]>
Commit | Line | Data |
---|---|---|
45aba42f KW |
1 | /* |
2 | * Block driver for the QCOW version 2 format | |
3 | * | |
4 | * Copyright (c) 2004-2006 Fabrice Bellard | |
5 | * | |
6 | * Permission is hereby granted, free of charge, to any person obtaining a copy | |
7 | * of this software and associated documentation files (the "Software"), to deal | |
8 | * in the Software without restriction, including without limitation the rights | |
9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
10 | * copies of the Software, and to permit persons to whom the Software is | |
11 | * furnished to do so, subject to the following conditions: | |
12 | * | |
13 | * The above copyright notice and this permission notice shall be included in | |
14 | * all copies or substantial portions of the Software. | |
15 | * | |
16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | |
19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
22 | * THE SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include <zlib.h> | |
26 | ||
27 | #include "qemu-common.h" | |
737e150e | 28 | #include "block/block_int.h" |
45aba42f | 29 | #include "block/qcow2.h" |
3cce16f4 | 30 | #include "trace.h" |
45aba42f | 31 | |
72893756 | 32 | int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size) |
45aba42f KW |
33 | { |
34 | BDRVQcowState *s = bs->opaque; | |
35 | int new_l1_size, new_l1_size2, ret, i; | |
36 | uint64_t *new_l1_table; | |
5d757b56 | 37 | int64_t new_l1_table_offset; |
45aba42f KW |
38 | uint8_t data[12]; |
39 | ||
72893756 | 40 | if (min_size <= s->l1_size) |
45aba42f | 41 | return 0; |
72893756 SH |
42 | |
43 | if (exact_size) { | |
44 | new_l1_size = min_size; | |
45 | } else { | |
46 | /* Bump size up to reduce the number of times we have to grow */ | |
47 | new_l1_size = s->l1_size; | |
48 | if (new_l1_size == 0) { | |
49 | new_l1_size = 1; | |
50 | } | |
51 | while (min_size > new_l1_size) { | |
52 | new_l1_size = (new_l1_size * 3 + 1) / 2; | |
53 | } | |
45aba42f | 54 | } |
72893756 | 55 | |
45aba42f | 56 | #ifdef DEBUG_ALLOC2 |
35ee5e39 | 57 | fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size); |
45aba42f KW |
58 | #endif |
59 | ||
60 | new_l1_size2 = sizeof(uint64_t) * new_l1_size; | |
7267c094 | 61 | new_l1_table = g_malloc0(align_offset(new_l1_size2, 512)); |
45aba42f KW |
62 | memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t)); |
63 | ||
64 | /* write new table (align to cluster) */ | |
66f82cee | 65 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE); |
ed6ccf0f | 66 | new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2); |
5d757b56 | 67 | if (new_l1_table_offset < 0) { |
7267c094 | 68 | g_free(new_l1_table); |
5d757b56 KW |
69 | return new_l1_table_offset; |
70 | } | |
29c1a730 KW |
71 | |
72 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
73 | if (ret < 0) { | |
80fa3341 | 74 | goto fail; |
29c1a730 | 75 | } |
45aba42f | 76 | |
66f82cee | 77 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE); |
45aba42f KW |
78 | for(i = 0; i < s->l1_size; i++) |
79 | new_l1_table[i] = cpu_to_be64(new_l1_table[i]); | |
8b3b7206 KW |
80 | ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2); |
81 | if (ret < 0) | |
45aba42f KW |
82 | goto fail; |
83 | for(i = 0; i < s->l1_size; i++) | |
84 | new_l1_table[i] = be64_to_cpu(new_l1_table[i]); | |
85 | ||
86 | /* set new table */ | |
66f82cee | 87 | BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE); |
45aba42f | 88 | cpu_to_be32w((uint32_t*)data, new_l1_size); |
653df36b | 89 | cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset); |
8b3b7206 KW |
90 | ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data)); |
91 | if (ret < 0) { | |
45aba42f | 92 | goto fail; |
fb8fa77c | 93 | } |
7267c094 | 94 | g_free(s->l1_table); |
ed6ccf0f | 95 | qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t)); |
45aba42f KW |
96 | s->l1_table_offset = new_l1_table_offset; |
97 | s->l1_table = new_l1_table; | |
98 | s->l1_size = new_l1_size; | |
99 | return 0; | |
100 | fail: | |
7267c094 | 101 | g_free(new_l1_table); |
fb8fa77c | 102 | qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2); |
8b3b7206 | 103 | return ret; |
45aba42f KW |
104 | } |
105 | ||
45aba42f KW |
106 | /* |
107 | * l2_load | |
108 | * | |
109 | * Loads a L2 table into memory. If the table is in the cache, the cache | |
110 | * is used; otherwise the L2 table is loaded from the image file. | |
111 | * | |
112 | * Returns a pointer to the L2 table on success, or NULL if the read from | |
113 | * the image file failed. | |
114 | */ | |
115 | ||
55c17e98 KW |
116 | static int l2_load(BlockDriverState *bs, uint64_t l2_offset, |
117 | uint64_t **l2_table) | |
45aba42f KW |
118 | { |
119 | BDRVQcowState *s = bs->opaque; | |
55c17e98 | 120 | int ret; |
45aba42f | 121 | |
29c1a730 | 122 | ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table); |
45aba42f | 123 | |
29c1a730 | 124 | return ret; |
45aba42f KW |
125 | } |
126 | ||
6583e3c7 KW |
127 | /* |
128 | * Writes one sector of the L1 table to the disk (can't update single entries | |
129 | * and we really don't want bdrv_pread to perform a read-modify-write) | |
130 | */ | |
131 | #define L1_ENTRIES_PER_SECTOR (512 / 8) | |
66f82cee | 132 | static int write_l1_entry(BlockDriverState *bs, int l1_index) |
6583e3c7 | 133 | { |
66f82cee | 134 | BDRVQcowState *s = bs->opaque; |
6583e3c7 KW |
135 | uint64_t buf[L1_ENTRIES_PER_SECTOR]; |
136 | int l1_start_index; | |
f7defcb6 | 137 | int i, ret; |
6583e3c7 KW |
138 | |
139 | l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1); | |
140 | for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) { | |
141 | buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]); | |
142 | } | |
143 | ||
66f82cee | 144 | BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE); |
8b3b7206 | 145 | ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index, |
f7defcb6 KW |
146 | buf, sizeof(buf)); |
147 | if (ret < 0) { | |
148 | return ret; | |
6583e3c7 KW |
149 | } |
150 | ||
151 | return 0; | |
152 | } | |
153 | ||
45aba42f KW |
154 | /* |
155 | * l2_allocate | |
156 | * | |
157 | * Allocate a new l2 entry in the file. If l1_index points to an already | |
158 | * used entry in the L2 table (i.e. we are doing a copy on write for the L2 | |
159 | * table) copy the contents of the old L2 table into the newly allocated one. | |
160 | * Otherwise the new table is initialized with zeros. | |
161 | * | |
162 | */ | |
163 | ||
c46e1167 | 164 | static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table) |
45aba42f KW |
165 | { |
166 | BDRVQcowState *s = bs->opaque; | |
6583e3c7 | 167 | uint64_t old_l2_offset; |
f4f0d391 KW |
168 | uint64_t *l2_table; |
169 | int64_t l2_offset; | |
c46e1167 | 170 | int ret; |
45aba42f KW |
171 | |
172 | old_l2_offset = s->l1_table[l1_index]; | |
173 | ||
3cce16f4 KW |
174 | trace_qcow2_l2_allocate(bs, l1_index); |
175 | ||
45aba42f KW |
176 | /* allocate a new l2 entry */ |
177 | ||
ed6ccf0f | 178 | l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t)); |
5d757b56 | 179 | if (l2_offset < 0) { |
c46e1167 | 180 | return l2_offset; |
5d757b56 | 181 | } |
29c1a730 KW |
182 | |
183 | ret = qcow2_cache_flush(bs, s->refcount_block_cache); | |
184 | if (ret < 0) { | |
185 | goto fail; | |
186 | } | |
45aba42f | 187 | |
45aba42f KW |
188 | /* allocate a new entry in the l2 cache */ |
189 | ||
3cce16f4 | 190 | trace_qcow2_l2_allocate_get_empty(bs, l1_index); |
29c1a730 KW |
191 | ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table); |
192 | if (ret < 0) { | |
193 | return ret; | |
194 | } | |
195 | ||
196 | l2_table = *table; | |
45aba42f | 197 | |
8e37f681 | 198 | if ((old_l2_offset & L1E_OFFSET_MASK) == 0) { |
45aba42f KW |
199 | /* if there was no old l2 table, clear the new table */ |
200 | memset(l2_table, 0, s->l2_size * sizeof(uint64_t)); | |
201 | } else { | |
29c1a730 KW |
202 | uint64_t* old_table; |
203 | ||
45aba42f | 204 | /* if there was an old l2 table, read it from the disk */ |
66f82cee | 205 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ); |
8e37f681 KW |
206 | ret = qcow2_cache_get(bs, s->l2_table_cache, |
207 | old_l2_offset & L1E_OFFSET_MASK, | |
29c1a730 KW |
208 | (void**) &old_table); |
209 | if (ret < 0) { | |
210 | goto fail; | |
211 | } | |
212 | ||
213 | memcpy(l2_table, old_table, s->cluster_size); | |
214 | ||
215 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table); | |
c46e1167 | 216 | if (ret < 0) { |
175e1152 | 217 | goto fail; |
c46e1167 | 218 | } |
45aba42f | 219 | } |
29c1a730 | 220 | |
45aba42f | 221 | /* write the l2 table to the file */ |
66f82cee | 222 | BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE); |
29c1a730 | 223 | |
3cce16f4 | 224 | trace_qcow2_l2_allocate_write_l2(bs, l1_index); |
29c1a730 KW |
225 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
226 | ret = qcow2_cache_flush(bs, s->l2_table_cache); | |
c46e1167 | 227 | if (ret < 0) { |
175e1152 KW |
228 | goto fail; |
229 | } | |
230 | ||
231 | /* update the L1 entry */ | |
3cce16f4 | 232 | trace_qcow2_l2_allocate_write_l1(bs, l1_index); |
175e1152 KW |
233 | s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED; |
234 | ret = write_l1_entry(bs, l1_index); | |
235 | if (ret < 0) { | |
236 | goto fail; | |
c46e1167 | 237 | } |
45aba42f | 238 | |
c46e1167 | 239 | *table = l2_table; |
3cce16f4 | 240 | trace_qcow2_l2_allocate_done(bs, l1_index, 0); |
c46e1167 | 241 | return 0; |
175e1152 KW |
242 | |
243 | fail: | |
3cce16f4 | 244 | trace_qcow2_l2_allocate_done(bs, l1_index, ret); |
29c1a730 | 245 | qcow2_cache_put(bs, s->l2_table_cache, (void**) table); |
68dba0bf | 246 | s->l1_table[l1_index] = old_l2_offset; |
175e1152 | 247 | return ret; |
45aba42f KW |
248 | } |
249 | ||
2bfcc4a0 KW |
250 | /* |
251 | * Checks how many clusters in a given L2 table are contiguous in the image | |
252 | * file. As soon as one of the flags in the bitmask stop_flags changes compared | |
253 | * to the first cluster, the search is stopped and the cluster is not counted | |
254 | * as contiguous. (This allows it, for example, to stop at the first compressed | |
255 | * cluster which may require a different handling) | |
256 | */ | |
45aba42f | 257 | static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size, |
2bfcc4a0 | 258 | uint64_t *l2_table, uint64_t start, uint64_t stop_flags) |
45aba42f KW |
259 | { |
260 | int i; | |
2bfcc4a0 KW |
261 | uint64_t mask = stop_flags | L2E_OFFSET_MASK; |
262 | uint64_t offset = be64_to_cpu(l2_table[0]) & mask; | |
45aba42f KW |
263 | |
264 | if (!offset) | |
265 | return 0; | |
266 | ||
2bfcc4a0 KW |
267 | for (i = start; i < start + nb_clusters; i++) { |
268 | uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask; | |
269 | if (offset + (uint64_t) i * cluster_size != l2_entry) { | |
45aba42f | 270 | break; |
2bfcc4a0 KW |
271 | } |
272 | } | |
45aba42f KW |
273 | |
274 | return (i - start); | |
275 | } | |
276 | ||
277 | static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table) | |
278 | { | |
2bfcc4a0 KW |
279 | int i; |
280 | ||
281 | for (i = 0; i < nb_clusters; i++) { | |
282 | int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i])); | |
45aba42f | 283 | |
2bfcc4a0 KW |
284 | if (type != QCOW2_CLUSTER_UNALLOCATED) { |
285 | break; | |
286 | } | |
287 | } | |
45aba42f KW |
288 | |
289 | return i; | |
290 | } | |
291 | ||
292 | /* The crypt function is compatible with the linux cryptoloop | |
293 | algorithm for < 4 GB images. NOTE: out_buf == in_buf is | |
294 | supported */ | |
ed6ccf0f KW |
295 | void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num, |
296 | uint8_t *out_buf, const uint8_t *in_buf, | |
297 | int nb_sectors, int enc, | |
298 | const AES_KEY *key) | |
45aba42f KW |
299 | { |
300 | union { | |
301 | uint64_t ll[2]; | |
302 | uint8_t b[16]; | |
303 | } ivec; | |
304 | int i; | |
305 | ||
306 | for(i = 0; i < nb_sectors; i++) { | |
307 | ivec.ll[0] = cpu_to_le64(sector_num); | |
308 | ivec.ll[1] = 0; | |
309 | AES_cbc_encrypt(in_buf, out_buf, 512, key, | |
310 | ivec.b, enc); | |
311 | sector_num++; | |
312 | in_buf += 512; | |
313 | out_buf += 512; | |
314 | } | |
315 | } | |
316 | ||
aef4acb6 SH |
317 | static int coroutine_fn copy_sectors(BlockDriverState *bs, |
318 | uint64_t start_sect, | |
319 | uint64_t cluster_offset, | |
320 | int n_start, int n_end) | |
45aba42f KW |
321 | { |
322 | BDRVQcowState *s = bs->opaque; | |
aef4acb6 SH |
323 | QEMUIOVector qiov; |
324 | struct iovec iov; | |
45aba42f | 325 | int n, ret; |
1b9f1491 KW |
326 | |
327 | /* | |
328 | * If this is the last cluster and it is only partially used, we must only | |
329 | * copy until the end of the image, or bdrv_check_request will fail for the | |
330 | * bdrv_read/write calls below. | |
331 | */ | |
332 | if (start_sect + n_end > bs->total_sectors) { | |
333 | n_end = bs->total_sectors - start_sect; | |
334 | } | |
45aba42f KW |
335 | |
336 | n = n_end - n_start; | |
1b9f1491 | 337 | if (n <= 0) { |
45aba42f | 338 | return 0; |
1b9f1491 KW |
339 | } |
340 | ||
aef4acb6 SH |
341 | iov.iov_len = n * BDRV_SECTOR_SIZE; |
342 | iov.iov_base = qemu_blockalign(bs, iov.iov_len); | |
343 | ||
344 | qemu_iovec_init_external(&qiov, &iov, 1); | |
1b9f1491 | 345 | |
66f82cee | 346 | BLKDBG_EVENT(bs->file, BLKDBG_COW_READ); |
aef4acb6 SH |
347 | |
348 | /* Call .bdrv_co_readv() directly instead of using the public block-layer | |
349 | * interface. This avoids double I/O throttling and request tracking, | |
350 | * which can lead to deadlock when block layer copy-on-read is enabled. | |
351 | */ | |
352 | ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov); | |
1b9f1491 KW |
353 | if (ret < 0) { |
354 | goto out; | |
355 | } | |
356 | ||
45aba42f | 357 | if (s->crypt_method) { |
ed6ccf0f | 358 | qcow2_encrypt_sectors(s, start_sect + n_start, |
aef4acb6 | 359 | iov.iov_base, iov.iov_base, n, 1, |
45aba42f KW |
360 | &s->aes_encrypt_key); |
361 | } | |
1b9f1491 | 362 | |
66f82cee | 363 | BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE); |
aef4acb6 | 364 | ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov); |
1b9f1491 KW |
365 | if (ret < 0) { |
366 | goto out; | |
367 | } | |
368 | ||
369 | ret = 0; | |
370 | out: | |
aef4acb6 | 371 | qemu_vfree(iov.iov_base); |
1b9f1491 | 372 | return ret; |
45aba42f KW |
373 | } |
374 | ||
375 | ||
376 | /* | |
377 | * get_cluster_offset | |
378 | * | |
1c46efaa KW |
379 | * For a given offset of the disk image, find the cluster offset in |
380 | * qcow2 file. The offset is stored in *cluster_offset. | |
45aba42f | 381 | * |
d57237f2 | 382 | * on entry, *num is the number of contiguous sectors we'd like to |
45aba42f KW |
383 | * access following offset. |
384 | * | |
d57237f2 | 385 | * on exit, *num is the number of contiguous sectors we can read. |
45aba42f | 386 | * |
68d000a3 KW |
387 | * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error |
388 | * cases. | |
45aba42f | 389 | */ |
1c46efaa KW |
390 | int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset, |
391 | int *num, uint64_t *cluster_offset) | |
45aba42f KW |
392 | { |
393 | BDRVQcowState *s = bs->opaque; | |
80ee15a6 | 394 | unsigned int l1_index, l2_index; |
1c46efaa | 395 | uint64_t l2_offset, *l2_table; |
45aba42f | 396 | int l1_bits, c; |
80ee15a6 KW |
397 | unsigned int index_in_cluster, nb_clusters; |
398 | uint64_t nb_available, nb_needed; | |
55c17e98 | 399 | int ret; |
45aba42f KW |
400 | |
401 | index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1); | |
402 | nb_needed = *num + index_in_cluster; | |
403 | ||
404 | l1_bits = s->l2_bits + s->cluster_bits; | |
405 | ||
406 | /* compute how many bytes there are between the offset and | |
407 | * the end of the l1 entry | |
408 | */ | |
409 | ||
80ee15a6 | 410 | nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1)); |
45aba42f KW |
411 | |
412 | /* compute the number of available sectors */ | |
413 | ||
414 | nb_available = (nb_available >> 9) + index_in_cluster; | |
415 | ||
416 | if (nb_needed > nb_available) { | |
417 | nb_needed = nb_available; | |
418 | } | |
419 | ||
1c46efaa | 420 | *cluster_offset = 0; |
45aba42f KW |
421 | |
422 | /* seek the the l2 offset in the l1 table */ | |
423 | ||
424 | l1_index = offset >> l1_bits; | |
68d000a3 KW |
425 | if (l1_index >= s->l1_size) { |
426 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 427 | goto out; |
68d000a3 | 428 | } |
45aba42f | 429 | |
68d000a3 KW |
430 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; |
431 | if (!l2_offset) { | |
432 | ret = QCOW2_CLUSTER_UNALLOCATED; | |
45aba42f | 433 | goto out; |
68d000a3 | 434 | } |
45aba42f KW |
435 | |
436 | /* load the l2 table in memory */ | |
437 | ||
55c17e98 KW |
438 | ret = l2_load(bs, l2_offset, &l2_table); |
439 | if (ret < 0) { | |
440 | return ret; | |
1c46efaa | 441 | } |
45aba42f KW |
442 | |
443 | /* find the cluster offset for the given disk offset */ | |
444 | ||
445 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
1c46efaa | 446 | *cluster_offset = be64_to_cpu(l2_table[l2_index]); |
45aba42f KW |
447 | nb_clusters = size_to_clusters(s, nb_needed << 9); |
448 | ||
68d000a3 KW |
449 | ret = qcow2_get_cluster_type(*cluster_offset); |
450 | switch (ret) { | |
451 | case QCOW2_CLUSTER_COMPRESSED: | |
452 | /* Compressed clusters can only be processed one by one */ | |
453 | c = 1; | |
454 | *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK; | |
455 | break; | |
6377af48 | 456 | case QCOW2_CLUSTER_ZERO: |
381b487d PB |
457 | if (s->qcow_version < 3) { |
458 | return -EIO; | |
459 | } | |
6377af48 KW |
460 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, |
461 | &l2_table[l2_index], 0, | |
462 | QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); | |
463 | *cluster_offset = 0; | |
464 | break; | |
68d000a3 | 465 | case QCOW2_CLUSTER_UNALLOCATED: |
45aba42f KW |
466 | /* how many empty clusters ? */ |
467 | c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]); | |
68d000a3 KW |
468 | *cluster_offset = 0; |
469 | break; | |
470 | case QCOW2_CLUSTER_NORMAL: | |
45aba42f KW |
471 | /* how many allocated clusters ? */ |
472 | c = count_contiguous_clusters(nb_clusters, s->cluster_size, | |
6377af48 KW |
473 | &l2_table[l2_index], 0, |
474 | QCOW_OFLAG_COMPRESSED | QCOW_OFLAG_ZERO); | |
68d000a3 KW |
475 | *cluster_offset &= L2E_OFFSET_MASK; |
476 | break; | |
1417d7e4 KW |
477 | default: |
478 | abort(); | |
45aba42f KW |
479 | } |
480 | ||
29c1a730 KW |
481 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
482 | ||
68d000a3 KW |
483 | nb_available = (c * s->cluster_sectors); |
484 | ||
45aba42f KW |
485 | out: |
486 | if (nb_available > nb_needed) | |
487 | nb_available = nb_needed; | |
488 | ||
489 | *num = nb_available - index_in_cluster; | |
490 | ||
68d000a3 | 491 | return ret; |
45aba42f KW |
492 | } |
493 | ||
494 | /* | |
495 | * get_cluster_table | |
496 | * | |
497 | * for a given disk offset, load (and allocate if needed) | |
498 | * the l2 table. | |
499 | * | |
500 | * the l2 table offset in the qcow2 file and the cluster index | |
501 | * in the l2 table are given to the caller. | |
502 | * | |
1e3e8f1a | 503 | * Returns 0 on success, -errno in failure case |
45aba42f | 504 | */ |
45aba42f KW |
505 | static int get_cluster_table(BlockDriverState *bs, uint64_t offset, |
506 | uint64_t **new_l2_table, | |
45aba42f KW |
507 | int *new_l2_index) |
508 | { | |
509 | BDRVQcowState *s = bs->opaque; | |
80ee15a6 | 510 | unsigned int l1_index, l2_index; |
c46e1167 KW |
511 | uint64_t l2_offset; |
512 | uint64_t *l2_table = NULL; | |
80ee15a6 | 513 | int ret; |
45aba42f KW |
514 | |
515 | /* seek the the l2 offset in the l1 table */ | |
516 | ||
517 | l1_index = offset >> (s->l2_bits + s->cluster_bits); | |
518 | if (l1_index >= s->l1_size) { | |
72893756 | 519 | ret = qcow2_grow_l1_table(bs, l1_index + 1, false); |
1e3e8f1a KW |
520 | if (ret < 0) { |
521 | return ret; | |
522 | } | |
45aba42f | 523 | } |
8e37f681 KW |
524 | |
525 | l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK; | |
45aba42f KW |
526 | |
527 | /* seek the l2 table of the given l2 offset */ | |
528 | ||
8e37f681 | 529 | if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) { |
45aba42f | 530 | /* load the l2 table in memory */ |
55c17e98 KW |
531 | ret = l2_load(bs, l2_offset, &l2_table); |
532 | if (ret < 0) { | |
533 | return ret; | |
1e3e8f1a | 534 | } |
45aba42f | 535 | } else { |
16fde5f2 | 536 | /* First allocate a new L2 table (and do COW if needed) */ |
c46e1167 KW |
537 | ret = l2_allocate(bs, l1_index, &l2_table); |
538 | if (ret < 0) { | |
539 | return ret; | |
1e3e8f1a | 540 | } |
16fde5f2 KW |
541 | |
542 | /* Then decrease the refcount of the old table */ | |
543 | if (l2_offset) { | |
544 | qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t)); | |
545 | } | |
45aba42f KW |
546 | } |
547 | ||
548 | /* find the cluster offset for the given disk offset */ | |
549 | ||
550 | l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1); | |
551 | ||
552 | *new_l2_table = l2_table; | |
45aba42f KW |
553 | *new_l2_index = l2_index; |
554 | ||
1e3e8f1a | 555 | return 0; |
45aba42f KW |
556 | } |
557 | ||
558 | /* | |
559 | * alloc_compressed_cluster_offset | |
560 | * | |
561 | * For a given offset of the disk image, return cluster offset in | |
562 | * qcow2 file. | |
563 | * | |
564 | * If the offset is not found, allocate a new compressed cluster. | |
565 | * | |
566 | * Return the cluster offset if successful, | |
567 | * Return 0, otherwise. | |
568 | * | |
569 | */ | |
570 | ||
ed6ccf0f KW |
571 | uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs, |
572 | uint64_t offset, | |
573 | int compressed_size) | |
45aba42f KW |
574 | { |
575 | BDRVQcowState *s = bs->opaque; | |
576 | int l2_index, ret; | |
3948d1d4 | 577 | uint64_t *l2_table; |
f4f0d391 | 578 | int64_t cluster_offset; |
45aba42f KW |
579 | int nb_csectors; |
580 | ||
3948d1d4 | 581 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
1e3e8f1a | 582 | if (ret < 0) { |
45aba42f | 583 | return 0; |
1e3e8f1a | 584 | } |
45aba42f | 585 | |
b0b6862e KW |
586 | /* Compression can't overwrite anything. Fail if the cluster was already |
587 | * allocated. */ | |
45aba42f | 588 | cluster_offset = be64_to_cpu(l2_table[l2_index]); |
b0b6862e | 589 | if (cluster_offset & L2E_OFFSET_MASK) { |
8f1efd00 KW |
590 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
591 | return 0; | |
592 | } | |
45aba42f | 593 | |
ed6ccf0f | 594 | cluster_offset = qcow2_alloc_bytes(bs, compressed_size); |
5d757b56 | 595 | if (cluster_offset < 0) { |
29c1a730 | 596 | qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
5d757b56 KW |
597 | return 0; |
598 | } | |
599 | ||
45aba42f KW |
600 | nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) - |
601 | (cluster_offset >> 9); | |
602 | ||
603 | cluster_offset |= QCOW_OFLAG_COMPRESSED | | |
604 | ((uint64_t)nb_csectors << s->csize_shift); | |
605 | ||
606 | /* update L2 table */ | |
607 | ||
608 | /* compressed clusters never have the copied flag */ | |
609 | ||
66f82cee | 610 | BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED); |
29c1a730 | 611 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
45aba42f | 612 | l2_table[l2_index] = cpu_to_be64(cluster_offset); |
29c1a730 | 613 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
79a31189 | 614 | if (ret < 0) { |
29c1a730 | 615 | return 0; |
4c1612d9 KW |
616 | } |
617 | ||
29c1a730 | 618 | return cluster_offset; |
4c1612d9 KW |
619 | } |
620 | ||
593fb83c KW |
621 | static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r) |
622 | { | |
623 | BDRVQcowState *s = bs->opaque; | |
624 | int ret; | |
625 | ||
626 | if (r->nb_sectors == 0) { | |
627 | return 0; | |
628 | } | |
629 | ||
630 | qemu_co_mutex_unlock(&s->lock); | |
631 | ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset, | |
632 | r->offset / BDRV_SECTOR_SIZE, | |
633 | r->offset / BDRV_SECTOR_SIZE + r->nb_sectors); | |
634 | qemu_co_mutex_lock(&s->lock); | |
635 | ||
636 | if (ret < 0) { | |
637 | return ret; | |
638 | } | |
639 | ||
640 | /* | |
641 | * Before we update the L2 table to actually point to the new cluster, we | |
642 | * need to be sure that the refcounts have been increased and COW was | |
643 | * handled. | |
644 | */ | |
645 | qcow2_cache_depends_on_flush(s->l2_table_cache); | |
646 | ||
647 | return 0; | |
648 | } | |
649 | ||
148da7ea | 650 | int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m) |
45aba42f KW |
651 | { |
652 | BDRVQcowState *s = bs->opaque; | |
653 | int i, j = 0, l2_index, ret; | |
593fb83c | 654 | uint64_t *old_cluster, *l2_table; |
250196f1 | 655 | uint64_t cluster_offset = m->alloc_offset; |
45aba42f | 656 | |
3cce16f4 | 657 | trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters); |
f50f88b9 | 658 | assert(m->nb_clusters > 0); |
45aba42f | 659 | |
7267c094 | 660 | old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t)); |
45aba42f KW |
661 | |
662 | /* copy content of unmodified sectors */ | |
593fb83c KW |
663 | ret = perform_cow(bs, m, &m->cow_start); |
664 | if (ret < 0) { | |
665 | goto err; | |
45aba42f KW |
666 | } |
667 | ||
593fb83c KW |
668 | ret = perform_cow(bs, m, &m->cow_end); |
669 | if (ret < 0) { | |
670 | goto err; | |
29c1a730 KW |
671 | } |
672 | ||
593fb83c | 673 | /* Update L2 table. */ |
74c4510a | 674 | if (s->use_lazy_refcounts) { |
280d3735 KW |
675 | qcow2_mark_dirty(bs); |
676 | } | |
bfe8043e SH |
677 | if (qcow2_need_accurate_refcounts(s)) { |
678 | qcow2_cache_set_dependency(bs, s->l2_table_cache, | |
679 | s->refcount_block_cache); | |
680 | } | |
280d3735 | 681 | |
3948d1d4 | 682 | ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index); |
1e3e8f1a | 683 | if (ret < 0) { |
45aba42f | 684 | goto err; |
1e3e8f1a | 685 | } |
29c1a730 | 686 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); |
45aba42f KW |
687 | |
688 | for (i = 0; i < m->nb_clusters; i++) { | |
689 | /* if two concurrent writes happen to the same unallocated cluster | |
690 | * each write allocates separate cluster and writes data concurrently. | |
691 | * The first one to complete updates l2 table with pointer to its | |
692 | * cluster the second one has to do RMW (which is done above by | |
693 | * copy_sectors()), update l2 table with its cluster pointer and free | |
694 | * old cluster. This is what this loop does */ | |
695 | if(l2_table[l2_index + i] != 0) | |
696 | old_cluster[j++] = l2_table[l2_index + i]; | |
697 | ||
698 | l2_table[l2_index + i] = cpu_to_be64((cluster_offset + | |
699 | (i << s->cluster_bits)) | QCOW_OFLAG_COPIED); | |
700 | } | |
701 | ||
9f8e668e | 702 | |
29c1a730 | 703 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
c835d00f | 704 | if (ret < 0) { |
45aba42f | 705 | goto err; |
4c1612d9 | 706 | } |
45aba42f | 707 | |
7ec5e6a4 KW |
708 | /* |
709 | * If this was a COW, we need to decrease the refcount of the old cluster. | |
710 | * Also flush bs->file to get the right order for L2 and refcount update. | |
711 | */ | |
712 | if (j != 0) { | |
7ec5e6a4 | 713 | for (i = 0; i < j; i++) { |
8e37f681 | 714 | qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1); |
7ec5e6a4 KW |
715 | } |
716 | } | |
45aba42f KW |
717 | |
718 | ret = 0; | |
719 | err: | |
7267c094 | 720 | g_free(old_cluster); |
45aba42f KW |
721 | return ret; |
722 | } | |
723 | ||
bf319ece KW |
724 | /* |
725 | * Returns the number of contiguous clusters that can be used for an allocating | |
726 | * write, but require COW to be performed (this includes yet unallocated space, | |
727 | * which must copy from the backing file) | |
728 | */ | |
729 | static int count_cow_clusters(BDRVQcowState *s, int nb_clusters, | |
730 | uint64_t *l2_table, int l2_index) | |
731 | { | |
143550a8 | 732 | int i; |
bf319ece | 733 | |
143550a8 KW |
734 | for (i = 0; i < nb_clusters; i++) { |
735 | uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]); | |
736 | int cluster_type = qcow2_get_cluster_type(l2_entry); | |
737 | ||
738 | switch(cluster_type) { | |
739 | case QCOW2_CLUSTER_NORMAL: | |
740 | if (l2_entry & QCOW_OFLAG_COPIED) { | |
741 | goto out; | |
742 | } | |
bf319ece | 743 | break; |
143550a8 KW |
744 | case QCOW2_CLUSTER_UNALLOCATED: |
745 | case QCOW2_CLUSTER_COMPRESSED: | |
6377af48 | 746 | case QCOW2_CLUSTER_ZERO: |
bf319ece | 747 | break; |
143550a8 KW |
748 | default: |
749 | abort(); | |
750 | } | |
bf319ece KW |
751 | } |
752 | ||
143550a8 | 753 | out: |
bf319ece KW |
754 | assert(i <= nb_clusters); |
755 | return i; | |
756 | } | |
757 | ||
250196f1 | 758 | /* |
226c3c26 KW |
759 | * Check if there already is an AIO write request in flight which allocates |
760 | * the same cluster. In this case we need to wait until the previous | |
761 | * request has completed and updated the L2 table accordingly. | |
65eb2e35 KW |
762 | * |
763 | * Returns: | |
764 | * 0 if there was no dependency. *cur_bytes indicates the number of | |
765 | * bytes from guest_offset that can be read before the next | |
766 | * dependency must be processed (or the request is complete) | |
767 | * | |
768 | * -EAGAIN if we had to wait for another request, previously gathered | |
769 | * information on cluster allocation may be invalid now. The caller | |
770 | * must start over anyway, so consider *cur_bytes undefined. | |
250196f1 | 771 | */ |
226c3c26 | 772 | static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset, |
ecdd5333 | 773 | uint64_t *cur_bytes, QCowL2Meta **m) |
250196f1 KW |
774 | { |
775 | BDRVQcowState *s = bs->opaque; | |
250196f1 | 776 | QCowL2Meta *old_alloc; |
65eb2e35 | 777 | uint64_t bytes = *cur_bytes; |
250196f1 | 778 | |
250196f1 KW |
779 | QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) { |
780 | ||
65eb2e35 KW |
781 | uint64_t start = guest_offset; |
782 | uint64_t end = start + bytes; | |
783 | uint64_t old_start = l2meta_cow_start(old_alloc); | |
784 | uint64_t old_end = l2meta_cow_end(old_alloc); | |
250196f1 | 785 | |
d9d74f41 | 786 | if (end <= old_start || start >= old_end) { |
250196f1 KW |
787 | /* No intersection */ |
788 | } else { | |
789 | if (start < old_start) { | |
790 | /* Stop at the start of a running allocation */ | |
65eb2e35 | 791 | bytes = old_start - start; |
250196f1 | 792 | } else { |
65eb2e35 | 793 | bytes = 0; |
250196f1 KW |
794 | } |
795 | ||
ecdd5333 KW |
796 | /* Stop if already an l2meta exists. After yielding, it wouldn't |
797 | * be valid any more, so we'd have to clean up the old L2Metas | |
798 | * and deal with requests depending on them before starting to | |
799 | * gather new ones. Not worth the trouble. */ | |
800 | if (bytes == 0 && *m) { | |
801 | *cur_bytes = 0; | |
802 | return 0; | |
803 | } | |
804 | ||
65eb2e35 | 805 | if (bytes == 0) { |
250196f1 KW |
806 | /* Wait for the dependency to complete. We need to recheck |
807 | * the free/allocated clusters when we continue. */ | |
808 | qemu_co_mutex_unlock(&s->lock); | |
809 | qemu_co_queue_wait(&old_alloc->dependent_requests); | |
810 | qemu_co_mutex_lock(&s->lock); | |
811 | return -EAGAIN; | |
812 | } | |
813 | } | |
814 | } | |
815 | ||
65eb2e35 KW |
816 | /* Make sure that existing clusters and new allocations are only used up to |
817 | * the next dependency if we shortened the request above */ | |
818 | *cur_bytes = bytes; | |
250196f1 | 819 | |
226c3c26 KW |
820 | return 0; |
821 | } | |
822 | ||
0af729ec KW |
823 | /* |
824 | * Checks how many already allocated clusters that don't require a copy on | |
825 | * write there are at the given guest_offset (up to *bytes). If | |
826 | * *host_offset is not zero, only physically contiguous clusters beginning at | |
827 | * this host offset are counted. | |
828 | * | |
411d62b0 KW |
829 | * Note that guest_offset may not be cluster aligned. In this case, the |
830 | * returned *host_offset points to exact byte referenced by guest_offset and | |
831 | * therefore isn't cluster aligned as well. | |
0af729ec KW |
832 | * |
833 | * Returns: | |
834 | * 0: if no allocated clusters are available at the given offset. | |
835 | * *bytes is normally unchanged. It is set to 0 if the cluster | |
836 | * is allocated and doesn't need COW, but doesn't have the right | |
837 | * physical offset. | |
838 | * | |
839 | * 1: if allocated clusters that don't require a COW are available at | |
840 | * the requested offset. *bytes may have decreased and describes | |
841 | * the length of the area that can be written to. | |
842 | * | |
843 | * -errno: in error cases | |
0af729ec KW |
844 | */ |
845 | static int handle_copied(BlockDriverState *bs, uint64_t guest_offset, | |
c53ede9f | 846 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
0af729ec KW |
847 | { |
848 | BDRVQcowState *s = bs->opaque; | |
849 | int l2_index; | |
850 | uint64_t cluster_offset; | |
851 | uint64_t *l2_table; | |
acb0467f | 852 | unsigned int nb_clusters; |
c53ede9f | 853 | unsigned int keep_clusters; |
0af729ec KW |
854 | int ret, pret; |
855 | ||
856 | trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset, | |
857 | *bytes); | |
0af729ec | 858 | |
411d62b0 KW |
859 | assert(*host_offset == 0 || offset_into_cluster(s, guest_offset) |
860 | == offset_into_cluster(s, *host_offset)); | |
861 | ||
acb0467f KW |
862 | /* |
863 | * Calculate the number of clusters to look for. We stop at L2 table | |
864 | * boundaries to keep things simple. | |
865 | */ | |
866 | nb_clusters = | |
867 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
868 | ||
869 | l2_index = offset_to_l2_index(s, guest_offset); | |
870 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
871 | ||
0af729ec KW |
872 | /* Find L2 entry for the first involved cluster */ |
873 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
874 | if (ret < 0) { | |
875 | return ret; | |
876 | } | |
877 | ||
878 | cluster_offset = be64_to_cpu(l2_table[l2_index]); | |
879 | ||
880 | /* Check how many clusters are already allocated and don't need COW */ | |
881 | if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL | |
882 | && (cluster_offset & QCOW_OFLAG_COPIED)) | |
883 | { | |
e62daaf6 KW |
884 | /* If a specific host_offset is required, check it */ |
885 | bool offset_matches = | |
886 | (cluster_offset & L2E_OFFSET_MASK) == *host_offset; | |
887 | ||
888 | if (*host_offset != 0 && !offset_matches) { | |
889 | *bytes = 0; | |
890 | ret = 0; | |
891 | goto out; | |
892 | } | |
893 | ||
0af729ec | 894 | /* We keep all QCOW_OFLAG_COPIED clusters */ |
c53ede9f | 895 | keep_clusters = |
acb0467f | 896 | count_contiguous_clusters(nb_clusters, s->cluster_size, |
0af729ec KW |
897 | &l2_table[l2_index], 0, |
898 | QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO); | |
c53ede9f KW |
899 | assert(keep_clusters <= nb_clusters); |
900 | ||
901 | *bytes = MIN(*bytes, | |
902 | keep_clusters * s->cluster_size | |
903 | - offset_into_cluster(s, guest_offset)); | |
0af729ec KW |
904 | |
905 | ret = 1; | |
906 | } else { | |
0af729ec KW |
907 | ret = 0; |
908 | } | |
909 | ||
0af729ec | 910 | /* Cleanup */ |
e62daaf6 | 911 | out: |
0af729ec KW |
912 | pret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
913 | if (pret < 0) { | |
914 | return pret; | |
915 | } | |
916 | ||
e62daaf6 KW |
917 | /* Only return a host offset if we actually made progress. Otherwise we |
918 | * would make requirements for handle_alloc() that it can't fulfill */ | |
919 | if (ret) { | |
411d62b0 KW |
920 | *host_offset = (cluster_offset & L2E_OFFSET_MASK) |
921 | + offset_into_cluster(s, guest_offset); | |
e62daaf6 KW |
922 | } |
923 | ||
0af729ec KW |
924 | return ret; |
925 | } | |
926 | ||
226c3c26 KW |
927 | /* |
928 | * Allocates new clusters for the given guest_offset. | |
929 | * | |
930 | * At most *nb_clusters are allocated, and on return *nb_clusters is updated to | |
931 | * contain the number of clusters that have been allocated and are contiguous | |
932 | * in the image file. | |
933 | * | |
934 | * If *host_offset is non-zero, it specifies the offset in the image file at | |
935 | * which the new clusters must start. *nb_clusters can be 0 on return in this | |
936 | * case if the cluster at host_offset is already in use. If *host_offset is | |
937 | * zero, the clusters can be allocated anywhere in the image file. | |
938 | * | |
939 | * *host_offset is updated to contain the offset into the image file at which | |
940 | * the first allocated cluster starts. | |
941 | * | |
942 | * Return 0 on success and -errno in error cases. -EAGAIN means that the | |
943 | * function has been waiting for another request and the allocation must be | |
944 | * restarted, but the whole request should not be failed. | |
945 | */ | |
946 | static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset, | |
947 | uint64_t *host_offset, unsigned int *nb_clusters) | |
948 | { | |
949 | BDRVQcowState *s = bs->opaque; | |
226c3c26 KW |
950 | |
951 | trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset, | |
952 | *host_offset, *nb_clusters); | |
953 | ||
250196f1 KW |
954 | /* Allocate new clusters */ |
955 | trace_qcow2_cluster_alloc_phys(qemu_coroutine_self()); | |
956 | if (*host_offset == 0) { | |
df021791 KW |
957 | int64_t cluster_offset = |
958 | qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size); | |
959 | if (cluster_offset < 0) { | |
960 | return cluster_offset; | |
961 | } | |
962 | *host_offset = cluster_offset; | |
963 | return 0; | |
250196f1 | 964 | } else { |
17a71e58 | 965 | int ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters); |
df021791 KW |
966 | if (ret < 0) { |
967 | return ret; | |
968 | } | |
969 | *nb_clusters = ret; | |
970 | return 0; | |
250196f1 | 971 | } |
250196f1 KW |
972 | } |
973 | ||
10f0ed8b KW |
974 | /* |
975 | * Allocates new clusters for an area that either is yet unallocated or needs a | |
976 | * copy on write. If *host_offset is non-zero, clusters are only allocated if | |
977 | * the new allocation can match the specified host offset. | |
978 | * | |
411d62b0 KW |
979 | * Note that guest_offset may not be cluster aligned. In this case, the |
980 | * returned *host_offset points to exact byte referenced by guest_offset and | |
981 | * therefore isn't cluster aligned as well. | |
10f0ed8b KW |
982 | * |
983 | * Returns: | |
984 | * 0: if no clusters could be allocated. *bytes is set to 0, | |
985 | * *host_offset is left unchanged. | |
986 | * | |
987 | * 1: if new clusters were allocated. *bytes may be decreased if the | |
988 | * new allocation doesn't cover all of the requested area. | |
989 | * *host_offset is updated to contain the host offset of the first | |
990 | * newly allocated cluster. | |
991 | * | |
992 | * -errno: in error cases | |
10f0ed8b KW |
993 | */ |
994 | static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset, | |
c37f4cd7 | 995 | uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m) |
10f0ed8b KW |
996 | { |
997 | BDRVQcowState *s = bs->opaque; | |
998 | int l2_index; | |
999 | uint64_t *l2_table; | |
1000 | uint64_t entry; | |
f5bc6350 | 1001 | unsigned int nb_clusters; |
10f0ed8b KW |
1002 | int ret; |
1003 | ||
10f0ed8b | 1004 | uint64_t alloc_cluster_offset; |
10f0ed8b KW |
1005 | |
1006 | trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset, | |
1007 | *bytes); | |
1008 | assert(*bytes > 0); | |
1009 | ||
f5bc6350 KW |
1010 | /* |
1011 | * Calculate the number of clusters to look for. We stop at L2 table | |
1012 | * boundaries to keep things simple. | |
1013 | */ | |
c37f4cd7 KW |
1014 | nb_clusters = |
1015 | size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes); | |
1016 | ||
f5bc6350 | 1017 | l2_index = offset_to_l2_index(s, guest_offset); |
c37f4cd7 | 1018 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); |
f5bc6350 | 1019 | |
10f0ed8b KW |
1020 | /* Find L2 entry for the first involved cluster */ |
1021 | ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index); | |
1022 | if (ret < 0) { | |
1023 | return ret; | |
1024 | } | |
1025 | ||
3b8e2e26 | 1026 | entry = be64_to_cpu(l2_table[l2_index]); |
10f0ed8b KW |
1027 | |
1028 | /* For the moment, overwrite compressed clusters one by one */ | |
1029 | if (entry & QCOW_OFLAG_COMPRESSED) { | |
1030 | nb_clusters = 1; | |
1031 | } else { | |
3b8e2e26 | 1032 | nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index); |
10f0ed8b KW |
1033 | } |
1034 | ||
ecdd5333 KW |
1035 | /* This function is only called when there were no non-COW clusters, so if |
1036 | * we can't find any unallocated or COW clusters either, something is | |
1037 | * wrong with our code. */ | |
1038 | assert(nb_clusters > 0); | |
1039 | ||
10f0ed8b KW |
1040 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); |
1041 | if (ret < 0) { | |
1042 | return ret; | |
1043 | } | |
1044 | ||
10f0ed8b | 1045 | /* Allocate, if necessary at a given offset in the image file */ |
411d62b0 | 1046 | alloc_cluster_offset = start_of_cluster(s, *host_offset); |
83baa9a4 | 1047 | ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset, |
10f0ed8b KW |
1048 | &nb_clusters); |
1049 | if (ret < 0) { | |
1050 | goto fail; | |
1051 | } | |
1052 | ||
83baa9a4 KW |
1053 | /* Can't extend contiguous allocation */ |
1054 | if (nb_clusters == 0) { | |
10f0ed8b KW |
1055 | *bytes = 0; |
1056 | return 0; | |
1057 | } | |
1058 | ||
83baa9a4 KW |
1059 | /* |
1060 | * Save info needed for meta data update. | |
1061 | * | |
1062 | * requested_sectors: Number of sectors from the start of the first | |
1063 | * newly allocated cluster to the end of the (possibly shortened | |
1064 | * before) write request. | |
1065 | * | |
1066 | * avail_sectors: Number of sectors from the start of the first | |
1067 | * newly allocated to the end of the last newly allocated cluster. | |
1068 | * | |
1069 | * nb_sectors: The number of sectors from the start of the first | |
1070 | * newly allocated cluster to the end of the area that the write | |
1071 | * request actually writes to (excluding COW at the end) | |
1072 | */ | |
1073 | int requested_sectors = | |
1074 | (*bytes + offset_into_cluster(s, guest_offset)) | |
1075 | >> BDRV_SECTOR_BITS; | |
1076 | int avail_sectors = nb_clusters | |
1077 | << (s->cluster_bits - BDRV_SECTOR_BITS); | |
1078 | int alloc_n_start = offset_into_cluster(s, guest_offset) | |
1079 | >> BDRV_SECTOR_BITS; | |
1080 | int nb_sectors = MIN(requested_sectors, avail_sectors); | |
88c6588c | 1081 | QCowL2Meta *old_m = *m; |
83baa9a4 | 1082 | |
83baa9a4 KW |
1083 | *m = g_malloc0(sizeof(**m)); |
1084 | ||
1085 | **m = (QCowL2Meta) { | |
88c6588c KW |
1086 | .next = old_m, |
1087 | ||
411d62b0 | 1088 | .alloc_offset = alloc_cluster_offset, |
83baa9a4 KW |
1089 | .offset = start_of_cluster(s, guest_offset), |
1090 | .nb_clusters = nb_clusters, | |
1091 | .nb_available = nb_sectors, | |
1092 | ||
1093 | .cow_start = { | |
1094 | .offset = 0, | |
1095 | .nb_sectors = alloc_n_start, | |
1096 | }, | |
1097 | .cow_end = { | |
1098 | .offset = nb_sectors * BDRV_SECTOR_SIZE, | |
1099 | .nb_sectors = avail_sectors - nb_sectors, | |
1100 | }, | |
1101 | }; | |
1102 | qemu_co_queue_init(&(*m)->dependent_requests); | |
1103 | QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight); | |
1104 | ||
411d62b0 | 1105 | *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset); |
83baa9a4 KW |
1106 | *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE) |
1107 | - offset_into_cluster(s, guest_offset)); | |
1108 | assert(*bytes != 0); | |
1109 | ||
10f0ed8b KW |
1110 | return 1; |
1111 | ||
1112 | fail: | |
1113 | if (*m && (*m)->nb_clusters > 0) { | |
1114 | QLIST_REMOVE(*m, next_in_flight); | |
1115 | } | |
1116 | return ret; | |
1117 | } | |
1118 | ||
45aba42f KW |
1119 | /* |
1120 | * alloc_cluster_offset | |
1121 | * | |
250196f1 KW |
1122 | * For a given offset on the virtual disk, find the cluster offset in qcow2 |
1123 | * file. If the offset is not found, allocate a new cluster. | |
45aba42f | 1124 | * |
250196f1 | 1125 | * If the cluster was already allocated, m->nb_clusters is set to 0 and |
a7912369 | 1126 | * other fields in m are meaningless. |
148da7ea KW |
1127 | * |
1128 | * If the cluster is newly allocated, m->nb_clusters is set to the number of | |
68d100e9 KW |
1129 | * contiguous clusters that have been allocated. In this case, the other |
1130 | * fields of m are valid and contain information about the first allocated | |
1131 | * cluster. | |
45aba42f | 1132 | * |
68d100e9 KW |
1133 | * If the request conflicts with another write request in flight, the coroutine |
1134 | * is queued and will be reentered when the dependency has completed. | |
148da7ea KW |
1135 | * |
1136 | * Return 0 on success and -errno in error cases | |
45aba42f | 1137 | */ |
f4f0d391 | 1138 | int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset, |
f50f88b9 | 1139 | int n_start, int n_end, int *num, uint64_t *host_offset, QCowL2Meta **m) |
45aba42f KW |
1140 | { |
1141 | BDRVQcowState *s = bs->opaque; | |
710c2496 | 1142 | uint64_t start, remaining; |
250196f1 | 1143 | uint64_t cluster_offset; |
65eb2e35 | 1144 | uint64_t cur_bytes; |
710c2496 | 1145 | int ret; |
45aba42f | 1146 | |
3cce16f4 KW |
1147 | trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, |
1148 | n_start, n_end); | |
1149 | ||
710c2496 KW |
1150 | assert(n_start * BDRV_SECTOR_SIZE == offset_into_cluster(s, offset)); |
1151 | offset = start_of_cluster(s, offset); | |
1152 | ||
72424114 | 1153 | again: |
710c2496 KW |
1154 | start = offset + (n_start << BDRV_SECTOR_BITS); |
1155 | remaining = (n_end - n_start) << BDRV_SECTOR_BITS; | |
0af729ec KW |
1156 | cluster_offset = 0; |
1157 | *host_offset = 0; | |
ecdd5333 KW |
1158 | cur_bytes = 0; |
1159 | *m = NULL; | |
0af729ec | 1160 | |
2c3b32d2 | 1161 | while (true) { |
ecdd5333 KW |
1162 | |
1163 | if (!*host_offset) { | |
1164 | *host_offset = start_of_cluster(s, cluster_offset); | |
1165 | } | |
1166 | ||
1167 | assert(remaining >= cur_bytes); | |
1168 | ||
1169 | start += cur_bytes; | |
1170 | remaining -= cur_bytes; | |
1171 | cluster_offset += cur_bytes; | |
1172 | ||
1173 | if (remaining == 0) { | |
1174 | break; | |
1175 | } | |
1176 | ||
1177 | cur_bytes = remaining; | |
1178 | ||
2c3b32d2 KW |
1179 | /* |
1180 | * Now start gathering as many contiguous clusters as possible: | |
1181 | * | |
1182 | * 1. Check for overlaps with in-flight allocations | |
1183 | * | |
1184 | * a) Overlap not in the first cluster -> shorten this request and | |
1185 | * let the caller handle the rest in its next loop iteration. | |
1186 | * | |
1187 | * b) Real overlaps of two requests. Yield and restart the search | |
1188 | * for contiguous clusters (the situation could have changed | |
1189 | * while we were sleeping) | |
1190 | * | |
1191 | * c) TODO: Request starts in the same cluster as the in-flight | |
1192 | * allocation ends. Shorten the COW of the in-fight allocation, | |
1193 | * set cluster_offset to write to the same cluster and set up | |
1194 | * the right synchronisation between the in-flight request and | |
1195 | * the new one. | |
1196 | */ | |
ecdd5333 | 1197 | ret = handle_dependencies(bs, start, &cur_bytes, m); |
2c3b32d2 | 1198 | if (ret == -EAGAIN) { |
ecdd5333 KW |
1199 | /* Currently handle_dependencies() doesn't yield if we already had |
1200 | * an allocation. If it did, we would have to clean up the L2Meta | |
1201 | * structs before starting over. */ | |
1202 | assert(*m == NULL); | |
2c3b32d2 KW |
1203 | goto again; |
1204 | } else if (ret < 0) { | |
1205 | return ret; | |
ecdd5333 KW |
1206 | } else if (cur_bytes == 0) { |
1207 | break; | |
2c3b32d2 KW |
1208 | } else { |
1209 | /* handle_dependencies() may have decreased cur_bytes (shortened | |
1210 | * the allocations below) so that the next dependency is processed | |
1211 | * correctly during the next loop iteration. */ | |
0af729ec | 1212 | } |
710c2496 | 1213 | |
2c3b32d2 KW |
1214 | /* |
1215 | * 2. Count contiguous COPIED clusters. | |
1216 | */ | |
1217 | ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m); | |
1218 | if (ret < 0) { | |
1219 | return ret; | |
1220 | } else if (ret) { | |
ecdd5333 | 1221 | continue; |
2c3b32d2 KW |
1222 | } else if (cur_bytes == 0) { |
1223 | break; | |
1224 | } | |
060bee89 | 1225 | |
2c3b32d2 KW |
1226 | /* |
1227 | * 3. If the request still hasn't completed, allocate new clusters, | |
1228 | * considering any cluster_offset of steps 1c or 2. | |
1229 | */ | |
1230 | ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m); | |
1231 | if (ret < 0) { | |
1232 | return ret; | |
1233 | } else if (ret) { | |
ecdd5333 | 1234 | continue; |
2c3b32d2 KW |
1235 | } else { |
1236 | assert(cur_bytes == 0); | |
1237 | break; | |
1238 | } | |
f5bc6350 | 1239 | } |
10f0ed8b | 1240 | |
710c2496 KW |
1241 | *num = (n_end - n_start) - (remaining >> BDRV_SECTOR_BITS); |
1242 | assert(*num > 0); | |
1243 | assert(*host_offset != 0); | |
45aba42f | 1244 | |
148da7ea | 1245 | return 0; |
45aba42f KW |
1246 | } |
1247 | ||
1248 | static int decompress_buffer(uint8_t *out_buf, int out_buf_size, | |
1249 | const uint8_t *buf, int buf_size) | |
1250 | { | |
1251 | z_stream strm1, *strm = &strm1; | |
1252 | int ret, out_len; | |
1253 | ||
1254 | memset(strm, 0, sizeof(*strm)); | |
1255 | ||
1256 | strm->next_in = (uint8_t *)buf; | |
1257 | strm->avail_in = buf_size; | |
1258 | strm->next_out = out_buf; | |
1259 | strm->avail_out = out_buf_size; | |
1260 | ||
1261 | ret = inflateInit2(strm, -12); | |
1262 | if (ret != Z_OK) | |
1263 | return -1; | |
1264 | ret = inflate(strm, Z_FINISH); | |
1265 | out_len = strm->next_out - out_buf; | |
1266 | if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) || | |
1267 | out_len != out_buf_size) { | |
1268 | inflateEnd(strm); | |
1269 | return -1; | |
1270 | } | |
1271 | inflateEnd(strm); | |
1272 | return 0; | |
1273 | } | |
1274 | ||
66f82cee | 1275 | int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset) |
45aba42f | 1276 | { |
66f82cee | 1277 | BDRVQcowState *s = bs->opaque; |
45aba42f KW |
1278 | int ret, csize, nb_csectors, sector_offset; |
1279 | uint64_t coffset; | |
1280 | ||
1281 | coffset = cluster_offset & s->cluster_offset_mask; | |
1282 | if (s->cluster_cache_offset != coffset) { | |
1283 | nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1; | |
1284 | sector_offset = coffset & 511; | |
1285 | csize = nb_csectors * 512 - sector_offset; | |
66f82cee KW |
1286 | BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED); |
1287 | ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors); | |
45aba42f | 1288 | if (ret < 0) { |
8af36488 | 1289 | return ret; |
45aba42f KW |
1290 | } |
1291 | if (decompress_buffer(s->cluster_cache, s->cluster_size, | |
1292 | s->cluster_data + sector_offset, csize) < 0) { | |
8af36488 | 1293 | return -EIO; |
45aba42f KW |
1294 | } |
1295 | s->cluster_cache_offset = coffset; | |
1296 | } | |
1297 | return 0; | |
1298 | } | |
5ea929e3 KW |
1299 | |
1300 | /* | |
1301 | * This discards as many clusters of nb_clusters as possible at once (i.e. | |
1302 | * all clusters in the same L2 table) and returns the number of discarded | |
1303 | * clusters. | |
1304 | */ | |
1305 | static int discard_single_l2(BlockDriverState *bs, uint64_t offset, | |
1306 | unsigned int nb_clusters) | |
1307 | { | |
1308 | BDRVQcowState *s = bs->opaque; | |
3948d1d4 | 1309 | uint64_t *l2_table; |
5ea929e3 KW |
1310 | int l2_index; |
1311 | int ret; | |
1312 | int i; | |
1313 | ||
3948d1d4 | 1314 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); |
5ea929e3 KW |
1315 | if (ret < 0) { |
1316 | return ret; | |
1317 | } | |
1318 | ||
1319 | /* Limit nb_clusters to one L2 table */ | |
1320 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
1321 | ||
1322 | for (i = 0; i < nb_clusters; i++) { | |
1323 | uint64_t old_offset; | |
1324 | ||
1325 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
8e37f681 | 1326 | if ((old_offset & L2E_OFFSET_MASK) == 0) { |
5ea929e3 KW |
1327 | continue; |
1328 | } | |
1329 | ||
1330 | /* First remove L2 entries */ | |
1331 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
1332 | l2_table[l2_index + i] = cpu_to_be64(0); | |
1333 | ||
1334 | /* Then decrease the refcount */ | |
1335 | qcow2_free_any_clusters(bs, old_offset, 1); | |
1336 | } | |
1337 | ||
1338 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | |
1339 | if (ret < 0) { | |
1340 | return ret; | |
1341 | } | |
1342 | ||
1343 | return nb_clusters; | |
1344 | } | |
1345 | ||
1346 | int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset, | |
1347 | int nb_sectors) | |
1348 | { | |
1349 | BDRVQcowState *s = bs->opaque; | |
1350 | uint64_t end_offset; | |
1351 | unsigned int nb_clusters; | |
1352 | int ret; | |
1353 | ||
1354 | end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS); | |
1355 | ||
1356 | /* Round start up and end down */ | |
1357 | offset = align_offset(offset, s->cluster_size); | |
1358 | end_offset &= ~(s->cluster_size - 1); | |
1359 | ||
1360 | if (offset > end_offset) { | |
1361 | return 0; | |
1362 | } | |
1363 | ||
1364 | nb_clusters = size_to_clusters(s, end_offset - offset); | |
1365 | ||
1366 | /* Each L2 table is handled by its own loop iteration */ | |
1367 | while (nb_clusters > 0) { | |
1368 | ret = discard_single_l2(bs, offset, nb_clusters); | |
1369 | if (ret < 0) { | |
1370 | return ret; | |
1371 | } | |
1372 | ||
1373 | nb_clusters -= ret; | |
1374 | offset += (ret * s->cluster_size); | |
1375 | } | |
1376 | ||
1377 | return 0; | |
1378 | } | |
621f0589 KW |
1379 | |
1380 | /* | |
1381 | * This zeroes as many clusters of nb_clusters as possible at once (i.e. | |
1382 | * all clusters in the same L2 table) and returns the number of zeroed | |
1383 | * clusters. | |
1384 | */ | |
1385 | static int zero_single_l2(BlockDriverState *bs, uint64_t offset, | |
1386 | unsigned int nb_clusters) | |
1387 | { | |
1388 | BDRVQcowState *s = bs->opaque; | |
1389 | uint64_t *l2_table; | |
1390 | int l2_index; | |
1391 | int ret; | |
1392 | int i; | |
1393 | ||
1394 | ret = get_cluster_table(bs, offset, &l2_table, &l2_index); | |
1395 | if (ret < 0) { | |
1396 | return ret; | |
1397 | } | |
1398 | ||
1399 | /* Limit nb_clusters to one L2 table */ | |
1400 | nb_clusters = MIN(nb_clusters, s->l2_size - l2_index); | |
1401 | ||
1402 | for (i = 0; i < nb_clusters; i++) { | |
1403 | uint64_t old_offset; | |
1404 | ||
1405 | old_offset = be64_to_cpu(l2_table[l2_index + i]); | |
1406 | ||
1407 | /* Update L2 entries */ | |
1408 | qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table); | |
1409 | if (old_offset & QCOW_OFLAG_COMPRESSED) { | |
1410 | l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO); | |
1411 | qcow2_free_any_clusters(bs, old_offset, 1); | |
1412 | } else { | |
1413 | l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO); | |
1414 | } | |
1415 | } | |
1416 | ||
1417 | ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table); | |
1418 | if (ret < 0) { | |
1419 | return ret; | |
1420 | } | |
1421 | ||
1422 | return nb_clusters; | |
1423 | } | |
1424 | ||
1425 | int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors) | |
1426 | { | |
1427 | BDRVQcowState *s = bs->opaque; | |
1428 | unsigned int nb_clusters; | |
1429 | int ret; | |
1430 | ||
1431 | /* The zero flag is only supported by version 3 and newer */ | |
1432 | if (s->qcow_version < 3) { | |
1433 | return -ENOTSUP; | |
1434 | } | |
1435 | ||
1436 | /* Each L2 table is handled by its own loop iteration */ | |
1437 | nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS); | |
1438 | ||
1439 | while (nb_clusters > 0) { | |
1440 | ret = zero_single_l2(bs, offset, nb_clusters); | |
1441 | if (ret < 0) { | |
1442 | return ret; | |
1443 | } | |
1444 | ||
1445 | nb_clusters -= ret; | |
1446 | offset += (ret * s->cluster_size); | |
1447 | } | |
1448 | ||
1449 | return 0; | |
1450 | } |