
1119 | ||
1120 | **m = (QCowL2Meta) { | |
88c6588c KW |
1121 | .next = old_m, |
1122 | ||
411d62b0 | 1123 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1124 | .offset = start_of_cluster(s, guest_offset), |
1125 | .nb_clusters = nb_clusters, | |
1126 | .nb_available = nb_sectors, | |
1127 | ||
1128 | .cow_start = { | |
1129 | .offset = 0, | |
1130 | .nb_sectors = alloc_n_start, | |
1131 | }, | |
1132 | .cow_end = { | |
1133 | .offset = nb_sectors * BDRV_SECTOR_SIZE, | |
1134 | .nb_sectors = avail_sectors - nb_sectors, | |
1135 | }, | |
1136 | }; | |
1137 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1138 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1139 | ||
411d62b0 | 1140 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
83baa9a4 KW |
1141 | *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) |
1142 | - offset_into_cluster(s, guest_offset)); | |
1143 | assert(*bytes != 0); | |
1144 | ||
10f0ed8b KW |
1145 | return 1; |
1146 | ||
1147 | fail: | |
1148 | if (*m && (*m)->nb_clusters > 0) { | |
1149 | QLIST_REMOVE(*m, next_in_flight); | |
1150 | } | |
1151 | return ret; | |
1152 | } | |
1153 | ||
45aba42f KW |
1154 | /* |
1155 | * alloc_cluster_offset | |
1156 | * | |
250196f1 KW |
1157 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1158 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1159 | * |
250196f1 | 1160 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1161 | * other fields in m are meaningless. |
148da7ea KW |
1162 | * |
1163 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1164 | * contiguous clusters that have been allocated. In this case, the other |
1165 | * fields of m are valid and contain information about the first allocated | |
1166 | * cluster. | |
45aba42f | 1167 | * |
68d100e9 KW |
1168 | * If the request conflicts with another write request in flight, the coroutine |
1169 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1170 | * |
1171 | * Return 0 on success and -errno in error cases | |
45aba42f | 1172 | */ |
f4f0d391 | 1173 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
f50f88b9 | 1174 | int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m) |
45aba42f KW |
1175 | { |
1176 | BDRVQcowState *s = bs->opaque; | |
710c2496 | 1177 | uint64_t start, remaining; |
250196f1 | 1178 | uint64_t cluster_offset; |
65eb2e35 | 1179 | uint64_t cur_bytes; |
710c2496 | 1180 | int ret; |
45aba42f | 1181 | |
3cce16f4 KW |
1182 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, |
1183 | n_start, n_end); | |
1184 | ||
710c2496 KW |
1185 | assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset)); |
1186 | offset = start_of_cluster(s, offset); | |
1187 | ||
72424114 | 1188 | again: |
710c2496 KW |
1189 | start = offset + (n_start << BDRV_SECTOR_BITS); |
1190 | remaining = (n_end - n_start) << BDRV_SECTOR_BITS; | |
0af729ec KW |
1191 | cluster_offset = 0; |
1192 | *host_offset = 0; | |
ecdd5333 KW |
1193 | cur_bytes = 0; |
1194 | *m = NULL; | |
0af729ec | 1195 | |
2c3b32d2 | 1196 | while (true) { |
ecdd5333 KW |
1197 | |
1198 | if (!*host_offset) { | |
1199 | *host_offset = start_of_cluster(s, cluster_offset); | |
1200 | } | |
1201 | ||
1202 | assert(remaining >= cur_bytes); | |
1203 | ||
1204 | start += cur_bytes; | |
1205 | remaining -= cur_bytes; | |
1206 | cluster_offset += cur_bytes; | |
1207 | ||
1208 | if (remaining == 0) { | |
1209 | break; | |
1210 | } | |
1211 | ||
1212 | cur_bytes = remaining; | |
1213 | ||
2c3b32d2 KW |
1214 | /* |
1215 | * Now start gathering as many contiguous clusters as possible: | |
1216 | * | |
1217 | * 1. Check for overlaps with in-flight allocations | |
1218 | * | |
1219 | * a) Overlap not in the first cluster -> shorten this request and | |
1220 | * let the caller handle the rest in its next loop iteration. | |
1221 | * | |
1222 | * b) Real overlaps of two requests. Yield and restart the search | |
1223 | * for contiguous clusters (the situation could have changed | |
1224 | * while we were sleeping) | |
1225 | * | |
1226 | * c) TODO: Request starts in the same cluster as the in-flight | |
1227 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1228 | * set cluster_offset to write to the same cluster and set up | |
1229 | * the right synchronisation between the in-flight request and | |
1230 | * the new one. | |
1231 | */ | |
ecdd5333 | 1232 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1233 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1234 | /* Currently handle_dependencies() doesn't yield if we already had |
1235 | * an allocation. If it did, we would have to clean up the L2Meta | |
1236 | * structs before starting over. */ | |
1237 | assert(*m == NULL); | |
2c3b32d2 KW |
1238 | goto again; |
1239 | } else if (ret < 0) { | |
1240 | return ret; | |
ecdd5333 KW |
1241 | } else if (cur_bytes == 0) { |
1242 | break; | |
2c3b32d2 KW |
1243 | } else { |
1244 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1245 | * the allocations below) so that the next dependency is processed | |
1246 | * correctly during the next loop iteration. */ | |
0af729ec | 1247 | } |
710c2496 | 1248 | |
2c3b32d2 KW |
1249 | /* |
1250 | * 2. Count contiguous COPIED clusters. | |
1251 | */ | |
1252 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1253 | if (ret < 0) { | |
1254 | return ret; | |
1255 | } else if (ret) { | |
ecdd5333 | 1256 | continue; |
2c3b32d2 KW |
1257 | } else if (cur_bytes == 0) { |
1258 | break; | |
1259 | } | |
060bee89 | 1260 | |
2c3b32d2 KW |
1261 | /* |
1262 | * 3. If the request still hasn't completed, allocate new clusters, | |
1263 | * considering any cluster_offset of steps 1c or 2. | |
1264 | */ | |
1265 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1266 | if (ret < 0) { | |
1267 | return ret; | |
1268 | } else if (ret) { | |
ecdd5333 | 1269 | continue; |
2c3b32d2 KW |
1270 | } else { |
1271 | assert(cur_bytes == 0); | |
1272 | break; | |
1273 | } | |
f5bc6350 | 1274 | } |
10f0ed8b | 1275 | |
710c2496 KW |
1276 | *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS); |
1277 | assert(*num > 0); | |
1278 | assert(*host_offset != 0); | |
45aba42f | 1279 | |
148da7ea | 1280 | return 0; |
45aba42f KW |
1281 | } |
1282 | ||
1283 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1284 | const uint8_t *buf, int buf_size) | |
1285 | { | |
1286 | z_stream strm1, *strm = &strm1; | |
1287 | int ret, out_len; | |
1288 | ||
1289 | memset(strm, 0, sizeof(*strm)); | |
1290 | ||
1291 | strm->next_in = (uint8_t *)buf; | |
1292 | strm->avail_in = buf_size; | |
1293 | strm->next_out = out_buf; | |
1294 | strm->avail_out = out_buf_size; | |
1295 | ||
1296 | ret = inflateInit2(strm, -12); | |
1297 | if (ret != Z_OK) | |
1298 | return -1; | |
1299 | ret = inflate(strm, Z_FINISH); | |
1300 | out_len = strm->next_out - out_buf; | |
1301 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1302 | out_len != out_buf_size) { | |
1303 | inflateEnd(strm); | |
1304 | return -1; | |
1305 | } | |
1306 | inflateEnd(strm); | |
1307 | return 0; | |
1308 | } | |
1309 | ||
66f82cee | 1310 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1311 | { |
66f82cee | 1312 | BDRVQcowState *s = bs->opaque; |
45aba42f KW |
1313 | int ret, csize, nb_csectors, sector_offset; |
1314 | uint64_t coffset; | |
1315 | ||
1316 | coffset = cluster_offset & s->cluster_offset_mask; | |
1317 | if (s->cluster_cache_offset != coffset) { | |
1318 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1319 | sector_offset = coffset & 511; | |
1320 | csize = nb_csectors * 512 - sector_offset; | |
66f82cee KW |
1321 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
1322 | ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); | |
45aba42f | 1323 | if (ret < 0) { |
8af36488 | 1324 | return ret; |
45aba42f KW |
1325 | } |
1326 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1327 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1328 | return -EIO; |
45aba42f KW |
1329 | } |
1330 | s->cluster_cache_offset = coffset; | |
1331 | } | |
1332 | return 0; | |
1333 | } | |
5ea929e3 KW |
1334 | |
1335 | /* | |
1336 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1337 | * all clusters in the same L2 table) and returns the number of discarded | |
1338 | * clusters. | |
1339 | */ | |
1340 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
1341 | unsigned int nb_clusters) | |
1342 | { | |
1343 | BDRVQcowState *s = bs->opaque; | |
3948d1d4 | 1344 | uint64_t *l2_table; |
5ea929e3 KW |
1345 | int l2_index; |
1346 | int ret; | |
1347 | int i; | |
1348 | ||
3948d1d4 | 1349 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1350 | if (ret < 0) { |
1351 | return ret; | |
1352 | } | |
1353 | ||
1354 | /* Limit nb_clusters to one L2 table */ | |
1355 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
1356 | ||
1357 | for (i = 0; i < nb_clusters; i++) { | |
1358 | uint64_t old_offset; | |
1359 | ||
1360 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
8e37f681 | 1361 | if ((old_offset & L2E_OFFSET_MASK) == 0) { |
5ea929e3 KW |
1362 | continue; |
1363 | } | |
1364 | ||
1365 | /* First remove L2 entries */ | |
1366 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
1367 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1368 | ||
1369 | /* Then decrease the refcount */ | |
6cfcb9b8 | 1370 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
5ea929e3 KW |
1371 | } |
1372 | ||
1373 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | |
1374 | if (ret < 0) { | |
1375 | return ret; | |
1376 | } | |
1377 | ||
1378 | return nb_clusters; | |
1379 | } | |
1380 | ||
1381 | int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, | |
1382 | int nb_sectors) | |
1383 | { | |
1384 | BDRVQcowState *s = bs->opaque; | |
1385 | uint64_t end_offset; | |
1386 | unsigned int nb_clusters; | |
1387 | int ret; | |
1388 | ||
1389 | end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); | |
1390 | ||
1391 | /* Round start up and end down */ | |
1392 | offset = align_offset(offset, s->cluster_size); | |
1393 | end_offset &= ~(s->cluster_size - 1); | |
1394 | ||
1395 | if (offset > end_offset) { | |
1396 | return 0; | |
1397 | } | |
1398 | ||
1399 | nb_clusters = size_to_clusters(s, end_offset - offset); | |
1400 | ||
0b919fae KW |
1401 | s->cache_discards = true; |
1402 | ||
5ea929e3 KW |
1403 | /* Each L2 table is handled by its own loop iteration */ |
1404 | while (nb_clusters > 0) { | |
1405 | ret = discard_single_l2(bs, offset, nb_clusters); | |
1406 | if (ret < 0) { | |
0b919fae | 1407 | goto fail; |
5ea929e3 KW |
1408 | } |
1409 | ||
1410 | nb_clusters -= ret; | |
1411 | offset += (ret * s->cluster_size); | |
1412 | } | |
1413 | ||
0b919fae KW |
1414 | ret = 0; |
1415 | fail: | |
1416 | s->cache_discards = false; | |
1417 | qcow2_process_discards(bs, ret); | |
1418 | ||
1419 | return ret; | |
5ea929e3 | 1420 | } |
621f0589 KW |
1421 | |
1422 | /* | |
1423 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1424 | * all clusters in the same L2 table) and returns the number of zeroed | |
1425 | * clusters. | |
1426 | */ | |
1427 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
1428 | unsigned int nb_clusters) | |
1429 | { | |
1430 | BDRVQcowState *s = bs->opaque; | |
1431 | uint64_t *l2_table; | |
1432 | int l2_index; | |
1433 | int ret; | |
1434 | int i; | |
1435 | ||
1436 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1437 | if (ret < 0) { | |
1438 | return ret; | |
1439 | } | |
1440 | ||
1441 | /* Limit nb_clusters to one L2 table */ | |
1442 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
1443 | ||
1444 | for (i = 0; i < nb_clusters; i++) { | |
1445 | uint64_t old_offset; | |
1446 | ||
1447 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1448 | ||
1449 | /* Update L2 entries */ | |
1450 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
1451 | if (old_offset & QCOW_OFLAG_COMPRESSED) { | |
1452 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | |
6cfcb9b8 | 1453 | qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST); |
621f0589 KW |
1454 | } else { |
1455 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1456 | } | |
1457 | } | |
1458 | ||
1459 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | |
1460 | if (ret < 0) { | |
1461 | return ret; | |
1462 | } | |
1463 | ||
1464 | return nb_clusters; | |
1465 | } | |
1466 | ||
1467 | int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) | |
1468 | { | |
1469 | BDRVQcowState *s = bs->opaque; | |
1470 | unsigned int nb_clusters; | |
1471 | int ret; | |
1472 | ||
1473 | /* The zero flag is only supported by version 3 and newer */ | |
1474 | if (s->qcow_version < 3) { | |
1475 | return -ENOTSUP; | |
1476 | } | |
1477 | ||
1478 | /* Each L2 table is handled by its own loop iteration */ | |
1479 | nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); | |
1480 | ||
0b919fae KW |
1481 | s->cache_discards = true; |
1482 | ||
621f0589 KW |
1483 | while (nb_clusters > 0) { |
1484 | ret = zero_single_l2(bs, offset, nb_clusters); | |
1485 | if (ret < 0) { | |
0b919fae | 1486 | goto fail; |
621f0589 KW |
1487 | } |
1488 | ||
1489 | nb_clusters -= ret; | |
1490 | offset += (ret * s->cluster_size); | |
1491 | } | |
1492 | ||
0b919fae KW |
1493 | ret = 0; |
1494 | fail: | |
1495 | s->cache_discards = false; | |
1496 | qcow2_process_discards(bs, ret); | |
1497 | ||
1498 | return ret; | |
621f0589 | 1499 | } |